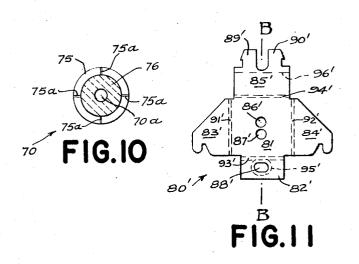
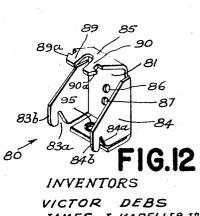
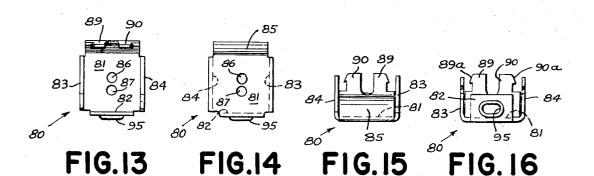
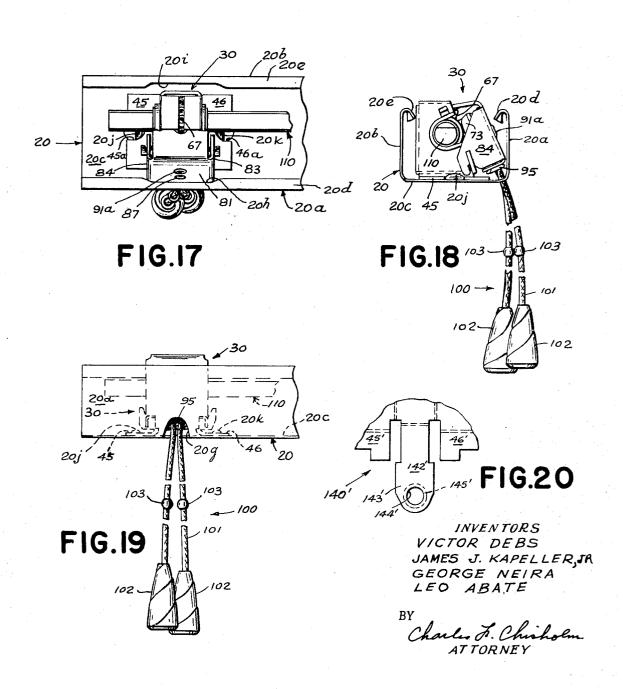

[72]	Inventors	Victor Debs	[56]	
		Staten Island, N.Y.;		UN
		James J. Kapeller, Jr., East Rutherford;	2,629,434	2/195
		George Neira, Teaneck; Leo Abate, Wayne,	2,630,861	3/195
		all of N.J.	3,425,479	2/196
[21]	Appl. No.	879,204	5,725,775	2/190
[22]	Filed	Nov. 24, 1969	Primary Examiner-	
[45]	Patented	Dec. 28, 1971	Attorney-Charles	
[73]	Assignee	Levolor Lorentzen, Inc.	•	
		Hoboken, N.J.		
			ABSTRACT	
[54]		N BLIND TILTING APPARATUS 20 Drawing Figs.	tilter that has front mouth-to-mouth an ley. The rear shell i	
[52]	U.S. Cl		with the e	
[51]	Int. Cl	lengthwise of the h		
• •		E06b9/304, E06b 9/26	tachable to	and deta
[50]	Field of Sea	rch 160/172,		
		176 177		


[56]		References Cited	
	UNIT	ED STATES PATENTS	
2,629,434 2,630,861 3,425,479		Nelson Nelson Lorentzen et al.	160/177 160/177 160/176
Primary Exc Attorney—C		eter M. Oaun Chisholm	


ABSTRACT: The arrangement includes a channel-mounted tilter that has front and rear shells which confront each other mouth-to-mouth and enclose a worm, a gear and a cord pulley. The rear shell is affixed to the head channel of the blind, with the expanse of the mouth of the shell extending lengthwise of the head channel. The front shell is readily attachable to and detachable from the rear shell.

SHEET 1 OF 2





VICTOR DEBS JAMES J. KAPELLER, JR GEORGE NEIRA LEO ABATE

BY Charles J. Chisholm ATTORNEY

SHEET 2 OF 2

VENETIAN BLIND TILTING APPARATUS

BACKGROUND OF THE INVENTION

In many venetian blinds a worm-and-gear tilter is mounted in a head channel and oscillates a tilt rod which extends longitudinally within the head channel. The tilting arrangement includes means, extending to the exterior of the head channel, by which the tilter is actuated. The head channel protects the tilter against airborne dust to only a limited extent; in many installations to a much too small extent.

The worm-and-gear tilters which are in general use may be classified as "open" and "enclosed." Open tilters are disclosed in U.S. Pat. Nos. 2,630,861 and 2,779,403. In these the worm, the gear and the bearings are largely exposed to the airborne dust which reaches the tilter. Enclosed tilters are disclosed in U.S. Pat. Nos. 2,223,997 and 2,269,213. In these the worm and the gear are enclosed within a housing or casing; and the worm, the gear and the bearings are largely protected against the airborne dust which reaches the tilter. However, 20 the cord pulley is outside of the housing and, despite the housing and the added cost thereof the adjacent shaft bearing is accessible to the airborne dust which reaches the tilter.

