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(57) ABSTRACT 
This invention is a data processing apparatus which operates 
on instruction controlling plural processor actions. Each 
instruction includes a data unit section and a data transfer 
section. These instruction sections are independent and may 
include differing options. In the preferred embodiment, each 
instruction is 64 bits. The data unit section includes a data 
operation field that indicates the type of arithmetic logic unit 
operation and six operand fields. The six operand fields 
include four source data register fields and two destination 
register fields. The data unit (110) includes a multiplication 
unit (220) and an arithmetic logic unit (230). The data unit 
(110) may include a barrel rotator (235) for one input of the 
arithmetic logic unit (230). The rotated data may be stored 
in the first destination register instead of the multiply result. 
The address unit (120) operations according to the data 
transfer operation field. This could be a load, a store or a 
register to register move. Operations may be conditional 
based upon conditions stored in a status register (210). The 
status register (210) is set by a prior output of the arithmetic 
logic unit (230) and the instruction may specify some of the 
status bits protect from change. The address unit (120) 
preferably includes a plurality of base address registers 
(611), a full adder (615) and a left shifter (614). The full 
adder (615) may add an index as scaled by the left shifter to 
the base address or subtract the scaled index from the base 
address. The full adder (615) output may update the base 
address register (611), either before supply of the address or 
following supply of the address. The index may be recalled 
from an index register (612) or an immediate value. In the 
preferred embodiment of this invention, the data unit (110) 
including the data registers (200), the multiplication unit 
(220) and the arithmetic logic unit (230), the address unit 
(120) and the instruction decode logic (250, 660) are embod 
ied in at least one digital image/graphics processor (71, 72, 
73,74) as a part of a multiprocessor (100) formed in a single 
integrated circuit used in image processing. 
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0010 U.S. patent application Ser. No. 911,562 filed Jun. 
29, 1992 entitled “IMAGING COMPUTER AND 
METHOD OF OPERATION', a continuation of U.S. patent 
application Ser. No. 437,854 filed Nov. 17, 1989 and now 
abandoned; and 
0011 U.S. Pat. No. 5.226,125 issued Jul. 6, 1993 filed 
Nov. 17, 1989 and entitled “SWITCH MATRIX HAVING 
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0016 U.S. patent application Ser. No. (TI-15525) 
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0017 U.S. patent application Ser. No. (TI-15526) 
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0018 U.S. patent application Ser. No. (TI-15527) 
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0020 U.S. patent application Ser. No. (TI-15529) 
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0021 U.S. patent application Ser. No. (TI-15530) 
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PLURAL ABSOLUTE DIFFERENCES: 
0022 U.S. patent application Ser. No. (TI-15531) 
“ITERATIVE DIVISION APPARATUS, SYSTEM AND 
METHOD EMPLOYING LEFT MOST ONE'S DETEC 
TION AND LEFT MOST ONE'S DETECTION WITH 
EXCLUSIVE OR; 
0023 U.S. patent application Ser. No. (TI-15532) 
ADDRESS GENERATOR EMPLOYING SELECTIVE 
MERGE OF TWO INDEPENDENT ADDRESSES”; 
0024 U.S. patent application Ser. No. (TI-15535) 
“METHOD, APPARATUS AND SYSTEM METHOD FOR 
CORRELATION: 
0.025 U.S. patent application Ser. No. (TI-15537) 
LONG INSTRUCTION WORD CONTROLLING PLU 
RAL INDEPENDENT PROCESSOR OPERATIONS: 
0026 U.S. patent application Ser. No. (TI-15539) 
ROTATION REGISTER FOR ORTHOGONAL DATA 
TRANSFORMATION: 
0027 U.S. patent application Ser. No. TI-15542 
“MEDIAN FILTER METHOD, CIRCUIT AND SYS 
TEM: 

0028 U.S. patent application Ser. No. (TI-15544) 
ARITHMETIC LOGIC UNIT WITH CONDITIONAL 
REGISTER SOURCE Selection: 
0029 U.S. patent application Ser. No. (TI-15651) 
“APPARATUS, SYSTEM AND METHOD FOR DIVI 
SION BY ITERATION 
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0030 U.S. patent application Ser. No. (TI-17919) 
MULTIPLY ROUNDING USING REDUNDANT 
CODED MULTIPLY RESULT: 
0031 U.S. patent application Ser. No. (TI-18209) 
“SPLIT MULTIPLY OPERATION: 
0032 U.S. patent application Ser. No. (TI-18213) 
MIXED CONDITION TEST CONDITIONAL AND 
BRANCH OPERATIONS INCLUDING CONDITIONAL 
TEST FOR ZERO”: 
0033 U.S. patent application Ser. No. (TI-18214) 
“PACKED WORD PAIR MULTIPLY OPERATION: 
0034 U.S. patent application Ser. No. (TI-18570) 
“THREE INPUT ARITHMETIC LOGIC UNIT WITH 
SHIFTER 

0035 U.S. patent application Ser. No. (TI-18571) 
“THREE INPUT ARITHMETIC LOGIC UNIT WITH 
MASK GENERATOR: 
0.036 U.S. patent application Ser. No. (TI-18572) 
“THREE INPUT ARITHMETIC LOGIC UNIT WITH 
BARREL ROTATOR AND MASK GENERATOR: 
0037 U.S. patent application Ser. No. (TI-18573) 
“THREE INPUT ARITHMETIC LOGIC UNIT WITH 
SHIFTER AND MASK GENERATOR: 
0038 U.S. patent application Ser. No. (TI-18574) 
THREE INPUT ARITHMETICLOGICUNIT FORMING 
THE SUM OF A FIRST INPUT ADDED WITH A FIRST 
BOOLEAN COMBINATION OF A SECOND INPUT AND 
THIRD INPUT PLUS A SECOND BOOLEAN COMBI 
NATION OF THE SECOND AND THIRD INPUTS: 
0039 U.S. patent application Ser. No. (TI-18575) 
THREE INPUT ARITHMETICLOGICUNIT FORMING 
THE SUM OF FIRST BOOLEAN COMBINATION OF 
FIRST, SECOND AND THIRD INPUTS PLUS ASECOND 
BOOLEAN COMBINATION OF FIRST, SECOND AND 
THIRD INPUTS: 
0040 U.S. patent application Ser. No. (TI-18576) 
THREE INPUT ARITHMETIC LOGIC UNITEMPLOY 
ING CARRY PROPAGATE LOGIC; and 
0041 U.S. patent application Ser. No. (TI-18577) 
“DATA PROCESSING APPARATUS, SYSTEM AND 
METHOD FOR IF, THEN, ELSE OPERATION USING 
WRITE PRIORITY 

TECHNICAL FIELD OF THE INVENTION 

0042. The technical field of this invention is the field of 
digital data processing and more particularly microprocessor 
circuits, architectures and methods for digital data process 
ing especially digital image/graphics processing. 

BACKGROUND OF THE INVENTION 

0043. This invention relates to the field of computer 
graphics and in particular to bit mapped graphics. In bit 
mapped graphics computer memory stores data for each 
individual picture element or pixel of an image at memory 
locations that correspond to the location of that pixel within 
the image. This image may be an image to be displayed or 
a captured image to be manipulated, stored, displayed or 
retransmitted. The field of bit mapped computer graphics has 
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benefited greatly from the lowered cost and increased capac 
ity of dynamic random access memory (DRAM) and the 
lowered cost and increased processing power of micropro 
cessors. These advantageous changes in the cost and per 
formance of component parts enable larger and more com 
plex computer image systems to be economically feasible. 
0044) The field of bit mapped graphics has undergone 
several stages in evolution of the types of processing used 
for image data manipulation. Initially a computer system 
Supporting bit mapped graphics employed the system pro 
cessor for all bit mapped operations. This type of system 
suffered several drawbacks. First, the computer system 
processor was not particularly designed for handling bit 
mapped graphics. Design choices that are very reasonable 
for general purpose computing are unsuitable forbit mapped 
graphics systems. Consequently some routine graphics tasks 
operated slowly. In addition, it was quickly discovered that 
the processing needed for image manipulation of bit mapped 
graphics was so loading the computational capacity of the 
system processor that other operations were also slowed. 
0045. The next step in the evolution of bit mapped 
graphics processing was dedicated hardware graphics con 
trollers. These devices can draw simple figures, such as 
lines, ellipses and circles, under the control of the system 
processor. Many of these devices can also do pixel block 
transfers (PixBlt). A pixel block transfer is a memory move 
operation of image data from one portion of memory to 
another. A pixel block transfer is useful for rendering stan 
dard image elements, such as alphanumeric characters in a 
particular type font, within a display by transfer from 
nondisplayed memory to bit mapped display memory. This 
function can also be used for tiling by transferring the same 
Small image to the whole of bit mapped display memory. 
The built-in algorithms for performing some of the most 
frequently used graphics functions provide a way of improv 
ing system performance. However, a useful graphics com 
puter system often requires many functions besides those 
few that are implemented in Such a hardware graphics 
controller. These additional functions must be implemented 
in software by the system processor. Typically these hard 
ware graphics controllers allow the system processor only 
limited access to the bit map memory, thereby limiting the 
degree to which system Software can augment the fixed set 
of functions of the hardware graphics controller. 
0046) The graphics system processor represents yet a 
further step in the evolution of bit mapped graphics pro 
cessing. A graphics system processor is a programmable 
device that has all the attributes of a microprocessor and also 
includes special functions for bit mapped graphics. The 
TMS34010 and TMS34020 graphics system processors 
manufactured by Texas Instruments Incorporated represent 
this class of devices. These graphics system processors 
respond to a stored program in the same manner as a 
microprocessor and include the capability of data manipu 
lation via an arithmetic logic unit, data storage in register 
files and control of both program flow and external data 
memory. In addition, these devices include special purpose 
graphics manipulation hardware that operate under program 
control. Additional instructions within the instruction set of 
these graphics system processors controls the special pur 
pose graphics hardware. These instructions and the hard 
ware that supports them are selected to perform base level 
graphics functions that are useful in many contexts. Thus a 
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graphics system processor can be programmed for many 
differing graphics applications using algorithms selected for 
the particular problem. This provides an increase in useful 
ness similar to that provided by changing from hardware 
controllers to programmed microprocessors. Because Such 
graphics system processors are programmable devices in the 
same manner as microprocessors, they can operate as stand 
alone graphics processors, graphics co-processors slaved to 
a system processor or tightly coupled graphics controllers. 
0047 New applications are driving the desire to provide 
more powerful graphics functions. Several fields require 
more cost effective graphics operations to be economically 
feasible. These include video conferencing, multi-media 
computing with full motion video, high definition television, 
color facsimile and digital photography. Each of these fields 
presents unique problems, but image data compression and 
decompression are common themes. The amount of trans 
mission bandwidth and the amount of storage capacity 
required for images and particular full motion video is 
enormous. Without efficient video compression and decom 
pression that result in acceptable final image quality, these 
applications will be limited by the costs associated with 
transmission bandwidth and storage capacity. There is also 
a need in the art for a single system that can Support both 
image processing functions such as image recognition and 
graphics functions such as display control. 

SUMMARY OF THE INVENTION 

0.048. This invention is a data processing apparatus which 
operates on instruction controlling plural processor actions. 
Each instruction includes a data unit section and a data 
transfer section. These instruction sections are independent 
and may include differing options. In the preferred embodi 
ment, each instruction is 64 bits. 
0049. The data unit section includes a data operation field 
that indicates the type of arithmetic logic unit operation and 
six operand fields. The six operand fields include four source 
data register fields and two destination register fields. Two 
Source data register fields specify the inputs to a multipli 
cation unit, whose output is specified by one of the desti 
nation register fields. The remaining data register fields 
specify the inputs to an arithmetic logic unit and the output 
data register. The data unit may include a barrel rotator for 
one input of the arithmetic logic unit. The rotate amount may 
be stored in a default rotate amount field in a special data 
register. The rotated data may be stored in the first destina 
tion register instead of the multiply result. 
0050. The data transfer section includes a data transfer 
operation field and a transfer data register field. The data 
transfer operation field indicates the type of data transfer 
operation. This could be: a load or memory to data register 
transfer, a store or data register to memory transfer, or a 
register to register data transfer. The transfer data register 
field specifies the destination in a load operation, the Source 
in a store operation and the destination in a register to 
register move operation. 
0051. An instruction decode logic responds to the instruc 
tion and controls both the data unit and the address unit. 
Operations may be conditional based upon conditions stored 
in a status register. In the preferred embodiment, the arith 
metic logic unit operation and the data transfer operation 
may be made conditional independently, however, if condi 
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tional they are based upon the same condition. The status 
register is set by a prior output of the arithmetic logic unit 
and the instruction may specify some of the status bits 
protect from change. 
0052 The address unit preferably includes a plurality of 
base address registers storing base addresses. A full adder 
combines a base address corresponding to an instruction 
base address register field with an index specified in an index 
field. The index may be an index register or an immediate 
value. The full adder may add the index to the base address 
or subtract the index from the base address. A left shifter 
optionally scales the index based upon a specified data size. 
The full adder output may update the base address register, 
either before supply of the address or following supply of the 
address. The full adder and the left shifter may be used for 
address arithmetic operations to update an address register 
without making a memory access. The data transfer opera 
tion field controls which operation the address unit per 
forms. In the preferred embodiment, the address unit 
includes two complete address generators with separate base 
address registers, index registers, full adders and left 
shifters. This permits two concurrent memory accesses. 
0053. In the preferred embodiment of this invention, the 
data unit including the data registers, the multiplication unit 
and the arithmetic logic unit, the address unit and the 
instruction decode logic are embodied in at least one digital 
image/graphics processor as a part of a multiprocessor 
formed in a single integrated circuit used in image process 
1ng. 

BRIEF DESCRIPTION OF THE FIGURES 

0054 These and other aspects of the present invention are 
described below together with the Figures, in which: 
0.055 FIG. 1 illustrates the system architecture of an 
image processing system such as would employ this inven 
tion; 
0056 FIG. 2 illustrates the architecture of a single inte 
grated circuit multiprocessor that forms the preferred 
embodiment of this invention; 
0057 FIG. 3 illustrates in block diagram form one of the 
digital image/graphics processors illustrated in FIG. 2; 
0058 FIG. 4 illustrates in schematic form the pipeline 
stages of operation of the digital image/graphics processor 
illustrated in FIG. 2; 
0059 FIG. 5 illustrates in block diagram form the data 
unit of the digital image/graphics processors illustrated in 
FIG. 3; 

0060 FIG. 6 illustrates in schematic form field defini 
tions of the status register of the data unit illustrated in FIG. 
5: 

0061 FIG. 7 illustrates in block diagram form the manner 
of splitting the arithmetic logic unit of the data unit illus 
trated in FIG. 5: 
0062 FIG. 8 illustrates in block diagram form the manner 
of addressing the data register of the data unit illustrated in 
FIG. 5 as a rotation register; 
0063 FIG. 9 illustrates in schematic form the field defi 
nitions of the first data register of the data unit illustrated in 
FIG. 5; 
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0064 FIG. 10a illustrates in schematic form the data 
input format for 16 bit by 16 bit signed multiplication 
operands; 

0065 FIG. 10b illustrates in schematic form the data 
output format for 16 bit by 16 bit signed multiplication 
results; 

0.066 FIG. 10c illustrates in schematic form the data 
input format for 16 bit by 16 bit unsigned multiplication 
operands; 

0067 FIG. 10d illustrates in schematic form the data 
output format for 16 bit by 16 bit unsigned multiplication 
results; 

0068 FIG. 11a illustrates in schematic form the data 
input format for dual 8 bit by 8 bit signed multiplication 
operands; 

0069 FIG. 11b illustrates in schematic form the data 
input format for dual 8 bit by 8 bit unsigned multiplication 
operands; 

0070 FIG. 11c illustrates in schematic form the data 
output format for dual 8 bit by 8 bit signed multiplication 
results; 
0071 FIG. 11d illustrates in schematic form the data 
output format for dual 8 bit by 8 bit unsigned multiplication 
results; 
0072 FIG. 12 illustrates in block diagram form the 
multiplier illustrated in FIG. 5: 
0.073 FIG. 13 illustrates in schematic form generation of 
Booth quads for the first operand in 16 bit by 16 bit 
multiplication; 

0074 FIG. 14 illustrates in schematic form generation of 
Booth quads for dual first operands in 8 bit by 8 bit 
multiplication; 

0075 FIG. 15a illustrates in schematic form the second 
operand Supplied to the partial product generators illustrated 
in FIG. 12 in 16 bit by 16 bit unsigned multiplication: 
0076 FIG. 15b illustrates in schematic form the second 
operand Supplied to the partial product generators illustrated 
in FIG. 12 in 16 bit by 16 bit signed multiplication; 
0.077 FIG. 16a illustrates in schematic form the second 
operand Supplied to the first three partial product generators 
illustrated in FIG. 12 in dual 8 bit by 8 bit unsigned 
multiplication; 

0078 FIG. 16b illustrates in schematic form the second 
operand Supplied to the first three partial product generators 
illustrated in FIG. 12 in dual 8 bit by 8 bit signed multipli 
cation; 

0079 FIG. 16c illustrates in schematic form the second 
operand Supplied to the second three partial product gen 
erators illustrated in FIG. 12 in dual 8 bit by 8 bit unsigned 
multiplication; 

0080 FIG. 16d illustrates in schematic form the second 
operand Supplied to the second three partial product gen 
erators illustrated in FIG. 12 in dual 8 bit by 8 bit signed 
multiplication; 

0081 FIG. 17a illustrates in schematic form the output 
mapping for 16 bit by 16 bit multiplication; 
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0082 FIG. 17b illustrates in schematic form the output 
mapping for dual 8 bit by 8 bit multiplication; 

0.083 FIG. 18 illustrates in block diagram form the 
details of the construction of the rounding adder 226 illus 
trated in FIG. 5: 

0084 FIG. 19 illustrates in block diagram form the 
construction of one bit circuit of the arithmetic logic unit of 
the data unit illustrated in FIG. 5; 

0085 FIG. 20 illustrates in schematic form the construc 
tion of the resultant logic and carry out logic of the bit circuit 
illustrated in FIG. 19: 

0086 FIG. 21 illustrates in schematic form the construc 
tion of the Boolean function generator of the bit circuit 
illustrated in FIG. 19: 

0087 FIG. 22 illustrates in block diagram form the 
function signal selector of the function signal generator of 
the data unit illustrated in FIG. 5; 

0088 FIG. 23 illustrates in block diagram form the 
function signal modifier portion of the function signal gen 
erator of the data unit illustrated in FIG. 5: 

0089 FIG. 24 illustrates in block diagram form the bit 0 
carry-in generator of the data unit illustrated in FIG. 5: 
0090 FIG. 25 illustrates in block diagram form a con 
ceptual view of the arithmetic logic unit illustrated in FIGS. 
19 and 20: 

0091 FIG. 26 illustrates in block diagram form a con 
ceptual view of an alternative embodiment of the arithmetic 
logic unit; 

0092 FIG. 27 illustrates in block diagram form the 
address unit of the digital image/graphics processor illus 
trated in FIG. 3; 

0093 FIG. 28 illustrates in block diagram form an 
example of a global or a local address unit of the address unit 
illustrated in FIG. 27: 

0094 FIG. 29a illustrates the order of data bytes accord 
ing to the little endian mode; 
0.095 FIG. 29b illustrates the order of data bytes accord 
ing to the big endian mode; 

0.096 FIG. 30 illustrates a circuit for data selection, data 
alignment and sign or Zero extension in each data port of a 
digital image/graphics processor, 

0097 FIG. 31 illustrates in block diagram form the 
program flow control unit of the digital image/graphics 
processors illustrated in FIG. 3; 

0.098 FIG. 32 illustrates in schematic form the field 
definitions of the program counter of the program flow 
control unit illustrated in FIG. 31; 

0099 FIG. 33 illustrates in schematic form the field 
definitions of the instruction pointer-address stage register of 
the program flow control unit illustrated in FIG. 31; 
0100 FIG. 34 illustrates in schematic form the field 
definitions of the instruction pointer-return from subroutine 
register of the program flow control unit illustrated in FIG. 
31; 
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0101 FIG. 35 illustrates in schematic form the field 
definitions of the cache tag registers of the program flow 
control unit illustrated in FIG. 31; 

0102 FIG. 36 illustrates in schematic form the field 
definitions of the loop logic control register of the program 
flow control unit illustrated in FIG. 31; 

0103 FIG. 37 illustrates in block diagram form the loop 
logic circuit of the program flow control unit; 

0104 FIG. 38 illustrates in flow chart form a program 
example of a single program loop with multiple loop ends; 

0105 FIG. 39 illustrates the overlapping pipeline stages 
in an example of a software branch from a single instruction 
hardware loop: 

0106 FIG. 40 illustrates in schematic form the field 
definitions of the interrupt enable register and the interrupt 
flag register of the program flow control unit illustrated in 
FIG. 31; 

0107 FIG. 41 illustrates in schematic form the field 
definitions of a command word transmitted between proces 
sors of the single integrated circuit multiprocessor illustrated 
in FIG. 2; 

0108 FIG. 42 illustrates in schematic form the field 
definitions of the communications register of the program 
flow control unit illustrated in FIG. 31; 

0109 FIG. 43 illustrates in schematic form the instruc 
tion word controlling the operation of the digital image/ 
graphics processor illustrated in FIG. 3; 

0110 FIG. 44 illustrates in schematic form data flow 
within the data unit during execution of a divide iteration 
instruction; 

0111 FIG. 45 illustrates in flow chart form the use of a 
left most one’s function in a division algorithm; 

0112 FIG. 46 illustrates in flow chart form the use of a 
left most one’s function and an exclusive OR in a division 
algorithm; 

0113 FIG. 47 illustrates in schematic form within the 
data flow during an example sum of absolute value of 
differences algorithm; 

0114 FIGS. 48a, 48b, 48c, 48d and 48e illustrate in 
schematic form a median filter algorithm; 
0115 FIG. 49 illustrates the overlapping pipeline stages 
in an example of a single instruction hardware loop with a 
conditional hardware branch; 

0116 FIG. 50 illustrates in schematic form a hardware 
divider that generates two bits of the desired quotient per 
divide iteration; 

0117 FIG. 51 illustrates in schematic form the data flow 
within the hardware divider illustrated in FIG. 48; 

0118 FIG. 52 illustrates in schematic form a hardware 
divider that generates three bits of the desired quotient per 
divide iteration; 

0119 FIG. 53 illustrates in schematic form the data flow 
within a hardware divider illustrated in FIG. 51; and 
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0120 FIG. 54 illustrates in schematic form the multipro 
cessor integrated circuit of this invention having a single 
digital image/graphics processor in color facsimile system. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0121 FIG. 1 is a block diagram of an image data pro 
cessing system including a multiprocessor integrated circuit 
constructed for image and graphics processing according to 
this invention. This data processing system includes a host 
processing system 1. Host processing system 1 provides the 
data processing for the host system of data processing 
system of FIG. 1. Included in the host processing system 1 
are a processor, at least one input device, a long term storage 
device, a read only memory, a random access memory and 
at least one host peripheral 2 coupled to a host system bus. 
Arrangement and operation of the host processing system 
are considered conventional. Because of its processing func 
tions, the host processing system 1 controls the function of 
the image data processing system. 
0.122 Multiprocessor integrated circuit 100 provides 
most of the data processing including data manipulation and 
computation for image operations of the image data pro 
cessing system of FIG. 1. Multiprocessor integrated circuit 
100 is bi-directionally coupled to an image system bus and 
communicates with host processing system 1 by way of this 
image system bus. In the arrangement of FIG. 1, multipro 
cessor integrated circuit 100 operates independently from 
the host processing system 1. The multiprocessor integrated 
circuit 100, however, is responsive to host processing system 
1. 

0123 FIG. 1 illustrates two image systems. Imaging 
device 3 represents a document scanner, charge coupled 
device Scanner or video camera that serves as an image input 
device. Imagine device 3 Supplies this image to image 
capture controller 4, which serves to digitize the image and 
form it into raster scan frames. This frame capture process 
is controlled by signals from multiprocessor integrated cir 
cuit 100. The thus formed image frames are stored in video 
random access memory 5. Video random access memory 5 
may be accessed via the image system bus permitting data 
transfer for image processing by multiprocessor integrated 
circuit 100. 

0.124. The second image system drives a video display. 
Multiprocessor integrated circuit 100 communicates with 
Video random access memory 6 for specification of a dis 
played image via a pixel map. Multiprocessor integrated 
circuit 100 controls the image data stored in video random 
access memory 6 via the image system bus. Data corre 
sponding to this image is recalled from video random access 
memory 6 and supplied to video palette 7. Video palette 7 
may transform this recalled data into another color space, 
expand the number of bits per pixel and the like. This 
conversion may be accomplished through a look-up table. 
Video palette 7 also generates the proper video signals to 
drive video display 8. If these video signals are analog 
signals, then video palette 7 includes suitable digital to 
analog conversion. The video level signal output from the 
Video palette 7 may include color, Saturation, and brightness 
information. Multiprocessor integrated circuit 100 controls 
data stored within the video palette 7, thus controlling the 
data transformation process and the timing of image frames. 
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Multiprocessor integrated circuit 100 can control the line 
length and the number of lines per frame of the video display 
image, the synchronization, retrace, and blanking signals 
through control of video palette 7. Significantly, multipro 
cessor integrated circuit 100 determines and controls where 
graphic display information is stored in the video random 
access memory 6. Subsequently, during readout from the 
Video random access memory 6, multiprocessor integrated 
circuit 100 determines the readout sequence from the video 
random access memory 6, the addresses to be accessed, and 
control information needed to produce the desired graphic 
image on video display 8. 

0125 Video display 8 produces the specified video dis 
play for viewing by the user. There are two widely used 
techniques. The first technique specifies video data in terms 
of color, hue, brightness, and Saturation for each pixel. For 
the second technique, color levels of red, blue and green are 
specified for each pixel. Video palette 7 the video display 8 
is designed and fabricated to be compatible with the selected 
technique. 

0126 FIG. 1 illustrates an addition memory 9 coupled to 
the image system bus. This additional memory may include 
additional video random access memory, dynamic random 
access memory, static random access memory or read only 
memory. Multiprocessor integrated circuit 100 may be con 
trolled either in wholly or partially by a program stored in 
the memory 9. This memory 9 may also store various types 
of graphic image data. In addition, multiprocessor integrated 
circuit 100 preferably includes memory interface circuits for 
Video random access memory, dynamic random access 
memory and static random access memory. Thus a system 
could be constructed using multiprocessor integrated circuit 
100 without any video random access memory 5 or 6. 

0127 FIG. 1 illustrates transceiver 16. Transceiver 16 
provides translation and bidirectional communication 
between the image system bus and a communications chan 
nel. One example of a system employing transceiver 16 is 
Video conferencing. The image data processing system illus 
trated in FIG. 1 employs imaging device 3 and image 
capture controller 4 to form a video image of persons at a 
first location. Multiprocessor integrated circuit 100 provides 
Video compression and transmits the compressed video 
signal to a similar image data processing system at another 
location via transceiver 16 and the communications channel. 
Transceiver 16 receives a similarly compressed video signal 
from the remote image data processing system via the 
communications channel. Multiprocessor integrated circuit 
100 decompresses this received signal and controls video 
random access memory 6 and video palette 7 to display the 
corresponding decompressed video signal on video display 
8. Note this is not the only example where the image data 
processing system employs transceiver 16. Also note that the 
bidirectional communications need not be the same type 
signals. For example, in an interactive cable television signal 
the cable system head in would transmit compressed video 
signals to the image data processing system via the com 
munications channel. The image data processing system 
could transmit control and data signals back to the cable 
system head in via transceiver 16 and the communications 
channel. 

0128 FIG. 1 illustrates multiprocessor integrated circuit 
100 embodied in a system including host processing system 
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1. Those skilled in the art would realize from the following 
disclosure of the invention that multiprocessor integrated 
circuit 100 may be employed as the only processor of a 
useful system. In such a system multiprocessor integrated 
circuit 100 is programmed to performall the functions of the 
system. 

0129. This invention is particularly useful in a processor 
used for image processing. According to the preferred 
embodiment, this invention is embodied in multiprocessor 
integrated circuit 100. This preferred embodiment includes 
plural identical processors that embody this invention. Each 
of these processors will be called a digital image/graphics 
processor. This description is a matter of convenience only. 
The processor embodying this invention can be a processor 
separately fabricated on a single integrated circuit or a 
plurality of integrated circuits. If embodied on a single 
integrated circuit, this single integrated circuit may option 
ally also include read only memory and random access 
memory used by the digital image/graphics processor. 

0.130 FIG. 2 illustrates the architecture of the multipro 
cessor integrated circuit 100 of the preferred embodiment of 
this invention. Multiprocessor integrated circuit 100 
includes: two random access memories 10 and 20, each of 
which is divided into plural sections; crossbar 50; master 
processor 60; digital image/graphics processors 71, 72, 73 
and 74; transfer controller 80, which mediates access to 
system memory; and frame controller 90, which can control 
access to independent first and second image memories. 
Multiprocessor integrated circuit 100 provides a high degree 
of operation parallelism, which will be useful in image 
processing and graphics operations, such as in the multi 
media computing. 

0131 Multiprocessor integrated circuit 100 includes two 
random access memories. Random access memory 10 is 
primarily devoted to master processor 60. It includes two 
instruction cache memories 11 and 12, two data cache 
memories 13 and 14 and a parameter memory 15. These 
memory sections can be physically identical, but connected 
and used differently. Random access memory 20 may be 
accessed by master processor 60 and each of the digital 
image/graphics processors 71, 72, 73 and 74. Each digital 
image/graphics processor 71, 72, 73 and 74 has five corre 
sponding memory sections. These include an instruction 
cache memory, three data memories and one parameter 
memory. Thus digital image/graphics processor 71 has cor 
responding instruction cache memory 21, data memories 22, 
23, 24 and parameter memory 25; digital image/graphics 
processor 72 has corresponding instruction cache memory 
26, data memories 27, 28, 29 and parameter memory 30: 
digital image/graphics processor 73 has corresponding 
instruction cache memory 31, data memories 32, 33, 34 and 
parameter memory 35; and digital image/graphics processor 
74 has corresponding instruction cache memory 36, data 
memories 37, 38, 39 and parameter memory 40. Like the 
sections of random access memory 10, these memory sec 
tions can be physically identical but connected and used 
differently. Each of these memory sections of memories 10 
and 20 preferably includes 2 K bytes, with a total memory 
within multiprocessor integrated circuit 100 of 50 K bytes. 

0132) Multiprocessor integrated circuit 100 is con 
structed to provide a high rate of data transfer between 
processors and memory using plural independent parallel 
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data transfers. Crossbar 50 enables these data transfers. Each 
digital image/graphics processor 71, 72,73 and 74 has three 
memory ports that may operate simultaneously each cycle. 
An instruction port (I) may fetch 64 bit data words from the 
corresponding instruction cache. A local data port (L) may 
read a 32 bit data word from or write a 32 bit data word into 
the data memories or the parameter memory corresponding 
to that digital image/graphics processor. A global data port 
(G) may read a 32 bit data word from or write a 32 bit data 
word into any of the data memories or the parameter 
memories or random access memory 20. Master Processor 
60 includes two memory ports. An instruction port (I) may 
fetch a 32 bit instruction word from either of the instruction 
caches 11 and 12. A data port (C) may read a 32 bit data word 
from or write a 32 bit data word into data caches 13 or 14, 
parameter memory 15 of random access memory 10 or any 
of the data memories, the parameter memories or random 
access memory 20. Transfer controller 80 can access any of 
the sections of random access memory 10 or 20 via data port 
(C). Thus fifteen parallel memory accesses may be requested 
at any single memory cycle. Random access memories 10 
and 20 are divided into 25 memories in order to support so 
many parallel accesses. 
0.133 Crossbar 50 controls the connections of master 
processor 60, digital image/graphics processors 71, 72, 73 
and 74, and transfer controller 80 with memories 10 and 20. 
Crossbar 50 includes a plurality of crosspoints 51 disposed 
in rows and columns. Each column of crosspoints 51 cor 
responds to a single memory section and a corresponding 
range of addresses. A processor requests access to one of the 
memory sections through the most significant bits of an 
address output by that processor. This address output by the 
processor travels along a row. The crosspoint 51 correspond 
ing to the memory section having that address responds 
either by granting or denying access to the memory section. 
If no other processor has requested access to that memory 
section during the current memory cycle, then the crosspoint 
51 grants access by coupling the row and column. This 
Supplies the address to the memory section. The memory 
section responds by permitting data access at that address. 
This data access may be either a data read operation or a data 
write operation. 
0134) If more than one processor requests access to the 
same memory section simultaneously, then crossbar 50 
grants access to only one of the requesting processors. The 
crosspoints 51 in each column of crossbar 50 communicate 
and grant access based upon a priority hierarchy. If two 
requests for access having the same rank occur simulta 
neously, then crossbar 50 grants access on a round robin 
basis, with the processor last granted access having the 
lowest priority. Each granted access lasts as long as needed 
to service the request. The processors may change their 
addresses every memory cycle, so crossbar 50 can change 
the interconnection between the processors and the memory 
sections on a cycle by cycle basis. 
0135 Master processor 60 preferably performs the major 
control functions for multiprocessor integrated circuit 100. 
Master processor 60 is preferably a 32 bit reduced instruc 
tion set computer (RISC) processor including a hardware 
floating point calculation unit. According to the RISC archi 
tecture, all accesses to memory are performed with load and 
store instructions and most integer and logical operations are 
performed on registers in a single cycle. The floating point 
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calculation unit, however, will generally take several cycles 
to perform operations when employing the same register file 
as used by the integer and logical unit. A register score board 
ensures that correct register access sequences are main 
tained. The RISC architecture is suitable for control func 
tions in image processing. The floating point calculation unit 
permits rapid computation of image rotation functions, 
which may be important to image processing. 
0.136 Master processor 60 fetches instruction words from 
instruction cache memory 11 or instruction cache memory 
12. Likewise, master processor 60 fetches data from either 
data cache 13 or data cache 14. Since each memory section 
includes 2 K bytes of memory, there is 4 K bytes of 
instruction cache and 4K bytes of data cache. Cache control 
is an integral function of master processor 60. As previously 
mentioned, master processor 60 may also access other 
memory sections via crossbar 50. 
0.137 The four digital image/graphics processors 71, 72, 
73 and 74 each have a highly parallel digital signal processor 
(DSP) architecture. FIG. 3 illustrates an overview of exem 
plary digital image/graphics processor 71, which is identical 
to digital image/graphics processors 72, 73 and 74. Digital 
image/graphics processor 71 achieves a high degree of 
parallelism of operation employing three separate units: data 
unit 110; address unit 120; and program flow control unit 
130. These three units operate simultaneously on different 
instructions in an instruction pipeline. In addition each of 
these units contains internal parallelism. 
0.138. The digital image/graphics processors 71, 72, 73 
and 74 can execute independent instruction streams in the 
multiple instruction multiple data mode (MIMD). In the 
MIMD mode, each digital image/graphics processor 
executes an individual program from its corresponding 
instruction cache, which may be independent or cooperative. 
In the latter case crossbar 50 enables inter-processor com 
munication in combination with the shared memory. Digital 
image/graphics processors 71, 72, 73 and 74 may also 
operate in a synchronized MIMD mode. In the synchronized 
MIMD mode, the program control flow unit 130 of each 
digital image/graphics processor inhibits fetching the next 
instruction until all synchronized processors are ready to 
proceed. This synchronized MIMD mode allows the sepa 
rate programs of the digital image/graphics processors to be 
executed in lock step in a closely coupled operation. 
0.139 Digital image/graphics processors 71, 72, 73 and 
74 can execute identical instructions on differing data in the 
single instruction multiple data mode (SIMD). In this mode 
a single instruction stream for the four digital image/graph 
ics processors comes from instruction cache memory 21. 
Digital image/graphics processor 71 controls the fetching 
and branching operations and crossbar 50 Supplies the same 
instruction to the other digital image/graphics processors 72, 
73 and 74. Since digital image/graphics processor 71 con 
trols instruction fetch for all the digital image/graphics 
processors 71, 72, 73 and 74, the digital image/graphics 
processors are inherently synchronized in the SIMD mode. 

