(54) Title: TRANSUCER POSITIONING MECHANISM

(57) Abstract

A disk drive system includes a mechanism for positioning a movable transducer member (21) in the absence of electrical power to the drive system. The mechanism includes a ferromagnetic lever arm (33) pivotally positioned to engage a movable transducer member and, by such engagement, to move the transducer (19) to a predetermined location. An electromagnet (41) attracts the lever arm (33) to a position clear of the movable transducer member (21) in the presence of electrical power to the drive system, and a spring (55) moves the lever arm into engagement with the movable transducer member when the electromagnet (41) is not energized.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>FR</th>
<th>France</th>
<th>ML</th>
<th>Mali</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Transducer Positioning Mechanism

BACKGROUND OF INVENTION

Field of the Invention

The present invention relates to a disk drive system for a data storage disk and, more particularly, to a mechanism for selectively positioning a read/write arm in the absence of electrical power to the disk drive system.

Description of Prior Art

In electronic data handling, systems are well known in which data is stored in binary form on the face of a rotatable disk. In magnetic recording systems, for example, the binary data is encoded upon, or retrieved from, the face of the disk in concentric tracks by a movable electromagnetic transducer which is selectively positioned at positions radial of the disk in order to locate a particular track at which information is to be recorded or retrieved. A typical five and one-quarter inch diameter disk, for example, has four hundred to six hundred tracks for data storage formed upon its face.

Various systems are known to accurately and quickly place such transducers upon a desired track on the face of a disk. Some systems, for example, depend upon positional information which is encoded upon the individual tracks on the face of the disk; and other other systems rely upon a record of past movements of the transducer. In systems of the latter type, difficulties can arise when power is interrupted to
the disk drive system thereby causing the control system to lose knowledge of the exact position of the transducer. In such situations, errors may arise when the power to the disk drive system is resumed and an effort is made to reposition the transducer on the face of the disk.

SUMMARY OF THE INVENTION

A primary object of the present invention is to provide a mechanism for selectively positioning a movable transducer member associated with a data storage disk drive system in the absence of electrical power to the drive system.

A further object of the present invention is to provide a mechanism for braking rotational movement of a data storage disk in the absence of electrical power to the drive system for the disk.

In accordance with the preceding objects, the present invention provides, in conjunction with a drive system for an information storage disk having a movable transducer member, a mechanism for positioning the movable transducer member in the absence of electrical power to the drive system comprises a lever arm formed of ferromagnetic material and means pivotably mounting the arm such that one end of the lever arm can engage the movable transducer member and, upon such engagement, can rotate the movable transducer member to a predetermined position; electromagnetic means stationarily mounted adjacent the lever arm to magnetically attract the lever arm to a position where its said one end is clear of the movable transducer member, and spring means connected
to draw said one end of the lever arm to the position
to engage the movable transducer member in the absence
of energization of the electromagnetic means. In the
preferred embodiment, there is further provided a
second lever arm which is formed of ferromagnetic
material, which has a brake pad fitted thereto, and
which is mounted to be drawn to the electromagnetic
means upon energization thereof and to apply braking
action to a rotating disk when the electromagnetic
means is not energized.

In accordance with the preceding, a primary
advantage of the present invention is the provision of
a mechanism for selectively positioning a movable
transducer member associated with an information
storage disk drive system in the absence of electrical
power to the drive system.

A further advantage of the present invention is
the provision of a mechanism for braking the rotat-
tional movement of a data storage disk in the absence
of electrical power to the drive system for the disk.

These and other objects and advantages of the
present invention will no doubt become obvious to
those of ordinary skill in the art after having read
the following detailed description of the preferred
embodiment which is illustrated in the various drawing
figures.

IN THE DRAWINGS

Fig. 1 is a plan view of a disk drive system,
portions of which are shown schematically; and
Fig. 2 is a sectional view of the system of Fig. 1 showing a mechanism according to the present invention in transverse cross-section.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Fig. 1 generally shows one embodiment of a data storage system including a disk 13 mounted for rotation about a central spindle 15, a read/write transducer 19 for reading and/or writing information on the face of the disk 13 in binary form, an arm 21 mounted for pivoting with a drive shaft 22 which moves the read/write transducer 19 across the face of the disk 13, and a motor 23 for driving the shaft 22 and, hence, for positioning the arm 21. It should be appreciated that the data storage system in Fig. 1 is offered by way of example only, and that equivalent systems can be readily provided. In one alternative embodiment, for example, the system is an optical system wherein the transducer 19 would optically read information in binary form from a data storage disk. In another embodiment by way of further example, the transducer would be mounted on a stationary track-like member for linear, rather than pivotal, movement across the face of the disk 13.

Fig. 1 further schematically shows the face of the disk 13 divided into concentric tracks designated w, x and y. In the drawing, the size of these tracks has been exaggerated for ease of explanation; in practice, the data band on a disk may contain at least several hundred adjacent data tracks. The function of the motor 23 and an associated control system (not shown) is to quickly and accurately drive the arm 21 to a position where the read/write transducer 19 is
above a particular desired track on the face of the disk 13 while the disk 13 is rotating, typically at several thousand revolutions per minute.