The head-channel-mounted tilters that are in general use, whether open tilters or enclosed tilters, are composed of more 25 parts than are desirable and require more expensive assembly than is desirable. Also, they are poorly suited for manufacture in small enough sizes for use in the tilting arrangements of venetian blinds which have narrow slats and low heads. In these blinds the slats may be as little as 1 inch wide and the 30 head channel may be as little as 11/2 inches wide and somewhat less than 1 inch high.

The tilting arrangement that is disclosed in U.S. Pat. No. 3,425,479 includes a tilter which is suited for manufacture in a small enough size for use in blinds having narrow slats and low 35 heads. However, that tilter too leaves room for improvement as regards the number of parts and the expense of assembly. That tilter is baton actuated and isn't usable in those instances in which a cord-actuated tilter is desired.

SUMMARY OF THE INVENTION

In accordance with the present invention a venetian blind tilting arrangement is provided which includes a worm-andgear tilter of few parts and inexpensive assembly, the tilter 45 being cord actuated and being suited for manufacture in small enough size for use with a head channel that is as little as 1 1/2 inches wide and somewhat less than 1 inch high.

In accordance with one feature of the invention the tilting arrangement includes front and rear shells which rotatably 50 support the worm and the gear, the rear shell being affixed to the head channel and the front shell being readily attachable to and detachable from the rear shell.

In accordance with other features of the invention: The front shell is readily attachable to and detachable from the 55 rear shell while the rear shell is affixed to the head channel. The journals of the gear are entered sidewise into circumferentially discontinuous bearings in the rear shell. The journal-receiving surfaces of these bearings extend rearwardly downwardly. The expanse of the mouth of the rear shell 60 inclines upwardly rearwardly and the front shell is rocked toward the rear shell in attaching it to the rear shell. The front and rear shells are provided with interengaging formations at or toward the bottoms of the shells, and are provided with latching means at or toward the tops of the shells. The cord 65 pulley is within the housing which encloses the worm and the gear. The worm is of molded material and the pulley is molded homogeneously with the worm. The worm is a spiral worm, the worm and pulley rotate on a stub shaft carried by the front shell, and movement of the front shell into attached position 70 with respect to the rear shell moves the worm into position to cooperate with the gear.

Among other things the invention provides a venetian blind tilter in which the body includes first and second parts, the first part rotatably supports the worm, the second part 75 from the left of the part in FIG. 1.

rotatably supports the gear, and the second part is a single piece of stamped sheet metal that provides laterally spaced sidewalls having coaxial bearings which are circumferentially discontinuous, the journals of the gear being entered sidewise through the discontinuities.

In accordance with certain features of the invention pertaining to a tilter: The single piece of sheet metal which is the second part of the body provides top and rear walls in addition to the spaced sidewalls. The single piece of sheet metal which is the second part of the body provides a bottom member which extends between the sidewalls and contacts or closely approaches the sidewalls. The second part of the body is a shell, the mouth of which inclines from bottom to top toward the side of the shell that is opposite the mouth. The first part of the body is a stub-shaft-equipped shell which is in mouth-tomouth relation with the shell which is the second part of the body. The two shells are latched by moving the top of one shell toward the top of the other.

The invention also provides a method of making a venetian blind tilting arrangement in which the second part of the tilter body is nested in the head channel and affixed thereto, the gear is assembled with the second part of the tilter body, the worm is assembled with the first part of the tilter body and, with the worm assembled with the first part of the tilter body, the first part of the tilter body is assembled with the second part of the tilter body.

In accordance with certain features of the invention pertaining to a method of making a venetian blind tilting arrangement: A gear is placed on a tilt rod and, with the gear on the tilt rod, the gear is assembled with the second part of the tilter body. A pulley is assembled with the first part of the tilter body along with the worm. A tilt cord is engaged with the pulley and extended to the exterior of the head channel, and the worm and pulley, with the tilt cord engaged with the pulley, are assembled with the first part of the tilter body. The first and second parts of the tilter body are first and second shells, the tilt cord is engaged with the pulley and extended to the exterior of the head channel, the pulley and worm are nested 40 into the first shell in rotative relation thereto and, with the tilt cord extended to the exterior of the head channel and the pullev and worm nested in the first shell, the first shell is assembled with the second shell.

Taken collectively, the presently preferred forms of the invention provide all of the foregoing features and additional features which will be apparent from the disclosure hereinafter—the presently preferred forms being the presently preferred form of the venetian blind tilting arrangement, the presently preferred form of the venetian blind tilter, and the presently preferred form of the method of making a venetian blind tilting arrangement. It is left to the user to decide upon the omission of any feature or features which are not needed for his purpose.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is an exploded view of the tilter. The parts are seen in elevation, looking in the direction of the gear axis. From left to right the parts are the rear shell, the gear, the worm-and-pulley part, and the front shell including a stub shaft with which the front shell is provided and which is made visible by breading out a portion of the shell wall that is in front of it.

FIG. 2 is the blank of the rear shell of the tilter, i.e. it is a diagram showing the flat metal that is taken from the sheet and formed into the rear shell.

FIG. 3 is an isometric view of the rear shell of the tilter, looking at an angle into the mouth of the shell.

FIG. 4 is a front elevation of the rear shell of the tilter.

FIG. 5 is a rear elevation of the rear shell of the tilter.

FIG. 6 is a top plan view of the rear shell, with a part broken away.