0140 Transfer controller 80 is a combined direct memory 
access (DMA) machine and memory interface for multipro 
cessor integrated circuit 100. Transfer controller 80 intelli 
gently queues, sets priorities and services the data requests 
and cache misses of the five programmable processors. 
Master processor 60 and digital image/graphics processors 
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71, 72,73 and 74 all access memory and systems external to 
multiprocessor integrated circuit 100 via transfer controller 
80. Data cache or instruction cache misses are automatically 
handled by transfer controller 80. The cache service (S) port 
transmits such cache misses to transfer controller 80. Cache 
service port (S) reads information from the processors and 
not from memory. Master processor 60 and digital image/ 
graphics processors 71, 72, 73 and 74 may request data 
transfers from transfer controller 80 as linked list packet 
requests. These linked list packet requests allow multi 
dimensional blocks of information to be transferred between 
Source and destination memory addresses, which can be 
within multiprocessor integrated circuit 100 or external to 
multiprocessor integrated circuit 100. Transfer controller 80 
preferably also includes a refresh controller for dynamic 
random access memory (DRAM) which require periodic 
refresh to retain their data. 

0141 Frame controller 90 is the interface between mul 
tiprocessor integrated circuit 100 and external image capture 
and display systems. Frame controller 90 provides control 
over capture and display devices, and manages the move 
ment of data between these devices and memory automati 
cally. To this end, frame controller 90 provides simultaneous 
control over two independent image systems. These would 
typically include a first image system for image capture and 
a second image system for image display, although the 
application of frame controller 90 is controlled by the user. 
These image systems would ordinarily include independent 
frame memories used for either frame grabber or frame 
buffer storage. Frame controlled 90 preferably operates to 
control video dynamic random access memory (VRAM) 
through refresh and shift register control. 
0142 Multiprocessor integrated circuit 100 is designed 
for large scale image processing. Master processor 60 pro 
vides embedded control, orchestrating the activities of the 
digital image/graphics processors 71, 72, 73 and 74, and 
interpreting the results that they produce. Digital image/ 
graphics processors 71, 72,73 and 74 are well suited to pixel 
analysis and manipulation. If pixels are thought of as high in 
data but low in information, then in a typical application 
digital image/graphics processors 71, 72, 73 and 74 might 
well examine the pixels and turn the raw data into informa 
tion. This information can then be analyzed either by the 
digital image/graphics processors 71, 72, 73 and 74 or by 
master processor 60. Crossbar 50 mediates inter-processor 
communication. Crossbar 50 allows multiprocessor inte 
grated circuit 100 to be implemented as a shared memory 
system. Message passing need not be a primary form of 
communication in this architecture. However, messages can 
be passed via the shared memories. Each digital image/ 
graphics processor, the corresponding section of crossbar 50 
and the corresponding sections of memory 20 have the same 
width. This permits architecture flexibility by accommodat 
ing the addition or removal of digital image/graphics pro 
cessors and corresponding memory modularly while main 
taining the same pin out. 
0143. In the preferred embodiment all parts of multipro 
cessor integrated circuit 100 are disposed on a single inte 
grated circuit. In the preferred embodiment, multiprocessor 
integrated circuit 100 is formed in complementary metal 
oxide semiconductor (CMOS) using feature sizes of 0.6 um. 
Multiprocessor integrated circuit 100 is preferably con 
structed in a pin grid array package having 256 pins. The 
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inputs and outputs are preferably compatible with transistor 
transistor logic (TTL) logic Voltages. Multiprocessor inte 
grated circuit 100 preferably includes about 3 million tran 
sistors and employs a clock rate of 50MHz. 
014.4 FIG. 3 illustrates an overview of exemplary digital 
image/graphics processor 71, which is virtually identical to 
digital image/graphics processors 72, 73 and 74. Digital 
image/graphics processor 71 includes: data unit 110; address 
unit 120; and program flow control unit 130. Data unit 110 
performs the logical or arithmetic data operations. Data unit 
110 includes eight data registers D7-D0, a status register 210 
and a multiple flags register 211. Address unit 120 controls 
generation of load/store addresses for the local data port and 
the global data port. As will be further described below, 
address unit 120 includes two virtually identical addressing 
units, one for local addressing and one for global addressing. 
Each of these addressing units includes an all “0” read only 
register enabling absolute addressing in a relative address 
mode, a stack pointer, five address registers and three index 
registers. The addressing units share a global bit multiplex 
control register used when forming a merging address from 
both address units. Program flow control unit 130 controls 
the program flow for the digital image/graphics processor 71 
including generation of addresses for instruction fetch via 
the instruction port. Program flow control unit 130 includes: 
a program counter PC 701; an instruction pointer-address 
stage IRA 702 that holds the address of the instruction 
currently in the address pipeline stage; an instruction 
pointer-execute stage IRE 703 that holds the address of the 
instruction currently in the execute pipeline stage; an 
instruction pointer-return from subroutine IPRS 704 holding 
the address for returns from subroutines; a set of registers 
controlling Zero overhead loops; four cache tag registers 
TAG3-TAG0 collectively called 708 that hold the most 
significant bits of four blocks of instruction words in the 
corresponding instruction cache memory. 
0145 Digital image/graphics processor 71 operates on a 
three stage pipeline as illustrated in FIG. 4. Data unit 110. 
address unit 120 and program flow control unit 130 operate 
simultaneously on different instructions in an instruction 
pipeline. The three stages in chronological order are fetch, 
address and execute. Thus at any time, digital image/graph 
ics processor 71 will be operating on differing functions of 
three instructions. The phrase pipeline stage is used instead 
of referring to clock cycles, to indicate that specific events 
occur when the pipeline advances, and not during stall 
conditions. 

0146 Program flow control unit 130 performs all the 
operations that occur during the fetch pipeline stage. Pro 
gram flow control unit 130 includes a program counter, loop 
logic, interrupt logic and pipeline control logic. During the 
fetch pipeline stage, the next instruction word is fetched 
from memory. The address contained in the program counter 
is compared with cache tag registers to determine if the next 
instruction word is stored in instruction cache memory 21. 
Program flow control unit 130 supplies the address in the 
program counter to the instruction port address bus 131 to 
fetch this next instruction word from instruction cache 
memory 21 if present. Crossbar 50 transmits this address to 
the corresponding instruction cache, here instruction cache 
memory 21, which returns the instruction word on the 
instruction bus 132. Otherwise, a cache miss occurs and 
transfer controller 80 accesses external memory to obtain the 
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next instruction word. The program counter is updated. If the 
following instruction word is at the next sequential address, 
program control flow unit 130 post increments the program 
counter. Otherwise, program control flow unit 130 loads the 
address of the next instruction word according to the loop 
logic or software branch. If the synchronized MIMD mode 
is active, then the instruction fetch waits until all the 
specified digital image/graphics processors are synchro 
nized, as indicated by Sync bits in a communications regis 
ter. 

0147 Address unit 120 performs all the address calcula 
tions of the address pipeline stage. Address unit 120 includes 
two independent address units, one for the global port and 
one for the local port. If the instruction calls for one or two 
memory accesses, then address unit 120 generates the 
address(es) during the address pipeline stage. The 
address(es) are supplied to crossbar 50 via the respective 
global port address bus 121 and local port address bus 122 
for contention detection/prioritization. If there is no conten 
tion, then the accessed memory prepares to allow the 
requested access, but the memory access occurs during the 
following execute pipeline stage. 

0148 Data unit 110 performs all of the logical and 
arithmetic operations during the execute pipeline stage. All 
logical and arithmetic operations and all data movements to 
or from memory occur during the execute pipeline stage. 
The global data port and the local data port complete any 
memory accesses, which are begun during the address 
pipeline stage, during the execute pipeline stage. The global 
data port and the local data port perform all data alignment 
needed by memory stores, and any data extraction and sign 
extension needed by memory loads. If the program counter 
is specified as a data destination during any operation of the 
execute pipeline stage, then a delay of two instructions is 
experienced before any branch takes effect. The pipelined 
operation requires this delay, since the next two instructions 
following Such a branch instruction have already been 
fetched. According to the practice in RISC processors, other 
useful instructions may be placed in the two delay slot 
positions. 

0149 Digital image/graphics processor 71 includes three 
internal 32 bit data busses. These are local port data bus 
Lbus 103, global port source data bus GSrc 105 and global 
port destination data bus Gdst 107. These three buses 
interconnect data unit 110, address unit 120 and program 
flow control unit 130. These three buses are also connected 
to a data portunit 140 having a local port 141 and global port 
145. Data port unit 140 is coupled to crossbar 50 providing 
memory access. 

0150. Local data port 141 has a buffer 142 for data stores 
to memory. A multiplexer/buffer circuit 143 loads data onto 
Lbus 103 from local port data bus 144 from memory via 
crossbar 50, from a local port address bus 122 or from global 
port data bus 148. Local port data bus Lbus 103 thus carries 
32 bit data that is either register sourced (stores) or memory 
Sourced (loads). Advantageously, arithmetic results in 
address unit 120 can be supplied via local port address bus 
122., multiplexer buffer 143 to local port data bus Lbus 103 
to supplement the arithmetic operations of data unit 110. 
This will be further described below. Buffer 142 and mul 
tiplexer buffer 143 performalignment and extraction of data. 
Local port data bus Lbus 103 connects to data registers in 
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data unit 110. A local bus temporary holding register LTD 
104 is also connected to local port data Lbus 103. 
0151 Global port source data bus GSrc 105 and global 
port destination data bus Gdst 107 mediate global data 
transfers. These global data transfers may be either memory 
accesses, register to register moves or command word 
transfers between processors. Global port source data bus 
Gsrc 105 carries 32 bit source information of a global port 
data transfer. The data source can be any of the registers of 
digital image/graphics processor 71 or any data or parameter 
memory corresponding to any of the digital image/graphics 
processors 71, 72, 73 or 74. The data is stored to memory via 
the global port 145. Multiplexer buffer 146 selects lines from 
local port data Lbus 103 or global port source data bus Gsrc 
105, and performs data alignment. Multiplexer buffer 146 
writes this data onto global port data bus 148 for application 
to memory via crossbar 50. Global port source data bus Gsrc 
105 also supplies data to data unit 110, allowing the data of 
global port source data bus GSrc 105 to be used as one of the 
arithmetic logic unit sources. This latter connection allows 
any register of digital image/graphics processor 71 to be a 
Source for an arithmetic logic unit operation. 
0152 Global port destination data bus Gdst 107 carries 
32 bit destination data of a global bus data transfer. The 
destination is any register of digital image/graphics proces 
sor 71. Buffer 147 in global port 145 sources the data of 
global port destination data bus Gdst 107. Buffer 147 
performs any needed data extraction and sign extension 
operations. This buffer 115 operates if the data source is 
memory, and a load is thus being performed. The arithmetic 
logic unit result serves as an alternative data source for 
global port destination data bus Gdst 107. This allows any 
register of digital image/graphics processor 71 to be the 
destination of an arithmetic logic unit operation. A global 
bus temporary holding register GTD 108 is also connected 
to global port destination data bus Gdst 107. 
0.153 Circuitry including multiplexer buffers 143 and 
146 connect between global port source data bus GSrc 105 
and global port destination data bus Gdst 107 to provide 
register to register moves. This allows a read from any 
register of digital image/graphics processor 71 onto global 
port source data bus GSrc 105 to be written to any register 
of digital image/graphics processor 71 via global port des 
tination data bus Gdst 107. 

0154) Note that it is advantageously possible to perform 
a load of any register of digital image/graphics processor 71 
from memory via global port destination data bus Gdst 107. 
while simultaneously sourcing the arithmetic logic unit in 
data unit 110 from any register via global port Source data 
bus GSrc 105. Similarly, it is advantageously possible to 
store the data in any register of digital image/graphics 
processor 71 to memory via global port source data bus GSrc 
105, while saving the result of an arithmetic logic unit 
operation to any register of digital image/graphics processor 
71 via global port destination data bus Gdst 107. The 
usefulness of these data transfers will be further detailed 
below. 

0.155) Program flow control unit 130 receives the instruc 
tion words fetched from instruction cache memory 21 via 
instruction bus 132. This fetched instruction word is advan 
tageously stored in two 64 bit instruction registers desig 
nated instruction register-address stage IRA 751 and instruc 
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tion register-execute stage IRE 752. Each of the instruction 
registers IRA and IRE have their contents decoded and 
distributed. Digital image/graphics processor 71 includes 
opcode bus 133 that carries decoded or partially decoded 
instruction contents to data unit 110 and address unit 120. As 
will be later described, an instruction word may include a 32 
bit, a 15 bit or a 3 bit immediate field. Program flow control 
unit 130 routes such an immediate field to global port source 
data bus GSrc 105 for supply to its destination. 
0156 Digital image/graphics processor 71 includes three 
address buses 121, 122 and 131. Address unit 120 generates 
addresses on global port address bus 121 and local port 
address bus 122. As will be further detailed below, address 
unit 120 includes separate global and local address units, 
which provide the addresses on global port address bus 121 
and local port address bus 122, respectively. Note that local 
address unit 620 may access memory other than the data 
memory corresponding to that digital image/graphics pro 
cessor. In that event the local address unit access is via 
global port address bus 121. Program flow control unit 130 
Sources the instruction address on instruction port address 
bus 131 from a combination of address bits from a program 
counter and cache control logic. These address buses 121, 
122 and 131 each carry address, byte strobe and read/write 
information. 

0157 FIG. 5 illustrates details of data unit 110. It should 
be understood that FIG. 5 does not illustrate all of the 
connections of data unit 110. In particular various control 
lines and the like have been omitted for the sake of clarity. 
Therefore FIG. 5 should be read with the following descrip 
tion for a complete understanding of the operation of data 
unit 110. Data unit 110 includes a number of parts advan 
tageously operating in parallel. Data unit 110 includes eight 
32 bit data registers 200 designated D7-D0. Data register D0 
may be used as a general purpose register but in addition has 
special functions when used with certain instructions. Data 
registers 200 include multiple read and write ports con 
nected to data unit buses 201 to 206 and to local port data 
bus Lbus 103, global port source data bus GSrc 105 and 
global port destination data bus Gdst 107. Data registers 200 
may also be read “sideways' in a manner described as a 
rotation register that will be further described below. Data 
unit 110 further includes a status register 210 and a multiple 
flags register 211, which stores arithmetic logic unit result 
ant status for use in certain instructions. Data unit 110 
includes as its major computational components a hardware 
multiplier 220 and a three input arithmetic logic unit 230. 
Lastly, data unit 110 includes: multiplier first input bus 201, 
multiplier second input bus 202, multiplier destination bus 
203, arithmetic logic unit destination bus 204, arithmetic 
logic unit first input bus 205, arithmetic logic unit second 
input bus 206: buffers 104, 106, 108 and 236; multiplexers 
Rmux 221, Imux 222, MSmux 225, Bmux 227, Amux 232, 
Smux 231. Cmux 233 and Mmux 234; and product left 
shifter 224, adder 226, barrel rotator 235, LMO/RMO/ 
LMBC/RMBC circuit 237, expand circuit 238, mask gen 
erator 239, input A bus 241, input B bus 242, input C bus 
243, rotate bus 244, function signal generator 245, bit 0 
carry-in generator 246, and instruction decode logic 250, all 
of which will be further described below. 

0158. The following description of data unit 110 as well 
as further descriptions of the use of each digital image/ 
graphics processor 71, 72, 73 and 74 employ several sym 
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bols for ease of expression. Many of these symbols are 
standard mathematical operations that need no explanation. 
Some are logical operations that will be familiar to one 
skilled in the art, but whose symbols may be unfamiliar. 
Lastly, Some symbols refer to operations unique to this 
invention. Table 1 lists some of these symbols and their 
corresponding operation. 

TABLE 1. 

Symbol Operation 

-- bit wise NOT 
& bit wise AND 

bit wise OR 
M bit wise exclusive OR 
(a) multiple flags register expand 
% mask generation 
% modified mask generation 
W rotate left 
<< shift left 

>> shift right Zero extend 
>>S shift right sign extend 
>> shift right sign extend 

default case 
| parallel operation 
*(A + X) memory contents at 

address base register A + index 
register X 
or offset X 

&*(A + X) address unit arithmetic 
address base register A + index 
register X 
or offset X 

*(A + X) memory contents at 
address base register A+ Scaled 
index register X 
or offset X 

The implications of the operations listed above in Table 1 
may not be immediately apparent. These will be explained 
in detail below. 

0159 FIG. 6 illustrates the field definitions for status 
register 210. Status register 210 may be read from via global 
port source data bus GSrc 105 or written into via global port 
destination data bus Gdst bus 107. In addition, status register 
210 may write to or load from a specified one of data 
registers 200. Status register 210 is employed in control of 
operations within data unit 110. 

0.160 Status register 210 stores four arithmetic logic unit 
result status bits “N”, “C”, “V” and “Z”. These are indi 
vidually described below, but collectively their setting 
behavior is as follows. Note that the instruction types listed 
here will be fully described below. For instruction words 
including a 32 bit immediate fields, if the condition code 
field is “unconditional then all four status bits are set 
according to the result of arithmetic logic unit 230. If the 
condition code field specifies a condition other than “uncon 
ditional', then no status bits are set, whether or not the 
condition is true. For instruction words not including a 32 bit 
immediate field operations and not including conditional 
operations fields, all status bits are set according to the result 
of arithmetic logic unit 230. For instruction words not 
including a 32 bit immediate field that permit conditional 
operations, if the condition field is “unconditional”, or not 
“unconditional and the condition is true, instruction word 
bits 28-25 indicate which status bits should be protected. All 
unprotected bits are set according to the result of arithmetic 
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logic unit 230. For instruction words not including a 32 bit 
immediate field, which allow conditional operations, if the 
condition field is not “unconditional and the condition is 
false, no status bits are set. There is no difference in the 
status setting behavior for Boolean operations and arithmetic 
operations. As will be further explained below, this behavior, 
allows the conditional instructions and Source selection to 
perform operations that would normally require a branch. 
0161 The arithmetic logic unit result bits of status reg 
ister 210 are as follows. The “N' bit (bit 31) stores an 
indication of a negative result. The “N' bit is set to “1” if the 
result of the last operation of arithmetic logic unit 230 was 
negative. This bit is loaded with bit 31 of the result. In a 
multiple arithmetic logic unit operation, which will be 
explained below, the “N' bit is set to the AND of the Zero 
compares of the plural sections of arithmetic logic unit 230. 
In a bit detection operation performed by LMO/RMO/ 
LMBC/RMBC circuit 237, the “N bit is set to the AND of 
the Zero compares of the plural sections of arithmetic logic 
unit 230. Writing to this bit in software overrides the normal 
arithmetic logic unit result writing logic. 
0162 The “C” bit (bit 30) stores an indication of a carry 

result. The “C” bit is set to “1” if the result of the last 
operation of arithmetic logic unit 230 caused a carry-out 
from bit 31 of the arithmetic logic unit. During multiple 
arithmetic and bit detection, the “C” bit is set to the OR of 
the carry outs of the plural sections of arithmetic logic unit 
230. Thus the “C” bit is set to “1” if at least one of the 
sections has a carry out. Writing to this bit in software 
overrides the normal arithmetic logic unit result writing 
logic. 

0163 The “V” bit (bit 29) stores an indication of an 
overflow result. The 'V' bit is set to “1” if the result of the 
last operation of arithmetic logic unit 230 created an over 
flow condition. This bit is loaded with the exclusive OR of 
the carry-in and carry-out of bit 31 of the arithmetic logic 
unit 230. During multiple arithmetic logic unit operation the 
“V” bit is the AND of the carry outs of the plural sections 
of arithmetic logic unit 230. For left most one and right most 
one bit detection, the “V” bit is set to “1” if there were no 
“1s” in the input word, otherwise the “V” bit is set to “0”. 
For left most bit change and right most bit change bit 
detection, the “V” bit is set to “1” is all the bits of the input 
are the same, or else the “V” bit is set to “0”. Writing to this 
bit in software overrides the normal arithmetic logic unit 
result writing logic. 

0164. The “Z” bit (bit 28) stores and indication of a “0” 
result. The “Z” bit is set to “1” if the result of the last 
operation of arithmetic logic unit 230 produces a “0” result. 
This “Z” bit is controlled for both arithmetic operations and 
logical operations. In multiple arithmetic and bit detection 
operations, the “Z” bit is set to the OR of the Zero compares 
of the plural sections of arithmetic logic unit 230. Writing to 
this bit in software overrides the normalarithmetic logic unit 
result writing logic circuitry. 

0165. The “R” bit (bit 6) controls bits used by expand 
circuit 238 and rotation of multiple flags register 211 during 
instructions that use expand circuit 238 to expand portions 
of multiple flags register 211. If the “R” bit is “1”, then the 
bits used in an expansion of multiple flags register 211 via 
expand circuit 238 are the most significant bits. For an 
operation involving expansion of multiple flags register 211 
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where the arithmetic logic unit function modifier does not 
specify multiple flags register rotation, then multiple flags 
register 211 is “post-rotated left according to the “Msize” 
field. If the arithmetic logic unit function modifier does 
specify multiple flags register rotation, then multiple flags 
register 211 is rotated according to the “Asize’ field. If the 
“R” bit is “0”, then expand circuit 238 employs the least 
significant bits of multiple flags register 211. No rotation 
takes place according to the “Msize’ field. However, the 
arithmetic logic unit function modifier may specify rotation 
by the “Asize” field. 
0166 The “Msize” field (bits 5-3) indicates the data size 
employed in certain instruction classes that Supply mask 
data from multiple flags register 211 to the C-port of 
arithmetic logic unit 230. The “Msize’ field determines how 
many bits of multiple flags register 211 uses to create the 
mask information. When the instruction does not specify 
rotation corresponding to the “Asize field and the “R” bit 
is “1, then multiple flags register 211 is automatically 
“post-rotated left by an amount set by the “Msize’ field. 
Codings for these bits are shown in Table 2. 

TABLE 2 

Msize Data Multiple Flags Register 

Field Size Rotate No. of Bit(s) used 

5 4 3 bits amount bits used R = 1 R = 0 

O O O O 64 64 
O O 1 1 32 32 31-0 31-0 
O 1 O 2 16 16 31-16 1S-O 
O 1 1 4 8 8 31-24 7-O 
1 O O 8 4 4 31-28 3-0 
1 O 1 16 2 2 31-30 1-0 
1 1 O 32 1 1 31 O 
1 1 1 64 O O 

0.167 As noted above, the preferred embodiment Sup 
ports “Msize” fields of “100”, “101” and “110 correspond 
ing to data sizes of 8, 16 and 32 bits, respectively. Note that 
rotation for an “Msize’ field of "001 results in no change 
in data output. “Msize fields of "001”, “010 and “011” are 
possible useful alternatives. “Msize” fields of “000 and 
"111” are meaningless but may be used in an extension of 
multiple flags register 211 to 64 bits. 

0168 The “Asize” field (bits 2-0) indicate the data size 
for multiple operations performed by arithmetic logic unit 
230. Arithmetic logic unit 230 preferably includes 32 par 
allel bits. During certain instructions arithmetic logic unit 
230 splits into multiple independent sections. This is called 
a multiple arithmetic logic unit operation. This splitting of 
arithmetic logic unit 230 permits parallel operation on pixels 
of less than 32 bits that are packed into 32 bit data words. 
In the preferred embodiment arithmetic logic unit 230 
supports: a single 32 bit operation; two sections of 16 bit 
operations; and four sections of 8 bit operations. These 
options are called word, half-word and byte operations. 
0169. The “Asize” field indicates: the number of multiple 
sections of arithmetic logic unit 230; the number of bits of 
multiple flags register bits 211 set during the arithmetic logic 
unit operation, which is equal in number to the number of 
sections of arithmetic logic unit 230; and the number of bits 
the multiple flags register should “post-rotate left after 
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output during multiple arithmetic logic unit operation. The 
rotation amount specified by the “Asize’ field dominates 
over the rotation amount specified by the “Msize’ field and 
the “R” bit when the arithmetic logic unit function modifier 
indicates multiple arithmetic with rotation. Codings for 
these bits are shown in Table 3. Note that while the current 
preferred embodiment of the invention supports multiple 
arithmetic of one 32 bit section, two 16 bit sections and four 
8 bit sections the coding of the “Asize’ field supports 
specification of eight sections of 4 bits each, sixteen sections 
of 2 bits each and thirty-two sections of 1 bit each. Each of 
these additional section divisions of arithmetic logic unit 
230 are feasible. Note also that the coding of the “Asize” 
field further supports specification of a 64 bit data size for 
possible extension of multiple flags register 211 to 64 bits. 

TABLE 3 

Asize Data Multiple Flags Register 

Field Size Rotate No. of Bit(s) 

2 1 O bits amount bits set Set 

O O O O 64 64 
O O 1 1 32 32 31-0 
O 1 O 2 16 16 1S-O 
O 1 1 4 8 8 7-O 
1 O O 8 4 4 3-0 
1 O 1 16 2 2 1-0 
1 1 O 32 1 1 O 
1 1 1 64 O O 

0170 The “Msize” and “Asize fields of status register 
210 control different operations. When using the multiple 
flags register 211 as a source for producing a mask applied 
to the C-port of arithmetic logic unit 230, the “Msize’ field 
controls the number of bits used and the rotate amount. In 
such a case the “R” bit determines whether the most sig 
nificant bits or least significant bits are employed. When 
using the multiple flags register 211 as a destination for the 
status bits corresponding to sections of arithmetic logic unit 
230, then the “Asize’ field controls the number and identity 
of the bits loaded and the optional rotate amount. If a 
multiple arithmetic logic unit operation with "Asize’ field 
specified rotation is specified with an instruction that Sup 
plies mask data to the C-port derived from multiple flags 
register 211, then the rotate amount of the “Asize’ field 
dominates over the rotate amount of the combination of the 
“R” bit and the “Msize field. 

0171 The multiple flags register 211 is a 32 bit register 
that provides mask information to the C-port of arithmetic 
logic unit 230 for certain instructions. Global port destina 
tion data bus Gdst bus 107 may write to multiple flags 
register 211. Global port source bus Gsrc may read data from 
multiple flags register 211. In addition multiple arithmetic 
logic unit operations may write to multiple flags register 211. 
In this case multiple flags register 211 records either the 
carry or Zero status information of the independent sections 
of arithmetic logic unit 230. The instruction executed con 
trols whether the carry or Zero is stored. 
0172. The “Msize” field of status register 210 controls the 
number of least significant bits used from multiple flags 
register 211. This number is given in Table 2 above. The “R” 
bit of status register 210 controls whether multiple flags 
register 211 is pre-rotated left prior to supply of these bits. 
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The value of the "Msize’ field determines the amount of 
rotation if the “R” bit is “1”. The selected data supplies 
expand circuit 238, which generates a 32 bit mask as 
detailed below. 

0173 The “Asize” field of status register 210 controls the 
data stored in multiple flags register 211 during multiple 
arithmetic logic unit operations. As previously described, in 
the preferred embodiment arithmetic logic unit 230 may be 
used in one, two or four separate sections employing data of 
32 bits, 16 bits and 8 bits, respectively. Upon execution of 
a multiple arithmetic logic unit operation, the “Asize’ field 
indicates through the defined data size the number of bits of 
multiple flags register 211 used to record the status infor 
mation of each separate result of the arithmetic logic unit. 
The bit setting of multiple flags register 211 is summarized 
in Table 4. 

TABLE 4 

Data ALU carry-out bits ALU result bits equal to 
Size setting MF bits Zero setting MF bits 

bits 3 2 1 O 3 2 1 O 

8 31 23 15 7 31-24 23-16 15-8 7-O 
16 31 15 31-16 1S-O 
32 31 31-0 

Note that Table 4 covers only the cases for data sizes of 8, 
16 and 32 bits. Those skilled in the art would easily realize 
how to extend Table 4 to cover the cases of data sizes of 64 
bits, 4 bits, 2 bits and 1 bit. Also note that the previous 
discussion referred to storing either carry or Zero status in 
multiple flags register 211. It is also feasible to store other 
status bits such as negative and overflow. 
0.174 Multiple flags register 211 may be rotated left a 
number of bit positions upon execution of each arithmetic 
logic unit operation. The rotate amount is given above. 
When performing multiple arithmetic logic unit operations, 
the result status bit setting dominates over the rotate for 
those bits that are being set. When performing multiple 
arithmetic logic unit operations, an alternative to rotation is 
to clear all the bits of multiple flags register 211 not being 
set by the result status. This clearing is after generation of 
the mask data if mask data is used in that instruction. If 
multiple flags register 211 is written by software at the same 
time as recording an arithmetic logic unit result, then the 
preferred operation is for the software write to load all the 
bits. Software writes thus dominate over rotation and clear 
ing of multiple flags register 211. 

0.175 FIG. 7 illustrates the splitting of arithmetic logic 
unit 230 into multiple sections. As illustrated in FIG. 7, the 
32 bits of arithmetic logic unit 230 are separated into four 
sections of eight bits each. Section 301 includes arithmetic 
logic unit bits 7-0, section 302 includes bits 15-8, section 
303 includes bits 23-16 and section 304 includes bits 31-24. 
Note that FIG. 7 does not illustrate the inputs or outputs of 
these sections, which are conventional, for the sake of 
clarity. The carry paths within each of the sections 301,302, 
303 and 303 are according to the known art. 
0176) Multiplexers 311, 312 and 313 control the carry 
path between sections 301,302,303 and 304. Each of these 
multiplexers is controlled to select one of three inputs. The 
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first input is a carry look ahead path from the output of the 
previous multiplexer, or in the case of the first multiplexer 
311 from bit 0 carry-in generator 246. Such carry lookahead 
paths and their use are known in the art and will not be 
further described here. The second selection is the carry-out 
from the last bit of the corresponding section of arithmetic 
logic unit 230. The final selection is the carry-in signal from 
bit 0 carry-in generator 246. Multiplexer 314 controls the 
output carry path for arithmetic logic unit 230. Multiplexer 
314 selects either the carry look ahead path from the 
carry-out selected by multiplexer 313 or the carry-out signal 
for bit 31 from Section 304. 

0177) Multiplexers 311, 312, 313 and 314 are controlled 
based upon the selected data size. In the normal case 
arithmetic logic unit 230 operates on 32 bit data words. This 
is indicated by an “Asize’ field of status register 210 equal 
to “110'. In this case multiplexer 311 selects the carry-out 
from bit 7, multiplexer 312 selects the carry-out from bit 15, 
multiplexer 313 selects the carry-out from bit 23 and mul 
tiplexer 314 selects the carry-out from bit 31. Thus the four 
sections 301, 302,303 and 304 are connected together into 
a single 32 bit arithmetic logic unit. If status register 210 
selected a half-word via an “Asize’ field of “101, then 
multiplexer 311 selects the carry-out from bit 7, multiplexer 
312 selects the carry-in from bit 0 carry-in generator 246, 
multiplexer 313 selects the carry-out from bit 23 and mul 
tiplexer 314 selects the carry-in from bit 0 carry-in generator 
246. Sections 301 and 302 are connected into a 16 bit unit 
and sections 303 and 304 are connected into a 16 bit unit. 
Note that multiplexer 312 selects the bit 0 carry-in signal for 
bit 16 just like bit 0, because bit 16 is the first bit in a 16 bit 
half-word. If status register 210 selected a byte via an 
“Asize” field of “100, then multiplexers 311, 312 and 313 
select the carry-in from bit 0 carry-in generator 246. Sec 
tions 301, 302, 303 and 304 are split into four independent 
8 bit units. Note that selection of the bit 0 carry-in signal at 
each multiplexer is proper because bits 8, 16 and 24 are each 
the first bit in an 8 bit byte. 
0178 FIG. 7 further illustrates zero resultant detection. 
Each 8 bit Zero detect circuit 321, 322, 323 and 324 
generates a “1” output if the resultant from the correspond 
ing 8 bit section is all Zeros "00000000”. AND gate 331 is 
connected to 8 bit Zero detect circuits 321 and 322, thus 
generating a “1” when all sixteen bits 15-0 are “0”. AND 
gate 332 is similarly connected to 8 bit Zero detect circuits 
321 and 322 for generating a “1” when all sixteen bits 31-16 
are “O”. Lastly, AND gate 341 is connected to AND gates 
331 and 332, and generates a “1” when all 32 bits 31-0 are 
“O. 

0179. During multiple arithmetic logic unit operations 
multiple flags register 211 may store either carry-outs or the 
Zero comparison, depending on the instruction. These stored 
resultants control masks to the C-port during later opera 
tions. Table 4 shows the source for the status bits stored. In 
the case in which multiple flags register 211 stores the 
carry-out signal(s), the “Asize’ field of status register 210 
determines the identity and number of carry-out signals 
stored. If the “Asize’ field specifies word operations, then 
multiple flags register 211 stores a single bit equal to the 
carry-out signal of bit 31. If the “Asize’ field specifies 
half-word operations, then multiple flags register 211 stores 
two bits equal to the carry-out signals of bits 31 and 15, 
respectfully. If the “Asize’ field specifies byte operations, 
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then multiple flags register 211 stores four bits equal to the 
carry-out signals of bits 31, 23, 15 and 7, respectively. The 
“Asize’ field similarly controls the number and identity of 
Zero resultants stored in multiple flags register 211 when 
storage of Zero resultants is selected. If the “Asize’ field 
specifies word operations, then multiple flags register 211 
stores a single bit equal to output of AND gate 341 indicat 
ing if bits 31-0 are “0”. If the “Asize field specifies 
half-word operations, then multiple flags register 211 stores 
two bits equal to the outputs of AND gates 331 and 332, 
respectfully. If the “Asize’ field specifies byte operations, 
then multiple flags register 211 stores four bits equal to the 
outputs of 8 bit Zero detect circuits 321, 322, 323 and 324, 
respectively. 
0180. It is technically feasible and within the scope of 
this invention to allow further multiple operations of arith 
metic logic unit 230 such as: eight sections of 4 bit opera 
tions; sixteen sections 2 bit operations; and thirty-two sec 
tions single bit operations. Note that both the “Msize' and 
the “Asize’ fields of status register 210 include coding to 
Support Such additional multiple operation types. Those 
skilled in the art can easily modify and extend the circuits 
illustrated in FIG. 7 using additional multiplexers and AND 
gates. These latter feasible options are not Supported in the 
preferred embodiment due to the added complexity in con 
struction of arithmetic logic unit 230. Note also that this 
technique can be extended to a data processing apparatus 
employing 64 bit data and that the same teachings enable 
Such an extension. 

0181 Data registers 200, designated data registers D7-D0 
are connected to local port data bus Lbus 103, global port 
source data bus GSrc 105 and global port destination data 
bus Gdst 107. Arrows within the rectangle representing data 
registers 200 indicate the directions of data access. A left 
pointing arrow indicates data recalled from data registers 
200. A right pointing arrow indicates data written into data 
registers 200. Local port data bus Lbus 103 is bidirectionally 
coupled to data registers 200 as a data source or data 
destination. Global port destination data bus Gdst 107 is 
connected to data registers 200 as a data source for data 
written into data registers 200. Global port source data bus 
Gsrc 107 is connected to data registers 200 as a data 
destination for data recalled from data registers 200 in both 
a normal data register mode and in a rotation register feature 
described below. Status register 210 and multiple flags 
register 211 may be read from via global port source data bus 
Gsrc 106 and written into via global port destination data bus 
Gdst 107. Data registers 200 supply data to multiplier first 
input bus 201, multiplier second input bus 202, arithmetic 
logic unit first input bus 205 and arithmetic logic unit second 
input bus 206. Data registers 200 are connected to receive 
input data from multiplier destination bus 203 and arithmetic 
logic unit destination bus 204. 
0182 Data registers 200, designated registers D7-D0, are 
connected to form a 256 bit rotate register as illustrated in 
FIG.8. This rotate register is collectively designated rotation 
(ROT) register ROT 208. This forms a 256 bit register 
comprising eight 32 bit rotation registers ROTO, ROT1, .. 
. ROT7. FIG. 8 illustrates in part the definitions of the 
rotation registers ROT0, ROT1, ... ROT7. These rotation 
registers are defined sideways with respect to data registers 
D7-D0. The rotation register 208 may be rotated by a 
non-arithmetic logic unit instruction DROT, as described 
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below. During this rotation the least significant bit of data 
register D7 rotates into the most significant bit of data 
register D6, etc. The least significant bit of data register D0 
is connected back to the most significant bit of data register 
D7. ROT register 208 may be read in four 8 bit bytes at a 
time. The four 8 bit bytes are respective octets of bits having 
the same bit number in each of data registers 200 as shown 
below in Table 5 and illustrated in FIG. 8. 