Various control systems, known generally as servo systems, can be provided for positioning the transducer 19. Many of such systems depend upon keeping an account of movements of the transducer 19 and, hence, operate to reposition the transducer 19 based upon information as to its prior locations. Such information can be accurately obtained, however, only in the presence of electrical power for the disk drive system. During interruptions of power to the system, the transducer may continue to move but the record of such movement may be lost to the control system. Thus, when power is restored to such control systems, it is necessary to move the transducer to a known reference position (usually called a crash stop position) from which controlled positioning can begin.

Fig. 2 shows a mechanism, generally designated by the number 29, for selectively positioning the read/write arm 21 in the absence of electrical power to the disk drive system. (The mechanism 29 is located below the arm 23 and, therefore, is hidden from view in Fig. 1; for purposes of orientation, the arm 23 is indicated by dashed lines in Fig. 2.) The mechanism 29 includes a first lever arm 33 which is formed of a ferromagnetic material and mounted to pivot about a pivot axis 35. The lever arm 33 is a generally straight member and has an end 37 which extends to a location closely adjacent the drive shaft 22. A pin member 39 is fixedly keyed to the drive shaft 22 and positioned to extend from the shaft 22 coplanarly with
the end 37 of the lever arm 33. The mechanism 29 further includes a hollow cylindrical solenoid 41 and a ferromagnetic member 47 fixed to the end of the solenoid 41. Also, the mechanism 29 includes a tension spring 55 connected to the end 37 of the lever arm 33; in the absence of countervailing force the tension spring 55, biases the lever arm end 37 toward the drive shaft 22.

The mechanism 29 in Fig. 2 further includes a second lever arm 57 which is formed of a ferromagnetic material and which is pivotably mounted about a pivot axis 59. A brake pad 61 is mounted on the lever arm 57 adjacent the end member 47 of the body 41. The tension spring 55 can be connected, as shown, between the end 37 of the first lever arm 33 and second lever arm 57.

With the foregoing description in mind, the function and operation of the mechanism of Fig. 2 can be readily understood. Initially, it should be assumed that electrical power is provided to the disk drive system, the disk 13 is rotating, and the read/write arm 21 is operating under the torque of the motor 23 conveyed via the drive shaft 22. Under such conditions, the maximum counterclockwise rotational position of the drive shaft 22 is indicated by the location of the pin member 39 shown in solid lines in Fig. 2. Also under such conditions, the solenoid 43 is energized by the electrical power and will generate magnetic lines of force which are parallel to the longitudinal centerline of the solenoid 41 within the area encompassed by the body of the solenoid 41, but which turn toward perpendicular to the longitudinal centerline of the solenoid at the end member 47.
Under such circumstances, the ferromagnetic end member 47 operates essentially as an electromagnet and, consequently, attracts the respective first and second lever members 33 and 57 to the position shown by the solid lines in Fig. 2. With the lever members 33 and 57 held magnetically against the end member 47, the spring 55 is placed in tension and the end 37 of the lever member 33 is located such that it does not contact the pin member 39 or otherwise interfere with normal movement of the drive shaft 22.

Upon an interruption of electrical power to the mechanism of Fig. 2, the lever members 33 and 57 will no longer be magnetically attracted to the end member 47 and the tension spring 55 will operate to draw the opposite ends of the lever members 33 and 57 together. As a result of the action of the spring 55, the lever arm 33 will move to the position shown in dashed lines in Fig. 2 and the end 37 of the lever member 33 will contact the pin member 39 on the drive shaft 22 and cause the drive shaft 22 to rotate clockwise to the position shown by the dashed lines. As the drive shaft 22 rotates clockwise so that the pin member 39 is in the position indicated by the dashed lines, it will cause the arm 21 to move across the face of the disk until the transducer comes to a stop at a predetermined location at the outer periphery of the disk 13. In practice, the coordinates of the predetermined stop location are known by the control system for the disk drive system and, accordingly, the control system has knowledge of the exact position of the transducer 19 when operation of the system is resumed after power is restored.
Concurrent with movement of the lever member 33 to the position shown by the dashed lines in Fig. 2, the tension spring 55 will cause the lever member 57 to pivot so that the brake pad 61 is brought against the adjacent surface 65 which rotates the disk 13, and friction between the brake pad and the surface 65 will stop rotation of the disk 13.

When power to the disk drive system is resumed, the magnetic force lines will be reestablished through the solenoid 41 and, as a consequence, the lever members 33 and 57 will be attracted toward the end member 47. Because the distance separating the lever member 57 and the end member 47 is normally quite small, the lever member 57 will move essentially instantaneously to release the braking action. Also when power to the disk drive system is resumed, the arm 21 will begin moving counterclockwise under the torque of the motor 23. As this occurs, the pin member 39 presses against the end 37 of the lever member 33 and cause the lever member to pivot clockwise. This action assists the magnetic field generated by the solenoid 41 to bring the lever member 33 back against the end member 47.