FIG. 7 is an elevation of the tilter gear, looking from the right of the gear in FIG. 1.

FIG. 8 is an elevation of the worm-and-pulley part, looking

4

FIG. 9 is an elevation of the worm-and-pulley part, looking from the right of the part in FIG. 1.

FIG. 10 is a section of the worm-and-pulley part, taken on the line 10—10 of FIG. 1.

FIG. 11 is the blank of the front shell of the tilter.

FIG. 12 is an isometric view of the front shell, without the stub shaft, looking at an angle into the mouth of the shell.

FIG. 13 is a rear elevation of the front shell, without the stub shaft, looking directly into the mouth of the shell.

FIG. 14 is a front elevation of the front shell, without the 10 stub shaft.

FIG. 15 is a top plan view of the front shell, without the stub shaft.

FIG. 16 is a bottom plan view of the front shell, without the stub shaft, viz, a plan view with the shell rotated 180° from the FIG.—15 position on an axis which would be vertical in FIG. 15.

FIG. 17 is a fragmentary top plan view showing the relevant portion of the tilting arrangement, including the head channel, the tilter, the tilt rod and the tilt cord.

FIG. 18 is an end elevation of the relevant portion of the arrangement, looking from the left of FIG. 17.

FIG. 19 is a front elevation of the relevant portion of the tilting arrangement. This elevation is looking from the bottom of 25 FIG. 17.

FIG. 20 shows a modification of the blank of FIG. 2, whereby the cord guide may be placed on the rear shell instead of on the front shell.

DESCRIPTION OF THE EMBODIMENTS THAT ARE PRESENTLY PREFERRED

The figures of the drawing, taken collectively, show the presently preferred embodiment of the venetian blind tilting arrangement and also show the presently preferred embodi- 35 ment of the venetian blind tilter that is incorporated in the tilting arrangement. Except as may be otherwise indicated, the description hereinafter (prior to the claims) of the venetian blind tilting arrangement and of the tilter refers only to the particular form of the tilting arrangement and the particular 40 form of the tilter that are shown in the drawing; it does not necessarily refer to any other form or forms in which these portions of the invention may be embodied. The claims, however, do embrace other forms in which these portions of the invention may be embodied. The best modes thus far contemplated of carrying out the various portions of the invention are herein disclosed. Nevertheless the disclosure is by way of illustration and example since other specific modes are possible.

FIGS. 17, 18 and 19 show the relevant portion of the venetian blind tilting arrangement. Among other things, these figures show a sheet-steel head channel which is designated as a whole by 20, a tilter which is designated as a whole by 30 and which has an enclosing housing, a braided tilt-cord assembly which is designated as a whole by 100, and a steel tilt rod 55 which is designated as a whole by 110.

The tilter 30 is composed of the four parts shown in FIG. 1. Each part is in one piece except for the right-hand part which is a composite of two pieces. From left to right in FIG. 1 the four parts are a rear shell of stamped sheet steel which is 60 designated as a whole by 40, a gear which is designated as a whole by 60, a worm-and-pulley part which is designated as a whole by 70, and a front part which is a stamped sheet steel front shell 80 provided with a steel stub shaft 91.

The sheet-metal blank of the rear shell 40 is as shown in 65 FIG. 2; it is designated as a whole by 40' and is symmetrical about the central vertical axis A—A. The blank includes a central panel 41', a T-shaped tab 42' extending from the bottom edge of the panel 41', and side panels 43' and 44' extending from the side edges of the panel 41'. Extending from the 70 bottom edges of the side panels 43' and 44' there are notched tabs 45' and 46'. Extending from the top edges of the panels 43' and 44' there are tabs 47' and 48'. Extending from the outwardly directed edges of the side panels 43' and 44' there are notched tabs 49' and 50'.

The outwardly directed edges of the side panels 43' and 44' are free edges, and leading to these edges there are arcuate spaces 51' and 52'. Along the edges of the arcuate spaces 51' and 52' there are arcuate zones of sheet metal 53' and 54'. A short distance above the arcuate spaces 51' and 52' there are rectangular open spaces 55' and 56'. In stamping the rear shell 40, the narrow zones of sheet metal in the blank 40' that are delineated by the pairs of closely spaced lines are bent and drawn into 90° arcs.

The rear shell 40 is best seen in FIGS. 1, 3, 4, 5, and 6. The panel 41' of the blank provides the metal for the rear wall 41, and the panels 43' and 44' of the blank provide the metal for the laterally spaced sidewalls 43 and 44; these three walls are vertical. The tabs 45' and 46' of the blank provide the metal for the horizontal support flanges 45 and 46 which extend outwardly from the bottom edges of the sidewalls 43 and 44. The tabs 47' and 48' of the blank provide the metal for the horizontal top portions 47 and 48 which, taken together, constitute the top wall of the rear shell 40. The tabs 49' and 50' of the blank provide the metal for the coplanar tabs 49 and 50 which extend laterally from the mouth of the shell 40 adjacent to the bottom thereof, the plane of these tabs inclining upwardly rearwardly. The arcuate zones 53' and 54' of the blank provide the metal for the coaxial bearings 53 and 54 which extend outwardly in opposite directions from the sidewalls 43 and 44.