TABLE 5 

Rotation Octet of bits 
Register from each 

bits D7-DO Bit 

31-24 24 
23-16 16 
15-8 8 
7-O O 

When a DROT instruction is executed the 256 bit rotation 
register 208 is rotated right one bit place. The least signifi 
cant bit 0 of each byte A, B, C, D of each register such as 
D7 is mapped as shown to a particular bit number of the 
ROT register output onto the global port source data bus 
Gsrc 105. ROT register 208 is read only in the preferred 
embodiment, but can be writable in other embodiments. 

0183 ROT register 208 is useful in image rotations, 
orthogonal transforms and mirror transforms. Performing 32 
bit stores to memory from the rotation register 208 in 
parallel with eight DROT instructions rotates four 8 by 8 bit 
patches of data clockwise ninety degrees. The rotated data is 
stored in the target memory locations. Various combinations 
of register loading, memory address storing, and data size 
alteration, can enable a variety of clockwise and counter 
clockwise rotations of 8 by 8 bit patches to be performed. 
Rotation of larger areas can then be performed by moving 
whole bytes. This remarkable orthogonal structure that pro 
vides register file access to registers D7-D0 in one mode, 
and rotation register access in the DROT operation, is only 
slightly more complex than a register file alone. 

0184 The data register D0 has a dual function. It may be 
used as a normal data register in the same manner as the 
other data registers D7-D1. Data register D0 may also define 
certain special functions when executing some instructions. 
Some of the bits of the most significant half-word of data 
register D0 specifies the operation of all types of extended 
arithmetic logic unit operations. Some of the bits of the least 
significant half-word of data register D0 specifies multiplier 
options during a multiple multiply operation. The 5 least 
significant bits of data register D0 specify a default barrel 
rotate amount used by certain instruction classes. FIG. 9 
illustrates the contents of data register D0 when specifying 
data unit 110 operation. 

0185. The “FMOD field (bits 31-28) of data register D0 
allow modification of the basic operation of arithmetic logic 
unit 230 when executing an instruction calling for an 
extended arithmetic logic unit (EALU) operation. Table 6 
illustrates these modifier options. Note, as indicated in Table 
6, certain instruction word bits in Some instruction formats 
are decoded as function modifiers in the same fashion. These 
will be further discussed below. 
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TABLE 6 

Function 
Modifier 
Code Modification Performed 

0 0 () () normal operation 
0 0 O cin 
0 0 1 0 % if mask generation instruction 

LMO if not mask generation instruction 
O O 1 (% and cin) if mask generation instruction 

RMO if not mask generation instruction 
0 1 0 () A-port=0 
O 1 O A-port=0 and cin 
0 1 1 0 (A-port=0 and %) if mask generation instruction 

LMBC if not mask generation instruction 
O 1 1 (A-port-O and % and cin) if mask generation instruction 

RMBC if not mask generation instruction 
1 0 () () Multiple arithmetic logic unit operations, 

carry-Out(s) -----> multiple flags register 
1 O O Multiple arithmetic logic unit operations, 

Zero result(s) ------ multiple flags register 
1 0 1 0 Multiple arithmetic logic unit operations, 

carry-Out(s) - - - - - multiple flags register, 
rotate by "Asize" field of status register 

1 O 1 Multiple arithmetic logic unit operations, 
zero result(s) ------ multiple flags register, 
rotate by "Asize" field of status register 

1 1 0 () Multiple arithmetic logic unit operations, 
carry-Out(s) - - - - - multiple flags register, 
clear multiple flags register 

1 1 0 1 Multiple arithmetic logic unit operations, 
Zero result(s) ------ multiple flags register, 
clear multiple flags register 

1 1 1 0 Reserved 
1 1 1 1 Reserved 

Instruction word bit Data Register D0 bit 

52 - 28 
54 - 29 
56 - 30 
58 - 31 

The modified operations listed in Table 6 are explained 
below. If the “FMOD' field is "0000, the normal, unmodi 
fied operation results. The modification “cin' causes the 
carry-in to bit 0 of arithmetic logic unit 230 to be the “C” bit 
of status register 210. This allows add with carry, subtract 
with borrow and negate with borrow operations. The modi 
fication “%!” works with mask generation. When the “%!” 
modification is active mask generator 239 effectively gen 
erates all “1s' for a zero rotate amount rather than all "0’s”. 
This function can be implemented by changing the mask 
generated by mask generator 239 or by modifying the 
function of arithmetic logic unit 230 so that mask of all “0’s” 
supplied to the C-port operates as if all “1s” were supplied. 
This modification is useful in some rotate operations. The 
modifications “LMO, “RMO, “LMBC and “RMBC 
designate controls of the LMO/RMO/LMBC/RMBC circuit 
237. The modification “LMO’ finds the left most “1” of the 
second arithmetic input. The modification “RMO' finds the 
right most “1”. The modification “LMBC finds the left 
most bit that differs from the sign bit (bit 31). The “RMBC 
modification finds the right most bit that differs from the first 
bit (bit 0). Note that these modifications are only relevant if 
the C-port of arithmetic logic unit 230 does not receive a 
mask from mask generator 239. The modification “A-port= 
O' indicates that the input to the A-port of arithmetic logic 
unit 230 is effectively zeroed. This may take place via 
multiplexer AmuX 232 providing a Zero output, or the 
operation of arithmetic logic unit 230 may be altered in a 
manner having the same effect. An "A-port=0” modification 
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is used in certain negation, absolute value and shift right 
operations. A "multiple arithmetic logic unit operation” 
modification indicates that one or more of the carry paths of 
arithmetic logic unit 230 are severed, forming in effect one 
or more independent arithmetic logic units operating in 
parallel. The “Asize’ field of status register 210 controls the 
number of Such multiple arithmetic logic unit sections. The 
multiple flags register 211 stores a number of status bits 
equal to the number of sections of the multiple arithmetic 
logic unit operations. In the “carry-out(s)-->multiple flags' 
modification, the carry-out bit or bits are stored in multiple 
flags register 211. In the “Zero result(s)-->multiple flags' 
modification, an indication of the Zero resultant for the 
corresponding arithmetic logic unit section is stored in 
multiple flags register 211. This process is described above 
together with the description of multiple flags register 211. 
During this storing operation, bits within multiple flags 
register 211 may be rotated in response to the "rotate' 
modification or cleared in response to the “clear” modifica 
tion. These options are discussed above together with the 
description of multiple flags register 211. 
0186 The “A” bit (bit 27) of data register D0 controls 
whether arithmetic logic unit 230 performs an arithmetic or 
Boolean logic operation during an extended arithmetic logic 
unit operation. This bit is called the arithmetic enable bit. If 
the “A” bit is “1, then an arithmetic operation is performed. 
If the “A” bit is “0”, then a logic operation is performed. If 
the “A” bit is “0”, then the carry-in from bit 0 carry-in 
generator 246 into bit 0 of the arithmetic logic unit 230 is 
generally 'O'. As will be further explained below certain 
extended arithmetic logic unit operations may have a carry 
in bit of “0” even when the “A” bit is “0” indicating a logic 
operation. 

0187. The “EALU” field (bits 19-26) of data register D0 
defines an extended arithmetic logic unit operation. The 
eight bits of the “EALU field specify the arithmetic logic 
unit function control bits used in all types of extended 
arithmetic logic unit operations. These bits become the 
control signals to arithmetic logic unit 230. They may be 
passed to arithmetic logic unit 230 directly, or modified 
according to the “FMOD' field. In some instructions the bits 
of the “EALU” field are inverted, leading to an “EALUF or 
extended arithmetic logic unit false operation. In this case 
the eight control bits supplied to arithmetic logic unit 230 are 
inverted. 

0188 The “C” bit (bit 18) of data register D0 designates 
the carry-in to bit 0 of arithmetic logic unit 230 during 
extended arithmetic logic unit operations. The carry-in value 
into bit 0 of the arithmetic logic unit during extended 
arithmetic logic unit operations is given by this “C” bit. This 
allows the carry-in value to be specified directly, rather than 
by a formula as for non-EALU operations. 
0189 The “1” bit (bit 17) of data register D0 is desig 
nated the invert carry-in bit. The “1” bit, together with the 
“C” bit and the “S” bit (defined below), determines whether 
or not to invert the carry-in into bit 0 of arithmetic logic unit 
230 when the function code of an arithmetic logic unit 
operation are inverted. This will be further detailed below. 
0190. The “S” bit (bit 16) of data register D0 indicates 
selection of sign extend. The “S” bit is used when executing 
extended arithmetic logic unit operations (“A” bit=1). If the 
“S” bit is “1”, then arithmetic logic unit control signals 
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F3-F0 (produced from bits 22-19) should be inverted if the 
sign bit (bit 31) of the data first arithmetic logic unit input 
bus 206 is “0”, and not inverted if this sign bit is “1”. The 
effect of conditionally inverting arithmetic logic unit control 
signals F3-F0 will be explained below. Such an inversion is 
useful to sign extend a rotated input in certain arithmetic 
operations. If the extended arithmetic logic unit operation is 
Boolean (“A” bit=0), then the “S” bit is ignored and the 
arithmetic logic unit control signals F3-F0 are unchanged. 

0191 Table 7 illustrates the interaction of the “C”, “I” 
and “S” bits of data register D0. Note that an “X” entry for 
either the “I” bit or the first input sign indicates that bit does 
not control the outcome, i.e. a "don't care” condition. 

TABLE 7 

S I First Input Sign Invert C2 Invert F3-FO 

O X X O O 
1 O O O O 
1 O 1 O yes 
1 1 O O O 
1 1 1 yes yes 

If the “S” bit equals “1” and the sign bit of the first input 
destined for the B-port of arithmetic logic unit 230 equals 
“0”, then the value of the carry-in to bit 0 of arithmetic logic 
unit 230 set by the “C” bit value can optionally be inverted 
according to the value of the “1” bit. This allows the carry-in 
to be optionally inverted or not, based on the sign of the 
input. Note also that arithmetic logic unit control signals 
F3-F0 are optionally inverted based on the sign of the input, 
if the “S” bit is '1'. This selection of inversion of arithmetic 
logic unit control signals F3-F0 may be overridden by the 
“FMOD field. If the “FMOD field specifies “Carry-in 
=Status Register's Carry bit, then the carry-in equals the 
“C” bit of status register 210 whatever the value of the “S” 
and “I” bits. Note also that the carry-in for bit 0 of arithmetic 
logic unit 230 may be set to “1” via the “C” bit for extended 
arithmetic logic unit operations even if the “A” bit is “O'” 
indicating a Boolean operation. 

0.192 The “N' bit (bit 15) of data register D0 is used 
when executing a split or multiple section arithmetic logic 
unit operation. This “N' bit is called the non-multiple mask 
bit. For some extended arithmetic logic unit operations that 
specify multiple operation via the “FMOD field, the 
instruction specifies a mask to be passed to the C-port of 
arithmetic logic unit 230 via mask generator 239. This “N” 
bit determines whether or not the mask is split into the same 
number of sections as arithmetic logic unit 230. Recall that 
the number of such multiple sections is set by the “Asize 
field of status register 210. If the “N' bit is “0”, then the 
mask is split into multiple masks. If the “N' bit is “1”, then 
mask generator 239 produces a single 32 bit mask. 

0193 The “E” bit (bit 14) designates an explicit multiple 
carry-in. This bit permits the carry-in to be specified at run 
time by the input to the C-port of arithmetic logic unit 230. 
If both the “A bit and the “E” bit are “1” and the “FMOD’ 
field does not designate the cin function, then the effects of 
the “S”, “I” and “C” bits are annulled. The carry input to 
each section during multiple arithmetic is taken as the 
exclusive OR of the least significant bit of the corresponding 
section input to the C-port and the function signal F0. If 
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multiple arithmetic is not selected the single carry-in to bit 
0 of arithmetic logic unit 230 is the exclusive OR of the least 
significant bit (bit 0) the input to the C-port and the function 
signal F0. This is particularly useful for performing multiple 
arithmetic in which differing functions are performed in 
different sections. One extended arithmetic logic unit opera 
tion corresponds to (A, B)&C (AB)&C. Using a mask for 
the C-port input, a section with all “0’s” produces addition 
with the proper carry-in of “0” and a section of all “1s' 
produces subtraction with the proper carry-in of “1”. 

0194 The “DMS field (bits 12-8) of data register D0 
defines the shift following the multiplier. This shift takes 
place in product left shifter 224 prior to saving the result or 
passing the result to rounding logic. During this left shift the 
most significant bits shifted out are discarded and Zeroes are 
shifted into the least significant bits. The “DMS field is 
effective during any multiply/extended arithmetic logic unit 
operation. In the preferred embodiment data register D0 bits 
9-8 select 0, 1, 2 or 3 place left shifting. Table 8 illustrates 
the decoding. 

TABLE 8 

DMS field 

Left shift amount 

The “DMS field includes 5 bits that can designate left shift 
amounts from 0 to 31 places. In the preferred embodiment 
product left shifter 224 is limited to shifts from 0 to 3 places 
for reasons of size and complexity. Thus bits 12-10 of data 
register D0 are ignored in setting the left shift amount. 
However, it is feasible to provide a left shift amount within 
the full range from 0 to 31 places from the “DMS field if 
desired. 

0.195 The “M” bit (bit 7) of data register D0 indicates a 
multiple multiply operation. Multiplier 220 can multiply two 
16 bit numbers to generate a 32 bit result or of simulta 
neously multiplying two pair of 8 bit numbers to generate a 
pair of 16 bit resultants. This “M” bit selects either a single 
16 by 16 multiply if “M”="0, or two 8 by 8 multiplies if 
“M'='1'. This operation is similar to multiple arithmetic 
logic unit operations and will be further described below. 
0196) The “R” bit (bit 6) of data register D0 specifies 
whether a rounding operation takes place on the resultant 
from multiplier 220. If the “R” bit is “1”, the a rounding 
operation, explained below together with the operation of 
multiplier 220, takes place. If the “R” bit is “0”, then no 
rounding takes place and the 32 bit resultant form multiplier 
220 is written into the destination register. Note that use of 
a predetermined bit in data register D0 is merely a preferred 
embodiment for triggering this mode. It is equally feasible 
to enable the rounding mode via a predetermined instruction 
word bit. 

0197) The “DBR' field (bits 4-0) of data register D0 
specifies a default barrel rotate amount used barrel rotator 
235 during certain instructions. The “DBR' field specifies 
the number of bit positions that barrel rotator 235 rotates 
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left. These 5 bits can specify a left rotate of 0 to 31 places. 
The value of the “DBR' field may also be supplied to mask 
generator 239 via multiplexer Mmux 234. Mask generator 
239 forms a mask supplied to the C-port of arithmetic logic 
unit 230. The operation of mask generator 239 will be 
discussed below. 

0198 Multiplier 220 is a hardware single cycle multi 
plier. As described above, multiplier 220 operates to multi 
ply a pair of 16 bit numbers to obtain a 32 bit resultant or to 
multiply two pairs of 8 bit numbers to obtain two 16 bit 
resultants in the same 32 bit data word. 

0199 FIGS. 10a, 10b, 10c and 10d illustrate the input and 
output data formats for multiplying a pair of 16 bit numbers. 
FIG. 10a shows the format of a signed input. Bit 15 indicates 
the sign of this input, a “0” for positive and a “1” for 
negative. Bits 0 to 14 are the magnitude of the input. Bits 16 
to 31 of the input are ignored by the multiply operation and 
are shown as a don't care 'X'. FIG. 10b illustrates the 
format of the resultant of a signed by signed multiply. Bits 
31 and 30 are usually the same and indicate the sign of the 
resultant. If the multiplication was of Hex “8000” by Hex 
“8000, then bits 31 and 30 become “01. FIG. 10c illus 
trates the format of an unsigned input. The magnitude is 
represented by bits 0 to 15, and bits 16 to 31 are don't care 
“X”. FIG. 10d shows the format of the resultant of an 
unsigned by unsigned multiply. All 32 bits represent the 
resultant. 

0200 FIG. 11 illustrates the input and output data formats 
for multiplying two pair of 8 bit numbers. In each of the two 
8 bit by 8 bit multiplies the two first inputs on multiplier first 
input bus 201 are always unsigned. The second inputs on 
multiplier second input bus 202 may be both signed, result 
ing in two signed products, or both unsigned, resulting in 
two unsigned products. FIG. 11a illustrates the format of a 
pair of signed inputs. The first signed input occupies bits 0 
to 7. Bit 7 is the sign bit. The second signed input occupies 
bits 8 to 15, bit 15 being the sign bit. FIG.11b illustrates the 
format of a pair of unsigned inputs. Bits 0 to 7 form the first 
unsigned input and bits 8 to 16 form the second unsigned 
input. FIG. 11c illustrates the format of a pair of signed 
resultants. As noted above, a dual unsigned by signed 
multiply operation produces such a pair of signed resultants. 
The first signed resultant occupies bits 0 to 15 with bit 15 
being the sign bit. The second signed resultant occupies bits 
16 to 31 with bit 31 being the sign bit. FIG. 11d illustrates 
the format of a pair of unsigned resultants. The first unsigned 
resultant occupies bits 1 to 15 and the second unsigned 
resultant occupies bits 16 to 31. 
0201 Multiplier first input bus 201 is a 32bit bus sourced 
from a data register within data registers 200 selected by the 
instruction word. The 16 least significant bits of multiplier 
first input bus 201 supplies a first 16 bit input to multiplier 
220. The 16 most significant bits of multiplier first input bus 
201 supplies the 16 least significant bits of a first input to a 
32 bit multiplexer Rimux 221. This data routing is the same 
for both the 16 bit by 16 bit multiply and the dual 8 bit by 
8 bit multiply. The 5 least significant bits multiplier first 
input bus 201 Supply a first input to a multiplexer Smux 231. 
0202) Multiplier second input bus 202 is a 32 bit bus 
sourced from one of the data registers 200 as selected by the 
instruction word or from a 32 bit, 5 bit or 1 bit immediate 
value imbedded in the instruction word. A multiplexer Imux 



US 2008/0077771 A1 

222 Supplies such an immediate multiplier second input bus 
202 via a buffer 223. The instruction word controls multi 
plexer Imux 222 to supply either 32 bits, 5 bits or 1 bit from 
an immediate field of the instruction word to multiplier 
second input bus 202 when executing an immediate instruc 
tion. The short immediate fields are Zero extended in mul 
tiplexer ImuX 222 upon Supply to multiplier second input 
bus 202. The 16 least significant bits of multiplier second 
input bus 202 supplies a second 16 bit input to multiplier 
220. This data routing is the same for both the 16 bit by 16 
bit multiply and the dual 8 bit by 8 bit multiply. Multiplier 
second input bus 202 further supplies one input to multi 
plexer Amux 232 and one input to multiplexer CmuX 233. 
The 5 least significant bits of multiplier second input bus 202 
Supply one input to multiplexer MmuX 234 and a second 
input to multiplexer Smux 231. 
0203 The output of multiplier 220 supplies the input of 
product left shifter 224. Product left shifter 224 can provide 
a controllable left shift of 3, 2, 1 or 0 bits. The output of 
multiply shift multiplexer MSmux 225 controls the amount 
of left shift of product left shifter 224. Multiply shift 
multiplexer MSmux 225 selects either bits 9-8 from the 
“DMS field of data register D0 or all zeroes depending on 
the instruction word. In the preferred embodiment, multiply 
shift multiplexer MSmux 225 selects the “0” input for the 
instructions MPYx|ADD and MPYx|SUB. These instruc 
tions combine signed or unsigned multiplication with addi 
tion or subtractions using arithmetic logical unit 230. In the 
preferred embodiment, multiply shift multiplexer MSmux 
225 selects bits 9-8 of data register D0 for the instructions 
MPYXEALUX. These instructions combine signed or 
unsigned multiplication with one of two types of extended 
arithmetic logic unit instructions using arithmetic logic unit 
230. The operation of data unit 110 when executing these 
instructions will be further described below. Product left 
shifter 224 discards the most significant bits shifted out and 
fills the least significant bits shifted in with Zeros. Product 
left shifter 224 supplies a 32 bit output connected to a second 
input of multiplexer Rimux 221. 

0204 FIG. 12 illustrates internal circuits of multiplier 
220 in block diagram form. The following description of 
multiplier 220 points out the differences in organization 
during 16 bit by 16 bit multiplies from that during dual 8 bit 
by 8 bit multiplies. Multiplier first input bus 201 supplies a 
first data input to multiplier 220 and multiplier second input 
bus 202 supplies a second data input. Multiplier first input 
bus 201 supplies 19 bit derived value circuit 350. Nineteen 
bit derived value circuit 350 forms a 19 bit quantity from the 
16 bit input. Nineteen bit derived value circuit 350 includes 
a control input indicating whether multiplier 220 executes a 
single 16 bit by 16 bit multiplication or dual 8 bit by 8 bit 
multiplication. Booth quad re-coder 351 receives the 19 bit 
value from 19 bit derived value circuit 350 and forms control 
signals for six partial product generators 353,354, 356,363, 
364 and 366 (PPG5-PPG0). Booth quad re-coder 351 thus 
controls the core of multiplier 220 according to the first input 
or inputs on multiplier first input bus 201 for generating the 
desired product or products. 
0205 FIGS. 13 and 14 schematically illustrate the opera 
tion of 19 bit derived value circuit 350 and Booth quad 
re-coder 351. For all modes of operation, the 16 most 
significant bits of multiplier first input bus 201 are ignored 
by multiplier 220. FIG. 13 illustrates the 19 bit derived value 

Mar. 27, 2008 

for 16 bit by 16 bit multiplications. The 16 bits of the first 
input are left shifted by one place and sign extended by two 
places. In the unsigned mode, the sign is “0”. Thus bits 
18-17 of the 19 bit derived value are the sign, bits 16-1 
correspond to the 16 bit input, and bit 0 is always “0”. The 
resulting 19 bits are grouped into six overlapping four-bit 
units to form the Booth quads. Bits 3-0 form the first Booth 
quad controlling partial product generator PPG0353, bits 6-3 
control partial product generator PPG1354, bits 9-6 control 
partial product generator PPG2356, bits 12-9 control partial 
product generator PPG3363, bits 15-12 control partial prod 
uct generator PPG 4364, and bits 18-15 control partial prod 
uct generator PPG5366. FIG. 14 illustrates the 19 bit derived 
value for dual 8 bit by 8 bit multiplications. The two inputs 
are pulled apart. The first input is left shifted by one place, 
the second input is left shifted by two places. Bits 0 and 9 
of the 19 bit derived value are set to “0”, bit 18 to the sign. 
The Booth quads are generated in the same manner as in 16 
bit by 16 bit multiplication. Note that placing a “0” in bit 9 
of the derived value makes the first three Booth quads 
independent of the second 8 bit input and the last three 
Booth quads independent of the first 8 bit input. This enables 
separation of the two products at the multiplier output. 

0206. The core of multiplier 220 includes: six partial 
product generators 353, 354,356, 363, 364 and 366, which 
are designated PPG0 to PPG5, respectively; five adders 355, 
365,357, 267 and 368, designated adders A, B, C, D and E: 
and an output multiplexer 369. Partial product generators 
353, 354, 356, 363, 364 and 366 are identical. Each partial 
product generator 353, 354, 356, 363, 364 and 366 forms a 
partial product based upon a corresponding Booth quad. 
These partial products are added to form the final product by 
adders 355, 365,357, 367 and 368. 

0207. The operation of partial product generator 353, 
354, 356, 363, 364 and 366 is detailed in Tables 9 and 10. 
Partial product generators 353, 354, 356,363, 364 and 366 
multiply the input data derived from multiplier second input 
buS 202 by integer amounts ranging from -4 to +4. The 
multiply amounts for the partial product generators are 
based upon the value of the corresponding Booth quad. This 
relationship is shown in Table 9 below. 

TABLE 9 

Quad Multiply Amount 

OOOO O 
OOO1 1 
OO10 1 
OO11 2 
O1OO 2 
O101 3 
O110 3 
O111 4 
1OOO -4 
1001 -3 
1010 -3 
1011 -2 
1100 -2 
1101 -1 
1110 -1 
1111 -O 

0208 Table 10 lists the action taken by the partial product 
generator based upon the desired multiply amount. 
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TABLE 10 

Multiply Partial Product 
Amount Generator Action 

O select all zeros 
1 pass input straight through 
2 shift left one place 
3 select output of 3x generator 

+4 shift left two places 

0209. In most cases, the partial product is easily derived. 
An all “0” output is selected for a multiply amount of 0. A 
multiply amount of 1 results in passing the input unchanged. 
Multiply amounts of 2 and 4 are done simply by shifting. A 
dedicated piece of hardware generates the multiple of 3. This 
hardware essentially forms the addition of the input value 
and the input left shifted one place. 
0210 Each partial product generator 353, 354, 356, 363, 
364 and 366 receives an input value based upon the data 
received on multiply second input bus 202. The data on 
multiply second input bus 202 is 16 bits wide. Each partial 
product generator 353,354,356,363, 364 and 366 needs to 
be 18 bits to hold the 16 bit number shifted two places left, 
as in the multiply by 4 case. The output of each partial 
product generator 353,354,356,363,364 and 366 is shifted 
three places left from that of the preceding partial product 
generator 353,354,356,363,364 and 366. Thus each partial 
product generator output is weighted by 8 from its prede 
cessor. This is shown in FIG. 12, where bits 2-0 of each 
partial product generator 353,354,356,363, 364 and 366 is 
handled separately. Note that adders A, B, C, D and E are 
always one bit wider than their input data to hold any 
overflow. 

0211. The adders 355,357, 365, 367 and 368 used in the 
preferred embodiment employ redundant-sign-digit nota 
tion. In the redundant-sign-digit notation, a magnitude bit 
and a sign bit represents each bit of the number. This known 
format is useful in the speeding the addition operation in a 
manner not important to this invention. However this inven 
tion is independent of the adder type used, so for simplicity 
this will not be further discussed. During multiply opera 
tions data from the 16 least significant bits on multiply 
second input bus 202 is fed into each of the six partial 
product generator 353, 354, 356, 363, 364 and 366, and 
multiplied by the amount determined by the corresponding 
Booth quad. 
0212 Second input multiplexer 352 determines the data 
supplied to the six partial produce generators 353, 354, 356, 
363, 364 and 366. This data comes from the 16 least 
significant bits on multiply second input bus 202. The data 
supplied to partial products generators 353, 354, 356, 363, 
364 and 366 differ depending upon whether multiplier 220 
executes a single 16 bit by 16 bit multiplication or dual 8 bit 
by 8 bit multiplication. FIG. 15 illustrates the second input 
data supplied to the six partial produce generators 353, 354, 
356, 363, 364 and 366 during a 16 bit by 16 bit multiply. 
FIG. 15a illustrates the case of unsigned multiplication. The 
16 bit input is zero extended to 18 bits. FIG. 15b illustrates 
the case of signed multiplication. The data is sign extended 
to 18 bits by duplicating the sign bit (bit 15). During 16 bit 
by 16 bit multiplication and of the six partial produce 
generators 353, 354, 356, 363, 364 and 366 receives the 
same second input. 
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0213) The six partial produce generators 353, 354, 356, 
363, 364 and 366 do not receive the same second input 
during dual 8 bit by 8 bit multiplication. Partial product 
generators 353, 345 and 356 receive one input and partial 
product generators 363, 364 and 366 receive another. This 
enables separation of the two inputs when operating in 
multiple multiply mode. Note that in the multiple multiply 
mode there is no overlap of second input data Supplied to the 
first three partial product generators 353, 345 and 356 and 
the second three partial product generators 363, 364 and 
366. FIG. 16 illustrates the second input data supplied to the 
six partial produce generators 353, 354, 356, 363, 364 and 
366 during a dual 8 bit by 8 bit multiply. FIG. 16a illustrates 
the second input data Supplied to partial product generators 
353,354 and 356 for an unsigned input. FIG. 16a illustrates 
the input Zero extended to 18 bits. FIG. 16b illustrates the 
second input data Supplied to partial product generators 353, 
354 and 356 for a signed input, which is sign extended to 18 
bits. FIG. 16c illustrates the second input data supplied to 
partial product generators 363, 364 and 366 for an unsigned 
input. FIG. 16c illustrates the input at bits 15-8 with the 
other places of the 18 bits set to “0”. FIG.16d illustrates the 
second input data Supplied to partial product generators 363, 
364 and 366 for a signed input. The 7 bit magnitude is at bits 
14-8, bits 17-15 hold the sign and bits 7-0 are set to “0”. 
0214) Note that it would be possible to have added the 
partial products of partial product generators 353, 354, 356, 
363, 364 and 366 in series. The present embodiment illus 
trated in FIG. 12 has two advantages over such a series of 
additions. This embodiment offers significant speed advan 
tages by performing additions in parallel. This embodiment 
also lends itself well to performing dual 8 bit by 8 bit 
multiplies. These can be very useful in speeding data 
manipulation and data transfers where an 8 bit by 8 bit 
product provides the data resolution needed. 
0215. A further multiplexer switches between the results 
of a 16 bit by 16 bit multiply and dual 8 bit by 8 bit 
multiplies. Output multiplexer 369 is controlled by a signal 
indicating whether multiplier 220 executes a single 16 bit by 
16 bit multiplication or dual 8 bit by 8 bit multiplication. 
FIG. 17 shows the derivation of each bit of the resultant. 
FIG. 17a illustrates the derivation of each bit for a 16 bit by 
16 bit multiply. Bits 31-9 of the resultant come from bits 
22-0 of adder E 368, respectively. Bits 8-6 come from bits 
2-0 of adder C357, respectively. Bits 5-3 come from bits 2-0 
of adder A355, respectively. Bits 2-0 come from bits 2-0 of 
partial product generator 353. FIG. 17b illustrates the deri 
vation of each bit for the case of dual 8 bit by 8 bit 
multiplication. Bits 31-16 of the resultant in this case come 
from bits 15-0 of adder D 367, respectively. Bits 15-6 of the 
resultant come from bits 9-0 of adder C 357 respectively. As 
in the case illustrated in FIG. 17a, bits 5-3 come from bits 
2-0 of adder A355 and bits 2-0 come from bits 2-0 of partial 
product generator 353. 

0216. It should be noted that in the actual implementation 
of output multiplexer 369 requires duplicated data paths to 
handle both the magnitude and sign required by the redun 
dant-sign-digit notation. This duplication has not been 
shown or described in detail. The redundant-sign-digit nota 
tion is not required to practice this invention, and those 
skilled in the art would easily realize how to construct output 
multiplexer 369 to achieve the desired result in redundant 
sign-digit notation. Note also when using the redundant 
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sign-digit notation, the resultant generally needs to be con 
verted into standard binary notation before use by other parts 
of data unit 110. This conversion is known in the art and will 
not be further described. 

0217. It can be seen from the above description that with 
the addition of a small amount of logic the same basic 
hardware can perform 16 bit by 16 multiplication and dual 
8 bit by 8 bit multiplications. The additional hardware 
consists of multiplexers at the two inputs to the multiplier 
core, a modification to the Booth re-coder logic and a 
multiplexer at the output of the multiplier. This additional 
hardware permits much greater data through put when using 
dual 8 bit by 8 bit multiplication. 
0218. Adder 226 has three inputs. A first input is set to all 
Zeros. A second input receives the 16 most significant bits 
(bits 31-16) of the left shifted resultant of multiplier 220. A 
carry-in input receives the output of bit 15 of this left shifter 
resultant of multiplier 220. Multiplexer Rmux 221 selects 
either the entire 32 bit resultant of multiplier 220 as shifted 
by product left shifter 224 to supply to multiply destination 
bus 203 via multiplexer Bmux 227 or the sum from adder 
226 forms the 16 most significant bits and the 16 most 
significant bits of multiplier first input bus 201 forms the 16 
least significant bits. As noted above, in the preferred 
embodiment the state of the “R” bit (bit 6) of data register 
D0 controls this selection at multiplexer Rimux 221. If this 
“R” bit is “0”, then multiplexer Rmux 221 selects the shifted 
32 bit resultant. If this “R” bit is “1”, then multiplexer Rmux 
221 selects the 16 rounded bits and the 16 most significant 
bits of multiplier first input bus 201. Note that it is equally 
feasible to control multiplexer Rimux 221 via an instruction 
word bit. 

0219. Adder 226 enables a multiply and round function 
on a 32 bit data word including a pair of packed 16 bit half 
words. Suppose that a first of the data registers 200 stores a 
pair of packed half words (a::b), a second data register stores 
a first half word coefficient (X::c1) and a third data register 
stores a second half word coefficient (X::c2), where X may 
be any data. The desired resultant is a pair of packed half 
words (ac2:b*c.1) with a c2 and b*c1 each being the 
rounded most significant bits of the product. The desired 
resultant may be formed in two instructions using adder 226 
to perform the rounding. The first instruction is: 

indst = mSrc.1: nSrC2 

(b: c1 :: a) = (a :: b): (X :: C1) 

As previously described multiplier first input bus 201 Sup 
plies its 16 least significant bits, corresponding to b, to the 
first input of multiplier 220. At the same time multiply 
second input bus 202 Supplies its 16 least significant bits, 
corresponding to c1, to the second input of multiplier 220. 
This 16 by 16 bit multiply produces a 32 bit product. The 16 
most significant bits of the 32 bit resultant form one input to 
adder 226 with "O' supplied to the other input of adder 226. 
If bit 15 of the 32 bit resultant is “1, then the 16 most 
significant bits of the resultant is incremented, otherwise 
these 16 most significant bits are unchanged. Thus the 16 
most significant bits of the multiply operation are rounded in 
adder 226. Note that one input to multiplexer Rimux 221 
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includes the 16 bit resultant from adder 226 as the 16 most 
significant bits and the 16 most significant bits from multi 
plier first input bus 201, which is the value a, as the least 
significant bits. Also note that the 16 most significant bits on 
multiplier second input bus 202 are discarded, therefore 
their initial state is unimportant. Multiplexer Rimux selects 
the combined output from adder 226 and multiplier first 
input bus 201 for storage in a destination register in data 
registers 200. 
0220. The packed word multiply/round operation contin 
ues with another multiply instruction. The resultant 
(b.c1::a) of the first multiply instruction is recalled via 
multiply first input bus 201. This is shown below: 

indst = mSrc.1: nSrC2 

(a : c2 :: b : c1) = (b: c1 :: a): (X :: c2) 

The multiply occurs between the 16 least significant bits on 
the multiplier first input bus 201, the value a, and the 16 least 
significant bits on the multiplier second input bus 202, the 
value c2. The 16 most significant bits of the resultant are 
rounded using adder 226. These bits become the 16 most 
significant bits of one input to multiplexer Rimux 221. The 
16 most significant bits on multiplier first input bus 201, the 
value bc1, becomes the 16 least significant bits of the input 
to multiplexer Rmux 221. The 16 most significant bits on the 
multiplier second input bus 202 are discarded. Multiplexer 
Rmux 221 then selects the desired resultant (ac2::b*c.1) for 
storage in data registers 200 via multiplexer Bmux 227 and 
multiplier destination bus 203. Note that this process could 
also be performed on data scaled via product left shifter 224, 
with adder 226 always rounding the least significant bit 
retained. Also note that the factors c 1 and c2 may be the 
same or different. 

0221) This packed word multiply/round operation is 
advantageous because the packed 16 bit numbers can reside 
in a single register. In addition fewer memory loads and 
stores are needed to transfer Such packed data than if this 
operation was not supported. Also note that no additional 
processor cycles are required in handling this packed word 
multiply/rounding operation. The previous description of the 
packed word multiply/round operation partitioned multiplier 
first input bus 201 into two equal halves. This is not 
necessary to employ the advantages of this invention. As a 
further example, it is feasible to partition multiplier first 
input bus 201 into four 8 bit sections. In this further example 
multiplier 220 forms the product of the 8 least significant 
bits of multiplier first input bus 201 and the 8 least signifi 
cant bits of multiplier second input bus 202. After optional 
Scaling in product left shifter 224 and rounding via adder 
226, the 8 most significant bits of the product form the most 
significant bits of one input to multiplexer Mmux 221. In 
this further example, the least significant 24 bits of this 
second input to multiplexer Mmux 221 come from the most 
significant 24 bits on multiplier first input bus 201. This 
further example permits four 8 bit multiplies on such a 
packed word in 4 passes through multiplier 220, with all the 
intermediate results and the final result packed into one 32 
bit data word. To further generalize, this invention partitions 
the original N bit data word into a first set of M bits and a 
second set of L bits. Following multiplication and rounding, 
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a new data word is formed including the L. most significant 
bits of the product and the first set of Mbits from the first 
input. The data order in the resultant is preferably shifted or 
rotated in some way to permit repeated multiplications using 
the same technique. As in the further example described 
above, the number of bits M need not equal the number of 
bits L. In addition, the sum of M and L need not equal the 
original number of bits N. 