Although the present invention has been described with particular reference to the illustrated preferred embodiment, it is to be understood that such disclosure is not to be interpreted as limiting. Various other alterations, modifications and embodiments will no doubt become apparent to those skilled in the art after having read the preceding disclosure. Accordingly, it is intended that the appended claims be interpreted as covering all such alterations, modifications and embodiments as fall
within the true spirit and scope of the present invention.
IN THE CLAIMS

1. In a drive system for an information storage disk in which a movable transducer member is mounted to read binary information from the face of the disk, a mechanism for selectively positioning the transducer member: in the absence of electrical power to the drive system comprising:

 a) a lever arm formed of ferromagnetic material, and means pivotably mounting the arm such that one end of the arm can engage the movable transducer member and, through such engagement, can move said movable transducer member to a predetermined position;

 b) electromagnetic means stationarily mounted adjacent the lever arm to magnetically attract the lever arm, thereby moving said one end of the lever arm to a position where its said one end is clear of said movable transducer member; and

 c) spring means connected to draw said one end of the lever arm to the position to engage said movable transducer member in the absence of energization of the electromagnetic means, thereby selectively positioning said movable transducer member in the absence of electrical power to the electromagnetic means.

2. A mechanism according to claim 1 further including:

 a second lever arm formed of a ferromagnetic material and means pivotably mounting said second arm
such that said second arm is magnetically drawn toward
the electromagnetic means upon energization of the
electromagnetic means;

5 brake pad means mounted to said second lever
arm; and

biasing means for forcing said brake pad
means against an element rotating with said disk in
the absence of energization of the electromagnetic
means.

3. A mechanism according to claim 1 wherein,
said electromagnetic means is a solenoid.

4. A mechanism according to claim 3 wherein,
one end of the solenoid includes a ferro-
magnetic member which acts as an electromagnetic to
attract said lever arm.

5. A mechanism according to claim 2 wherein,
said biasing means and said spring means
comprise a unitary tension spring, and said tension
spring is connected between the lever arm and said
second lever arm.

6. A mechanism according to claim 1 wherein,
said means pivotably mounting the lever arm
is a pivot shaft which defines a pivot axis parallel
to the axis of rotation of said read/write arm.
7. A mechanism according to claim 1 wherein,

said movable transducer member is a pivoted arm.

8. A mechanism according to claim 7 wherein,

said pivotal arm is driven to pivot by a rotatable drive shaft, and a pin member is fixed to extend from said drive shaft for engagement by the lever arm in the absence of electrical power to the electromagnetic means, such that interaction between said pin member and the lever arm forces said pivoted arm to rotate to a predetermined position.
I. Classification of Subject Matter

According to International Patent Classification (IPC) or to both National Classification and IPC:

- **INT. CL. (4) G11B 5/54, 21/04**
- **U.S. CL. 360/105, 106**

II. Fields Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>360/75, 97, 98, 99, 104, 105, 106, 109, 137; 369/222, 244, 257</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched.

III. Documents Considered to be Relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 15 with indication, where appropriate, of the relevant passages 17</th>
<th>Relevant to Claim No. 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB, A, 2,142,465A (d'ALAYER deCOSTEMORE d'ARC) 16 JANUARY 1985, SEE THE ENTIRE DOCUMENT.</td>
<td>1, 3-4, 6-8</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4,139,874, (SHIRAISHI), 13 FEBRUARY 1979, SEE THE ENTIRE DOCUMENT.</td>
<td>1, 3-4, 6-8</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4,218,714, (ISOZAKI ET AL.), 19 AUGUST 1980, SEE THE ENTIRE DOCUMENT.</td>
<td>1, 3-4, 6-8</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4,574,372, (d'ALAYER deCOSTEMORE d'ARC) 4 MARCH 1986, SEE THE ENTIRE DOCUMENT.</td>
<td>1, 3-4, 6-8</td>
</tr>
<tr>
<td>A</td>
<td>IBM TECHNICAL DISCLOSURE BULLETIN, VOL. 19, NO. 4, ISSUED SEPTEMBER 1976 (ARMONK, NEW YORK, USA) A.R. HEARN, "ACTUATOR RETRACTION DEVICE" PAGE 1440.</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 16
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step.

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

IV. Certification

- **Date of the Actual Completion of the International Search:** 17 NOVEMBER 1986
- **Date of Mailing of this International Search Report:** 08 DEC 1986

International Searching Authority:

Signature of Authorized Officer:

ALFONSO GARCIA
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP, A, 0,126,973, (MANZKE ET AL), 05 DECEMBER 1984, SEE FIGURES 1-3b AND PAGES 1-6.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A, 4,131,921, (GRUCZELAK), 26 DECEMBER 1978, SEE THE ABSTRACT.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A, 4,359,762, (STOLLORZ), 16 NOVEMBER 1982, SEE COLUMNS 8-9 AND FIGURES 18a-c, 21a-c.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,484,241, (BRENDE ET AL.), 20 NOVEMBER 1984, SEE THE ENTIRE DOCUMENT.</td>
<td></td>
</tr>
</tbody>
</table>