The shell 40 has a top wall (in two parts), a bottom wall, two sidewalls, and a rear wall. The front side is open and is the mouth of the shell. The sidewalls 43 and 44 have upstanding front edges 43a and 44a. The edges 43a and 44a are coplanar free edges which incline upwardly rearwardly. These edges establish the general plane of the mouth of the shell, which plane inclines upwardly rearwardly in accordance with the inclination of the edges 43a and 44a and the inclination of the plane of tabs 49 and 50. The lateral expanse of the mouth of the shell extends perpendicularly of the sidewalls 43 and 44, which is lengthwise of the head channel 20 (FIG. 17) when the tilter is installed therein.

The tabs 49 and 50 have upwardly opening V-shaped notches 49a and 50a at which these tabs are engaged by complementary formations on the front shell 80, as will be explained. Rectangular holes 55 and 56 in the sidewalls correspond to the rectangular spaces 55' and 56' in the blank; these holes receive barblike latch members which are on tongues of the front shell 80, as will be explained.

The bearings 53 and 54 are circumferentially discontinuous, the discontinuities being located at the front edges 43a and 44a and each discontinuity extending from a lower level to an upper level. The journal-receiving surfaces of the bearings 53 and 54 extend downwardly rearwardly from the lower ends of the discontinuities in the edges 43a and 44a. The support flanges 45 and 46, taken together, are support means for engaging the venetian blind head channel. These flanges rest against the bottom of the head channel and are secured thereto in customary manner, as will be explained.

The gear 60, which is best seen in FIGS. 1 and 7, is a single homogeneous piece of material. The gear has a tubular hub 62 from the ends of which tubular journals 63 and 64 project axially as shown in FIG. 7. The hub 62 and the journals 63 and 64 have a common axial bore and have exterior surfaces which are at least substantially cylindrical. The bore 65 is D-shaped in cross section, being cylindrically concentric with the journals 63 and 64 except for a planar chordal surface 66. As regards both the exterior and interior surfaces of the hub 62 and journals 63 and 64 slight tapering may be provided to facilitate removal from a mold, as is common practice. Projecting radially outward from the hub 62 there is a series of teeth 67 (eight shown). These teeth, which are approximately circular in cross section, have generally hemispherical outer ends. The longitudinal axis of each tooth 67 extends radially of the hub 62 and radially of the gear axis, the gear axis being the axis of the cylindrical surface of the bore 65. A small projection 68 at the end of the journal 64 marks that journal and facilitates orientation of the gear when assembling it into the tilter.

The gear 60 may be provided with teeth 67 throughout its entire circumference or only a portion of its circumference. As shown, the teeth are provided throughout somewhat more than half of the circumference of the gear, leaving the remainder of the circumference blank. This circumferential 5 gap in the series of teeth is to permit the gear to "escape" from the worm for readjustment of the tilt cord after a certain amount of cumulative slippage of the tilt cord in either direction-all as is now well understood in the art. The "escapement" of the gear from the worm and the arrangement and procedure for readjusting the tilt cord after a certain amount of cumulative slippage were devised by Harry H. Nelson and disclosed in his U.S. Pat. No. 2,174,994. That patent discloses a spring to restore the gear to meshing relationship with the worm after the gear has "escaped" and the tilt cord has been readjusted. With most venetian blinds the use of such a spring is unnecessary; the unbalanced weight of the fully tilted slats biases the escaped gear into meshing relationship with the worm.

The gear 60 is shown with teeth 67 over a sufficient arc to afford full tilting of the slats of the blind from full forward tilt to full rearward tilt. In some instances it is desired to limit the tilting of the slats to a lesser range. With the tilter disclosed limitation of the tilting to a lesser range can be effected by removing one or more of the eight teeth 67 that are shown.

The worm-and-pulley part 70, which is best seen in FIGS. 1, 8, 9, and 10, is a single homogeneous piece of material. As is seen in FIG. 1, the part 70 includes a worm 71 and a pulley 72, the part having a central bore 70a for rotatably mounting the part 70 on a shaft. The worm is a spiral worm as distinguished from a helical worm; the thread of the worm progresses spirally and advances transversely of the worm axis, instead of progressing helically and advancing lengthwise of the worm axis.

The worm 71 has a spiral thread 73 that continues for somewhat more than one convolution; it continues to the extent shown in FIG. 8. The thread 73 is on the outer face of a disclike portion 74 of the material, which portion is axially spaced from another disclike portion of the material 75. The disclike portion 74 serves as the body of the worm 71 and also as one of the cheeks of the pulley 72. The disclike portion 75 is the other cheek of the pulley 72. The pulley cheeks 74 and 75 are homogeneously connected by a hub 76, the space at 77 between the cheeks being a circumferential groove to receive 45 the tilt cord.

Slippage of the tilt cord on the pulley is inhibited by integral ribs which project from the confronting faces of the cheeks 74 and 75. These ribs extend radially or quasiradially, and they become less pronounced as they progress outwardly. Four such ribs 74a are shown for the pulley cheek 74 (FIG. 9) and four such ribs 75a are shown for the pulley cheek 75 (FIGS. 9 and 10). The ribs 74a and 75a are interspersed circumferentially and are more or less equally spaced; see FIG. 9. The ribs 75a extend radially but the ribs 74a extend quasiradially. To facilitate molding or casting of the part 70, the ribs 74a extend as shown in FIG. 9.