0222. In the preferred embodiment the round function 
selected by the “R” (bit 6) of data register D0 is imple 
mented in a manner to increase its speed. Multiplier 220 
employs a common hardware multiplier implementation that 
employs internally a redundant-sign-digit notation. In the 
redundant-sign-digit notation each bit of the number is 
represented by a magnitude bit and a sign bit. This known 
format is useful in the internal operation of multiplier 220 in 
a manner not important to this invention. Multiplier 220 
converts the resultant from this redundant-sign-digit nota 
tion to standard binary notation before using the resultant. 
Conventional conversion operates by Subtracting the nega 
tive signed magnitude bits from the positive signed magni 
tude bits. Such a subtraction ordinarily involves a delay due 
to borrow ripple from the least significant bit to the most 
significant bit. In the packed multiply/round operation the 
desired result is the 16 most significant bits and the rounding 
depends upon bit 15, the next most significant bit. Though 
the results are the most significant bits, the borrow ripple 
from the least significant bit may affect the result. Conven 
tionally the borrow ripple must propagate from the least 
significant bit to bit 15 before being available to make the 
rounding decision. 

0223 FIG. 18 illustrates in block diagram form hardware 
for speeding this rounding determination. In FIG. 18 the 32 
bit multiply resultant from multiplier 220 is separated into a 
most significant 16 bits (bits 31-16) coded in redundant 
sign-digit form stored in register 370 and a least significant 
16 bits (bits 15-0) coded in redundant-sign-digit form stored 
in register 380. In FIG. 18 product left shifter 224 is used for 
scaling as previously described. Product left shifter 224 left 
shifts both the magnitude bit and the sign bit for each bit of 
the of redundant-sign-digit form stored in registers 370 and 
380 of multiplier 220 prior to forming the resultant. The shift 
amount comes from multiply shift multiplexer MSmux 225 
as previously described above. 
0224 Conventionally such redundant-sign-digit notation 

is converted to standard binary notation by generating 
carry/borrow control signals. Carry path control signal gen 
erator 382 forms three carry path control signals, propagate, 
kill and generate, from the magnitude and sign bits of the 
corresponding desired resultant bit. These signals are easily 
derived according to Table 11. 

TABLE 11 

Carry Path 
Magnitude Sign Indicates Control Signal 

O X Zero (0) Propagate (P) 
1 O Plus One (1) Kill (K) 

Minus One (T) Generate (G) 

Carry path control signal generator 382 Supplies these carry 
path control signals to borrow ripple unit 386. Borrow ripple 
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unit 386 uses the bit wise carry path control signals to 
control borrow ripple during the Subtraction of the nega 
tively signed bits from the positively signed bits. Note from 
Table 11 that the three signals propagate, kill and generate 
are mutually exclusive. One and only one of these signals is 
active at any particular time. A propagate signal causes any 
borrow signal from the previous less significant bit to 
propagate unchanged to the next more significant bit. A kill 
signal absorbs any borrow signal from the prior bit and 
prevents propagation to the next bit. A generate signal 
produces a borrow signal to propagate to the next bit 
whatever the received borrow signal. Borrow ripple unit 386 
propagates the borrow signal from the least significant bit to 
the most significant bit. As illustrated in FIG. 18, bits 15-0 
are converted in this manner. The only part of the result used 
is the data of bit 15 d15 and the borrow output signal of bit 
15 b15). 
0225. The circuit illustrated in FIG. 18 employs a differ 
ent technique to derive the 16 most significant bits. Note that 
except for the rounding operation that depends upon bit 15, 
only the 16 most significant bits are needed in the packed 
multiply/round operation. There are two possible resultants 
for bits 31-16 depending upon the rounding determination. 
The circuit of FIG. 18 computes both these possible result 
ants in parallel and the selects the appropriate resultant 
depending upon the data of bit 15 d15 and the borrow 
output signal of bit 15 b15). This substantially reduces 
the delay forming the rounded value. Note that using adder 
226 to form the rounded value as illustrated in FIG. 5 
introduces an additional carry ripple delay within adder 226 
when forming the Sum. 

0226. The circuit illustrated in FIG. 18 forms the mini 
mum and maximum possible rounded results simulta 
neously. If R is the simple conversion of the 16 most 
significant bits, then the rounded final result may be R-1, R 
or R+1. These are selected based upon the data of bit 15 
d15 and the borrow output signal of bit 15 b15 
according to Table 12. 

cut 

TABLE 12 

d15 bout 15 Final Result 

O O R Neither increment nor decrement 
O 1 R - 1 Decrement only 
1 O R + 1 Increment only 
1 1 R Both increment and decrement 

The circuit of FIG. 18 computes the value R-1 for the 16 
most significant bits employing carry path control signal 
generator 372 and borrow ripple unit 376. Carry path control 
signal generator 372 is the same as carry path control signal 
generator 382 and operates according to Table 11. Borrow 
ripple unit 376 is the same as borrow ripple unit 386. Borrow 
ripple unit 376 computes the value R-1 because the borrow 
in input is always supplied with a borrow value of “1”, thus 
always performing a decrement of the simple conversion 
value R. 

0227. The circuit of FIG. 18 forms the value R+1 by 
adding 2 to the value of R-1. Note that a binary number may 
be incremented by 1 by toggling all the bits up to and 
including the right most “0” bit in the original binary 
number. The circuit of FIG. 18 employs this technique to 
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determine bits 31-17. This addition takes place in two stages 
in a manner not requiring a carry borrow for the entire 16 
bits. In the first stage, mask ripple unit 374 generates a mask 
from the carry path control signals. An intermediate mask is 
formed with a “1” in any bit position in which the converted 
result is known to be “0” or known to differ from the result 
of the prior bit. Mask ripple unit 374 sets other bit positions 
to “0”. The manner of forming this intermediate mask is 
shown in Table 13. 

TABLE 13 

Final Result Intermediate 
Bitn Bitn - 1 of Bitn Mask Value 

T(G) T(G) O 1 
() (P) T(G) 1 O 
1 (K) T(G) O 1 
T(G) () (P) Different from Bitn - 1 1 
() (P) () (P) Same as Bitn - 1 O 
1 (K) () (P) Different from Bitn - 1 1 
T(G) 1 (K) 1 O 
() (P) 1 (K) O 1 
1 (K) 1 (K) 1 O 

Review of the results of Table 13 reveal that this operation 
can be performed by the function Pn XNOR Kn-1). Thus 
a simple circuit generates the intermediate mask for each bit. 
Mask ripple unit 374 ripples through the intermediate mask 
until reaching the right most “0”. Those bits including the 
right most “0” bit are set to “1”, and all more significant bits 
are set to “0”. This toggle mask and the R-1 result from 
borrow ripple unit 376 are supplied to exclusive OR unit 
378. Exclusive OR unit 378 toggles those bits from borrow 
ripple unit 376 corresponding to the mask generated by 
mask ripple unit 374. 

0228) Multiplexer 390 assembles the rounded resultant. 
This operation takes place as shown in Tables 14 and 15. 
Table 14 shows the derivation of bit 16, the least significant 
rounded bit of the desired resultant, depending upon the data 
of bit 15 d15 and the borrow output signal of bit 15 
b. 15). These results from the 16 least significant bits of 
the output of multiplier 220 are available from borrow ripple 
unit 386. 

TABLE 1.4 

Final Result 
d15 b.15 for Bit 16 

O ~ R - 116 
1 R - 116 
O R - 116 
1 ~ R - 116 

0229. The data of bit 15 d15), the borrow output signal 
of bit 15 b15 and the final result of bit 16 determine bits 
31-17 according to Table 15. 

TABLE 1.5 

Final Result Final Result 
d15 bout 15 of Bit 16 Bits 31-17 

O O O R+ 131-17 
O O 1 R - 131-17 
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TABLE 15-continued 

Final Result Final Result 
d15 bout 15 of Bit 16 Bits 31-17 

O 1 X R - 131-17 
1 O X R+ 131-17 
1 1 O R+ 131-17 
1 1 1 R - 131-17 

Thus multiplexer 390 forms the desired rounded resultant, 
which is the same as formed by adder 226. The manner of 
generation of the rounded resultant Substantially eliminates 
the carry ripple delay associated with adder 226. Note that 
FIG. 5 contemplates circuits similar to carry path control 
signal generators 372 and 382 and borrow ripple units 376 
and 386 to generate the output of multiplier 220 in normal 
coded form. Thus the circuit illustrated in FIG. 18 substitutes 
the delay of exclusive OR unit 378 and multiplexer 390 for 
the carry ripple delay of adder 226. The delay of exclusive 
OR unit 378 and multiplexer 390 is expected to be consid 
erably less than the delay of adder 226. This is in a critical 
path, because the rounding performed by adder 226 follows 
the operation of multiplier 220. Thus this reduction in delay 
enables speeding up of the entire execute pipeline stage. 
This in turn enhances the rate of operation of multi-proces 
sor integrated circuit 100. 

0230 Note that the circuit illustrated in FIG. 18 is 
employed as described above only if the “R” bit of data 
register 200 D0 selects the packed word multiply/rounding 
operation. In the event that the “R” bit of data register 200 
D0 is “0”, the packed word multiply/round operation is not 
enabled. In this event borrow ripple units 376 and 386 may 
be connected conventionally, with the signal b15 from 
borrow ripple unit 386 coupled to the borrow input b, of 
borrow ripple unit 376. Borrow ripple units 376 and 386 thus 
produce the shifted 32 bit resultant of multiplier 220 for 
selection by multiplexer Rmux 221. 
0231 Arithmetic logic unit 230 performs arithmetic and 
logic operations within data unit 110. Arithmetic logic unit 
230 advantageously includes three input ports for perform 
ing three input arithmetic and logic operations. Numerous 
buses and auxiliary hardware Supply the three inputs. 
0232. Input A bus 241 supplies data to an A-port of 
arithmetic logic unit 230. Multiplexer Amux 232 supplies 
data to input Abus 241 from either multiplier second input 
bus 202 or arithmetic logic unit first input bus 205 depending 
on the instruction. Data on multiplier second input bus 202 
may be from a specified one of data registers 200 or from an 
immediate field of the instruction via multiplexer Imux 222 
and buffer 223. Data on arithmetic logic unit first input bus 
205 may be from a specified one of data registers 200 or 
from global port source data bus Gsrc bus 105 via buffer 
106. Thus the data supplied to the A-port of arithmetic logic 
unit 230 may be from one of the data registers 200, from an 
immediate field of the instruction word or a long distance 
Source from another register of digital image/graphics pro 
cessor 71 via global source data bus Gsrc 105 and buffer 
106. 

0233. Input B bus 242 supplies data to the B-port of 
arithmetic logic unit 230. Barrel rotator 235 supplies data to 
input B bus 242. Thus barrel rotator 235 controls the input 



US 2008/0077771 A1 

to the B-port of arithmetic logic unit 230. Barrel rotator 235 
receives data from arithmetic logic unit second input bus 
206. Arithmetic logic unit second input bus 206 supplies 
data from a specified one of data registers 200, data from 
global port source data bus GSrc bus 105 via buffer 104 or 
a special data word from buffer 236. Buffer 236 supplies a 
32 bit data COnStant of 
“00000000000000000000000000000001” (also called Hex 
“1”) to arithmetic logic unit second input bus 206 if enabled. 
Note hereinafter data or addresses preceded by “Hex' are 
expressed in hexadecimal. Data from global port source data 
bus GSrc 105 may be supplied to barrel rotator 235 as a long 
distance source as previously described. When buffer 236 is 
enabled, barrel rotator 235 enables generation on input B bus 
242 of any constant of the form 2, where N is the barrel 
rotate amount. Constants of this form are useful in opera 
tions to control only a single bit of a 32 bit data word. The 
data Supplied to arithmetic logic unit second input bus 206 
and barrel rotator 235 depends upon the instruction. 
0234 Barrel rotator 235 is a 32 bit rotator that may rotate 

its received data from 0 to 31 positions. It is a left rotator, 
however, a right rotate of n bits may be obtained by left 
rotating 32-n bits. A five bit input from rotate bus 244 
controls the amount of rotation provided by barrel rotator 
235. Note that the rotation is circular and no bits are lost. 
Bits rotated out the left of barrel rotator 235 wrap back into 
the right. Multiplexer Smux 231 supplies rotate bus 244. 
Multiplexer Smux 231 has several inputs. These inputs 
include: the five least significant bits of multiplier first input 
bus 201; the five least significant bits of multiplier second 
input bus 202: five bits from the “DBR' field of data register 
D0; and a five bit Zero constant "00000'. Note that because 
multiplier second input bus 202 may receive immediate data 
via multiplexer Imux 222 and buffer 223, the instruction 
word can Supply an immediate rotate amount to barrel 
rotator 235. Multiplexer Smux 231 selects one of these 
inputs to determine the amount of rotation in barrel rotator 
235 depending on the instruction. Each of these rotate 
quantities is five bits and thus can set a left rotate in the range 
from 0 to 31 bits. 

0235 Barrel rotator 235 also supplies data to multiplexer 
Bmux 227. This permits the rotated data from barrel rotator 
235 to be stored in one of the data registers 200 via 
multiplier destination bus 203 in parallel with an operation 
of arithmetic logic unit 230. Barrel rotator 235 shares 
multiplier destination bus 203 with multiplexer Rimux 221 
via multiplexer Bmux 227. Thus the rotated data cannot be 
saved if a multiply operation takes place. In the preferred 
embodiment this write back method is particularly supported 
by extended arithmetic logic unit operations, and can be 
disabled by specifying the same register destination for 
barrel rotator 235 result as for arithmetic logic unit 230 
result. In this case only the result of arithmetic logic unit 230 
appearing on arithmetic logic unit destination bus 204 is 
saved. 

0236 Although the above description refers to barrel 
rotator 235, those skilled in the art would realize that 
substantial utility can be achieved using a shifter which does 
not wrap around data. Particularly for shift and mask opera 
tions where not all of the bits to the B-port of arithmetic 
logic unit 230 are used, a shifter controlled by rotate bus 244 
provides the needed functionality. In this event an additional 
bit. Such as the most significant bit on the rotate bus 244. 
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preferably indicates whether to form a right shift or a left 
shift. Five bits on rotate bus 244 are still required to 
designate the magnitude of the shift. Therefore it should be 
understood in the description below that a shifter may be 
substituted for barrel rotator 235 in many instances. 
0237 Input C bus 243 supplies data to the C-port of 
arithmetic logic unit 230. Multiplexer Cmux 233 supplies 
data to input C bus 243. Multiplexer Cmux 233 receives data 
from four sources. These are LMO/RMO/LMBC/RMBC 
circuit 237, expand circuit 238, multiplier second input bus 
202 and mask generator 239. 
0238 LMO/RMO/LMBC/RMBC circuit 237 is a dedi 
cated hardware circuit that determines either the left most 
“1”, the right most “1”, the left most bit change or the right 
most bit change of the data on arithmetic logic unit second 
input bus 206 depending on the instruction or the “FMOD' 
field of data register D0. LMO/RMO/LMBC/RMBC circuit 
237 supplies to multiplexer CmuX 233 a 32 bit number 
having a value corresponding to the detected quantity. The 
left most bit change is defined as the position of the left most 
bit that is different from the sign bit 32. The right most bit 
change is defined as the position of the right most bit that is 
different from bit 0. The resultant is a binary number 
corresponding to the detected bit position as listed below in 
Table 16. The values are effectively the big endian bit 
number of the detected bit position, where the result is 

TABLE 16 

bit 
position result 

O 31 
1 30 
2 29 
3 28 
4 27 
5 26 
6 25 
7 24 
8 23 
9 22 
10 21 
11 2O 
12 19 
13 18 
14 17 
15 16 
16 15 
17 14 
18 13 
19 12 
2O 11 
21 10 
22 9 
23 8 
24 7 
25 6 
26 5 
27 4 
28 3 
29 2 
30 1 
31 O 

This determination is useful for normalization and for image 
compression to find a left most or right most “1” or changed 
bit as an edge of an image. The LMO/RMO/LMBC/RMBC 
circuit 237 is a potential speed path, therefore the source 
coupled to arithmetic logic unit second input bus 206 is 
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preferably limited to one of the data registers 200. For the 
left most “1” and the right most “1” operations, the “V” bit 
indicating overflow of status register 210 is set to “1” if there 
were no “1s' in the source, and “O'” if there were. For the 
left most bit change and the right most bit change operations, 
the “V” bit is set to “1” if all bits in the source were equal, 
and “0” if a change was detected. If the “V” bit is set to “1” 
by any of these operations, the LMO/RMO/LMBC/RMBC 
result is effectively 32. Further details regarding the opera 
tion of status register 210 appear above. 

0239 Expand circuit 238 receives inputs from multiple 
flags register 211 and status register 210. Based upon the 
“Msize field of status register 210 described above, expand 
circuit 238 duplicates some of the least significant bits stored 
in multiple flags register 211 to fill 32 bits. Expand circuit 
238 may expand the least significant bit 32 times, expand the 
two least significant bits 16 times or expand the four least 
significant bits 8 times. The “Asize’ field of status register 
210 controls processes in which the 32 bit arithmetic logic 
unit 230 is split into independent sections for independent 
data operations. This is useful for operation on pixels sizes 
less than the 32 bit width of arithmetic logic unit 230. This 
process, as well as examples of its use, will be further 
described below. 

0240 Mask generator 239 generates 32 bit masks that 
may be supplied to the input C bus 243 via multiplexer 
Cmux 233. The mask generated depends on a 5 bit input 
from multiplexer Mmux 234. Multiplexer Mmux 234 selects 
either the 5 least significant bits of multiplier second input 
bus 202, or the “DBR' field from data register D0. In the 
preferred embodiment, an input of value N causes mask 
generator 239 to generate a mask generated that has N “1s' 
in the least significant bits, and 32-N "0’s” in the most 
significant bits. This forms an output having N right justified 
“1s'. This is only one of four possible methods of operation 
of mask generator 239. In a second embodiment, mask 
generator 239 generates the mask having N right justified 
“O’s', that is N “O’s” in the least significant bits and 
N-32"1s' in the most significant bits. It is equally feasible 
for mask generator 239 to generate the mask having N left 
justified “1’s” or N left justified “O’s”. Table 17 illustrates 
the operation of mask generator 239 in accordance with the 
preferred embodiment when multiple arithmetic is not 
selected. 

TABLE 17 

Mask 
Generator 
Inpu Mask - Nonmultiple Operation 

O O O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
O O O O 1 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO1 
O O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO11 
O O O 1 OOOOOOOOOOOOOOOOOOOOOOOOOOOOO111 
O O 1 O O OOOOOOOOOOOOOOOOOOOOOOOOOOOO 1111 
O O 1 O 1 OOOOOOOOOOOOOOOOOOOOOOOOOOO1 1111 
O O 1 O OOOOOOOOOOOOOOOOOOOOOOOOOO11 1111 
O O 1 1 OOOOOOOOOOOOOOOOOOOOOOOOO1111111 
O 1 O O O OOOOOOOOOOOOOOOOOOOOOOOO 11111111 
O 1 O O 1 OOOOOOOOOOOOOOOOOOOOOOO1 11111111 
O 1 O O OOOOOOOOOOOOOOOOOOOOOO11 11111111 
O 1 O 1 OOOOOOOOOOOOOOOOOOOOO11111111111 
O 1 1 O O OOOOOOOOOOOOOOOOOOOO 111111111111 
O 1 1 0 1 OOOOOOOOOOOOOOOOOOO1 111111111111 
O 1 1 O OOOOOOOOOOOOOOOOOO11 111111111111 
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TABLE 17-continued 

Mask 
Generator 

Input Mask - Nonmultiple Operation 

O 1 1 OOOOOOOOOOOOOOOOO 
O O O O OOOOOOOOOOOOOOOO 
O O O OOOOOOOOOOOOOOO1 
O O O OOOOOOOOOOOOOO11 
O O OOOOOOOOOOOOO111 
O 1 O O OOOOOOOOOOOO 1111 
O 1 O OOOOOOOOOOO1 1111 
O 1 O OOOOOOOOOO11 1111 
O 1 OOOOOOOOO111 1111 
1 O O O OOOOOOOO 1111 1111 
1 O O OOOOOOO1 1111 1111 
1 O O OOOOOO11 11111111 
1 O OOOOO111 11111111 
1 1 0 O OOOO 1111 11111111 
1 1 O OOO1 1111 11111111 
1 1 O OO11 1111 11111111 
1 1 O111111111111111 

A value N of “0” thus generates 320's. In some situations 
however it is preferable that a value of “0” generates 32 
“1s”. This function is selected by the “%!” modification 
specified in the “FMOD field of status register 210 or in bits 
52, 54, 56 and 58 of the instruction when executing an 
extended arithmetic logic unit operation. This function can 
be implemented by changing the mask generated by mask 
generator 239 or by modifying the function of arithmetic 
logic unit 230 so that mask of all "0’s” supplied to the C-port 
operates as if all “1s' were supplied. Note that similar 
modifications of the other feasible mask functions are pos 
sible. Thus the “% modification can change a mask 
generator 239 which generates a mask having N right 
justified “O’s” to all “0’s” for N=0. Similarly, the “%!” 
modification can change a mask generator 239 which gen 
erates N left justified “1s' to all “1’s” for N=0, or change 
a mask generator 239 which generates N left justified “O’s” 
to all “O’s’ for N=0. 

0241 Selection of multiple arithmetic modifies the 
operation of mask generator 239. When the “Asize’ field of 
status register is “110, this selects a data size of 32 bits and 
the operation of mask generator 239 is unchanged from that 
shown in Table 17. When the “Asize’ field of status register 
is “101, this selects a data size of 16 bits and mask 
generator 239 forms two independent 16 bit masks. This is 
shown in Table 18. Note that in this case the most significant 
bit of the input to mask generator 239 is ignored. Table 18 
shows this bit as a don't care 'X'. 

TABLE 1.8 

Mask 
Generator 

Input Mask - Half Word Operation 

X O O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
X O O O 1 OOOOOOOOOOOOOOO1 OOOOOOOOOOOOOOO1 
X O O 1 O OOOOOOOOOOOOOO11 OOOOOOOOOOOOOO11 
X O O 1 1 OOOOOOOOOOOOO111 OOOOOOOOOOOOO111 
X 0 1 O O OOOOOOOOOOOO 1111 OOOOOOOOOOOO 1111 
X 0 1 O 1 OOOOOOOOOOO1 1111 OOOOOOOOOOO1 1111 
X 0 1 1 O OOOOOOOOOO11 1111 OOOOOOOOOO11 1111 
X 0 1 1 1 OOOOOOOOO111 1111 OOOOOOOOO111 1111 
X 1 O O O OOOOOOOO 1111 1111 OOOOOOOO 1111 1111 



US 2008/0077771 A1 

TABLE 18-continued 

Mask 
Generator 

Input Mask - Half Word Operation 

X 1 O O 1 OOOOOOO1 1111 1111 OOOOOOO1 1111 1111 
X 1 O 1 O OOOOOO11 1111 1111 OOOOOO11 1111 1111 
X 1 O 1 1 OOOOO111 1111 1111 OOOOO11111111111 
X 1 1 O O OOOO 111111111111 OOOO 1111 11111111 
X 1 1 O 1 OOO1 111111111111 OOO1 1111 11111111 
X 1 1 1 O OO11 1111 11111111 OO11 1111 11111111 
X 1 1 1 1 O1111111 11111111 O111 111111111111 

0242. The function of mask generator 239 is similarly 
modified for a selection of byte data via an “Asize’ field of 
“100'. Mask generator 239 forms four independent masks 
using only the three least significant bits of its input. This is 
shown in Table 19. 

TABLE 19 

Mask 
Generator 

Input Mask - Byte Operation 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
OOOOOOO1 OOOOOOO1 OOOOOOO1 OOOOOOO1 
OOOOOO11 OOOOOO11 OOOOOO11 OOOOOO11 
OOOOO111 OOOOO111 OOOOO111 OOOOO111 
OOOO 1111 OOOO 1111 OOOO 1111 OOOO 1111 
OOO1 1111 OOO1 1111 OOO1 1111 OOO1 1111 
OO11 1111 OO11 1111 OO11 1111 OO11 1111 
O1111111 O1111111 O1111111 O1111111 

As noted above, it is feasible to support multiple operations 
of 8 sections of 4 bits each, 16 sections of 2 bits each and 
32 single bit sections. Those skilled in the art would realize 
that these other data sizes require similar modification to the 
operation of mask generator 239 as shown above in Tables 
17, 18, and 19. 

0243 Data unit 110 includes a three input arithmetic 
logic unit 230. Arithmetic logic unit 230 includes three input 
inputs: input AbuS 241 Supplies an input to an A-port; input 
B bus 242 supplies an input to a B-port; and input C bus 243 
supplies an input to a C-port. Arithmetic logic unit 230 
Supplies a resultant to arithmetic logic unit destination bus 
204. This resultant may be stored in one of the data registers 
of data registers 200. Alternatively the resultant may be 
stored in another register within digital image/graphics 
processor 71 via buffer 108 and global port destination data 
bus Gdst 107. This function is called a long distance 
operation. The instruction specifies the destination of the 
resultant. Function signals Supplied to arithmetic logic unit 
230 from function signal generator 245 determine the par 
ticular three input function executed by arithmetic logic unit 
230 for a particular cycle. Bit 0 carry-in generator 246 forms 
a carry-in signal supplied to bit 0, the first bit of arithmetic 
logic unit 230. As previously described, during multiple 
arithmetic operations bit 0 carry-in generator 246 Supplies 
the carry-in signal to the least significant bit of each of the 
multiple sections. 

0244 FIG. 19 illustrates in block diagram form the 
construction of an exemplary bit circuit 400 of arithmetic 
logic unit 230. Arithmetic logic unit 230 preferably operates 
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on data words of 32 bits and thus consists of 32 bit circuits 
400 in parallel. Each bit circuit 400 of arithmetic logic unit 
230 receives: the corresponding bits of the three inputs A, 
B, and C.; a Zero carry-in signal designated co from the 
previous bit circuit 400; a one carry-in signal designated c 
from the previous bit circuit 400; an arithmetic enable signal 
A; an inverse kill signal K from the previous bit circuit; 
a carry sense select signal for selection of carry-in signal co 
or c, and eight inverse function signals F7-F0. The 
carry-in signals co and c; for the first bit (bit 0) are 
identical and are generated by a special circuit that will be 
described below. Note that the input signals A, B, and Care 
formed for each bit of arithmetic logic unit 230 and may 
differ. The arithmetic enable signal A and the inverted 
function signals F7-F0 are the same for each of the 32 bit 
circuits 400. Each bit circuit 400 of arithmetic logic unit 230 
generates: a corresponding one bit resultant S; an early Zero 
signal Z, a Zero carry-out signal designated co that forms 
the Zero carry-in signal co for the next bit circuit; a one 
carry-out signal designated c. that forms the one carry-in 
signal c, for the next bit circuit; and an inverse kill signal 
K that forms the inverse kill signal K for the next bit 
circuit. A selected one of the Zero carry-out signal coor the 
one carry-out signal c of the last bit in the 32 bit 
arithmetic logic unit 230 is stored in status register 210, 
unless the “C” bit is protected from change for that instruc 
tion. In addition during multiple arithmetic the instruction 
may specify that carry-out signals from separate arithmetic 
logic unit sections be stored in multiple flags register 211. In 
this event the selected Zero carry-out signal coor the one 
carry-out signal c, will be stored in multiple flags register 
211. 

0245 Bit circuit 400 includes resultant generator 401, 
carry out logic 402 and Boolean function generator 403. 
Boolean function generator 403 forms a Boolean combina 
tion of the respective bits inputs A, B, and C, according to 
the inverse function signals F7-F0. Boolean function gen 
erator produces a corresponding propagate signal P, a 
generate signal G, and a kill signal K. Resultant logic 401 
combines the propagate signal P, with one of the carry-in 
signal co or carry-in signal c, as selected by the carry 
sense select signal from a prior bit circuit 400 and forms the 
bit resultant S; and an early Zero signal Z. Carry out logic 
402 receives the propagate signal P, the generate signal G. 
the kill signal Ki, the two carry-in signals co and c, and 
an arithmetic enable signal A. Carry out logic 402 pro 
duces two carry-out signals co and cut that are Supplied 
to the next bit circuit 400. 

cut 

0246 FIGS. 20 and 21 together illustrate an exemplary 
bit circuit 400 of arithmetic logic unit 230. FIG. 20 illus 
trates the details of a resultant logic 401 and carry out logic 
402 of each bit circuit 400 of arithmetic logic unit 230. FIG. 
21 illustrates the details of the corresponding Boolean 
function generator 403 of each bit circuit 400 of arithmetic 
logic unit 230. 
0247 Each resultant logic 401 generates a corresponding 
resultant signal S, and an early Zero signal Z. Resultant logic 
420 forms these signals from the two carry-in signals, an 
inverse propagate signal P, an inverse kill signal K from 
the previous bit circuit and a carry sense select signal. The 
carry out logic 402 forms two carry-out signals and an 
inverse kill signal K. These signals are formed from the two 
carry-in signals, an inverse propagate signal P, an inverse 
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generate signal G, and a kill signal K, for that bit circuit 400. 
Each propagate signal indicates whether a “1” carry-in 
signal propagates through the bit circuit 400 to the next bit 
circuit 400 or is absorbed. The generate signal indicates 
whether the inputs to the bit circuit 400 generate a “1” 
carry-out signal to the next bit circuit 400. The kill signal 
indicates whether the input to the bit circuit 400 generate a 
“0” carry-out signal to the next bit circuit. Note that the 
propagate signal P, the generate signal G, and the kill signal 
Ki are mutually exclusive. Only one of these signals is 
generated for each combination of inputs. 
0248. Each bit circuit 400 of arithmetic logic unit 230 
employs a technique to reduce the carry ripple time through 
the 32 bits. Arithmetic logic unit 230 is divided into carry 
sections, preferably 4 sections of 8 bits each. The least 
significant bit circuit 400 of each such section has its zero 
carry-in signal co hardwired to “0” and its one carry-in 
signal chardwired to “1”. Each bit circuit 400 forms two 
resultants and two carry-out signals to the next bit circuit. 
Once the carry ripple through each section is complete, the 
actual carry output from the most significant bit of the 
previous carry section forms the carry sense select signal. 
This carry select signal permits selection of the actual 
resultant generated by the bits of a section via a multiplexer. 
The first carry section receives its carry select signal from bit 
0 carry-in generator 246 described in detail below. This 
technique permits the carry ripple through the carry sections 
to take place simultaneously. This reduces the length of time 
required to generate the resultant at the cost of some 
additional hardware for the redundant carry lines and the 
carry sense selection. 
0249 Carry out logic 402 controls transformation of the 
carry-in signals into the carry-out signals. Carry out logic 
402 includes identical circuit operating on the two carry-in 
signals cino and c.1. The inverse propagate signal P, and its 
inverse, the propagate signal P. formed by invertor 412, 
control pass gates 413 and 423. If the propagate signal P is 
“1”, then one carry-in line 410 is connected to one carry-out 
line 411 via pass gate 413 and Zero carry-in line 420 is 
connected to Zero carry-out line 421 via pass gate 423. Thus 
the carry-in signal is propagated to the carry-out. If the 
propagate signal P, is “0”, then one carry-in line 410 is 
isolated from one carry-out line 411 and Zero carry-in line 
420 is isolated from carry-out line 421. If the generate signal 
G is “1, that is if the inverse generate signal G, is “0”, then 
P-channel MOSFET (metal oxide semiconductor field effect 
transistor) 414 is turned on to couple the Supply Voltage to 
carry-out line 411 and P-channel MOSFET 424 is turned on 
to couple the supply voltage to carry-out line 421. If the 
generate signal G, is “0”, that is if the inverse generate signal 
G, is “1”, then the P-channel MOSFETs 414 and 424 are cut 
off and do not affect the carry-out lines 411 and 421. If the 
kill signal K, is “1”, then N-channel MOSFET 415 couples 
ground to carry-out line 411 and N-channel MOSFET 425 
couples ground to carry-out line 421. If the kill signal K is 
“0”, then the N-channel MOSFETs 415 and 425 are cut off 
and do not affect the carry-out lines 411 and 421. Invertor 
422 generates the inverse kill signal K. Supplied to the next 
bit circuit. 

0250) Exclusive OR circuits 431 and 433 form the two 
resultants of resultant logic 401. Exclusive OR circuits 431 
and 433 each receive the propagate signal P. from invertor 
427 on an inverting input and the inverse propagate signal P. 

Mar. 27, 2008 

from invertor 428 on a noninverting input. Exclusive OR 
circuit 431 receives the inverse Zero carry-in signal co from 
invertor 426 on a noninverting input and forms the resultant 
for the case of a “0” carry-in to the least significant bit of the 
current carry section. Likewise, exclusive OR circuit 433 
receives the inverse one carry-in signal c, from invertor 
416 on a noninverting input and forms the resultant for the 
case of a “1” carry-in to the least significant bit of the current 
carry section. Invertors 432 and 434 supply inputs to mul 
tiplexer 435. Multiplexer 435 selects one of these signals 
based upon the carry sense select signal. This carry sense 
select signal corresponds to the actual carry-out signal from 
the most significant bit of the previous carry section. The 
inverted output of multiplexer 435 from invertor 436 is the 
desired bit resultant S. 

0251 Resultant logic 401 also forms an early zero signal 
Z, for that bit circuit. This early Zero signal Z, gives an early 
indication that the resultant S of that bit circuit 400 is going 
to be “0”. Exclusive OR circuit 437 receives the propagate 
signal P. from invertor 427 on an inverting input and the 
inverse propagate signal P. from invertor 428 on a nonin 
verting input. Exclusive OR circuit 437 also receives the 
inverse kill signal K from the previous bit circuit 400 on 
a noninverting input. Exclusive OR circuit 437 forms early 
Zero signal Z, for the case in which the previous bit kill 
signal K-1 generates a “0” carry-out signal and the propagate 
signal P, is also “0”. Note that if K is “0”, then both the 
Zero carry-out signal co and the one carry-out signal cut 
are “0” whatever the state of the carry-in signals co and 
c. Note that this early zero signal Z, is available before the 
carry can ripple through the carry section. This early Zero 
signal Z, may thus speed the determination of a Zero output 
from arithmetic logic unit 230. 

0252 Boolean function generator 403 of each bit circuit 
400 of arithmetic logic unit 230 illustrated in FIG. 21 
generates the propagate signal P, the generate signal G, and 
the kill signal K, for bit circuit 400. Boolean function 
generator 403 consists of four levels. The first level includes 
pass gates 451, 452, 453, 454, 455, 456, 457 and 458. Pass 
gates 451, 453,455 and 457 are controlled in a first sense by 
input C, and inverse input C. from invertor 459. Pass gates 
452, 454, 456 and 458 are controlled in an opposite sense by 
input C. and inverse input C. Depending on the state of input 
C, either pass gates 451, 453, 455 and 457 are conductive 
or pass gates 452, 454, 456 and 458 are conductive. The 
second level includes pass gates 461, 462, 463 and 464. Pass 
gates 461 and 463 are controlled in a first sense by input B, 
and inverse input B, from invertor 465. Pass gates 462 and 
464 are controlled in the opposite sense. Depending on the 
state of input B, either pass gates 461 and 463 are conduc 
tive or pass gates 462 and 464 are conductive. The third level 
includes pass gates 471, 472 and 473. Pass gates 471 is 
controlled in a first sense by input A and inverse input A 
from invertor 473. Pass gates 472 and 473 are controlled in 
the opposite sense. Depending on the State of input A, either 
pass gates 471 is conductive or pass gates 472 and 473 are 
conductive. The first level includes invertors 441, 442, 443, 
444, 445, 446, 447 and 448 that are coupled to correspond 
ing inverted function signals F7-F0. Invertors 441, 442, 443, 
444, 445, 446, 447 and 448 provide input drive to Boolean 
function generator 403 and determine the logic function 
performed by arithmetic logic unit 230. 
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0253 Boolean function generator 403 forms the propa 
gate signal P. based upon the corresponding input signals A. 
B, and C, and the function selected by the state of the 
inverted function signals F7-F0. The propagate signal P, at 
the input to invertor 476 is “1” if any path through pass gates 
451, 452, 453, 454, 455, 456,457, 458, 461, 462, 463,464, 
471 or 472 couples a “1” from one of the invertors 441, 442, 
443, 444, 445, 446, 447 or 448. In all other cases this 
propagate signal P, is “0”. Invertor 476 forms the inverse 
propagate signal P, which is connected to resultant logic 
401 illustrated in FIG. 20. 