The gear 60 and the worm-and-pulley part 70 may each be made of suitable metal and may each be formed by suitable known metallurgical procedures and/or metal-shaping or metal-forming operations. Suitable contrasting metals may be used to impart desirable operating and wear characteristics to the worm and gear. At present it is preferred to mold the gear 60 and the worm-and-pulley part 70 from plastic—a plastic 65 which provides parts that are strong and tough and have good wear characteristics. Commercial molders of plastic are able to provide suitable plastic gears 60 and suitable worm-andpulley parts 70. Satisfactory plastic gears 60 and worm-andpulley parts 70 have been obtained by specifying that they be 70 molded from glass-filled acetal (Celcon or Delrin). It is understood that this is acetal plastic, either Celcon brand or Delrin brand, with glass fibers mixed with the acetal plastic before molding, the material being the same for both the worm and the gear.

The sheet-steel blank of the front shell 80 is as shown in FIG. 11, the blank being designated as a whole by 80' and being symmetrical about the central vertical axis B—B. The blank includes a central panel 81', a rectangular tab 82' extending downwardly from the bottom edge of the panel 81', and side tabs 83' and 84' extending laterally from the side edges of the panel 81'. Extending upwardly from the top edge of the panel 81' there is a two-tongued tab 85'.

The panel 81' has two circular open spaces 86' and 87' that are arranged as shown. The tab 82' has the oval open space 88' as shown. The tabs 83' and 84', which are of the shape shown, have the notched lower edges as shown. The tab 85' has the tongues 89' and 90' which are spaced apart as shown and are of the form shown.

In stamping the front shell 80 the sheet steel is bent and drawn in narrow zones which are indicated by means of dotted lines. The narrow zones of sheet steel 91', 92' and 93', each delineated by closely spaced dotted lines, are bent and drawn into 90° arcs. The narrow zone 94', also delineated by closely spaced dotted lines, is bent and drawn into an arc that is somewhat less than 90°. The oval-shaped zone 95' which embraces the opening 88' is drawn downwardly and outwardly into a funnel-mouthed thimble of oval cross section; this thimble is a guide for the tilt cord. A small angle bend is made in the metal at the line 96'.

The front shell 80 is seen to advantage in FIGS. 1 and 12–16. The panel 81' of the blank provides the metal for the front wall 81, and the tab 82' provides the metal for the bottom wall 82. The tabs 83' and 84' of the blank provide the metal for the laterally spaced sidewalls 83 and 84. In harmony with the notched lower edges of the tabs 83' and 84' of the blank, the sidewalls 83 and 84 have downwardly opening V-shaped notches 83a and 84a (FIG. 12) which are located toward the free edges 83b and 84b of the sidewalls. The two-tongued tab 85' provides the metal for the top wall 85 of the shell including the spaced parallel tongues 89 and 90 thereof. The tongues 89 and 90 are notched and shaped as shown to provide the tongues with barblike latch members 89a and 90a (see also FIGS. 15 and 16).

FIGS. 1 and 12-16 show the front shell 80 in an oriented position which places the front wall 81 vertical. When the front shell 80 is assembled with the rear shell 40, the oriented position of the front shell shifts and the front wall 81 thereof moves into the inclined position that is seen in FIGS. 17 and 18. In the oriented position of the front shell 80 in FIGS. 1 and 12-16 the sidewalls 83 and 84 are vertical, and the sidewalls remain vertical when the front shell 80 is assembled with the rear shell 40.

As is best seen in FIG. 12, the front shell 80 has a top wall, a bottom wall, a front wall, and two sidewalls. The rear side is open and is the mouth of the shell. The free edges 83b and 84b of the sidewalls taken with the free ends of the tongues 89 and 90 establish the general plane of the mouth of the shell 80. The lateral expanse of the mouth of the shell extends perpendicularly to the sidewalls 83 and 84.

The front shell 80 is provided with a stub shaft 91 (FIG. 1) which is a screw machine part that is made of steel. The body of the shaft 91 is cylindrical. One end of the shaft is machined and drilled to provide (a) an annular shoulder (not shown) which bears against the back surface of the front wall 81 and (b) a hollow rivet portion 91a (FIGS. 1, 17, and 18) which extends through the circular hole 86 in the front wall of the shell (FIGS. 12, 13, and 14) and is set in the manner of an eyelet to firmly attach the stub shaft 91 to the front shell 80.

Below the hole 86, which receives the rivet portion 91a of the stub shaft 91, there is a hole 87 through the front wall 81 of the shell. The purpose of the hole 87 will be explained.

70 The tilt-cord assembly 100 (FIGS. 17-19) includes a tilt cord 101, which is a single length of cord. It is presently preferred that the cord of the tilt cord 101 be approximately three thirty-seconds inch in diameter, be of high strength, and have little stretch. Braided cord made from Dacron brand 75 polyester fibers is contemplated. Affixed to the two ends of

the tilt cord 101 there are two conventional pull tassels 102. Affixed to each of the depending branches of the tilt cord 101 there is a sheet-metal bead 103. The two beads 103 are properly located and spaced to enable them to appropriately act as stops in readjusting the tilt cord after a certain amount 5 of cumulative slippage, all as is now well understood in the art.

The tilt rod 110 (FIGS. 17-19) extends for quite a distance along the length of the head channel 20, being rotatably supported by two or more cradles (not shown), and carrying two or more drums or rockers (not shown) from which the ladders 10 of the blind (not shown) are suspended-all as is well known in the art. When one of the tassels 102 is pulled the slats of the blind are tilted. The tilting arrangement disclosed herein and the tilter disclosed herein are particularly adapted for the venetian blind disclosed in U.S. Pat. No. 3,425,479; in fact, the herein-disclosed tilter 30 and tilt cord assembly 100 are adapted to be substituted directly for the tilter 30 and the baton or wand 38 disclosed in U.S. Pat. No. 3,425,479.

The parts and components that have been described are 20 used in making the tilting arrangement that is disclosed in FIGS. 17-19. The head channel 20 shown in these figures has a front wall 20a, a rear wall 20b, and a bottom wall 20c. Along the upper edges of the front and rear walls 20a and 20b, there are longitudinally extending flanges 20d and 20e which are 25 folded inwardly and downwardly. Longitudinally spaced sheet-metal fingers 20j and 20k are struck up from the bottom 20c of the head channel and secure the tilter to the head channel in a manner that is well known in the art. At a position along the length of the head channel which is midway between 30 the fingers 20j and 20k there is an opening 20g (FIG. 19) through the head channel which is spread over an area that includes the juncture of the front wall 20a and the bottom wall 20c. This opening 20g is the same as opening 20g in U.S. Pat. No. 3,425,479. To provide clearance for the entry of the tilter 35 30 and parts thereof into the head channel, the longitudinal flanges 20d and 20 e at the upper edges of the front and rear walls of the head channel are locally collapsed and flattened at 20h and 20i as is seen in FIG. 17.

The presently preferred method of making the tilting ar- 40 rangement shown in FIGS. 17, 18 and 19 will now be explained. The cradles (not shown) and the rear shell 40 of the tilter 30 are nested in the head channel 20 and affixed to the bottom wall 20c thereof. For the cradles and their attachment to the bottom wall 20, see cradles 26 and their attachment in 45 U.S. Pat. No. 3,425,479. The rear shell 40 of the tilter 30 is positioned with the mouth of the shell facing forwardly. The support flanges 45 and 46 rest against bottom 20c of the head channel and are secured by the clinched tabs 20j and 20k which pass upwardly through the notches 45a and 46a (see also FIGS. 3 and 6) and are clinched against the top faces of support flanges 45 and 46. The gear 60 is now telescoped onto the tilt rod 110 with the marking projection 68 (FIG. 7) pointing to the right. The tilt rod is placed in the bearings of the cradles and the journals 63 and 64 of the gear 60 are entered sidewise, through the discontinuities, into the bearings 53 and 54 of the rear shell 40. The worm-and-pulley part 70, the tilt cord 101, and the front shell 80 are prepared for combining with the rear shell 40 and the gear 60.

The worm-and-pulley part 70 is rotatably positioned on the stub shaft 91 (FIG. 1) before the front shell 80 is assembled with the channel-mounted rear shell 40, and the tilt cord 101 is engaged with the pulley 72 before the worm-and-pulley part 70 is placed on the stub shaft 91. The tilt cord 101 is not only 65 engaged with the pulley 72, but it is also extended to the outside of the head channel 20; different sequences are possible for accomplishing this, but it is presently preferred to first complete the tilt-cord assembly 100 by providing the tilt cord 103. Then the cord 101 is arranged in two branches of equal length with a bight where the two branches merge. The bight is threaded upwardly through the hole 20g in the head channel and thence through the hole of the cord guide 95—the front shell 80 not having been assembled with the rear shell 40 as 75 3-6. Thus the crossbar of the T acts as a spacer or stop which

yet. The tilt cord 101 is now engaged with the pulley 72 of the not-yet-installed worm-and-pulley part 70.

The worm-and-pulley part 70, with the tilt cord 101 engaged with the pulley 72, is telescoped onto the shaft 91 for rotation thereon; as this is done the two branches of the tilt cord 101 are pulled downwardly to obviate slack within the front shell. While still pulling downwardly on the tilt-cord branches to obviate slack, the front shell 80 is assembled with the rear shell 40 in mouth-to-mouth relation therewith. The front shell 80 is moved downwardly, and the downwardly opening notches 83a and 84a of the front shell (FIG. 12) engaged with the upwardly opening notches 49a and 50a of the rear shell 40 (FIGS. 3-6), thereby making a lower level holding engagement between the two shells. With the worm 60 in the rotative position shown in FIG. 1, i.e. with the flats of the tilt rod 110 and the bore 65 at the top, the front shell 80 is now rocked rearwardly about the axis of the lower level engagement of the front shell 80 with the rear shell 40; this axis is at the bottoms of the notches 49a and 50a. The worm 71 moves into mesh with the gear 60 as the tongues 89 and 90 are telescoped between the front upper portions of the sidewalls 43 and 44 of the rear shell 40. The latch members 89a and 90a of the tongues 89 and 90 have cam surfaces as best seen in FIGS. 15 and 16 which, as the tongues enter between the sidewalls 43 and 44 of the rear shell, engage the sidewalls adjacent to their front edges and generate edgewise squeeze pressure upon the two tongues 89 and 90 taken together. By reactive force, the two tongues, taken together, exert seperating pressure on the two sidewalls 43 and 44 adjacent to the upper portions of their front edges.