0254 Each pass gate 451, 452, 453, 454, 455, 456, 457, 
458, 461, 462, 463,464, 471, 472 and 473 consists of an 
N-channel MOSFET and a P-channel MOSFET disposed in 
parallel. The gate of the N-channel MOSFET receives a 
control signal. This field effect transistor is conductive if its 
gate input is above the Switching threshold Voltage. The gate 
of the P-channel MOSFET is driven by the inverse of the 
control signal via one of the invertors 459, 465 or 474. This 
field effect transistor is conductive if its gate input is below 
a switching threshold. Because the P-channel MOSFET 
operates in inverse to the operation of N-channel MOSFET, 
the corresponding invertor 459, 467 or 474 assures that these 
two field effect transistors are either both conducting or both 
non-conducting. The parallel N-channel and P-channel field 
effect transistors insure conduction when desired whatever 
the polarity of the controlled input. 
0255 Tri-state AND circuit 480 forms the generate signal 
G, and the kill signal K. The generate signal G, the kill 
signal K and the propagate signal P are mutually exclusive 
in the preferred embodiment. Therefore the propagate signal 
P, controls the output of tri-state AND circuit 480. If the 
propagate signal P, is “1”, then tri-state AND circuit 480 is 
disabled and both the generate signal G, and the kill signal 
K. are “0”. Thus neither the generate signal G, nor the kill 
signal K change the either carry signal. Pass gate 473 
couples the output from part of Boolean function generator 
403 to one input of tri-state AND circuit 480. The gate inputs 
of pass gate 473 are coupled to the first input bit A in the first 
sense. An N-channel MOSFET 475 conditionally couples 
this input of tri-state AND circuit 480 to ground. The inverse 
of the first input bit A supplies the gate input to N-channel 
MOSFET 475. Pass gate 473 and N-channel MOSFET 475 
are coupled in a wired OR relationship, however no OR 
operation takes place because their gate inputs cause them to 
be conductive alternately. N-channel MOSFET 475 serves to 
force a “0” input into tri-state AND circuit 480 when A="0. 
An arithmetic enable signal Supplies the second input to 
tri-state AND circuit 480. 

0256 The tri-state AND gate 480 operates as follows. If 
the propagate signal P, is “1”, then both P-channel MOSFET 
481 and N-channel MOSFET 482 are conductive and pass 
gate 483 is non-conductive. This cuts off P-channel MOS 
FETs 414 and 424 and N-channel MOSFETs 415 and 425 so 
that none of these field effect transistor conducts. The output 
of tri-state AND circuit 480 thus is a high impedance state 
that does not change the signal on the carry-out lines 411 and 
421. If the propagate signal P, is “0”, then both P-channel 
MOSFET 481 and N-channel MOSFET 482 are non-con 
ductive and pass gate 483 is conductive. The circuit then 
forms a logical AND of the two inputs. If either arithmetic 
enable or the signal at the junction of N-channel MOSFET 
475 and pass gate 473 is “0” or both are “0”, then at least one 
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of P-channel MOSFET 484 or P-channel MOSFET 485 
connects the Supply Voltage V+ (a logic “1”) as the inverse 
generate signal G. to the gates of P-channel MOSFETs 414 
and 424 of carry out logic 402. Thus P-channel MOSFETs 
414 and 424 are non-conductive. At the same time pass gate 
483 is conductive and supplies this “1” signal as kill signal 
K, to the gates of N-channel MOSFETs 415 and 425 of carry 
out logic 402. This actively pulls down the signal on Zero 
carry-out line 421 forcing the Zero carry-out signal co to 
“0” and one carry-out line 411 forcing the one carry-out 
signal c, to “0”. If both the inputs are “1”, then the series 
combination of N-channel MOSFET 486 and N-channel 
MOSFET 487 supplies ground (a logic “0”) to the gates of 
N-channel MOSFETs 415 and 425. N-channel MOSFETs 
415 and 425 of carry out logic 402 are cut off and non 
conductive. At the same time pass gate 483 couples this “O'” 
to the gates of P-channel MOSFETs 414 and 424. Thus 
P-channel MOSFETs 414 and 424 of carry out logic 402 are 
conductive. This actively pulls up the signal on Zero carry 
out line 421 forcing the Zero carry-out signal co to “1” and 
one carry-out line 411 forcing the one carry-out signal c 
to “1. 

outl 

0257) The bit circuit construction illustrated in FIGS. 20 
and 21 forms a propagate term, a generate term, a resultant 
term and two carry-out terms. Bit circuit 400 forms the 
propagate term P. as follows: 

Bit circuit 400 forms the generate term G, as follows: 

Bit circuit 400 forms the kill terms K, as follows: 
K=-G&P, 

Bit circuit 400 forms the resultant term S, as follows: 
S=P, (co&CSSc;1&-CSS) 

where: CSS is the carry sense select signal. Bit circuit 400 
forms the two carry-out signals co and c, as follows: 

Note that for any particular bit i the propagate signal P, the 
generate signal G, and the kill signal Ki are mutually exclu 
sive. No two of these signals occurs simultaneously. 

0258. The construction of each bit circuit 400 enables 
arithmetic logic unit 230 to perform any one of 256 possible 
3 input Boolean functions or any one of 256 possible 3 input 
mixed Boolean and arithmetic functions depending upon the 
inverted function signals F7-F0. The nine inputs including 
the arithmetic enable signal and the inverted function signals 
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F7-F0 permit the selection of 512 functions. As will be 
further described below the data paths of data unit 110 
enable advantageous use of three input arithmetic logic unit 
230 to speed operations in many ways. 

0259 Table 20 lists the simple Boolean logic functions of 
bit circuit 400 in response to single function signals F7-F0. 
Since these are Boolean logic functions and the arithmetic 
enable signal is “0”, both the generate and kill functions are 
disabled. Note that for Boolean extended arithmetic logic 
unit operations it is possible to specify the carry-in signals 
co, and c, from bit 0 carry-in generator 246 as previously 
described, thus permitting a carry ripple. 

TABLE 20 

8-bit ALU Function Logical 
code field Signal Operation 

58 F7 A & B & C 
57 F6 -A & B & C 
56 F5 A & B & C 
55 F4 -A & B & C 
S4 F3 A & B & C 
53 F2 -A & B & C 
52 F1 A & B & C 
51 FO -A & B & C 

These functions can be confirmed by inspecting FIGS. 20 
and 21. For the example of F7='1' and F6-F0 all equal to 
“0”, invertors 441, 442, 443, 444, 446, 447 and 448 each 
output a “0”. Only invertor 445 produces a “1” output. The 
propagate signal is “1” only if C='1' turning on pass gate 
455, B="1 turning on pass gate 463 and A="1 turning on 
pass gate 472. All other combinations result in a propagate 
signal of “0”. Since this is a logical operation, both the Zero 
carry-in signal co and the one carry-in signal c, are '0'. 
Thus S=“1” because both exclusive OR circuits 431 and 433 
return the propagate signal. The other entries on Table 20 
may be similarly confirmed. 

0260 A total of 256 Boolean logic functions of the three 
inputs A, B and C are enabled by proper selection of function 
signals F7-F0. Note that the state table of three inputs 
includes 8 places, thus there are 2°=256 possible Boolean 
logic functions of three inputs. Two input functions are 
Subset functions achieved by selection of function signals 
F7-F0 in pairs. Suppose that a Boolean function of B and C, 

8-bit ALU 
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code field 

57 55 53 51 

O O O 

O O O 
O O 1 
O O 1 
O 1 O 

O 1 O 
O 1 1 
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without relation to input A, is desired. Selection of F7=F6, 
F5=F4, F3=F2 and F1=F0 assures independence from input 
A. Note that the branches of Boolean function generator 403 
connected to pass gates 471 and 472 are identically driven. 
This ensures that the result is the same whether A="1" or 
A="0. Such a selection still provides 4 controllable func 
tion pairs permitting specification of all 16 Boolean logic 
functions of inputs B and C. Note that the state table of two 
inputs includes four places, thus there are 2'-16 possible 
Boolean logic functions of three inputs. Similarly, selection 
of F7=F5, F6=F4, F3=F1 and F2=F0 ensures independence 
from input B and provides 4 controllable function pairs for 
specification of 16 Boolean logic functions of inputs A and 
C. Selection of F7=F3, F6=F2, F5=F1 and F4=F0 permits 
selection via 4 controllable function pairs of 16 Boolean 
logic functions of inputs A and B independent of input C. 

0261) The instruction word determines the function per 
formed by arithmetic logic unit 230 and whether this opera 
tion is arithmetic or Boolean logic. As noted in Table 20, the 
instruction word includes a field coded with the function 
signals for Boolean logic operations. This field, the “8 bit 
arithmetic logic unit field (bits 58-51) of the instruction 
word, is directly coded with the function signals when the 
instruction specifies a Boolean logic operation for arithmetic 
logic unit 230. 

0262 The “8 bit arithmetic logic unit” field is differently 
coded when the instruction specifies arithmetic operations. 
Study of the feasible arithmetic functions indicates that a 
subset of these arithmetic functions specify the most often 
used operations. If the set of function signals F7-F0 is 
expressed as a two place hexadecimal number, then these 
most often used functions are usually formed with only the 
digits a, 9, 6 and 5. In these sets of function signals F7=-F6, 
F5=-F4, F3=-F2 and F1=-F0. Bits 57, 55, 53 and 51 
specify fifteen operations, with an “8 bit arithmetic logic 
unit field of all Zeros reserved for the special case of 
non-arithmetic logic unit operations. Non-arithmetic logic 
unit operations will be described below. When executing an 
arithmetic operation function signal F6=bit 57, function 
signal F4=bit 55, function signal F4=bit 53 and function 
signal F2=bit 51. The other function signals are set by 
F7=F6, F5=F4, F3=F2 and F1=F0. These operations and 
their corresponding function signals are shown in Table 21. 
Table 21 also shows the modifications to the default coding. 

TABLE 21 

Derived 
Function Signal 

FO Hex Description of operation 

1 O 1 O 1 O 1 O AA reserved for non-arithmetic 
logic unit operations 
A - B shift left “1” extend 
A + B shift left “O'” extend 
A - C 
A - B shift right “1” extend 
if sign = 0 flips to 95 
A - B shift right sign 

A9 
A6 
AS 

1 
1 
1 
1 9A 

1 
1 
1 
O 

extend 
1 O O 1 1 O O 1 99 A - B 
1 O O 1 O 1 1 O 96 A+ B/A - B depending on C 

if -(a)MF flips to 99 A - B 
if sign = 1 A + B 
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57 55 53 51 F7 F6 F5 F4 F3 F2 F1 FO Hex Description of operation 

1 1 1 1 O O 1 O 1 O 1 95 A - B shift rig 
6A A+ B shift rig 1 

O O 1 O 1 1 0 1 0 O 1 69 A - BA + B 

hit “O'” extend 
hit “O'” extend 

if ~(a)MF flips to 66 A+ B 
if sign = 1 A 

O 1 O O 1 1 O O 1 1 O 66 A+ B 
O 1 1 0 1 1 O O 1 O 1 65 A+ B shift right “1” extend 

if sign = 0 flips to 6A 
A + B shift right sign 
extend 

1 1 O O O 1 O 1 1 0 1 O SA A - C 
1 1 0 1 0 1 0 1 1 O O 1 59 A - B shift le 
1 1 1 O O 1 O 1 O 1 1 O 56 A+ B shift le 
1 1 1 1 0 1 1 0 O O O O 

Several codings of instruction word bits 57, 55, 53 and 51 
are executed in modified form as shown in Table 21. Note 
that the functions that list left or right shifts are employed in 
conjunction with barrel rotator 235 and mask generator 238. 
These operations will be explained in detail below. The 
“sign” referred to in this description is bit 31 of arithmetic 
logic unit second input bus 206, the bus driving barrel 
rotator 235. This is the sign bit of a signed number. A “0” in 
this sign bit indicates a positive number and a “1” in this sign 
bit indicates a negative (two’s complement) number. A bit 
57, 55,53 and 51 state of "0100 results in a normal function 
of A-B with shift right “1” extend. If bit 31 of arithmetic 
logic unit second input bus 206 is “0”, then the operation 
changes to A-B with shift right sign extend. A bit 57, 55, 53 
and 51 state of "0110' results in a normal function of A-B 
or A+B depending on the bit wise state of C. If the 
instruction does not specify a multiple flags register mask 
operation ((a)MF) then the operation changes to A-B. If bit 
31 of arithmetic logic unit second input bus 206 is “1”, then 
the operation changes to A+B (A plus the absolute value of 
B). A bit 57, 55,53 and 51 state of “1011” results in a normal 
function of A+B or A-B depending on the bit wise state of 
C. If the instruction does not specify a multiple flags register 
mask operation (-(a)MF) then the operation changes to A+B. 
If bit 31 of arithmetic logic unit second input bus 206 is “1”. 
then the operation changes to A-B (A minus the absolute 
value of B). A bit 57, 55, 53 and 51 state of “1001 results 
in a normal function of A+B with shift right “1” extend. If 
bit 31 of arithmetic logic unit second input bus 206 is “0”. 
then the operation changes to A+B with shift right sign 
extend. 

0263 Two codes are modified to provide more useful 
functions. A bit 57, 55, 53 and 51 state of "0000 results in 
a normal function of ~A (not A), which is reserved to Support 
non-arithmetic logic unit operations as described below. A 
bit 57, 55, 53 and 51 state of “1111 results in a normal 
function of A. This is modified to (A&C)+(B&C) or a field 
add of A and B controlled by the state of C. 
0264. The base set of operations listed in Table 21 may be 
specified in arithmetic instructions. Note that instruction 
word bits 58, 56, 54 and 52 control modifications of these 
basic operations as set forth in Table 6. These modifications 
were explained above in conjunction with Table 6 and the 

“O'” extend 
“1” extend 

60 (A&C) + (B&C), field A+ B 

description of status register 210. As further described below 
certain instructions specify extended arithmetic logic unit 
operations. It is still possible to specify each of the 256 
arithmetic operations via an extended arithmetic logic unit 
(EALU) operation. For these instructions the “A” (bit 27) of 
data register D0 specifies either an arithmetic or Boolean 
logic operation, the “EALU field (bits 26-19) specifies the 
function signals F7-F0 and the “FMOD field (bits 31-28) 
specifies modifications of the basic function. Also note that 
the “C”, “I”, “S”, “N” and “E” fields of data register D0 
permit control of the carry-in to bit 0 of arithmetic logic unit 
230 and to the least significant bit of each section if multiple 
arithmetic is enabled. There are four forms of extended 
arithmetic logic unit operations. Two of these specify par 
allel multiply operations using multiplier 220. In an 
extended arithmetic logic unit true (EALUT) operation, the 
function signals F7-F0 equal the corresponding bits of the 
“EALU field of data register D0. In an extended arithmetic 
logic unit false (EALUF) operation, the individual bits of the 
“EALU” field of data register D0 are inverted to form the 
function signals F7-F0. The extended arithmetic logic unit 
false operation is useful because during some algorithms the 
inverted functions signals perform a useful related opera 
tion. Inverting all the function signals typically specifies an 
inverse function. Thus this related operation may be 
accessed via another instruction without reloading data 
register 208. In the other extended arithmetic logic unit 
operations the function signals F7-F0 equal the correspond 
ing bits of the “EALU field of data register D0, but differing 
data paths to arithmetic logic unit 230 are enabled. These 
options will be explained below. 
0265 Data unit 110 operation is responsive to instruction 
words fetched by program flow control unit 130. Instruction 
decode logic 250 receives data corresponding to the instruc 
tion in the execute pipeline stage via opcode bus 133. 
Instruction decode logic 250 generates control signals for 
operation of multiplexers Fmux 221, Imux 222, MSmux 
225, Bmux 227, Amux 232. Cmux 233, Mmux 234 and 
Smux 231 according to the received instruction word. 
Instruction decode logic 250 also controls operation of 
buffers 104, 106, 108,223 and 236 according to the received 
instruction word. Control lines for these functions are omit 
ted for the sake of clarity. The particular controlled functions 
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of the multiplexers and buffers will be described below on 
description of the instruction word formats in conjunction 
with FIG. 42. Instruction decode logic 250 also supplies 
partially decoded signals to function signal generator 245 
and bit 0 carry-in generator 246 for control of arithmetic 
logic unit 230. Particular hardware for this partial decoding 
is not shown, however, one skilled in the art would be able 
to provide these functions from the description of the 
instruction word formats in conjunction with FIG. 42. 
Instruction decode logic 250 further controls the optional 
multiple section operation of arithmetic logic unit 230 by 
control of multiplexers 311, 312, 313 and 314, previously 
described in conjunction with FIG. 7. 
0266 FIG. 22 illustrates details of the function signal 
selector 245a. Function signal selector 245a forms a part of 
function signal generator 245 illustrated in FIG. 5. For a full 
picture of function signal generation, FIG. 22 should be 
considered with the function signal modifier 245b illustrated 
in FIG. 23. Multiplexers are shown by rectangles having an 
arrow representing the flow of bits from inputs to outputs. 
Inputs are designated with lower case letters. Control lines 
are labeled with corresponding upper case letters drawn 
entering the multiplexer rectangle perpendicular to the 
arrow. When a control line designated with a particular 
upper case letter is active, then the input having the corre 
sponding lower case letter is selected and connected to the 
output of the multiplexer. 
0267 Input “a” of multiplexer Omux 500 receives an 
input in two parts. Bits 57, 55, 53 and 51 of the instruction 
word are connected to bit lines 6, 4, 2 and 0 of input “a”, 
respectively. Invertor 501 inverts the respective instruction 
word bits and supplies them to bit lines 7.5, 3 and 1 of input 
“a”. Input “a” is selected if control line “A” goes active, and 
when selected the eight input bit lines are connected to their 
eight corresponding numbered output bit lines 7-4 and 3-0. 
Control line “A” is fed by AND gate 502. AND gate 503 
receives a first input indicating execution of an instruction in 
any of the instruction classes 7-0. Instruction word bit 63 
indicates this. These instruction classes will be further 
described below. AND gate 502 has a second input fed by bit 
59 of the instruction word. As will be explained below, a bit 
59 equal to “1” indicates an arithmetic operation. NAND 
gate 503 supplies a third input to AND gate 502. NAND gate 
503 senses when any of the four instruction word bits 57,55, 
53 or 51 is low. Control input 'A' is thus active when any 
of the instruction classes 7-0 is selected, and arithmetic bit 
59 of the instruction word is “1” and instruction word bits 
57, 55, 53 and 51 are not all “1”. Recall from Table 21 that 
a bit 57,55, 53 and 51 state of “1111 results in the modified 
function signals Hex “60 rather than the natural function 
signals. 
0268 Input “b” to multiplexer Omux 500 is a constant 
Hex “60. Multiplexer Omux 500 selects this input if AND 
gate 504 makes the control “B” active. AND gate 504 makes 
control “B” active if the instruction is within classes 7-0 as 
indicate by instruction word bit 63, the instruction word bit 
59 is “1” indicating an arithmetic operation, and a bit 57,55, 
53 and 51 state of “1111'. As previously described in 
conjunction with Table 21, under these conditions the func 
tion Hex “60 is substituted for the function signals indi 
cated by the instruction. 
0269. Input “c” to multiplexer Omux 500 receives all 
eight instruction word bits 58-51. Multiplexer Omux 500 
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selects this input if AND gate 505 makes control “C” active. 
AND gate 505 receives instruction word bit 59 inverted via 
invertor 506 and an indication of any of the instruction 
classes 7-0. Thus instruction word bits 58-51 are selected to 
perform any of the 256 Boolean operations in instruction 
classes 7-0. 

0270. Instruction words for the operations relevant to 
control inputs “D”, “E”, “F”, “G” and “H” have bits 63-61 
equal to “011”. If this condition is met, then bits 60-57 define 
the type of operation. These operations are further described 
below in conjunction with Table 35. 
0271 Input “d” to multiplexer Omux 500 is a constant 
Hex “66”. This input is selected for instructions that execute 
a parallel signed multiply and add (MPYSADD) or a 
parallel unsigned multiply and add (MPYUIADD). These 
instructions are collectively referred to by the mnemonic 
MPYx|ADD. 
0272 Input “e” to multiplexer Omux 500 is a constant 
Hex '99'. This input is selected for instructions that execute 
a parallel signed multiply and subtract (MPYSSUB) or a 
parallel unsigned multiply and subtract (MPYUISUB). 
These instructions are collectively referred to by the mne 
monic MPYx|SUB. 
0273) Input “f” to multiplexer Omux 500 is a constant 
Hex'A6”. This input is selected for the DIVI operation. The 
operation of this DIVI operation, which is employed in 
division, will be further described below. 
0274) Input “g to multiplexer Omux 500 is supplied 
from the “EALU field (bits 26-19) of data register D0 
according to an extended arithmetic logic unit function code 
from bits 26-19 therein. Control input “G” goes active to 
select this “EALU” field from data register D0 if OR gate 
507 detects either a MPYx|EALUT operation or and an 
EALU operation. As previously described, the T suffix in 
EALUT signifies EALU code true in contrast to the inverse 
(false) in EALUF. The EALU input is active to control input 
“G” when the “EALU” field of data register D0 indicates 
either EALU or EALU 96. 

0275 Invertor 508 inverts the individual bits of the 
“EALU” field of data register D0 for supply to input “h” of 
multiplexer Omux 500. Input “h” of multiplexer Omux 500 
is selected in response to detection of a MPYXEALUF 
operation at control input “H”. As previously described, the 
F suffix of EALUF indicates that the individual bits of the 
“EALU field of register D0 are inverted for specification of 
function signals F7-F0. 
0276 Multiplexer AEmux 510, which is also illustrated 
in FIG. 22, generates the arithmetic enable signal. This 
arithmetic enable signal is Supplied to tri-state AND gate 
480 of every bit circuit 400. The “a” input to multiplexer 
AEmux 510 is the “A” bit (bit 27) of data register D0. OR 
gate 511 receives three inputs: MPYx|EALUT, EALU, and 
MPYx|EALUF. If the instruction selects any of these three 
operations, then control input 'A' to multiplexer AEmux 
selects the “A” bit (bit 27) of data register D0. The “b’ input 
to multiplexer AEmux 510 is the “ari” bit (bit 59) of the 
instruction word. As will be described below, this “ari' bit 
selects arithmetic operations for certain types of instruc 
tions. This input is selected if the instruction is any of the 
instruction classes 7-0. In this case the “ari' bit signifying an 
arithmetic operation (“ari'-'1') or a Boolean operation 
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“ari’="0") is passed directly to the arithmetic logic unit 
230. The 'c' input of multiplexer AEmux 510 is a constant 
“1”. The gate 512 selects this input if the instruction is 
neither an extended arithmetic logic unit instruction nor 
within instruction classes 7-0. Such instructions include the 
DIVI operation and the MPYx|ADD and MPYx|SUB 
operations. OR gate 513 provides an arithmetic or EALU 
signal when the instruction is either an arithmetic operation 
as indicated by the output of multiplexer AEmux 510 or an 
“any EALU operation as indicated by OR gate 511. 

0277 FIG. 23 illustrates function signal modifier 245b. 
Function signal modifier 245b modifies the function signal 
set from function signal generator 245a according to the 
“FMOD field of data register D0 or the instruction bits 58, 
56, 54 and 52 depending on the instruction. Multiplexer 
Fmux 520 selects the function modifier code. 

0278. The “a” input to multiplexer Fmux 520 is all “0’s” 
(Hex “0”). NOR gate 521 supplies control line “A” of 
multiplexer Fmux 520. NOR gate 521 has a first input 
receiving the “any EALU signal from OR gate 511 illus 
trated in FIG.22 and a second input connected to the output 
of AND gate 522. AND gate 522 receives a first input from 
the “ari' bit (bit 59) of the instruction word and a second 
input indicating the instruction is in instruction classes 7-0. 
Thus NOR gate 521 generates an active output that selects 
the Hex “O'” input to Fmux 520 if the instruction is not any 
extended arithmetic logic unit operation and either the “ari' 
bit of the instruction word is “0” or the instruction is not 
within instruction classes class 7-0. 

0279. The “b’ input to multiplexer Fmux 520 receives 
bits 58, 56, 54 and 52 of the instruction word. The control 
input “B” receives the output of AND gate 522. Thus 
multiplexer Fmux 520 selects bits 58, 56, 54 and 52 of the 
instruction word when the instruction is in any instruction 
class 7-0 and the “ari' bit of the instruction is set. 

0280. The “c” input of multiplexer Fmux 520 receives 
bits of the “FMOD field (bits 31-28) of data register D0. 
The control input “C” receives the “any EALU signal from 
OR gate 511. Multiplexer Fmux 520 selected the “FMOD 
field of data register D0 if the instruction calls for any 
extended arithmetic logic unit operation. 

0281 Multiplexer Fmux 520 selects the active function 
modification code. The active function modification code 
modifies the function signals Supplied to arithmetic logic 
unit 230 as described below. The function modification code 
is decoded to control the operations specified in Table 6. As 
explained above, these modified operations include con 
trolled splitting of arithmetic logic unit 230, setting one or 
more bits of multiple flags register 211 by Zero(es) or 
carry-out(s) from arithmetic logic unit 230, rotating or 
clearing multiple flags register 211, operating LMO/RMO/ 
LMBC/RMBC circuit 237 in one of its four modes, oper 
ating mask generation 239 and operating bit 0 carry-in 
generator 246. The operations performed in relation to a 
particular state of the function modification code are set 
forth in Table 6. 

0282) Three circuit blocks within function modifier 245b 
may modify the function signals F7-F0 from multiplexer 
Omux 500 illustrated in FIG. 22. Mmux block 530 may 
operate to effectively set the input to the C-port to all “1s'. 
A-port block 540 may operate to effectively set the input to 
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the A-port to all “0’s”. Sign extension block 550 is a sign 
extension unit that may flip function signals F3-F0. 

0283 Mmux block 530 includes a multiplexer 531 that 
normally passes function signals F3-F0 without modifica 
tion. To effectively set the input to the C-port of arithmetic 
logic unit 230 to “1s', multiplexer 531 replicates function 
signals F7-F4 onto function signals F3-F0. Multiplexer 531 
is controlled by AND gate 533. AND gate 533 is active to 
effectively set the input to the C-port to all “1s' provided all 
three of the following conditions are present: 1) the function 
modifier code multiplexer Fmux 520 is any of the four codes 
“0010”, “0011”, “0110” or “0111” as detected by “OXLX” 
match detector 532 (X=don't care); 2) the instruction calls 
for a mask generation operation; and 3) the output from 
multiplexer Mmux 234 is “0”. As previously described 
above, duplication of functions signals F7-F4 onto function 
signals F3-F0, that is selection of F7=F3, F6=F2, F5=F1 and 
F4=F0, enables selection of the 16 Boolean logic functions 
of inputs A and B independent of input C. Note from Table 
6 that the four function modifier codes "OXLX include the 
“%!” modification. According to FIG. 23, the “%!” modi 
fication is achieved by changing the function signals sent to 
arithmetic logic unit 230 rather than by changing the mask 
generated by mask generator 239. 

0284. A-port block 540 includes multiplexer 541 and 
connection circuit 542 that normally pass function signals 
F7-F0 without modification. To effectively set the input to 
the A-port of arithmetic logic unit 230 to all “0s, multi 
plexer 541 and connection circuit 541 replicates function 
signals F6, F4, F2 and F0 onto function signals F7, F5, F3 
and F1, respectively. Multiplexer 541 and connection circuit 
542 make this substitution when activated by OR gate 544. 
OR gate 544 has a first input connected to “OLOX match 
detector 543, and a second input connected to AND gate 
546. AND gate 546 has a first input connected to “011X” 
match detector 545. Both match detectors 543 and 545 
determine whether the function modifier code matches their 
detection state. AND gate 546 has a second input that 
receives a signal indicating whether the instruction calls for 
a mask generation operation. The input to the A-port of 
arithmetic logic unit 230 is effectively zeroed by swapping 
function signals F6, F4, F2 and F0 for function signals F7. 
F5, F3 and ul, respectively. As previously described, this 
substitution makes the output of arithmetic logic unit 230 
independent of the A input. This substitution takes place if: 
1) the function modifier code finds a match in “OLOX” 
match detector 543; or 2) the instruction calls for a mask 
generation operation and the function modifier code find a 
match in "OLOX' match detector 545 and the instruction 
calls for a mask generation operation. 

0285) Sign extension block 550 includes exclusive OR 
gate 551, which normally passes function signals F3-F0 
unmodified. However, these function signals F3-F0 are 
inverted for arithmetic logic unit sign extension and absolute 
value purposes under certain conditions. Note that function 
signals F7-F4 from A-port block 540 are always passed 
unmodified by sign extension block 550. AND gate 552 
controls whether exclusive OR gate 551 inverts function 
signals F3-F0. AND gate 552 has a first input receiving the 
arithmetic or extended arithmetic logic unit signal from OR 
gate 513 illustrated in FIG. 22. The second input to AND 
gate 552 is from multiplexer 553. 
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0286) Multiplexer 553 is controlled by the “any EALU 
signal from OR gate 511 of FIG. 22. Multiplexer 553 selects 
a first signal from AND gate 554 when the “any EALU 
signal is active and selects a second signal from compound 
AND/OR gate 556 when the “any EALU signal is inactive. 
The output of AND gate 554 equals “1” when the data on 
arithmetic logic unit second input bus 206 is positive, as 
indicated by the sign bit (bit 31) as inverted by invertor 555, 
and the “S” bit (bit 16) of data register D0 is “1”. The output 
of compound AND/OR gate 556 is active if: 1) the data on 
arithmetic logic unit second input bus 206 is positive, as 
indicated by the sign bit (bit 31) as inverted by invertor 555: 
2) the instruction is within instruction classes 7-0; and 3) 
either a) instruction bits 57, 55, 53 and 51 find a match in 
“0100/“1011” match detector 557 or b) AND gate 560 
detects that instruction word bits 57, 55, 53 and 51 find a 
match in “1001/“O110 match detector 558, and the instruc 
tion does not call for a multiple flags register mask operation 
(aMF) as indicated by invertor 559. 
0287 Sign extension block 550 implements the excep 
tions noted in Table 21. An inactive “any EALU signal, 
which indicates that the instruction specified an arithmetic 
operation, selects the second input to multiplexer 553. 
Compound AND/OR gate 556 determines that the instruc 
tion is within instruction classes 7-0 and that the sign bit is 
“O’. Under these conditions, if instruction word bits 57,55, 
53 and 51 equal "0100 and then the function signal flips 
from Hex “9a to Hex “95” by inverting function signal bits 
F3-F0. Similarly, if instruction word bits 57, 55, 53 and 51 
equal “1011 and then the function signal flips from Hex 
“65” to Hex “6a” by inverting function signal bits F3-F0. If 
instruction word bits 57,55, 53 and 51 equal “1001” and the 
instruction does not call for a multiple flags register mask 
operation as indicated by invertor 599, then the function 
signal flips from Hex “69 to Hex “66”. This set of function 
signals causes arithmetic logic unit 230 to implement A-B, 
A minus the absolute value of B. If instruction word bits 57, 
55, 53 and 51 equal “0110' and the instruction does not call 
for a multiple flags register mask operation, then the func 
tion signal flips from Hex “96” to Hex “99”. This executes 
the function A+B, A plus the absolute value of B. Note that 
these flips of the function signals are based on the sign bit 
(bit 31) of the data on arithmetic logic unit second input bus 
206. 

0288 FIG. 24 illustrates bit 0 carry-in generator 246. As 
previously described bit, 0 carry-in generator 246 produces 
the carry-in signal c, Supplied to the first bit of arithmetic 
logic unit 230. In addition this carry-in signal c, from bit 0 
carry-in generator 246 is generally supplied to the first bit of 
each of the multiple sections, if the instruction calls for a 
multiple arithmetic logic unit operation. Multiplexer Zmux 
570 selects one of six possible sources for this bit 0 carry-in 
signal c, based upon six corresponding controls inputs from 
instruction decode logic 250. 
0289. Input “a” of multiplexer. Zmux 570 is supplied with 

bit 31 of multiple flags register 211. Multiplexer Zmux 570 
selects this input as the bit 0 carry-in signal c, if the 
instruction calls for a DIVI operation. 

0290 Inputs “b”, “c” and “d” to multiplexer Zmux 570 
are formed of compound logic functions. Input “b' of 
multiplexer. Zmux 570 receives a signal that is a Boolean 
function of the function signals F6, F2 and F0. This Boolean 
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expression, which is formed by circuit 571, is (F0 & 
-F6) (F0 & -F2)(-F2 & -F6). Input “c” of multiplexer 
Zmux 570 is fed by exclusive OR gate 572, which has a first 
input supplied by exclusive OR gate 573 and a second input 
supplied by AND gate 574. The exclusive OR gate 573 has 
as a first input the “C” bit (bit 18) of data register D0, which 
indicates whether the prior operation of arithmetic logic unit 
230 produced a carry-out signal cat bit 31, the last bit. The 
second input of XOR gate 573 receives a signal indicating 
the instruction calls for a MPYx|EALUF operation. AND 
gate 574 has a first input from invertor 575 inverting the sign 
bit (bit 31) present on arithmetic logic unit second input bus 
206 for detecting a positive sign. AND gate 574 has a second 
input from the “I” bit (bit 17) of data register D0 and a third 
input from the “S” bit (bit 16) of data register D. As 
explained above, the “I” bit causes inversion of carry-in 
when the “S” bit indicates sign extend is enabled. This 
operation complements the sign extend operation of AND 
gate 554 and XOR gate 551 of the function modifier 246b 
illustrated in FIG. 23. Input “d” of multiplexer Zmux 570 
comes from XOR gate 576. XOR gate 576 has a first input 
Supplied the function signal F0 and a second input Supplied 
bit 0 of the data on input C bus 243. 
0291 Input “b” of multiplexer Zmux 570 is selected 
when AND gate 581 sets control input “B” active. This 
occurs when the “arithmetic or EALU” from OR gate 513 is 
active, the instruction does not call for an extended arith 
metic logic unit operation as indicated by invertor 582 and 
no other multiplexer Zmux 570 input is applicable as 
controlled by invertors 583,584 and 585. 
0292. Input “c” of multiplexer Zmux 570 is selected 
when AND gate 586 supplies an active output to control 
input “C”. AND gate 586 is responsive to a signal indicating 
the instruction calls for “any EALU operation. The rest of 
the inputs to AND gate 586 assure that AND gate 586 is not 
active if any of inputs 'd', 'e' or “fare active via invertors 
584,585 and 595. 

0293 Input “d” of multiplexer Zmux 570 is selected 
when control line “D is from AND gate 587. AND gate 587 
is active when the instruction is an arithmetic operation oran 
extended arithmetic logic unit operation, AND gate 589 is 
active and input 'e' is not selected as indicated by invertor 
585. AND gate 589 is active when the instruction specifies 
a multiple flags register mask operation ((a)MF) expansion 
and instruction word bits 57, 55, 53 and 51 find a match in 
“O110/1001 match circuit 588. These instruction word 
bits correspond to function signals Hex “69 and Hex “96”. 
which cause addition or subtraction between ports A and B 
depending on the input to port C. No function signal flipping 
is involved since the instruction class involves multiple flags 
register expansion. FIG. 7 illustrates providing this carry-in 
signal to plural sections of a split arithmetic logic unit in 
multiple mode. 

0294 Input 'e' of multiplexer Zmux 570 comes from the 
“C” bit (bit 30) of status register 210. As previously 
described, this “C” bit of status register 210 is set to “1” if 
the result of the last operation of arithmetic logic unit 230 
caused a carry-out from bit 31. AND gate 594 supplies 
control input “E”. AND gate 594 goes active when the 
instruction specifies an arithmetic operation or an extended 
arithmetic logic unit operation and the following logic is 
true: 1) the function modifier code finds a match in “OXO1 
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match detector 591; or (OR gate 590) 2) the instruction calls 
for a mask generation operation and (AND gate 593) the 
function modifier code finds a match in “OX11 match 
detector 592. 