The tongues 89 and 90 are capable of some resilient yielding toward one another; also the upper front portions of the sidewalls 43 and 44 are capable of substantial resilient separation, since the top wall of the shell is divided front to rear by the discontinuity that exists between the portions 47 and 48 of the top wall. As an aid to forcing the ends of the tongues 89 and 90 between the front upper portions of the sidewalls of the rear shell, a screwdriver or similar implement may be used as a pry bar, being inserted downwardly behind the front wall 20a of the head channel (FIG. 18) and then rocked rearwardly to apply rearward pressure to an upper portion of front shell 80. As soon as the front shell 80 is rocked into fully assembled mouth-to-mouth relation with the rear shell 40, the latch members 89a and 90a snap outwardly into the rectangular holes 55 and 56 and, in conjunction with the forward margins of these holes, constituting latching means which latch the two shells together at an upper level.

To replace a worn tilt cord, a screwdriver may be inserted at a forward location between the confronting edges of the topwall portions 47 and 48 of the rear shell and then twisted; this will forcibly separate the upper front portions of the sidewalls 43 and 44 sufficiently to unlatch the front shell from the rear shell. If care is exercised in unlatching the front shell the resiliency of the rear shell will sufficiently restore the original spacing between the upper front portions of the sidewalls 43 and 44 and afford proper relatching of the front shell to the 60 rear shell after the cord has been replaced. If the resiliency of the rear shell is insufficient, or if too great separation of the upper front portions of the sidewalls has been effected in unlatching the front shell, then the upper front portions of the sidewalls of the rear shell can be squeezed toward one another with pliers to the extent needed. The hole 87 in the front wall of the front shell 80 permits the insertion of a punch, awl, pencil point or the like to push the worm-and-pulley part from the stub shaft 91 for replacement of the tilt cord.

A special function of the bottom wall 42 of the rear shell 40 101 and affixing to it the two tassels 102 and the two beads 70 remains to be explained. The metal for the bottom wall 42 is provided by the T-shaped tab 42' (FIG. 2) of the blank. The bottom wall 42 has a corresponding T-shaped configuration and the ends of the cross bar of the T-formation lie against or closely adjacent the sidewalls 43 and 44 of the shell; see FIGS. helps protect the sidewalls against being squeezed too closely together, for example when the tabs 20j and 20k (FIG. 17) are clinched to affix the rear shell 40 to the bottom wall 20c of the head channel 20. The spacer or stop action of the cross bar of the T-formation of the bottom wall 42 may also be helpful during certain forming operations which may be used in making the shell 42.

An alternative placement of the cord guide also remains to be explained. The cord guide 95 (FIGS. 1, 13, 14, 15, 16, 18 and 19) is on the front shell 80. If desired, the cord guide may be placed on the rear shell. For this purpose the blank of the rear shell may be modified as shown in FIG. 20. In FIG. 20 the blank is designated as a hole by 140' and is the same as the blank 40' (FIG. 2) except for the tab 142'. The tab 142' adds on to the tab 42'; in other words, tab 142' is the same as tab 42' except for the extension thereof this is designated 143'. The extension 143' is of the form shown; it has a narrowing and rounded free end, and has a circular open space 144'. Embracing the open space 144' there is an annular zone 145' of the sheet steel which zone is delineated by the dotted circle.

In stamping the rear shell from the sheet steel provided by the modified blank 140', the narrow annular zone of metal 145' is drawn into a flaring eyelet which is circular. This eyelet is the cord guide for the tilt cord 101. So that there will be no danger of this cord guide striking the head channel 20 when the modified rear shell is installed therein, the metal of the annular zone 145' may be drawn upwardly in forming the cord guide.

The annular zone of metal 145' is so located that the cord 30 guide formed therefrom will be properly aligned with the groove of the pulley 72 (FIG. 1) when the tilting arrangement has been completely assembled; compare with FIG. 18 where the center of the cord guide is in the central cross axial plane of the pulley. If need be, the tip of the extension provided by 35 the blank metal 143' may project somewhat through the head channel hole 20g (FIG. 19) when the modified rear shell is mounted in the head channel 20.

When the cord guide is placed on the rear shell the blank of the front shell is modified by eliminating the tab 82' (FIG. 11); the lower edge of the panel 81' becomes a free edge in prolongation of the lower edges of the tabs 83' and 84'. Elimination of the tab 82' of the blank eliminates the bottom wall 82 of the front shell 80 (FIGS. 12, 13, 14 and 16).

We claim:

1. A venetian blind tilting arrangement in which a tilter is mounted in a head channel, actuating means for the tilter extends to the exterior of the head channel, the tilter includes (a) a worm, (b) a gear, and (c) a body which rotatably supports the worm and the gear, and the body has two shells which have mouths and confront each other mouth to mouth—wherein the improvement comprises:

the lateral expanse of the mouth of each of the two shells extends lengthwise of the head channel,

one of the shells is a front shell and is provided with means that rotatably supports the worm,

the other of the shells is a rear shell and is provided with means that rotatably supports the gear on an axis which is parallel to the lateral expanse of the mouth of the shell,

the rear shell is affixed to the head channel, and the front shell is readily attachable to and detachable

- from the rear shell.

 2. A venetian blind tilting arrangement as in claim 1 wherein the improvement further comprises:
 - the front shell is readily attachable to and detachable from the rear shell while the rear shell is affixed to the head channel.
- 3. A venetian blind tilting arrangement as in claim 1 wherein the improvement further comprises:
 - the rear shell is provided with bearings which are circumferentially discontinuous,
 - and the gear is provided with journals which are entered sidewise into the bearings through the circumferential discontinuities.