0295). Input “f” of multiplexer Zmux 570 is supplied with 
a constant 'O'. Multiplexer Zmux 570 selects this input 
when the “arithmetic or EALU signal from OR gate 513 
indicates the instruction specifies a Boolean operation as 
inverted by invertor 595. 
0296. The output of Zmux 570 normally passes through 
Ymux 580 unchanged and appears at the bit 0 carry-in 
output. In a multiple arithmetic operation in which data 
register D0“A” bit (bit 27) and “E” bit (bit 14) are not both 
“1”. Ymux produces plural identical carry-in signals. Selec 
tion of half word operation via "Asize’ field of status 
register 210 causes Ymux to produce the supply the output 
of Zmux 570 to both the bit 0 carry-in output and the bit 16 
carry-in output. Likewise, upon selection of byte operation 
Ymux 580 supplies the output of Zmux 570 to the bit 0 
carry-in output, the bit 8 carry-in output, the bit 16 carry-in 
output and the bit 24 carry-in output. 
0297. The operation of Ymux 580 differs when data 
register D0“A” bit (bit 27) and “E” bit (bit 14) are both “1”. 
AND gate 577 forms this condition and controls the opera 
tion of Ymux 580. This is the only case in which the carry-in 
signals Supplied to different sections of arithmetic logic unit 
230 during multiple arithmetic differ. If AND gate 577 
detects this condition, then the carry-in signals are formed 
by the exclusive OR of function signal F0 and the least 
significant bit of the C input of the corresponding section of 
arithmetic logic unit 230. If the “Asize’ field selects word 
operation, that is if arithmetic logic unit 230 forms a single 
32 bit section, then the bit 0 carry-in output formed by Ymux 
580 is the exclusive OR of function signal FO and input C 
bus bit 0 formed by XOR gate 596. No other carry-in signals 
are formed. If the “Asize’ field selects half word operation 
forming two 16 bit sections, then the bit 0 carry-in output 
formed by Ymux 580 is the output of XOR gate 596 and the 
carry-in to bit 16 is the exclusive OR of function signal F0 
and input C bus bit 16 formed by XOR gate 598. Lastly, for 
byte multiple arithmetic the bit 0 carry-in output formed by 
Ymux 580 is the output of XOR gate 596, the bit 8 carry-in 
is formed by XOR gate 597, and the bit 16 carry-in is formed 
by XOR gate 598 and the bit 24 carry-in is formed by XOR 
gate 599. 
0298 FIGS. 22, 23 and 24 not only represent specific 
blocks implementing the Tables but also illustrates the 
straightforward process by which the Tables and Figures 
compactly define logic circuitry to enable the skilled worker 
to construct the preferred embodiment even when a block 
diagram of particular circuitry may be absent for concise 
ness. Note that the circuits of FIGS. 22 and 23 do not cover 
control for the various multiplexers and special circuits via 
instruction decode logic 250 that are a part of data unit 110 
illustrated in FIG. 5. However, control of these circuits is 
straight forward and within the capability of one of ordinary 
skill in this art. Therefore these will not be further disclosed 
for the sake of brevity. 
0299 Arithmetic logic unit 230 includes three 32 bit 
inputs having differing hardware functions preceding each 
input. This permits performance of many different functions 
using arithmetic logic unit 230 to combine results from the 
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hardware feeding each input. Arithmetic logic unit 230 
performs Boolean or bit by bit logical combinations, arith 
metic combinations and mixed Boolean and arithmetic com 
binations of the 3 inputs. Mixed Boolean and arithmetic 
functions will hereafter be called arithmetic functions due to 
their similarity of execution. Arithmetic logic unit 230 has 
one control bit that selects either Boolean functions or 
arithmetic functions. Boolean functions generate no carries 
out of or between bit circuits 400 of arithmetic logic unit 
230. Thus each bit circuit 400 of arithmetic logic unit 230 
combines the 3 inputs to that bit circuit independently 
forming 32 individual bit wise results. During arithmetic 
functions, each bit circuit 400 may receive a carry-in from 
the adjacent lesser significant bit and may generate a carry 
out to the next most significant bit location. An 8 bit control 
signal (function control signals F7-F0) control the function 
performed by arithmetic logic unit 230. This enables selec 
tion of one of 256 Boolean functions and one of 256 
arithmetic functions. The function signal numbering of 
function signals F7-F0 is identical to that used in 
Microsoft(R) Windows. Bit 0 carry-in generator 246 supplies 
carry-in signals when in arithmetic mode. In arithmetic 
mode, arithmetic logic unit 230 may be split into either two 
independent 16 bit sections or four independent 8 bit sec 
tions to process in parallel multiple Smaller data segments. 
Bit 0 carry-in generator 246 supplies either one, two or four 
carry-in signals when arithmetic logic unit 230 operates in 
one, two or four sections, respectively. In the preferred 
embodiment, an assemblier for data unit 110 includes an 
expression evaluator that selects the proper set of function 
signals based upon an algebraic input syntax. 

0300. The particular instruction being executed deter 
mines the function of arithmetic logic unit 230. As will be 
detailed below, in the preferred embodiment the instruction 
word includes a field that indicates either Boolean or arith 
metic operations. Another instruction word field specifies 
the function signals Supplied to arithmetic logic unit 230. 
Boolean instructions specify the 8 function signals F7-F0 
directly. In arithmetic instructions a first subset of this 
instruction word field specifies a subset of the possible 
arithmetic logic unit operations according to Table 21. A 
second subset of this instruction word field specifies modi 
fications of instruction function according to Table 6. All 
possible variations of the function signals and the function 
modifications for both Boolean and arithmetic instructions 
may be specified using an extended arithmetic logic unit 
(EALU) instruction. In this case the predefined fields within 
data register D0 illustrated in FIG. 9 specify arithmetic logic 
unit 230 operation. 

0301 Though arithmetic logic unit 230 can combine all 
three inputs, many useful functions don't involve some of 
the inputs. For example the expression A&B treats the C 
input as a don't care, and the expression AC treats the B 
input as a don't care. Because different data path hardware 
precedes each input, the ability to use or ignore any the 
inputs Supports the selection of data path hardware needed 
for the desired function. Table 22 shows examples of useful 
three input expressions where the C-input is treated as a 
mask or a merging control. Because data unit 110 includes 
expand circuit 238 and mask generator 239 in the data path 
of the C-input of arithmetic logic unit 230, it is natural to 
employ the C-input as a mask. 
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TABLE 22 

Logical 
Function Typical use 

(A & C) (B & ~C) Bit by bit multiplexing (merge) of 
A and B based on C. A chosen if 
corresponding bit in C is 1 
Bit by bit multiplexing (merge) of 
A and B based on C. B chosen if 
corresponding bit in C is 1 

(A & -C) (B & C) 

(A|B) & ~C Logic OR of A and B and then force 
to 0 everywhere that C is a 1 

(A & B) & C Logic AND of A and B and then force 
to 0 everywhere C is a 1 

A (B & C) If C is 0 then force the B-input to 
O before logical ORing with A 

A (B-C) If C is 0 then force the B-input to 
1 before logical ORing with A 

0302) The three input arithmetic logic unit 230 can per 
form mixed Boolean and arithmetic functions in a single 
pass through arithmetic logic unit 230. The mixed Boolean 
and arithmetic functions Support performing Boolean func 
tions prior to an arithmetic function. Various compound 
functions such as shift and add, shift and subtract or field 
masking prior to adding or Subtracting can be performed by 
the appropriate arithmetic logic unit function in combination 
with other data path hardware. Note arithmetic logic unit 
230 supports 256 different arithmetic functions, but only a 
subset of these will be needed for most programming. 
Additionally, further options such as carry-in and sign 
extension need to be controlled. Some examples expected to 
be commonly used are listed below in Table 23. 

TABLE 23 

Func 
Code Default 
Hex Function Carry-In Common Use 

66 A + B O A + B ignore C 
99 A - B 1 A - B ignore C 
5A A + C O A + C ignore B 
AS A - C 1 A - C ignore B 
6A A + (B & C) O A + B shift right 

O exten 
C shift mask 

95 A - (B & C) 1 A - B shift right 
O exten 
C shift mask 

56 A + (BC) O A + B shift left 
O exten 
C shift mask 

A9 A - (BC) 1 A - B shift left 
1 exten 
C shift mask 

A6 A + (B & ~C) O A + B shift left 
O exten 
C shift mask 

59 A - (B & ~C) 1 A - B shift left 
O exten 
C shift mask 

65 A + (B-C) O A + B shift right 
sign exten 
C shift mask 

9A. A - (B-C) 1 A - B shift right 
sign exten 
C shift mask 

60 (A & C) + (B & C) O A + B mask by C 
9F (A & C) - (B & C) 1 A - B mask by C 
O6 (A & -C) + (B & ~C) O A + B mask by ~C 
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TABLE 23-continued 

Func 
Code Default 
Hex Function Carry-In Common Use 

F9 (A & ~C) - (B & ~C) 1 A - B mask by ~C 
LSB of C A + B or A - B 

based on C 
LSB of -C A+ B or A - B 

based on C 
CC B O B ignore A and C 
33 -B 1 Negative B 

ignore A and C 
FO C O C ignore A and B 
OF -C 1 Negative C 

ignore A and B 
CO (B & C) O B shift righ 

“O'” extend 
C shift mask 

3F -(B & C) 1 Negative B shift 

FC (BC) O B shift left 
“1” extend 
C shift mask 

O3 -(BC) 1 Negative B shift 

OC (B & ~C) O B shift left 
“O'” extend 
C shift mask 

F3 -(B & ~C) 1 Negative B shift 

CF (B-C) O B shift righ 

C shift mask 
Negative B shift 
right sign extend 
C shift mask 

LSB of C -B or B based on -C 
LSB of -C B or -B based on C 

30 -(B | -C) 1 

The most generally useful set of arithmetic functions com 
bined with default carry-in control and sign extension 
options are available directly in the instruction set in a base 
set of operations. These are listed in Table 21. This base set 
include operations that modify the arithmetic logic units 
functional controls based on sign bits and that use default 
carry-in selection. Some examples of these are detailed 
below. 

0303 All 256 arithmetic functions along with more 
explicit carry-in and sign extension control are available via 
the extended arithmetic logic unit (EALU) instruction. In 
extended arithmetic logic unit instructions the function 
control signals, the function modifier and the explicit carry 
in and sign extension control are specified in data register 
D0. The coding of data register D0 during such extended 
arithmetic logic unit instructions is described above in 
relation to FIG. 9. 

0304 Binary numbers may be designated as signed or 
unsigned. Unsigned binary numbers are non-negative inte 
gers within the range of bits employed. An N bit unsigned 
binary number may be any integer between 0 and 2-1. 
Signed binary numbers carry an indication of sign in their 
most significant bit. If this most significant bit is “0” then the 
number is positive or zero. If the most significant bit is “1” 
then the number is negative or Zero. An N bit signed binary 
number may be any integer from -2'-1 to 2-1. Know 
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ing how and why numbers produce a carry out or overflow 
is important in understanding operation of arithmetic logic 
unit 230. 

0305 The sum of two unsigned numbers overflows if the 
Sum can no longer be expressed in the number of bits used 
for the numbers. This state is recognized by the generation 
of a carry-out from the most significant bit. Note that 
arithmetic logic unit 230 may be configured to operation on 
numbers of 8 bits, 16 bits or 32 bits. Such carry-outs may be 
stored in Mflags register 211 and employed to maintain 
precision. The difference of two unsigned numbers under 
flows when the difference is less than Zero. Note that 
negative numbers cannot be expressed in the unsigned 
number notation. The examples below show how carry-outs 
are generated during unsigned Subtraction. 
0306 The first example shows 7"00000111 minus 
5"00000110. Arithmetic logic unit 230 performs subtrac 
tion by two’s complement addition. The two’s complement 
of an unsigned binary number can be generated by inverting 
the number and adding 1, thus -X=~X--1. Arithmetic logic 
unit 230 negates a number by logically inverting (or one's 
complementing) the number and injecting a carry-in of 1 
into the least significant bit. First the 5 is bit wise inverted 
producing the one’s complement “11111001. Arithmetic 
logic unit 230 adds this to 7 with a “1” injected into the 
carry-in input of the first bit. This produces the following 
result. 

OOOOO 111 

+11111010 

+1 

10000000 

Note that this produces a carry-out of “1” from the most 
significant bit. In two’s complement Subtraction, such a 
carry-out indicates a not-borrow. Thus there is no underflow 
during this subtraction. The next example shows 7-5. Note 
that the 8 bit one's complement of "00000111” is 
“11111 OOO. 

OOOOO 101 

+11111000 

+1 

100000010 

In this case the carry-out of “O'” indicates a borrow, thus the 
result is less than Zero and an underflow has occurred. The 
last example of unsigned subtraction is 0-0. Note that the 8 
bit one's complement of 0 is “11111111'. 

OOOOOOOO O 

+11111111 - O 
+1 

1 00000000 

The production of a carry-out of “1” indicates no underflow. 
0307 The situation for signed numbers is more complex. 
An overflow on a signed add occurs if both operands are 
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positive and the sign bit of the result is a 1 (i.e., negative) 
indicating that the result has rolled over from positive to 
negative. Overflow on an add also occurs if both operands 
are negative and the result has a 0 (i.e., positive) sign bit. Or 
in other words overflow on addition occurs if both of the 
sign bits of the operands are the same and the result has a 
different sign bit. Similarly a subtraction of can overflow if 
the operands have the same sign and the result has a different 
sign bit. 

0308 When setting the carry bit in status register 210 or 
in the Mflags register 211, the bit or bits are always the 
“natural carry outs generated by arithmetic logic unit 230 
Most other microprocessors set “carry status' based upon 
the carry-out bit during addition but set it based upon 
not-carry-out (or borrow) during subtraction. These other 
microprocessors must re-invert the not-carry when perform 
ing Subtract with borrow to get the proper carry-in to the 
arithmetic logic unit. This difference results in a slightly 
different set of conditional branch equations using this 
invention than other processors to get the same branch 
conditions. Leaving the sense of carries/not-borrows the 
same as those generated by arithmetic logic unit 230 sim 
plifies many ways in which each digital image/graphics 
processor can utilize them. 

0309. In the base set of arithmetic instructions, the 
default carry-in is “0” for addition and “1” for subtraction. 
The instruction set and the preferred embodiment of the 
assembler will automatically set the carry-in correctly for 
addition or subtraction in 32-bit arithmetic operations. The 
instruction set also supports carry-in based on the status 
registers carry-out to Support multiple precision add-with 
carry or subtract-with-borrow operations. 

0310. As will be explained in more detail later, some 
functions arithmetic logic unit 230 support the C-port con 
trolling whether the input to the B-port is added to or 
subtracted from the input to the A-port. Combining these 
arithmetic logic unit functions with multiple arithmetic 
permits the input to the C-port to control whether each 
section of arithmetic logic unit 230 adds or subtracts. The 
base set of operations controls the carry-in to each section of 
arithmetic logic unit 230 to supply a carry-in of “0” that 
section is performing addition and a carry-in of “1” if that 
section is performing Subtraction. The hardware for Supply 
ing the carry-in to these sections is described above regard 
ing FIG. 24. 

0311. The following details the full range of arithmetic 
functions possible using digital image/graphics processor 71 
3-input arithmetic logic unit 230. For most algorithms, the 
subset of instructions listed above will be more than 
adequate. The more detailed description following is 
included for completeness. 

0312 Included in the description below is information 
about how to derive the function code for arithmetic logic 
unit 230. Some observations about function code F7-F0 will 
be helpful in understanding how arithmetic logic unit 230 
can be used for various operations and how to best use 
extended arithmetic logic unit instructions. The default 
carry-in is equal to F0, the least significant bit of the function 
code, except for the cases where the input to the C-port 
controls selection of addition or subtraction between A and 
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B. Inverting all the function code bits changes the sign of the 
operation. For example the function codes Hex “66', which 
specifies A+B, and Hex '99', which specifies A-B, are bit 
wise inverses. Similarly, function code Hex “65” 
(A+(B-C)) and Hex"9A". (A-(B-C)) are bit wise inverses. 
Extended arithmetic logic unit instructions come in the pairs 
of extended arithmetic logic unit true (EALUT) and 
extended arithmetic logic unit false (EALUF). The extended 
arithmetic logic unit false instruction inverts the arithmetic 
logic unit control code stored in bits 26-19 of data register 
D0. As noted above, this inversion generally selects between 
addition and Subtraction. Inverting the 4 least significant bits 
of the function code Hex “6A' for A+(B&C) yields gives 
Hex"65” that is the function A+(B-C). Similarly, inverting 
the 4 least significant bits of function code Hex “95” for 
A-(B&C) yields the function code Hex "9A that is 
A-(B-C). The B&C operation Zero's bits in B where C is 
“0” and the operation B-C forces bits in B to “1” where C 
is “0”. This achieves the opposite masking function with 
respect to C. As will be explained below selectively invert 
ing the 4 least significant bits of the function code based on 
a sign bit performs sign extension before addition or Sub 
traction. 

0313 All the 256 arithmetic functions available employ 
ing arithmetic logic unit 230 can be expressed as: 

0314 where: S is the arithmetic logic unit resultant; and 
F1 (B.C) and F2(B,C) can be any of the 16 possible Boolean 
functions of B and C shown below in Table 24. 

TABLE 24 

F1 F2 
Code Code Subfunction Common Use 

OO OO O Zeros term 
AA FF all 1's =-1 Sets term to all 1's 
88 CC B B 
22 33 -B - 1 Negate B 
AO FO C C 
OA OF -C - 1 Negate C 
8O CO B & C Force bits in B to 0 

where C is 0 
2A 3F -(B & C) - 1 Force bits in B to 0 

where C 15 O 
and negate 

A8 FC BC Force bits in B to 1 
where C is 1 

O2 03 -(BC) - 1 Force bits in B to 1 
where C is 1 
and negate 

O8 OC B & C Force bits in B to 0 
where C is 1 

A2 F3 -(B & ~C) - 1 Force bits in B to 0 
where C is 1 
and negate 

8A CF B | -C Force bits in B to 1 
where C is 0 

2O 30 -(B-C) - 1 Force bits in B to 1 
where C is 0 
and negate 

28 3C (B & ~C) ((-B - 1) & C) Choose B if C = all O’s 
and -B if C = all 1's 

82 C3 (B & C) ((-B - 1) & ~C) Choose B is C = all 1's 
and -B if C = all O's 

FIG. 25 illustrates this view of arithmetic logic unit 230 in 
block diagram form. Arithmetic unit 491 forms the addition 
of the equation. Arithmetic unit 491 receives a carry input 
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for bit 0 from bit 0 carry-in generator. The AND gate 492 
forms A AND F1(B,C). Logic unit 493 forms the subfunc 
tion F1 (B.C) from the function signals as listed in Table 24. 
Logic unit 494 forms the subfunction F2(B.C) from the 
function signals as listed in Table 24. This illustration of 
arithmetic logic unit 230 shows that during mixed Boolean 
and arithmetic operations the Boolean functions are per 
formed before the arithmetic functions. A set of the bit 
circuits 400 illustrated in FIGS. 19, 20 and 21 together with 
the function generator illustrated in FIG. 22, the function 
modifier illustrated in FIG. 23 and the bit 0 carry-in gen 
erator illustrated in FIG. 24 form the preferred embodiment 
of the arithmetic logic unit 230 illustrated in FIG. 25. Those 
skilled in the art would recognize that there are many other 
feasible ways to implement arithmetic logic unit 230 illus 
trated in FIG. 25. 

0315. As clearly illustrated in FIG. 25, the subfunctions 
F1 (B.C) and F2(B.C) are independent and may be different 
Subfunctions for a single operation of arithmetic logic unit 
230. The subfunction F2(B,C) includes both the negative of 
B and the negative of C. Thus either B or C may be 
subtracted from Aby adding its negative. The codes for the 
Subfunctions F1 (B.C) and F2(B.C) enable derivation of the 
function code F7-FO for arithmetic logic unit 230 illustrated 
in FIGS. 20 and 21. The function code F7-FO for arithmetic 
logic unit 230 is the exclusive OR of the codes for the 
corresponding subfunctions F1 (B.C) and F2(B,C). Note the 
codes for the subfunctions have been selected to provide this 
result, thus these subfunctions do not have identical codes 
for the same operation. 

0316) The subfunctions of Table 24 are listed with the 
most generally useful ways of expression. There are other 
ways to represent or factor each function. For example by 
applying DeMorgan's Law, the function B-C is equivalent 
to ~(~B&C). Because -X=-X-1, ~(~B&C) is equivalent 
-(-B&C)-1 and B-C is equivalent to B (-C-1). Note that 
the negative forms in Table 24 each have a trailing “-1 
term. As explained above negative numbers are two’s 
complements. These are equivalent to the bit wise logical 
inverse, which forms the 1s complement, minus 1. A 
carry-in of “1” may be injected into the least significant bit 
to cancel out the -1 and form the two’s complement. In the 
most useful functions with a negative Subfunction, only the 
F2(B.C) subfunction produces a negative. 

0317. Often it will be convenient to think of the Boolean 
Subfunctions in Table 24 as performing a masking operation. 
As noted in Table 24, the subfunction B&C can be inter 
preted as forcing the B input value to “0” where the 
corresponding bit in C is "0. The subfunction B-C can be 
interpreted as forcing the B input value to “1” for every bit 
where the C input is “0”. Because mask generator 234 and 
expand circuit 238 feed the C-port of arithmetic logic unit 
230 via multiplexer 233, in most cases the C-port will be 
used as a mask in subfunctions that involve both B and C 
terms. Table 24 has factored the expression of each sub 
function in terms assuming that the input to the C-port is 
used as a mask. The equation above shows that the A-input 
cannot be negated in the arithmetic expression. Thus arith 
metic logic unit 230 cannot subtract A from either B or C. 
On the other hand, either B or C can be subtracted from A 
because the subfunctions F1 (B.C) and F2(B.C) support 
negation/inversion of B and C. 
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0318. The subfunctions of Table 24 when substituted into 
the above equation produces all of the 256 possible arith 
metic functions that arithmetic logic unit 230 can perform. 
Occasionally, some further reduction in the expression of the 
resultant yields an expression that is equivalent to the 
original and easier to understand. When reducing Such 
expressions, several tips can be helpful. The base instruction 
set defaults to a carry-in of “0” for addition and a carry-in 
of “1” when the subfunction F2(B.C) has a negative B or C 
term as expressed in Table 24. This carry-in injection has the 
effect of turning the one's complement (logical inversion) 
into a two’s complement by effectively canceling the -1 on 
the right hand side of the expression of these subfunctions. 
The logic AND of A all “1s' equals A. Thus subfunction 
F1 (B.C) may be set to yield all “1s' to get A on the left side 
of the equation. Note also that all “1s' equals two's 
complement signed binary number minus 1 (-1). 
0319. The examples below show how to use the equation 
and the subfunctions of Table 24 to derive any of the 
possible arithmetic logic unit functions and their corre 
sponding function codes. The arithmetic function A+B can 
be expressed as A&(all “1s')+B. This requires F1 (B.C)=all 
“1’s” and F2(B,C)=B. The F1 code for all “1s” is Hex “AA' 
and the F2 code for B is Hex “CC. Bit-wise XORing Hex 
“AA’ and Hex “CC” gives Hex “66”. Table 23 shows that 
Hex '66' is function code for A+B. 

0320 The arithmetic function A-B can be expressed as 
A&(all “1s”)+(-B-1)+1. This implies F1 (B,C)=all “1’s” 
(F1 code Hex “AA') and F2(B,C)=-B-1 (F2 code Hex 
“33”) with a carry-in injection of “1”. Recall that a carry-in 
of “1” is the default for subfunctions F2 that include 
negation. Bit-wise XORing the F1 code of Hex “AA’ and 
with the F2 code of Hex “33” gives Hex “99”. Table 23 
shows that Hex '99 is the function code for A-B assuming 
a carry-in of “1”. 
0321) The arithmetic function A+C is derived similarly to 
A+B. Thus A+C=A&(all “1s')+C. This can be derived by 
choosing F1 (B,C)=all “1’s” and F2(B,C)=C. The exclusive 
OR of the F1 code of Hex 'AA' and the F2 code of Hex 
“FO produces Hex “5A the function code for A+C. Like 
wise, A-C is the same as A&(all “1s')+(-C-1)+1. The 
exclusive OR of the F1 code of Hex'AA' and the F2 code 
of Hex “OF produces Hex “A5” the function code for A-C. 
0322 Three input arithmetic logic unit 230 provides a 
major benefit by providing masking and/or conditional func 
tions between two of the inputs based on the third input. The 
data path of data unit 110 enables the C-port to be most 
useful as a mask using mask generator 234 or conditional 
control input using expand circuit 238. Arithmetic logic unit 
230 always performs Boolean functions before arithmetic 
functions in any mixed Boolean and arithmetic function. 
Thus a carry could ripple out of unmasked bits into one or 
more bits that were Zeroed or set by a Boolean function. The 
following examples are useful in masking and conditional 
operations. 

0323 The function A+(B&C) can be expressed as A&(all 
“1s”)+(B&C). Choosing F1(B,C)=all “1s” (F1 code of Hex 
“AA') and F2(B,C)=B&C (F2 code of Hex “CO") gives 
A+(B&C). The bit-wise exclusive OR of HEX “AA’ and 
Hex “CO' gives the arithmetic logic unit function code of 
Hex “6A' listed in Table 23. This function can strip off bits 
from unsigned numbers. As shown below, this function can 
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be combined with barrel rotator 235 and mask generator 234 
in performing right shift and add operations. In this case C 
acts as a bit mask that Zeros bits of Beverywhere C is “0”. 
Since mask generator 234 can generate a mask with right 
justified ones, selection of mask generator 234 via multi 
plexer Cmux 233 permits this function to zero some of the 
most significant bits in B before adding to A. Another use of 
this function is conditional addition of B to A. Selection of 
expand circuit 238 via multiplexer Cmux 233 enables con 
trol of whether B is added to A based upon bits in Mflags 
register 211. During multiple arithmetic, bits in Mflags 
register 211 can control corresponding sections of arithmetic 
logic unit 230. 
0324. The function A+(B-C) can be expressed as A&(all 
“1S)+(B-C). Choosing F1 (B-C)=all “1s” (F1 code of 
Hex'AA') and F2(B,C)=B-C (F2 code of “CF) yields this 
expression. The bit-wise exclusive OR of Hex 'AA' and 
Hex 'CO' obtains the function code of Hex “65 as listed in 
Table 23. 

0325 The function A-(B&C) can be expressed as A&(all 
“1s”)+(-(B&-C)-1)+1. Choosing F1 (B,C)=all “1’s” (F1 
code Hex “AA') and F2(B,C)=-(B&C)-1 (F2 code Hex 
“3F) with a carry-in injection of “1” yields this expression. 
The bit-wise exclusive OR of Hex 'AA' and Hex “3F 
yields the function code Hex “95” as listed in Table 23. This 
function can strip off or mask bits in the B input by the C 
input before subtracting from A. 
0326. There are 16 possible functions where the subfunc 
tion F1 (B.C)=0. These functions are commonly used with 
other hardware to perform negation, absolute value, bit 
masking, and/or sign extension of the B-input by the C-in 
put. When subfunction F1 (B.C)=0 then the arithmetic logic 
unit function is given by subfunction F2(B,C). 
0327. The function -(B&C) may be expressed as 
(A&“0”)+(-(B&C)). This expression can be formed by 
choosing F1 (B,C)=0 (F1 code Hex “00) and F2(B,C)=- 
(B&C)-1 (F2 code Hex “3F) with a carry-in injection of 
“1”. The exclusive OR of Hex “00” and Hex “3F" yields the 
function code Hex “3F as shown in Table 23. This function 
masks bits in B by a mask C and then negates the quantity. 
This function can be used as part of a shift right and negate 
operation. 
0328 Several functions support masking both terms of 
the sum in the equation above in a useful manner. The 
function (A&C)+(B&C) can be achieved by choosing F1 (B. 
C)=C(F1 code Hex “AO”) and F2(B,C)=B&C (F2 code Hex 
“CO). The exclusive OR of Hex “AO” and Hex “FO yields 
the function code Hex “60 as shown in Table 23. This 
function will effectively zero the corresponding bits of the A 
and B inputs where C is “0” before adding. It should be 
noted that the Boolean function is applied before the addi 
tion and that one or more carries can ripple into the bits that 
have been Zeroed. When using multiple arithmetic such 
carries do not cross the boundaries between the split sections 
of arithmetic logic unit 230. A common use for this function 
is to Sum multiple Smaller quantities held in one register. The 
B-port receives a rotated version of the number going to the 
A-port and the C-port provides a mask for the bits that 
overlap. Four 8 bit numbers can be summed into two 16 bit 
numbers or two 16 bit numbers summed into one 32 bit 
number in a single instruction. 
0329. The similar function (A&C)-(B&C) is achieved by 
choosing F1(B,C)=C (F1 code Hex AO”) and F2(B,C)=- 
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(B&C)-1 and injecting a carry-in of “1”. The exclusive OR 
of Hex “AO” and Hex “3F" yields the function code Hex 
“9F as shown in Table 23. This function can produce 
negative Sums with the C-port value acting as a mask of the 
A and B inputs. 
0330. The function (A&B)+B is achieved by choosing 
F1 (B.C)=C (F1 code Hex “AO”) and F2(B,C)=B (F2 code 
Hex “CC). The exclusive OR of Hex “AO” and Hex “CC” 
yields the function code Hex “6C. This function can 
conditionally double B based on whether A is all “1s' or all 
“0s. 

0331 FIG. 26 illustrates in block diagram form an alter 
native embodiment of arithmetic logic unit 230. The arith 
metic logic unit 230 of FIG. 26 forms the equation: 

where: S is the arithmetic logic unit resultant; and F3 (A.B. 
C) and F4(A.B.C) can be any of the 256 possible Boolean 
functions of A, B and C. Adder 495 forms the addition of this 
equation and includes an input for a least significant bit carry 
input from bit 0 carry-in generator 246. Boolean function 
generator 496 forms the function F3(A,B,C) as controlled by 
input function signals. Boolean function generator 497 simi 
larly forms the function F4(A,B,C) as controlled by input 
function signals. Note that Boolean function generators 496 
and 497 independently form selected Boolean combinations 
of A, B and C from a set of the 256 possible Boolean 
combinations of three inputs. Note that it is clear from this 
construction that arithmetic logic unit 230 forms the Bool 
ean combinations before forming the arithmetic combina 
tion. The circuit in FIG. 21 can be modified to achieve this 
result. The generate/kill function illustrated in FIG. 21 
employs a part of the logic tree used in the propagate 
function. This consists of pass gates 451, 452, 453, 454, 461 
and 462. Providing a separate logic tree for this function that 
duplicates pass gates 451, 452, 453, 454, 461 and 462 and 
eliminating the NOT A gate 475 results in a structure 
embodying FIG. 26. Note in this construction one of the 
generate or kill terms may occur simultaneously with the 
propagate term. This construction provides even greater 
flexibility than that illustrated in FIG. 25. 
0332 The three input arithmetic logic unit 230, the 
auxiliary data path hardware and knowledge of the binary 
number system can be used to form many useful elementary 
functions The instruction set of the digital image/graphics 
processors makes more of the hardware accessible to the 
programmer than typical in microprocessors. Making hard 
ware more accessible to the programmer exposes some 
aspects of architecture that are hidden on most other pro 
cessors. This instruction set Supports forming custom opera 
tions using the elemental functions as building blocks. This 
makes greater functionality accessible to the programmer 
beyond the hardware functions commonly found within 
other processors, the digital image/graphics processors have 
hardware functions that can be very useful for image, 
graphics, and other processing. This combination of hard 
ware capability and flexibility allows programmers to per 
form in one instruction what could require many instructions 
on most other architectures. The following describes some 
key elemental functions and how two or more of them can 
be combined to produce a more complex operation. 
0333. The previous sections described the individual 
workings of each functional block of data unit 110. This 
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section will discuss how these functions can be used in 
combination to perform more complex operations. Barrel 
rotator 235, mask generator 239 and 3-input arithmetic logic 
unit 230 can work together to perform shift left, unsigned 
shift right, and signed shift right either alone or combination 
with addition or Subtraction in a single arithmetic logic unit 
instruction cycle. An assembler produces program code for 
digital image/graphics processors 71, 72, 73 and 74. This 
assemblier preferably supports the symbols “>>u' for 
unsigned (logical) right shift, “>> or “>>s' for arithmetic 
(signed) right shift, and '-' for a left shift. These shift 
notations are in effect macro functions that select the appro 
priate explicit functions in terms of rotates, mask generation, 
and arithmetic logic unit function. The assemblier also 
preferably Supports explicitly specifying barrel rotation 
(“\\'), mask generation (“6” and “%), and the arithmetic 
logic unit function. The explicit notation will generally be 
used only when specifying a custom function not expressible 
by the shift notation. 
0334 Data unit 110 performs left shift operations in a 
single arithmetic logic unit cycle. Such a left shift operation 
includes barrel rotator via barrel rotator 235 by the number 
of bits of the left shift. As noted above during such rotation, 
bits that rotate out the left wrap around into the right and thus 
need to be stripped off to perform a left shift. The rotated 
output is sent to the B-port of arithmetic logic unit 230. 
Mask generator 239 receives the shift amount and forms a 
mask with a number of right justified ones equal to the shift 
amount. Note that the same shift amount supplies the rotate 
control input of barrel rotator 235 from second input bus 202 
via multiplexer Smux 231 and mask generator 239 from 
second input bus 202 via multiplexer Mmux 234. Mask 
generator 239 supplies the C-port of arithmetic logic unit 
230. Arithmetic logic unit 230 combines the rotated output 
with the mask with the Boolean function B&-C. Left shifts 
are expressed in the assemblier below: 

Left Shift=Input-Shift Amount 

This operation is equivalent to the explicit notation: 
Left Shift=(Input\\Shift Amount)&-% Shift Amount 

The following example shows of a left shift of Hex 
“53FFFFA7” by 4 bits. While shown in several steps, data 
unit 110 performs this in a single pass arithmetic logic unit 
cycle The original number in binary notation is: 

0335) 01 01 00111111111111111111 10100111 
Rotation by 4 places in barrel rotator 235 yields: 

0336 00111111111111111111101001110101 
Mask generator 239 forms the following mask: 

0337 0000 0000 0000 0000 0000 0000 0000 1111 
Arithmetic logic unit 230 forms the logical combination 
B&-C. This masks bits in the rotated amount causing 
them to be “0” and retains the other bits. This yields the 
left shift result: 

0338 0011111111111111111110100111 0000 
The left shift of the above example results in an arithmetic 

overflow, because some bits have "overflowed'. Dur 
ing a shift left, arithmetic overflow occurs for unsigned 
numbers if any bits are shifted out. Arithmetic overflow 
may also occur for signed numbers if the resulting sign 
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bit differs from the original sign bit. Arithmetic logic 
unit 230 of this invention does not automatically detect 
arithmetic overflow on left shifts. Left shift overflow 
can be detected by Subtracting the left-most-bit-change 
amount of the original number generated by LMO/ 
RMO/LMBC/RMBC circuit 237 from the left shift 
amount. If the difference is less than or equal to Zero, 
then no bits will overflow during the shift. If the 
difference is greater than Zero, this difference is the 
number of bits that overflow. 

0339) The assemblier further controls data unit 110 to 
perform left shift and add operations and left shift and 
subtract operations. The assemblier translates the A+(B<<n) 
function into control of barrel shifter 235, mask generator 
239, and arithmetic logic unit 230 to performed the desired 
operation. A shift left and add operation works identically to 
the above example of a simple shift except for the operation 
of arithmetic logic unit 230. Instead of performing the 
logical function B&-C as in a simple shift, the arithmetic 
logic unit performs the mixed arithmetic and logical func 
tion A+(B&-C). A left shift and add operation is expressed 
in the assemblier notation as: 

LShift Add=Input1+Input2<<Shift Amount 

This operation is equivalent to: 
LShift Add=Input1+(Input2\\Shift Amount)&-% 
Shift Amount 

The following example shows a left shift of Hex 
“53FFFFA7” by 4 bits followed by addition of Hex 
"000000A'. Note that all these steps require only a single 
arithmetic logic unit cycle. The original Input2 in binary 
notation is: 

0340) 01 01 00111111111111111111 10100111 
Rotation by 4 places in barrel rotator 235 yields: 
0341 00111111111111111111 101001110101 
Mask generator 239 forms the mask: 
0342) 0000 0000 0000 0000 0000 0000 0000 1111 
Arithmetic logic unit 230 forms the logical combination 
B&-C producing a left shift result: 

0343 00111111111111111111 10100111 0000 
The other operand Input1 in binary notation is: 

0344) 0000 0000 0000 0000 0000 0000 1010 1010 
Finally the sum is: 

0345 001111111111111111111011 00011010 
Note that arithmetic logic unit 230 forms the logical 

combination and the arithmetic combination is a single 
cycle and that the left shift result shown above is not 
available as an intermediate result. Note also that the 
sum may overflow even if the left shift does not 
produce an overflow. Overflow of the sum is detected 
by generation of a carry-out from the most significant 
bit of arithmetic logic unit 230. This condition is 
detected and stored in the “V” bit of status register 210. 