- 4. A venetian blind tilting arrangement as in claim 3 wherein the improvement further comprises:
 - the circumferential discontinuities in the bearings are at the mouth of the rear shell and extend from a lower level to an upper level,
 - and the journal-receiving surfaces of the bearings extend rearwardly downwardly from the lower ends of the circumferential discontinuities in the bearings.
- 5. A venetian blind tilting arrangement as in claim 1 wherein the improvement further comprises:
 - the expanse from bottom to top of the mouth of the rear shell inclines upwardly rearwardly,
 - and the front shell is rocked toward the rear shell in attaching it to the rear shell.
 - 6. A venetian blind tilting arrangement as in claim 1 wherein the improvement further comprises:
 - the front and rear shells are provided with interengaging formations at or toward the bottoms of the shells, and are provided with latching means at or toward the tops of the shells.
 - 7. A venetian blind tilting arrangement as in claim 5 wherein the improvement further comprises:
 - the front and rear shells are provided, at to toward the bottoms of the shells, with interengaging formations which are engaged by moving the front shell downwardly with respect to the rear shell,
 - and the front and rear shells are provided, at or toward the tops of the shells, with latching means which are latched by moving the top of the front shell toward the top of the rear shell.
 - 8. A venetian blind tilting arrangement as in claim 1 wherein the improvement further comprises:

a pulley is connected to the worm,

the front and rear shells constitute a housing which encloses the pulley, the worm and the gear,

- the front shell and the head channel are perforated for the passage of a pulley-engaged cord to and from the exterior of the head channel,
- and a tilt cord engages the pulley and extends to the exterior of the head channel.
- 9. A venetian blind tilting arrangement as in claim 8 wherein the improvement further comprises:
- 5 the worm is of molded material and the pulley is molded homogeneously with the worm.
 - 10. A venetian blind tilting arrangement as in claim 1 wherein the improvement further comprises:

the worm is of molded plastic and is a spiral worm,

a pulley is molded homogeneously with the worm,

- the front shell is provided with a stub shaft on which the worm and pulley rotate,
- the front and rear shells constitute a housing which encloses the pulley, the worm and the gear,
- the front shell and the head channel are perforated for the passage of a pulley-engaged cord to and from the exterior of the head channel,
- a tilt cord engages the pulley and extends to the exterior of the head channel,
- and movement of the front shell into attached position with respect to the rear shells moves the worm into position to cooperate with the gear.
- 11. A venetian blind tilter in which a gear and a worm are rotatably supported by a body that includes first and second parts which are made of sheet metal and mate with each other—wherein the improvement comprises:

the first part of the body rotatably supports the worm,

- the second part of the body is a single piece of stamped sheet-metal which provides (a) laterally spaced sidewalls have upstanding front edges, (b) a member that connects the sidewalls, and (c) support means for engaging a venetian blind head channel,
- the sidewalls of the second part of the body are provided with coaxial bearings,

the axis of the bearings extending perpendicularly to the sidewalls and the bearings having circumferential discontinuities located at the front edges of the sidewalls.

and the gear is provided with journals which are entered 5 sidewise into said bearings through the circumferential discontinuities.

12. A venetian blind tilter as in claim 11 wherein the improvement further comprises:

the second part of the body is a single piece of stamped 10 sheet metal which provides a top wall and a rear wall, one of these walls being the member that connects the sidewalls of the body.

13. A venetian blind tilter as in claim 12 wherein the improvement further comprises:

the second part of the body is a single piece of stamped sheet metal which additionally provides a bottom member which extends between the sidewalls and contacts or closely approaches each of the sidewalls.

14. A venetian blind tilter as in claim 11 wherein the im- 20

provement further comprises:

the second part of the body is a shell having a mouth, and the expanse of the mouth inclines, from bottom to top, toward the side of the shell that is opposite the mouth.

15. A venetian blind tilter as in claim 14 wherein the improvement further comprises:

the first part of the body includes a shell having a mouth, and the first shell is in mouth-to-mouth relation to the shell which is the second part of the body.

16. A venetian blind tilter as in claim 15 wherein the improvement further comprises:

the two shells are provided, at or toward the bottoms of the shells, with interengaging formations which are engaged by moving one of the shells downwardly with respect to the other,

and the two shells are provided, at or toward the tops of the shells, with latching means which are latched by moving the top of one shell toward the top of the other.

25

15

30

35

40

45

50

55

60

65

70

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION

CERTIFICATE OF CORRECTION	
Patent No. 3,630,264 Dated December 28, 197	1
Inventor(s) Victor Debs, et al	
It is certified that error appears in the above-identified pat and that said Letters Patent are hereby corrected as shown below:	:ent
On the cover sheet, after Primary Examiner, "Peter M should read Peter M. Caun Column 1, line 21, afte "thereof" insert a comma. Column 10, line 23, "to" should or; line 61, "shells" should read shell; line after "sidewalls" insert that	er d read
Signed and sealed this 31st day of October 1972.	
(SEAL) Attest:)
EDWARD M.FLETCHER, JR. Attesting Officer ROBERT GOTTSCHALK Commissioner of Pate	ents