0346) The shift left and subtract operation also breaks 
down into a set of functions performed by barrel rotator 235, 
mask generator 237, and arithmetic logic unit 239 in a single 
arithmetic logic unit cycle. The left shift and subtract 
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operation differs from the previously described left shift 
operation and left shift and add operation only in the 
function of arithmetic logic unit 230. During left shift and 
subtract arithmetic logic unit 230 performs the mixed arith 
metic and logical function A+(B-C)+1. Arithmetic logic 
unit 230 performs the "+1 operation by injection of a “1” 
into the carry input of the least significant bit. This injection 
of a carry-in takes place at bit 0 carry-in generator 246. Most 
Subtraction operations with this invention take place using 
such a carry-in of “1” to the least significant bit. The 
assemblier notation expresses left shift and Subtract opera 
tions as follows: 

LShift Sub=Input1-Input2<<Shift Amount 

This operation is equivalent to: 
LShift Sub=Input1-(Input2\\Shift Amount)&-% 
Shift Amount-1 

The following example shows a left shift of Hex 
“53FFFFA7” by 4 bits followed by subtraction of Hex 
"000000AA’. Note that all these steps require only a single 
arithmetic logic unit cycle. The original Input2 in binary 
notation is: 

0347) 01 01 00111111111111111111 10100111 
Rotation by 4 places in barrel rotator 235 yields: 
0348 00111111111111111111 101001110101 
Mask generator 239 forms the mask: 
0349 0000 0000 0000 0000 0000 0000 0000 1111 
The result of the logical combination ~BC is as follows: 
0350) 1100 0000 0000 0000 0000 01.01 1000 1111 
The other operand Input1 in binary notation is: 

0351 0000 0000 0000 0000 0000 0000 1010 1010 
The sum A+(-BC) is: 
0352) 1100 0000 0000 0000 0000 0110 0011 1001 
Finally the addition of the “1” injected into the least 

significant bit carry-in yields: 

0353) 1100 0000 0000 0000 0000 0110 00111010 
Note that arithmetic logic unit 230 forms the logical 

combination and the arithmetic combination is a single 
cycle and that neither the left shift result nor the partial 
Sum shown above are available as intermediate results. 

0354) The assemblier of the preferred embodiment can 
control data unit 110 to perform an unsigned right shift with 
Zeros shifted in from the left in a single arithmetic logic unit 
cycle. Since barrel rotator 235 performs a left rotate, at net 
right rotate may be formed with a rotate amount of 32-n, 
where n is the number of bits to rotate right. Note, only the 
5 least significant bits of the data on second input bus 202 
are used by barrel rotator 235 and mask generator 239. 
Therefore the amounts 32 and 0 are equivalent in terms of 
controlling the shift operation. The assembler will automati 
cally make the 32-n computation for shifts with an imme 
diate right shift amount. The assemblier of the preferred 
embodiment requires the programmer form the quantity 
32-n on register based shifts. 
0355 Once the accommodation for right rotation is 
made, the unsigned shift right works the same as the shift left 
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except that arithmetic logic unit 230 performs a different 
function. This operation includes rotation by the quantity 
32-n via barrel rotator 235. The result of this net rotate right 
will to have bits wrapped around from the least significant 
to the most significant part of the word. The same quantity 
(32-n) controls mask generator 239, which will generate 
32-n right justified ones. Mask generator 239 is controlled 
with the “” option so that a shift amount of Zero produces 
a mask of all “1s’. In this case no bits are to be stripped off. 
Arithmetic logic unit 230 then forms a Boolean combination 
of the outputs of barrel rotator 235 and mask generator 239. 
0356. An example of an unsigned right shift operation is 
shown below. The assemblier notation for an unsigned right 
shift is: 

Unsigned Right Shift=Input>>u(32-Shift Amount) 

0357 The equivalent operation explicitly showing the 
functions performed is: 

Unsigned Right Shift = 
(Input\\(32-Shift Amount))&% (32-Shift Amount) 

99 Note in the equation above the mask operator “% speci 
fies that if the shift amount is zero, an all “1” mask will be 
generated. The example below shows the unsigned shifting 
the number Hex “53FFFFA7” right by 4 bit positions. The 
original number in binary form is: 

0358) 01 01 00111111111111111111 10100111 
This number when left rotated by 32-4=28 places 

becomes: 

0359) 01110101 00111111111111111111 1010 
Mask generator 239 forms a mask from the input 32-4= 

28, which is: 

0360 0000 1111111111111111 1111 11111111 
Lastly arithmetic logic unit 230 forms the Boolean com 

bination B&C yielding the result: 

0361 0000 01.01 001111111111111111111010 
0362 Data unit 110 may perform either unsigned right 
shift and add or unsigned right shift and Subtract operations. 
In the preferred embodiment the assemblier translates the 
notation A+B>>u(n) into an instruction that controls barrel 
shifter 235, mask generator 239 and arithmetic logic unit 
230 to performed an unsigned right shift and add operation. 
The unsigned shift right and add works identically to the 
previous example of a simple unsigned shift right except that 
arithmetic logic unit 230 performs the function A+(B&C). In 
the preferred embodiment the assemblier translates the nota 
tion A-B>>u(n) into an instruction that controls barrel 
shifter 235, mask generator 239 and arithmetic logic unit 
230 to performed an unsigned right shift and subtract 
operation. The unsigned shift right and Subtract works 
similarly to the previous example of a simple unsigned shift 
right except that arithmetic logic unit 230 performs the 
function A-(-BC)+1. As with left shift and subtract the 
“+1 operation involves injection of a “1” carry-in into the 
least significant bit via bit 0 carry-in generator 246. 
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0363 The assemblier of the preferred embodiment can 
control data unit 110 to perform a signed right shift with sign 
bits shifted in from the left in a single arithmetic logic unit 
cycle. The assembler will automatically make the 32-n 
computation for such shifts with an immediate right shift 
amount. Data unit 110 includes hardware that detects that 
state of the most significant bit, called the sign bit, of the 
input into barrel rotator 235. This sign bit may control the 4 
least significant bits of the function code. When using this 
hardware, the 4 least significant bits of the function code are 
inverted if the sign bit is “0”. Signed right shift operations 
use this sign detection hardware to control the function 
arithmetic logic unit 230 performs based on the sign of the 
input to barrel rotator 235. This operation can be explained 
using the following elemental functions. Barrel rotator 235 
performs a net rotate right by rotating left by 32 minus the 
number of bits of the desired signed right shift (32-n). This 
shift amount (32-n) is supplied to mask generator 237, which 
will thus generate 32-n right justified “1s'. The “1s' of this 
mask will select the desired bits of the number that is right 
shifted. The “O’s” of this mask will generate sign bits equal 
to the of the most significant bit input to barrel rotator 235. 
Arithmetic logic unit 230 then combines the rotated number 
from barrel rotator 235 and the mask from mask generator 
237. The Boolean function performed by arithmetic logic 
unit 230 depends upon the sign bit at the input to barrel 
rotator 235. If this sign bit is “0”, then arithmetic logic unit 
230 receives function signals to perform B&C. While select 
ing the rotated number unchanged, this forces “0” any bits 
that are “O'” in the mask. Thus the most significant bits of the 
result are “0” indicating the same sign as the input to barrel 
rotator 235. If the sign bit is “1, then arithmetic logic unit 
230 received function signal to perform B-C. This function 
selects the rotated amount unchanged while forcing to “1” 
any bits that are “O'” in the mask. The change in function 
code involves inverting the 4 least significant bits if the 
detected sign bit is “0”. Thus the most significant bits of the 
result are “1”, the same sign indication as the input to barrel 
rotator 235. 

0364 Two examples of the unsigned right shift operation 
are shown below. Signed right shift is the default assemblier 
notation for right shifts. The two permitted assemblier 
notations for a signed right shift are: 

Signed Right Shift = Input>>s(32-Shift Amount) 
Signed Right Shift = Input>>(32-Shift Amount) 

Because this operation uses the sign detection hardware, 
there is no explicit way in the notation of the preferred 
embodiment of the assemblier to specify this operation in 
terms of rotation and masking. In the preferred embodiment 
the sign of the input to barrel rotator 235 controls inversion 
of the function signals F3-F0. The first example shows a 4 
place signed right shift of the negative number Hex 
“ECFFFFA7”. The original number in binary notation is: 

0365) 1110 1100 1111111111111111 10100111 
Left rotation by 28 (32-4) places yields: 
0366 01 11 1110 1100 1111111111111111 1010 
Mask generator 237 forms this mask: 
0367 0000 1111111111111111111111111111 
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Because the most significant bit of the input to barrel 
rotator 235 is “1”, arithmetic logic unit 230 forms the 
Boolean combination of B-C. This yields the result: 

0368 11111110 1100 11111111 1111 1111 1010 
In this example “1’s are shifted into the most significant 

bits of the shifted result, matching the sign bit of the 
original number. The second example shows a 4 place 
signed right shift of the positive number Hex 
“5CFFFFA7”. The original number in binary notation 
1S 

0369) 0101 1100 1111111111111111 10100111 
Left rotation by 28 (32-4) places yields: 

0370) 01110101 1100 1111111111111111 1010 
Mask generator 237 forms this mask: 

0371 0000 1111111111111111111111111111 
Because the most significant bit of the input to barrel 

rotator 235 is “0”, arithmetic logic unit 230 forms the 
Boolean combination of B&C by inversion of the four 
least significant bits of the function code. This yields 
the result: 

0372 0000 01.01 1100 11111111111111111010 
Note that upon this right shift “0’s” are shifted in the most 

significant bits, matching the sign bit of the original 
number. 

0373) Data unit 110 may perform either signed right shift 
and add or signed right shift and Subtract operations. In the 
preferred embodiment the assemblier translates the nota 
tions A+B>>(n) or A+B>>S(n) into an instruction that con 
trols barrel rotator 235, mask generator 239 and arithmetic 
logic unit 230 to perform a signed right shift and add 
operation. The signed shift right and add works identically 
to the previous example of the signed shift right except for 
the function performed by arithmetic logic unit 230. In the 
signed right shift and add operation arithmetic logic unit 230 
performs the function A+(B&C) if the sign bit of the input 
to barrel rotator 235 is “0”. If this sign bit is “1”, then 
arithmetic logic unit 230 performs the function A+(B-C). In 
the preferred embodiment the assemblier translates the nota 
tions A-B>>S(n) or A-B>>(n) into an instruction that con 
trols barrel shifter 235, mask generator 239 and arithmetic 
logic unit 230 to perform a signed right shift and subtract 
operation. The signed shift right and Subtract operation 
works similarly to the previous example of a simple signed 
shift right except for the function of arithmetic logic unit 
230. When the sign bit is “1”, arithmetic logic unit 230 
performs the function A-(B&C)+1. When the sign bit is “0”. 
arithmetic logic unit 230 performs the alternate function 
A-(B-C)+1. As in the case of left shift and subtract the "+1” 
operation involves injection of a “1” carry-in into the least 
significant bit via bit 0 carry-in generator 246. 
0374 Barrel rotator 235, mask generator 237 and arith 
metic logic unit 230 can perform field extraction in a single 
cycle. A field extraction takes a field of bits in a word starting 
at any arbitrary bit position, strips off the bits outside the 
field and right justifies the field. Such a field extraction is 
performed by rotating the word left the number of bits 
necessary to right justify the field and masking the result of 
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the rotation by the number of bits in the size of the field. 
Unlike the cases for shifting, the rotation amount, which is 
based on the bit position, and the mask input, which is based 
on the field size, are not necessarily the same amount. The 
assemblier of the preferred embodiment employs the fol 
lowing notation for field extraction: 

Field Extract=(ValueW(32-starting bit))&%lField size 

The “% operator causes mask generator 237 to form a 
mask having a number of right justified “1s' equal to the 
field size, except for an input of Zero. In that case all bits of 
the generated mask are “1”. So that no bits are masked by the 
logical AND operation. This rotation and masking may 
produce wrapped around bits if the field size is greater than 
the starting bit position. These parameters specify an anoma 
lous case in which the specified field extends beyond the end 
of the original word. Data unit 110 provides no hardware 
check to for this case. It is the responsibility of the pro 
grammer to prevent this result. The example below demon 
strates field extraction of a 4-bit field starting at bit 24, which 
is the eight bit from the left, of the number Hex 
“5CFFFFA7”. The number in binary form is: 

0375 01.01 1100 1111111111111111 10100111 
The number must be rotated left by 32-24 or 8 bits to right 

justify the field. The output from barrel rotator 235 is: 
0376) 1111111111111111101001110101 1100 
Mask generator 237 forms the following mask from the 

field size of 4 bits: 

0377 0000 0000 0000 0000 0000 0000 0000 1111 
Lastly, arithmetic logic unit 230 forms the Boolean com 

bination B&C. This produces the extracted field as 
follows: 

0378) 0000 0000 0000 0000 0000 0000 0000 1100 
0379 Mflags register 211 is useful in a variety of image 
and graphics processing operations. These operations fall 
into two classes. The first class of Mflags operations require 
a single pass through arithmetic logic unit 230. A number is 
loaded into Mflags register 211 and controls the operation of 
arithmetic logic unit 230 via expand circuit 238, multiplexer 
Cmux 233 and the C-port of arithmetic logic unit 230. Color 
expansion is an example of these single pass operations. The 
second class of Mflags operations require two passes 
through arithmetic logic unit 230. During a first pass certain 
bits are set within Mflags register 211 based upon the carry 
of Zero results of arithmetic logic unit 230. During a second 
pass the contents of Mflags register 211 control the operation 
of arithmetic logic unit 230 via expand circuit 238, multi 
plexer Cmux 233 and the C-port of arithmetic logic unit 230. 
Such two pass Mflags operations are especially useful when 
using multiple arithmetic. Numerous match and compare, 
transparency, minimum, maximum and Saturation opera 
tions fall into this second class. 

0380 A basic graphics operation is the conversion of one 
bit per pixel shape descriptors into pixel size quantities. This 
is often called color expansion. In order to conserve memory 
space the shape of bit mapped text fonts are often stored as 
shapes of one bit per pixel. These shapes are then 
“expanded into the desired color(s) when drawn into the 
display memory. Generally “1s” in the shape descriptor 
select a “one color” and “O’s' in the shape descriptor select 
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a "zero color. A commonly used alternative has “O’s' in the 
shape descriptor serving as a place saver or transparent 
pixel. 
0381. The following example converts 4 bits of such 
shape descriptor data into 8 bit pixels. In this example the 
data size of the multiple arithmetic operation is 8 bits. Thus 
arithmetic logic unit 230 operates in 4 independent 8 bit 
sections. The four bits of descriptor data “0110” are loaded 
into Mflags register 211: 

0382 XXXXXXXX XXXXXXXX XXXXXXXX XXXX0110 
The bits listed as 'X' are don't care bits that are not 

involved in the color expansion operation. Expand 
circuit 238 expands these four bits in Mflags register 
211 into blocks of 8 bit “1s’ and “O’s as follows: 

0383) 00000000 1111111111111111 00000000 
The one color is supplied to the A-port of arithmetic logic 

unit 230 repeated for each of the 4 pixels within the 32 
bit data word: 

0384) 11110000 11110000 11110000 11110000 
The Zero color is supplied to the B-port of arithmetic logic 

unit 230, also repeated for each of the 4 pixels: 
0385) 10101010 10101010 1010101010101010 
Arithmetic logic unit 230 forms the Boolean combination 
(A&C)(B&-C) which yields: 

0386) 1010101011110000 11110000 10101010 
0387 Color expansion is commonly used with a PixBlt 
algorithm. To perform a complete PixBlt, the data will have 
to be rotated and merged with prior data to align the bits in 
the data to be expanded with the pixel alignment of the 
destination words. Barrel rotator 235 and arithmetic logic 
unit 230 can align words into Mflags register 211. This 
example assumed that the shape descriptor data was prop 
erly aligned to keep the example simple. Note also that 
Mflags register 211 has its own rotation capability upon 
setting bits and using bits. Thus a 32 bit word can be loaded 
into Mflags register 211 and the above instruction repeated 
8 times to generate 32 expanded pixels. 
0388 Simple color expansion as in the above example 
forces the result to be one of two solid colors. Often, 
particularly with kerned text letters whose rectangular boxes 
can overlap, it is desirable to expand “1s' in the shape 
descriptor to the one color but have “O’s serve as place 
saver or transparent pixels. The destination pixel value is 
unchanged when moving such a transparent color. Data unit 
110 can perform a transparent color expand by simply using 
a register containing the original contents of the destination 
as the Zero value input. An example of this appears below. 
Arithmetic logic unit 230 performs the same function as the 
previous color expansion example. The only difference is the 
original destination becomes one of the inputs to arithmetic 
logic unit 230. The four bits of descriptor data “0110” are 
loaded into Mflags register 211: 

0389 XXXXXXXX XXXXXXXX XXXXXXXX XXXX0110 
Expand circuit 238 expands these four bits in Mflags 

register 211 into blocks of 8 bit “1s” and “0’s” as 
follows: 

0390 00000000 1111111111111111 00000000 
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The one color is supplied to the A-port of arithmetic logic 
unit 230 repeated for each of the 4 pixels within the 32 
bit data word: 

0391) 11110000 11110000 11110000 11110000 
The original destination data is supplied to the B-port of 

arithmetic logic unit 230, original destination data 
including 4 pixels: 

0392) 11001100 1010101011101110 11111111 
Arithmetic logic unit 230 again forms the Boolean com 

bination (A&C)(B&-C) which yields: 
0393) 11001100 11110000 11110000 11111111 
Note that the result includes the one color for pixels 

corresponding to a “1” in Mflags register 211 and the 
original pixel value for pixels corresponding to a “0” in 
Mflags register 211. 

0394 Data unit 110 can generate a 1 bit per pixel mask 
based on an exact match of a series of 8 bit quantities to a 
fixed compare value. This is shown in the example below. 
The compare value is repeated four times within the 32 bit 
word. Arithmetic logic unit 230 subtracts the repeated com 
pare value from a data word having four of the 8 bit 
quantities. During this subtraction, arithmetic logic unit 230 
is split into 4 sections of 8 bits each. The Zero detectors 321, 
322, 323 and 324 illustrated in FIG. 7 supply are data to be 
stored in Mflags register 211. This example includes two 
instructions in a row to demonstrate accumulating by rotat 
ing Mflags register 211. Initially Mflags register 211 stores 
don't care data: 

0395 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 
The first quantity for comparison is: 

0396) 00000011 00001111 00000001 00000011 
The compare value is "00000011”. This is repeated four 

times in the 32 bit word as: 

0397) 00000011 00000011 00000011 00000011 
Arithmetic logic unit 230 subtracts the compare value 

from the first quantity. The resulting difference is: 
0398 00000000 00001100 11111110 00000000 
This forms the following Zero compares “1001 that are 

stored in Mflags register 211. In this example Mflags 
register 211 is pre-cleared before storing the Zero 
results. Thus Mflags register 211 is: 

0399) 00000000 00000000 00000000 00001001 
The second quantity for comparison is: 

04.00 0000011111111100 00000011 00000000 
The result of a second subtraction of the same compare 

value is: 

04.01 00000100 11111001 00000000 11111101 
This forms the new zero compares "0010 that are stored 

in Mflags register 211 following rotation of four places: 

0402 00000000 00000000 00000000 10010010 
Additional compares may be made in the same fashion 

until Mflags register 211 stores 32 bits. Then the 
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contents of Mflags register 211 may be moved to 
another register or written to memory. 

Threshold detection involves comparing pixel values to a 
fixed threshold. Threshold detection sets a 1 bit value 
for each pixel which signifies the pixel value was 
greater than or less than the fixed threshold. Depending 
on the particular application, the equal to case is 
grouped with either the greater than case or the less 
than case. Data unit 110 may be programmed to from 
the comparison result in a single arithmetic logic unit 
cycle. Arithmetic logic unit 230 forms the difference 
between the quantity to be tested and the fixed thresh 
old. The carry-outs from each section of arithmetic 
logic unit 230 are saved in Mflags register 211. If the 
quantity to be tested I has the fixed threshold T sub 
tracted from it, a carry out will occur only if I is greater 
than or equal to T. As stated above, arithmetic logic unit 
230 performs subtraction by two’s complement addi 
tion and under these circumstances a carry-out indi 
cates a not-borrow. Below is an example of this process 
for four 8 bit quantities in which the threshold value is 
"00000111'. Let four 8 bit quantities I to be tested be: 

0403 00001100 00000001 00000110 00000111 
The threshold value T repeated four times within the 32 

bit word is: 

0404 00000111 00000111 00000111 00000111 
The difference is: 

04.05 000001011111101011111111 00000000 
which produces the following carry-outs "1001'. This 

results in a Mflags register 211 of: 
0406 XXXXXXXX XXXXXXXX XXXXXXXX XXXX1001 
As in the case of match detection, this single instruction 

can be repeated for new data with Mflags resister 
rotation until 32 bits are formed. 

0407 When adding two unsigned numbers, a carry-out 
indicates that the result is greater than can be expressed in 
the number of bits of the result. This carry-out represents the 
most significant bit of precision of the result. Thus saving the 
carry-outs in Mflags register 211 can be used to maintain 
precision. These carry-out bits may be saved for later 
addition to maintain precision. Particularly when used with 
multiple arithmetic, limiting the precision to fewer bits often 
enables the same process to be performed in fewer arith 
metic logic unit cycles. 
0408 Mflags operations of the second type employ both 
setting bits within Mflags register 211 and employing bits 
stored in Mflags register 211 to control the operation of 
arithmetic logic unit 230. Multiple arithmetic can be used it 
in combination with expands of Mflags register 211 to 
perform multiple parallel byte or half-word operations. 
Additionally, the setting of bits in Mflags register 211 and 
expanding Mflags register 211 to arithmetic logic unit 230 
are inverse space conversions that can be used in a multitude 
of different ways. 
04.09 The example below shows a combination of an 8 
bit multiple arithmetic instruction followed by an instruction 
using expansion to perform a transparency function. Trans 
parency is commonly used when performing rectangular 
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PixBlts of shapes that are not rectangular. The transparent 
pixels are used as place saver pixels that will not affect the 
destination and thus are transparent so the original destina 
tion shows through. With transparency, only the pixels in the 
Source that are not equal to the transparent code are replaced 
in the destination. In a first instruction the transparent color 
code is subtracted from the source and Mflags register 211 
is set based on equal Zero. If a given 8 bit quantity matches 
the transparent code, a corresponding “1” will be set in 
Mflags register 211. The second instruction uses expansion 
circuit 238 to expand Mflags register 211 to control selection 
on a pixel by pixel basis of the source or destination. 
Arithmetic logic unit 230 performs the function 
(A&C)(B&-C) to make this selection. While this Boolean 
function is performed bit by bit, Mflags register 211 has been 
expanded to the pixel size of 8 and thus it selects between 
pixels. The pixel source is: 

0410 0000001101110011 00000011 00000001 
The transparent code TC is "00000011”. Repeated 4 times 

to fill the 32 bit word this becomes: 

0411 00000011 00000011 00000011 00000011 
The difference SRC-TC is: 

0412 0000000001110000 00000000 11111110 
which produces the Zero detection bits “1010'. Thus 

Mflags register 211 stores: 

0413 XXXXXXXX XXXXXXXX XXXXXXXX XXXX1010 
In the second instruction, expand circuit 238 expands 

Mflags register 211 to: 
0414) 11111111 00000000 11111111 00000000 
The original destination DEST is: 
0415) 11110001 001100110111011111111111 
The original source SRC forms a third input to arithmetic 

logic unit 230. Arithmetic logic unit 230 then forms the 
Boolean combination (DEST&(a)MF) (SRC&-(a)MF) 
which is: 

0416) 11110001 000100110111011 1 00000001 
Note that the resultant has the state of the source where 

the source was not transparent, otherwise it has the state 
of the destination. This is the transparency function. 

Data unit 110 can perform maximum and minimum 
functions using Mflags register 211 and two arithmetic 
logic unit cycles. The maximum function takes the 
greater of two unsigned pixel values as the result. The 
minimum function takes the lesser of two unsigned 
pixel values as the result. In these operations the first 
instruction performs multiple subtractions, setting 
Mflags register 211 based on carry-outs. Thus for status 
setting arithmetic logic unit 230 forms OP1-OP2. This 
first instruction only sets Mflags register 211 and the 
resulting difference is discarded. When performing the 
maximum function the second instruction, arithmetic 
logic unit 230 performs the operation 
(OP1&(a)MF)|(OP2&-(a)MF). This forms the maxi 
mum of the individual pixels. Let the first operand OP1 
be: 

0417 0000000111111110 00000011 00000100 
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and the second operand OP2 be: 

0418 00000011 00000111 00000111 00000011 
The difference OP1-OP2 is: 

0419) 11111110 1111011111111100 00000000 
This produces carry-outs (not-borrows) “0101 setting 

Mflags register 211 as: 

0420 XXXXXXXX XXXXXXXX XXXXXXXX XXXX0101 
In the second instruction the four least significant bits in 

Mflags register 211 are expanded via expand circuit 
238 producing: 

0421 00000000 11111111 00000000 11111111 
Arithmetic logic unit 230 performs the Boolean function 

(OP1&(a)MF)I(OP2&-(a)MF). This produces the 
result: 

0422) 0000001111111110 00000111 00000100 
Note that each 8 bit section of the result has the state of 

the greater of the corresponding sections of OP1 and 
OP2. This is the maximum function. The minimum 
function operates similarly to the maximum function 
above except that in the second instruction arithmetic 
logic unit 230 performs the Boolean function 
(OP1&-(a)MF) (OP2&(a)MF). This Boolean function 
selects the lesser quantity rather than greater quantity 
for each 8 bit section. 

Data unit 110 may also perform an add-with-saturate 
function. The add-with-saturate function operates like a 
normal add unless an overflow occurs. In that event the 
add-with-saturate function clamps the result to all 
“1s'. The add-with-saturate function is commonly 
used in graphics and image processing to keep Small 
integer results from overflowing the highest number 
back to a low number. The example below shows 
forming the add-with-saturate function using multiple 
arithmetic on four 8 bit pixels in two instructions. First 
the addition takes place with the carry-outs stored in 
Mflags register 211. A carry-out of “1” indicates an 
overflow, thus that sum should be set to all '1's', which 
is the saturated value. Then expand circuit 238 expands 
Mflags register 211 to control selection of the sum or 
the saturated value. The first operand OP1 is: 

0423) 0000000111111001 00000011 00111111 
The second operand OP2 is: 

0424) 11111111 00001011 000001110111111 
Arithmetic logic unit 230 forms the sum OP1+OP2= 
RESULT resulting in: 

0425 00000000 00000100 0000101010111110 
with corresponding carry-outs of “1100'. These are stored 

in Mflags register 211 as: 

0426 XXXXXXXX XXXXXXXX XXXXXXXX XXXX1100 
In the second instruction expand circuit 238 expands the 

four least significant bits of Mflags register 211 to: 

0427) 1111111111111111 00000000 00000000 
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Arithmetic logic unit 230 performs the Boolean function 
RESULT(a)MF forming: 

0428 1111111111111111 00001010 10111110 

Note the result of the second instruction equals the sum 
when the sum did not overflow and equals “11111111 
when the sum overflowed. 

0429 Data unit 110 can similarly perform a subtract 
with-saturate function. The subtract-with-saturate function 
operates like a normal Subtract unless an underflow occurs. 
In that event the subtract-with-saturate function clamps the 
result to all “O’s'. The subtract-with-saturate function may 
also be commonly used in graphics and image processing. 
The data unit 110 performs the subtract-with-saturate func 
tion similarly to the add-with-saturate function shown 
above. First the subtraction takes place with the carry-outs 
stored in Mflags register 211. A carry-out of “O'” indicates a 
borrow and thus an underflow. In that event the difference 
should be set to all '0's', which is the saturated value. Then 
expand circuit 238 expands Mflags register 211 to control 
selection of the difference or the saturated value. During this 
second instruction arithmetic logic unit 230 performs the 
Boolean function RESULT&(a)MF. This forces the combi 
nation to “O'” if the corresponding carry-out was “0”, thereby 
saturating the difference at all “O’s”. On the other hand if the 
corresponding carry-out was “1”, then the Boolean combi 
nation is the same as RESULT. 

0430 FIG. 27 illustrates in block diagram form the 
construction of address unit 120 of digital image/graphics 
processor 71 according to the preferred embodiment of this 
invention. The address unit 120 includes: a global address 
unit 610; a local address unit 620; a global/local multiplexer 
control register GLMUX 631; a pair of Zero detectors 631 
and 632; a multiplexer 641; four control circuits 642, 643, 
653, 654; a global temporary address register GTA 651; a 
local temporary address register LTA 652; a pair of address 
unit arithmetic buffers 655 and 656; an instruction decode 
logic 660; a global address port 121; and a local address port 
122. As illustrated in FIG. 27, global/local address multi 
plexer register GLMUX 630 is coupled to global port source 
data bus GSrc 105 and to global port destination data bus 
Gdst 107. Global/local address multiplexer register 
GLMUX 630 is in the register space of digital image/ 
graphics processor 71 and may be written to or read from as 
any other register. Global temporary address register GTA 
651 is connected to global port source data bus Gsrc 105 
only. Though global temporary address register GTA is 
within the register space of digital image/graphics processor 
71, the preferred embodiment allows reads from but not 
writes to this register. An attempted write to global tempo 
rary address register GTA 651 is ignored. Note that local 
temporary address register LTA 652 is coupled to neither 
global port source data bus GSrc 105 nor global port desti 
nation data bus Gdst 107. This register is not within the 
register space of digital image/graphics processor 71 and 
cannot be accessed. As previously described each digital 
image/graphics processor 71, 72, 73 and 74 includes both a 
global data port and a local data port, which may operate 
simultaneously. Separate global and local address units 
allow generation of independent addresses for these inde 
pendent data transfers. In addition, some combined 
addresses are permitted as will be further described below. 
Note that all the functions of address unit 120 are controlled 
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by instruction decode logic 660, which is responsive to the 
instruction currently in the address pipeline stage via opcode 
bus 133. The details of these control lines are omitted from 
FIG. 27 for the sake of clarity. However, these control 
functions are within the capability of one skilled in the art 
from this description and the description of the instruction 
word formats in conjunction with FIG. 43. Tables 25 and 26 
detail the permitted addresses generated by the respective 
global and local data ports of digital image/graphics pro 
cessors 71, 72, 73 and 74. Table 25 indicates the permitted 
data space addresses in hexadecimal according to the form 
Hex “0000????”, where the range of the final four digits 
“????' is shown in Table 25. 

TABLE 25 

Global Local Ports 

Ports DIGP 71 DIGP 72 DIGP 73 DIGP 74 

OOOO-3FFF OOOO-OFFF 1000-1FFF 2000-2FFF 3000-3FFF 
8OOO-8FFF 8000-87FF 9000-97FF AOOO-A7FF BOOO-B7FF 
9000-97FF 
AOOO-A7FF 
BOOO-B7FF 

0431. In a similar fashion, Table 26 indicates the permit 
ted parameter space addresses in hexadecimal according to 
the form Hex "0100????", where the range of the final four 
digits “????” is shown in Table 26. 

TABLE 26 

Global Local Ports 

Ports DIGP 71 DIGP 72 DIGP 73 DIGP 74 

OOOO-07FF OOOO-07FF 1000-17FF 2000-27FF 3000-37FF 
1000-17FF 
2000-27FF 
3000-37FF 

Tables 25 and 26 show the limitations on addressing of the 
local data ports. As previously described, the global data 
ports (G) of the four digital image/graphics processors 71, 
72, 73 and 74 may address any location within a data 
memory or a parameter memory. At the same time the local 
data ports (L) of each digital image/graphics processor 71, 
72, 73 and 74 may only address the data and parameter 
memories corresponding to that digital image/graphics pro 
CSSO. 

0432 FIG. 28 illustrates in block diagram form the 
construction of global address unit 610. In accordance with 
the preferred embodiment, local address unit 620 is con 
structed identically. Global address unit 610 includes: a set 
of address registers 611; a set of index registers 612: 
multiplexers 613 and 616; an index scaler circuit 614; and an 
addition/subtraction unit 615. According to the preferred 
embodiment the addresses include 32 bits, therefore address 
registers 611 and index registers 612 store data words of 32 
bits and addition/subtraction unit 615 operates on data words 
of 32 bits. 

0433 Table 27 lists the address register assignments. 
Note that address registers 611 are coupled to both global 
port source data bus GSrc 105 and global port destination 
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data bus Gdst 107. These connections allow register loads 
from memory, register stores to memory, and register to 
register data transfer with other registers within that digital 
image/graphics processor, such as data registers 200 within 
data unit 110. Various uses of these connections will be 
described below. 

TABLE 27 

Address 
Register Register Assignment 

AO Local address unit 
AO Local address unit 
A2 Local address unit 
A3 Local address unit 
A4 Local address unit 
AS reserved 
A6 Global Local address units 

shared Stack pointer 
A7 Local address unit 

read only, all Zeros 
A8 Global address unit 
A9 Global address unit 
A1O Global address unit 
A11 Global address unit 
A12 Global address unit 
A13 reserved 
A14 Global Local address units 

shared Stack pointer 
A15 Global address unit 

read only, all Zeros 

Address registers A0, A1, A2, A3 and A4 are within local 
address unit 620 and are available for general use. Address 
register A5 is not supported in the current embodiment, but 
its address is reserved for future expansion of the local 
address unit 620. Address registers A8, A9, A10, A11 and 
A12 are within global address unit 620 and are available for 
general use. Address register A13 is not supported in the 
current embodiment, but its address is reserved for future 
expansion of the global address unit 610. Address registers 
A6 and A14 are embodied by a single register accessible by 
local address unit 620 at address A6 and by address unit 610 
at address A14. This combined register A14/A6 will gener 
ally be used as a stack pointer. Note that stack operations are 
only allowed on aligned 32 bit word boundaries. Conse 
quently the two least significant bits of combined register 
A14/A6 are hardwired to “00. Writing to these two bits has 
no effect and they are always read as "00". Registers A7 and 
A15 are also embodied by the same hardware and both 
global address sun-unit 610 and local address unit 620 may 
use this combined register in the same instruction. Register 
A7 is accessible to local address unit 620 and register A15 
is accessible to global address unit 610. Combined register 
A15/A7 is hardwired to all “0’s”. Writing to either of these 
two registers has no effect and they are always read as all 
“O’s”. In the preferred embodiment these two registers are 
embodied by the same hardware accessible at differing 
addresses. 

0434 Table 28 lists the index register assignments. Index 
registers 612 are coupled to both global port source data bus 
Gsrc 105 and global port destination data bus Gdst 107. 
These connections permits register loads from memory, 
register stores to memory, and register to register data 
transfer with other registers within that digital image/graph 
ics processor, such as data registers 200 within data unit 110. 
Various uses of these connections will be described below. 
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TABLE 28 

Index 
Register Register Assignment 

XO Local address unit 
X1 Local address unit 
X2 Local address unit 
X3 reserved 
X4 reserved 
X5 reserved 
X6 reserved 
X7 reserved 
X8 Global address unit 
X9 Global address unit 
X10 Global address unit 
X11 reserved 
X12 reserved 
X13 reserved 
X14 reserved 
X15 reserved 

Index registers X0, X1 and X2 are within local address unit 
620 and are available for general use. Index registers X3. 
X4, X5, X6 and X7 are not supported in the current 
embodiment, but their addresses are reserved for future 
expansion of the local address unit 620. Index registers X8. 
X9 and X10 are within global address unit 620 and are 
available for general use. Index registers X1, X12, X13, X14 
and X15 are not supported in the current embodiment, but 
their addresses are reserved for future expansion of the 
global address unit 610. 
0435 Global address unit 610 generates a 32 bit address. 
Either an index stored in a specified index register within 
index registers 612 or an offset field from the instruction 
word is selected at multiplexer 613. This selection is con 
trolled by the instruction via instruction decode logic 660 
(FIG. 27). Multiplexer 613 also selects the size of the offset 
field again based on the instruction. As will be further 
discussed below, global address unit 610 may receive a 15 
bit offset field or a 3 bit offset field. Whether the offset field 
is 15 bits or 3 bits, this value is Zero extended to 32 bits 
before use. 

0436 Index scaler 614 optionally left shifts the data 
selected by multiplexer 613. This optional left shift is 
selected by a scaled/unscaled input that corresponds to the 
function of the instruction. This left shift is 0, 1 or 2 bits 
depending on the indicated data size. As previously 
described the pixel data may be specified as 8 bits (byte), 16 
bits (half word) or 32 bits (word). If scaling is selected, then 
the data is left shifted with Zero filling 0 bit places for byte 
data, 1 bit place for half word data and 2 bit places for word 
data. Since no scaling ever occurs for byte data transfers, the 
instruction word bit specifying scaling is available for other 
purposes. In the preferred embodiment this instruction word 
bit is used as an additional offset bit. Thus if the data size is 
8 bits, the instruction can supply a 16 bit offset index rather 
than a 15 bit offset index or a 4 bit offset index rather than 
a 3 bit offset index. This address index scaling feature 
permits addressing that is independent from the data size. 
This feature is useful in certain applications such as look up 
table operations. 

0437 Addition/subtraction unit 615 receives a base 
address from an address register selected by the instruction 
and the index. The instruction selects either addition of the 
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index to the base address or subtraction of the index from the 
base address. The resultant forms one input to multiplexer 
616. The base address from the selected address register 
forms the other input to multiplexer 616. Multiplexer 616 
selects one of these addresses depending on whether the 
instruction specifies pre-indexing or post-indexing. If the 
instruction specifies pre-indexing, then the resultant of addi 
tion/subtraction unit 615 is selected by multiplexer 616 as 
the output address. If the instruction specified post-indexing, 
then the base address from address registers 611 is selected 
by multiplexer 616 as the output address. 
0438. The modified address may be written into the 
selected address register. In pre-indexing, then instruction 
selects whether to write the modified address into the source 
address register within address registers 611. In post-index 
ing, then the modified address is always written into the 
Source address register within address registers 611. In the 
preferred embodiment, the instruction word specifies one of 
12 modes for each of the global address unit 610 and the 
local address unit 620. These twelve modes include: pre 
addition of an offset index without base address modifica 
tion; pre-addition of an offset index with base address 
modification; post-addition of an offset index with base 
address modification; pre-subtraction of an offset index 
without base address modification; pre-subtraction of an 
offset index with base address modification; post-subtraction 
of an offset index with base address modification; pre 
addition from an index register without base address modi 
fication; pre-addition from an index register with base 
address modification; post-addition from an index register 
with base address modification; pre-subtraction from an 
index register without base address modification; pre-Sub 
traction from an index register with base address modifica 
tion; and post-Subtraction from an index register with base 
address modification. 

0439 Special read only Zero value address registers A15/ 
A7 permit special functions. Specification of the corre 
sponding one of these registers as the Source of the base 
address converts the index address into an absolute address. 
Specification of one of these Zero value address registers 
may also load an offset index. 
0440 Hardware associated with each address unit per 
mits specification of the base address of the data memories 
and the parameter memory corresponding to each digital 
image/graphics processor. This specification occurs employ 
ing two pseudo address registers. Specification of “PBA as 
the address register produces the address of the parameter 
memory corresponding to that digital image/graphics pro 
cessor. The parameter memory base address register of each 
digital image/graphics processor permanently stores the 
base address of the corresponding parameter memory. The 
parameter memory 25 corresponds to digital image/graphics 
processor 71, parameter memory 30 corresponds to digital 
image/graphics processor 72, parameter memory 35 corre 
sponds to digital image/graphics processor 73, and param 
eter memory 40 corresponds to digital image/graphics pro 
cessor 74. Specification of “DBA as the address register 
produces the address of the base data memory corresponding 
to that digital image/graphics processor. The data memory 
22 includes the lowest address corresponding to digital 
image/graphics processor 71, data memory 27 includes the 
lowest address corresponding to digital image/graphics pro 
cessor 72, data memory 32 includes the lowest address 
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corresponding to digital image/graphics processor 73 and 
data memory 37 includes the lowest address corresponding 
to digital image/graphics processor 74. 

0441 These pseudo address registers may be used in 
global address unit 610 and local address unit 620 and with 
indices in any of the 12 permitted combinations of pre- and 
post-addition or Subtraction, except that these may not be 
address destinations. There are restrictions on the permitted 
data transfers when using these pseudo address registers. 
These are called pseudo address registers because no actual 
address register corresponds to these designations. Instead 
each address unit employs hardware in conjunction with an 
identifier in a command register (to be later described) to 
produce the required address. 

0442. The particular addresses for the preferred embodi 
ment of this invention are listed below in Table 29. The 
pseudo address register PBA produces an address of the 
form Hex"0100H000 and the pseudo address register DBA 
produces an address of the form Hex "0000+000, where it 
is the digital image/graphics processor number. 

TABLE 29 

Digital 
Image? Parameter Data 
Graphics Memory Memory 
Processor Base Base 
Number Address Address 

O O1 OOOOOO OOOOOOOO 
1 O1 OO1OOO OOOO1OOO 
2 O10O2OOO OOOO2OOO 
3 O10O3OOO OOOO3OOO 

0443) These pseudo address registers are advantageously 
used in programs written independent of the particular 
digital image/graphics processor. These pseudo address reg 
isters allow program specification of addresses that corre 
spond to the particular digital image/graphics processor. 
Thus programs may be written which are independent of the 
particular digital image./graphics processor executing the 
programs. 

0444 Referring back to FIG. 27, address unit 120 forms 
respective addresses on global address port 121 and local 
address port 122. In the least complex case, the global 
address generated by global address unit 610 passes through 
multiplexer 641 and is stored in global temporary address 
register GTA 651. Global address port 121 passes this 
address together with byte strobe, read/write and select 
signals to crossbar 50. Similarly the local address generated 
by local address unit 620 is stored in local temporary address 
register LTA 652 for supply to crossbar 50 via local address 
port 122 together with accompanying byte strobe, read/write 
and select signals. Global temporary address register 651 
and local temporary address register 652 hold the generated 
addresses for reuse in case of crossbar contention. This is 
more convenient than recomputing the address for reuse 
because the possibility of address register modification 
would require conditional recomputation. 

0445 Sometimes an address generated by local address 
unit 620 passes to crossbar 50 via global address port 121 
rather than by local address port 122. Control circuit 654 
determines if the address generated by local address unit 620 
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is a legal local address. Note that the local ports may only 
address the corresponding data or parameter memory. If 
local address unit 620 generates an address outside its 
permitted range, and no global port access is specified, then 
control circuit 654 signals control circuit 642 to cause 
multiplexer 641 to select the local address generated by local 
address unit 620. This address is then stored in global 
temporary address register GTA 651. If a global port access 
is specified, this is serviced first and then control circuit 654 
signals control circuit 642 to cause multiplexer 641 to select 
the address stored in local temporary address register LTA 
652. In either case global temporary address register GTA 
653 supplies the address to the global address port 121. 
0446 Global/local address multiplexer register GLMUX 
630 permits a single address to be formed from parts of the 
addresses generated by global address unit 610 and local 
address unit 620. This is known as XY patching that forms 
a patched address. Global/local address multiplexer register 
GLMUX 630 is coupled to both global port source data bus 
Gsrc 105 and global port destination data bus Gdst 107 and 
can be accessed within the register space of digital image/ 
graphics processor 71. Global/local address multiplexer 
register GLMUX 630 includes 30 bits. For each bit position 
of global/local address multiplexer register GLMUX 630 a 
“1” selects the corresponding bit from global address unit 
610 and a “0” selects the corresponding bit from local 
address unit 620. Global/local address multiplexer register 
GLMUX 630 signals control circuit 642 to make the corre 
sponding bit selections within multiplexer 641. The patched 
address from multiplexer 641 is stored in global temporary 
address register GTA 651 for application to global address 
port 121 in the manner previously described. 
0447. In the preferred embodiment XY patched address 
ing only Supports post-indexing due to speed considerations. 
Note that XY patch address selection must occur following 
address generation by both global address unit 610 and local 
address unit 620. Thus XY patch address selection takes 
more time than normal addressing. Limiting XY patch 
addressing to post-indexing insures that this address is 
available not later than other addresses. Note that if the 
timing of this address generation is not an problem, then XY 
patch addressing may support all the address modes listed in 
Tables 45 and 47. 

0448. When executing an instruction calling for global/ 
local address multiplexing, the instruction can specify XY 
patch detection. XY patch detection determines when the 
address specified by the global or local address unit is 
outside a defined boundary or patch. A one bit patch option 
field in the instruction word (bit 34) enables XY patch 
detection. If this patch option field is “1”, then specified 
operations are performed when the generated address is 
outside the XY patch. If this patch option field is “0”, then 
these specified operations are performed if the generated 
address is inside the XY patch. Zero detectors 631 and 632 
perform the patch detection. Zero detector 631 masks the 
global port address generated by global address unit 610 
with the contents of global/local address multiplexer register 
630. If this masked address is non-zero, then the global 
address from global address unit 610 includes a “1” in a data 
position assigned to local address unit 620. This indicates 
the global address is outside the patch. Similarly Zero 
detector 633 masks the local port address generated by local 
address unit 620 with the inverse of the contents of global/ 
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local address multiplexer register GLMUX 630. If this 
masked address is non-zero, then the local address is outside 
the patch. The logical OR of these two outputs indicates 
whether the patched address is inside or outside the patch. 
0449 The instruction word specifies alternative actions 
to be taken based upon whether the patched address is inside 
or outside the patch. A conditional access one bit field 
specifies conditional memory access. If this conditional 
access field is '1', then memory access is unconditional and 
is performed whether the address is inside or outside the XY 
patch. If the conditional access field is “0”, then the memory 
access, either a load or a store, is conditional based upon the 
state of the patch option field. An interrupt one bit field 
indicates whether to issue an interrupt upon patch detection. 
When the interrupt field is “1”, address unit 120 issues an 
interrupt upon patch detection in the sense specified by the 
patch option field. When the interrupt field is “0”, no 
interrupt issues regardless of patch detection. 
0450. These XY patched address modes have several 
uses. A display screen can be addressed in rows and columns 
by segregating the address between global address unit 610 
and local address unit 620. Thus the name XY patch 
addressing. The conditional memory accessing or interrupt 
generation can then signal branch operations for window 
clipping. It is also feasible to use this addressing mode in 
Software "pseudo data caching to detect cache hit or cache 

1SS. 

0451 Control circuits 653 and 654 control interface 
between data unit 120 and crossbar 50. Each unit generates 
byte strobe signals, a read/write signal and select signals. 
These signals control the data transfer operation. In addition 
each control circuit 653 and 654 receives from crossbar 50 
a grant signal. Receipt of this grant signal indicates that the 
contention circuits of crossbar 50 have granted access to the 
corresponding port. This could be either because there is no 
contention for memory access or any memory access con 
tention has been resolved by granting access to the corre 
sponding port. Upon retry after an access failure due to 
memory contention, these signals are reconstituted from the 
instruction word stored in the instruction register-address 
stage IRA 751 and the generated address stored in either 
global temporary address register GTA 651 or local tempo 
rary address register LTA 652. 
0452. The byte strobe signals handle the cases for writing 
data less than 32 bits wide. The data size for data transfers 
of byte (8bits), half-word (16 bits) or word (32 bits) is set 
by the instruction. If the data size is 8 bits, then the data is 
replicated 4 times to fill a 32 bit word. Similarly if the data 
size is 16 bits, this data is duplicated to fill 32 bits. There are 
four byte strobe signals corresponding to the four bytes in 
the 32 bit data word. Each of these four byte strobes may be 
active (“1”) indicating write that byte or inactive ("0") 
indicating do not write that byte. The byte strobes are set 
according to the 2 least significant bits (bits 1-0) of the 
generated address and the current endian mode. 
0453 The endian mode indicates the byte order 
employed in multi-byte data. FIG. 29a illustrates the byte 
order within a 32 bit data word according to the little endian 
mode. In the little endian mode the least significant byte has 
a byte address of “0” and the most significant byte has a byte 
address of “3”. FIG. 29b illustrates the byte order within a 
32 bit data word according to the big endian mode. In the big 
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endian mode the most significant byte has a byte address of 
“0” and the least significant byte has a byte address of “3. 
Master processor 60 sets the endian mode, which is not 
expected to change dynamically. Note that the bit order 
within bytes does not change based upon the endian mode. 
The convention forbit order within bytes would generally be 
set by the connections between the external data bus of 
transfer controller 80 and the host data bus. Table 30 lists the 
byte strobes for the various combinations of address bits 1-0. 
data size and the endian mode. 

TABLE 30 

Address Little Endian Big Endian 
bits Data size in bits Data size in bits 

1 O 8 16 32 8 16 32 

O O OOO1 OO11 1111 1OOO 11 OO 1111 
O 1 OO10 OO11 1111 O1OO 11 OO 1111 
1 O O1 OO 1100 1111 OO10 OO11 1111 
1 1 1OOO 1100 1111 OOO1 OO11 1111 

As indicated in Table 30, if the two least significant address 
bits are “00', and the data size is 8 bits, then the last byte 
strobe for bits 7-0 is active in the little endian mode and the 
first byte strobe for bits 31-24 is active in the big endian 
mode. When the data size is less than 32 bits, a write cycle 
is accomplished by a read-modify-write operation. The byte 
strobes determine the bytes modified by the data to be 
written into memory. As previously described, it is techni 
cally feasible to support data sizes of 4 bits, 2 bits and 1 bit 
besides the data sizes noted above. Those skilled in the art 
would understand how to extend the byte strobe concept 
explained above to Support these other data sizes. 
04.54 Each control circuit 653 and 654 generates a read/ 
write signal. The read/write signal indicates that the memory 
access is a memory read or memory write operation. A single 
bit field in the instruction field for each active port indicates 
whether the data transfer is a load operation, which is a 
memory read, or a store operation, which is a memory write. 
Control circuits 653 and 654 generate the corresponding 
read/write signal to crossbar 50 based upon the correspond 
ing single bit field in the instruction word. 
0455 Each control circuit 653 and 654 generates two 
strobe signals. An active data-space select signal indicates 
that the memory transfer is to data memory. An active 
parameter-space select signal indicates that the memory 
transfer is to parameter memory. Neither select signal is 
active during execution of an instruction not specifying a 
data transfer operation via that port. Bit 24 of the generated 
address controls these select signals due to the address 
partitioning. The data-space select signal is active when bit 
24 of the address is “0” and the parameter-space select signal 
is active when bit 24 of the address is “1”. 

0456 Global address unit 610 and local address unit 620 
may be used for additional arithmetic operations. The use of 
an address unit for arithmetic operations is called address 
unit arithmetic. An address unit arithmetic operation may be 
Substituted for any memory load operation. Any instruction 
word with specifies data transfer operations includes a bit 
that specifies whether the data transfer is a load (data transfer 
from memory to a register) or a store (data transfer from a 
register to memory). These instruction words also include a 
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bit that specifies whether the data is sign extended on load. 
Sign extension fills the higher order bits of the data written 
to the destination with the same state as the most significant 
bit of the data in case the data size is less than 32 bits. The 
otherwise meaningless combination of store with sign 
extend enables address unit arithmetic. Rather than fetching 
the memory data located at the address generated by the 
address unit and storing it in the destination register, an 
address unit arithmetic operation stores the calculated 
address in the destination register. Buffer 655 supplies the 
output from global temporary address register GTA 651 to 
global port source data bus GSrc 105 for supply to a specified 
destination register when the instruction word indicates sign 
extend and a load operation. Similarly, buffer 656 supplies 
the output from local temporary address register LTA 652 to 
local port bus Lbus 103 for supply to a specified destination 
register when the instruction word indicates sign extend and 
a load operation. Under these conditions control circuits 653 
and 654 do not generate their control signals to crossbar 50. 
Thus the generated address is diverted from the address bus 
of crossbar 50 to the corresponding digital image/graphics 
processor data bus. 
0457. Address unit arithmetic operations enable addi 
tional parallel arithmetic operations. In the preferred 
embodiment, each digital image/graphics processor 71, 72. 
73 and 74 can perform a multiply and three additions in one 
instruction. It is preferably also possible to perform a 
multiply, two additions and a data transfer operation in 
parallel in one instruction. All of the indexing, address 
modification and offset operations available for the corre 
sponding load operation are available during address unit 
arithmetic. Thus an address unit arithmetic operation can 
compute a result to be stored in the destination register while 
also modifying a bass address register either by pre-incre 
menting, post-incrementing, pre-decrementing or post-dec 
rementing. An address unit arithmetic operation adding an 
offset index to a Zero base address from address registers 
A15/A7 can load an offset field in parallel with any data unit 
operation. Address unit arithmetic operations can be per 
formed conditionally in the same manner as conditional data 
transfers. As in other conditional data transferS modification 
of the base address register occurs unconditionally, only the 
transfer of the result is conditional. The preferred embodi 
ment also supports address unit arithmetic of patched 
addresses. Like all other address computations address unit 
arithmetic calculations occur in the address pipeline stage 
and are written to the destination register during the execute 
pipeline stage. Note that the “address' computed during an 
address unit arithmetic operation is not checked for range. 
This is because no actual memory access occurs when an 
address unit arithmetic operation executes. 
0458. Address unit arithmetic operations are best used to 
reduce the number of instructions needed for a loop kernel 
in a loop that is repeated a large number of times. Graphics 
and image operations often require large numbers of repeti 
tions of short loops. Often reduction of a loop kernel by only 
a single instruction can greatly improve the performance of 
the process. 
0459 Data transfers between digital image/graphics pro 
cessor 71 and memory 20 are made via data port unit 140. 
Data port unit 140 handles data alignment, sign or Zero 
extension and the like for data passing through. FIG. 30 
illustrates details of this portion of buffer 147 illustrated in 
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FIG. 3. Note that this same structure could also be used 
within multiplexer buffer 143 of local data port 141. Data 
from the crossbar data bus is divided into four data streams 
of 8 bits each. Data alignment multiplexer 151 selects and 
aligns the received data based upon the current data size, 
endian mode and the two least significant bits of the gen 
erated address. For a data size of 32 bits, no selection or 
alignment is needed and the four 8 bit data streams pass 
through data alignment multiplexer 151 unchanged. For a 
data size of 16 bits, data alignment multiplexer 151 selects 
either the most significant 16 bits or the least significant 16 
bits for supply via the 16 least significant output bits. This 
selection contemplates the current endian mode and address 
bits 1-0. If address bit 1 is “0”, then data alignment multi 
plexer 151 selects the least significant 16 bits in little endian 
mode and the most significant bits in big endian mode. The 
opposite selection is made if address bit 1 is “1”. Similarly, 
if the data size is 8 bits, data alignment multiplexer 151 
selects either bits 31-24, bits 23-16, bits 15-8 or bits 7-0 
based upon the current endian mode and address bits 1-0. 
0460 Once the data selection and alignment have been 
made, sign/Zero extend multiplexer 152 provides sign or 
Zero extension. For the case of 32 bit data, no sign or Zero 
extend is made and the data passes through sign/Zero extend 
multiplexer 152 unchanged. Bus drivers 153 then supply the 
corresponding destination bus; global port data destination 
bus Gdst 107 for the global port and local port data bus Lbus 
103 for the local port. If the data size is 16 bits, then 
sign/Zero extend multiplexer 152 passes data bits 15-0 
unchanged. For this case data bits 31-16 are filled with “0” 
if Zero extension is selected. Data bits 31-16 are sign 
extended, that is filled with the state of bit 15, is sign 
extension is selected. For 8 bit data, sign/Zero extend mul 
tiplexer 152 passes bits 7-0 unchanged. Bits 31-8 are filled 
with “0” if zero extension is selected and filled with the state 
of bit 7 is sign extension is selected. 
0461 This data selection, alignment, and sign or Zero 
extension is available for register to register moves as well 
as register loads from memory. For register to register moves 
the instruction word includes a field that specifies a two bit 
item number. This item number, treated as if in little endian 
mode, substitutes for the address bits 1-0. In other respects 
the circuit illustrated in FIG. 30 operates as just described. 
0462 Data port unit 140 operates specially for local port 
illegal addresses. Recall that each local port can only address 
memories corresponding to that digital image/graphics pro 
cessor. If the local address unit 620 generates an address 
outside its permitted range, then this address is shunted to 
global address port 121. If a global port access is also 
specified for that instruction, this is serviced first and then 
the local port access is serviced via global address port 121. 
Under these conditions during a store operation data from 
local data port bus Lbus 103 supplies buffer multiplexer 146, 
which Supplies to the addressed memory location via global 
data port 148. Similarly, when using the global port for a 
local load operation buffer multiplexer 143 supplies the 
received data from global data port 148 to local port data bus 
Lbus 103. 

0463 FIG. 31 illustrates in block diagram form program 
flow control unit 130. Program flow control unit 130 per 
forms all the operations that occur during the fetch pipeline 
stage. Program flow control unit 130 controls: fetching 
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instruction words from the corresponding instruction cache; 
instruction cache management including handshakes with 
transfer controller 80; program counter modification by 
branches, interrupts and loops; pipeline control, including 
control over data unit 110 and address unit 120; synchroni 
Zation with other digital image/graphics processors in Syn 
chronized MIMD mode; and receipt of command words 
from other processors. As illustrated in FIG. 31 program 
flow control unit 130 includes the following registers: pro 
gram counter PC 701; instruction pointer-address stage IPA 
702; instruction pointer-execute stage IPE 703; instruction 
pointer-return from subroutine IPRS 704; three loop end 
registers LE2-LE0711, 712 and 713; three loop start regis 
ters LS2-LS0721, 722 and 723; three loop counter registers 
LC2-LC0731, 732 and 733; three loop reload registers 
LR2-LR0741, 742 and 743; loop control register LCTL 705: 
interrupt enable register INTEN 706; interrupt flag register 
INTFLG 707; four cache tag registers TAG3-TAG0, collec 
tively called cache tag registers 708; a read only CACHE 
register 709; and a communications register COMM 781. 
There are two sets of write only register addresses (LRS2 
LRS0 and LRSE2-LRSEO) employed for fast hardware loop 
initialization. These will be further discussed below. 

0464) Program flow control unit 130 also includes an 
instruction register-address stage IRA 751 and an instruction 
register-execution stage IRE 752. These registers are not 
user accessible and do not appear in the register space. 
Instruction register-address stage IRA 751 contains the 
instruction word for the current address pipeline stage. 
Instruction register-execution stage IRE 752 contains the 
instruction word for the current execute pipeline stage. 
These registers control the operations during the respective 
address and execute pipeline stages. The program flow 
control unit 130 pushes the fetched instruction word located 
at the address in program counter PC 701 into the instruction 
register-address stage IRA 751. In addition, the pipeline 
pushes the instruction word in the instruction register 
address stage IRA 751 into the instruction register-execute 
stage IRE 752 upon each pipeline stage advance. 

0465 Program flow control unit 130 operates predomi 
nantly in the Fetch pipeline. Since the program flow control 
unit 130 contains the instruction register-address stage IRA 
751 and instruction register-execute stage IRE 752, it 
extracts and distributes control information needed by data 
unit 110 and address unit 120 via opcode bus 133. Program 
flow control unit 130 also controls the aligner/extractors on 
the data port unit 140. 

0466. The major task of program flow control unit 130 is 
control of instruction fetch during the fetch pipeline stage. 
The address of the next instruction word to be fetched is 
stored in program counter PC 701. FIG. 32 illustrates 
schematically the bits of program counter PC 701. In the 
preferred embodiment of this invention, internal and exter 
nal memory is byte addressable. That is, each address word 
points to a byte (8bits) of data in memory. As explained in 
detail below, each instruction word of digital image/graphics 
processor 71 is a 64bit double word, which is 8 bytes. Since 
these instruction words are aligned on even double word 
boundaries, only 29 bits are necessary to specify any Such 
instruction word. As illustrated in FIG. 32 bits 31-3 of 
program counter PC 701 provide this 29 bit double word 
address. During normal sequential instruction operation 
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program flow control unit 130 increments bit 3 of program 
counter PC 701 to address the next 64 bit instruction. 

0467 Program counter PC 701 has two write register 
addresses. Writing to program counter PC 701 executes a 
subroutine call. The write alters program counter PC 701. At 
the same time program flow control unit 130 causes the 
previous contents of program counter PC 701 to be written 
into instruction pointer-return from subroutine IPRS 704. 
This enables a return instruction to reload program counter 
PC 701 from instruction pointer-return from subroutine 
IPRS 704. Writing to a different register address designated 
branch BR executes a software branch. This write alters only 
program counter PC 701 and instruction pointer-return from 
subroutine IPRS 704 is unchanged. 

0468. As noted above bits 2-0 of program counter PC 701 
are not needed to specify instruction words. These otherwise 
unused bits are employed to specify other things. These bits 
include an “S” bit (bit 2), a “G” bit (bit 1) and an “L” bit (bit 
0). 
0469. The “S” bit (bit 2) indicates whether the digital 
image/graphics processor 71 is in the synchronized MIMD 
mode. As previously described, when in the synchronized 
MIMD mode program control flow unit 130 inhibits fetching 
the next instruction word until all synchronized processors 
are ready to proceed. If the “S” bit is “1”, then the digital 
image/graphics processor 71 is currently executing synchro 
nized code. Note that the identity of the other digital 
image/graphics processors synchronized to digital image/ 
graphics processor 71 is stored in the communications 
register COMM 
0470 781. Otherwise, digital image/graphics processor 
71 will not wait for other digital image/graphics processors 
to be ready before fetching the next instruction word. 
Execution of a lock instruction (LCK) sets this “S” bit of 
program counter PC 701 during the address pipeline stage to 
enable synchronized MIMD mode. Execution of an unlock 
(UNLCK) instruction clears this “S” bit during the address 
pipeline stage thus disabling the synchronized MIMD mode. 
Normal register writes to program counter PC 701 do not 
change the state of this “S” bit. 
0471) The “G” bit (bit 1) indicates whether global inter 
rupts are enabled. When this “G” bit is “0”, the program flow 
control unit 130 ignores all interrupt sources, except the 
emulation trap. If this “G” bit is “1”, then program flow 
control unit 130 responds to those interrupt sources indi 
vidually enabled in interrupt enable register INTEN 706. 
Execution of an enable interrupt instruction (EINT) sets this 
“G” bit of program counter PC 701 during the address 
pipeline stage to enable interrupts. Execution of a disable 
interrupt instruction (DINT) clears this “G” bit during the 
address pipeline stage of thereby disabling most interrupt 
sources. Normal register writes to program counter PC 701 
do not change the state of this “G” bit. 

0472. The “L” bit (bit 0) indicates whether hardware loop 
logic is enabled. This hardware loop logic will be fully 
described below. If the “L” bit is “1”, then the hardware loop 
logic is disabled. Otherwise, hardware loops are individually 
enabled according to the loop control register LCTL 708. 
Hardware loops are normally disabled via this “L” bit only 
during the return sequence from an interrupt, because loops 
are “unwrapped during the entry into an interrupt routine. 
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Normal register writes to program counter PC 701 do not 
change the state of this “L” bit. 
0473 FIG.33 illustrates schematically the bits of instruc 
tion pointer-address stage IPA 702. This register is loaded 
with the contents of program counter PC 701 upon each 
pipeline stage advance. In the first two pseudo-instructions 
of an interrupt, the “L” bit (bit 0) of instruction pointer 
address stage IPA 702 is forced to “1” whatever the state of 
this bit in program counter PC 701. The other bits of 
program counter PC 701 are copied into instruction pointer 
address stage IPA 702 without alteration. This register stores 
the address of the instruction currently in the Address 
pipeline stage. 
0474 Instruction pointer-execute stage IPE 703 is loaded 
with the contents of instruction pointer-address stage IPA 
702 upon each pipeline stage advance. This register is useful 
in relative program counter computations. Note that instruc 
tion pointer-execute stage IPE 703 stores the address of the 
instruction currently in the execute pipeline stage. Using this 
register for relative program counter computations is better 
than using program counter PC 701 due to the possibility of 
branches, loops or interrupts and because no offset is 
required. 
0475 Instruction pointer-return from subroutine register 
IPRS 704 Stores the Subroutine return address. FIG. 34 
illustrates the bits of this register schematically. Instruction 
pointer-return from subroutine register IPRS 704 is updated 
with the address previously stored in program counter PC 
701 incremented at bit 3 whenever software writes to 
program counter PC 701. This is the address following the 
second delay slot of the software branch. Thus, as implied by 
the name, instruction pointer-return from Subroutine register 
IPRS 704 stores the address for returns from subroutines. 
Executing a return instruction loads the address stored in 
instruction pointer-return from subroutine register IPRS 704 
into program counter PC 701 during the execute pipeline 
stage. Only bits 31-3 of instruction pointer-return from 
subroutine register IPRS 704 are used. Bits 2-0 of program 
counter PC 701 are not stored in instruction pointer-return 
from subroutine IPRS 704 upon a software branch and these 
bits are not read from instruction pointer-return from sub 
routine IPRS 704 during restoration of program counter PC 
701. 

0476. The program flow control unit of each digital 
image/graphics processor includes an instruction cache con 
troller 760. This instruction cache controller 760 includes a 
set of four cache tag registers TAG3-TAG0708, a least 
recently used control circuit 761 and an address encoder 
762. The instruction cache controller 760 controls a section 
of memory dedicated to instruction caching for that digital 
image/graphics processor. This instruction cache memory is 
preferably 2K bytes in size. Instruction cache controller 760 
treats the instruction cache memory as holding 256, 64 bit 
instructions in one set with 4 blocks Supported by 4-way 
least recently used operations. Each block has 4 sub-blocks 
of 16 instructions. Thus each of the cache tag registers 
TAG3-TAG0708 includes 4 “present” bits for a total of 16 
“present” bits. 

0477 FIG. 35 illustrates the fields of each cache tag 
register TAG3-TAG0. The tag value field (bits 31-9) of each 
of the tag registers holds a tag value. This tag value is the 
virtual address of the start of the corresponding cache block 
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in the instruction cache memory. Sub-block present bits (bits 
8-5) of each cache tag register TAG3-TAG0 are associated 
with the respective four sub-blocks 3-0 in the block to which 
that cache tag register relates. Thus bit 8 represents the most 
significant Sub-block and bit 5 represents the least significant 
sub-block. The “LRU” field (bits 1-0) indicates how recently 
the block was used. These bits are as defined in Table 31. 

TABLE 31 

LRU 
bits Position in 

1 O use stack 

most-recently used 
next-most recently used 
next-least recently used 
least recently used 

Bits 4 to 2 of cache tag registers TAG3-TAG0708 are not 
implemented. These bits are reserved for a possible exten 
sion of the instruction cache memory to include additional 
sub-blocks. Cache tag registers TAG3-TAG0708 appear in 
the register map as listed in Tables 37 and 38. 
0478 Instruction cache controller 760 of each digital 
image/graphics processor 71, 72, 73 or 74 may be flushed by 
master processor 60 or by the digital image/graphics pro 
cessor itself. Note that a cache flush resets only the cache tag 
registers TAG3-TAG0708 within program flow control unit 
130 and does not clear data from the corresponding instruc 
tion cache memory. An instruction cache flush is performed 
by writing a cache flush command word to address register 
A15 with the “1” bit (bit 28) set. Reset does not automati 
cally flush the cache. An instruction cache flush causes the 
cache tag value field to be set to the cache tag register's own 
number (i.e., TAG3=3, TAG2=2, TAG1=1, TAG0=0), clears 
all their present bits, and sets the LRU bits to the tag 
register's own number (i.e., TAG3(LRU)="11. 
TAG2(LRU)=“10, TAG1(LRU)="01" and TAGO(LRU)= 
“00). Cache tag register TAG3 is thus the least-recently 
used following a cache flush. 
0479. Program flow control unit 130 compares corre 
sponding bits of the address stored in program counter PC 
701 to the cache tag registers TAG3-TAG0708 during each 
fetch pipeline stage. This comparison yields either a cache 
miss result or a cache hit result. A cache miss may be either 
a block miss or a Sub-block miss. In a block miss the most 
significant 23 bits of program counter PC 701 does not equal 
the corresponding 23 bits of any of the cache tag registers 
TAG3-TAG 0708. In this case, least recently used control 
circuit 761 chooses the least recently used block to discard, 
and clears all the present bits of the corresponding cache tag 
register. In a Sub-block miss the most significant 23 bits of 
program counter PC 701 matches the corresponding 23 bits 
of one of the cache tag registers TAG3-TAG0708, but the 
present bits (one of bits 8-5 of the tag register) indicating 
presence of the sub-block corresponding to bits 8-7 of 
program counter PC 701 is “0”. This means that one of the 
cache tag registers TAG3-TAG 0708 is assigned that memory 
block, but that the sub-block is not present within the 
instruction cache. 

0480. If either type of cache miss occurs, then program 
flow control unit 130 requests transfer controller 80 to 
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service the instruction cache memory via an external access. 
Program control flow unit 130 passes the external address 
and the internal sub-block address to the transfer controller 
80. Program flow control unit 130 signals transfer controller 
80 the cache miss information via crossbar 50. Transfer 
controller 80 services the cache miss by fetching the entire 
sub-block of instructions including the address of the cur 
rently sought instruction word. This block of instructions is 
stored in the least recently used block within the instruction 
cache memory 21, 26, 31 and 36 corresponding to the 
requesting digital image/graphics processor 71, 72, 73 and 
74, respectively. Program flow control unit 130 then sets the 
proper values in the corresponding cache tag register TAG3 
TAG0708. The instruction fetch operation is then repeated, 
with a cache hit guaranteed. 
0481 Cache miss information may be accessed by read 
ing from the register in the register space at register bank 
“1111 register number “000. This register is called the 
CACHE register 709 in Table 38. Program flow control unit 
130 provides 27 bits. These 27 bits are the 23 most signifi 
cant address of program counter PC 701 (the tag bits) plus 
2 sub-block bits from cache tag registers TAG3-TAG 0708 
and two bits encoding the identity of the least-recently-used 
block from least recently used control circuit 761. CACHE 
register 709 is read only, any attempt to write to write to this 
register is ignored. Thus CACHE register 709 is connected 
to only global port source data bus GSrc bus 105 and not 
connected to global port destination data bus Gdst 107. 
0482 If a cache hit occurs, then the desired instruction 
word is stored in the corresponding instruction cache. As 
previously described, each instruction cache memory 21, 26. 
31, 36 includes 2 K bytes. Since internal and external 
memory is byte addressable in the preferred embodiment, 11 
address bits are required. However, each instruction is 
aligned with a 64 bit double word boundary and thus the 
three least significant bits of an instruction address are 
always “000'. The 2 most significant bits of the 11 bit 
instruction address on instruction port address bus 131 
correspond to the cache tag register TAG3-TAG0708 suc 
cessfully matched with program counter PC 701. These 
address bits 10-9 are encoded as shown in Table 32. 

TABLE 32 

Address Cache 
bits tag 

10 9 register 

O O TAGO 
O 1 TAG1 
1 O TAG2 
1 1 TAG3 

The bits 8-3 of the instruction address on instruction port 
address bus 131 are bits 8-3 of the 29 bit double word 
address stored in program counter PC 701. The cache tag 
comparison is made fast enough to output the 8 bit address 
via the instruction port with an implied read signal from the 
digital image/graphics processor to the corresponding 
instruction cache memory. This retrieves the addressed 64 
bit instruction word into instruction register-address stage 
IRA 751 before the end of the fetch pipeline stage. 
0483 Program flow control unit 130 next updates pro 
gram counter PC 701. If the next instruction is at the next 
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sequential address, program control flow unit 130 post 
increments program counter PC 701 during the fetch pipe 
line stage. Note this post increment means that program 
counter PC 701 stores the address of the next instruction to 
be fetched. Otherwise, program control flow unit 130 loads 
the address of the next instruction into program counter PC 
701 according to loop logic 720 (FIG. 37) or software 
branch. When in the synchronized MIMD mode, program 
flow control unit delays the instruction fetch until all the 
digital image/graphics processors specified by Sync bits in 
communications register COMM 781 are synchronized. 
0484 Program flow control unit 130 includes loop logic 
720 employed with a number of registers in nested Zero 
overhead looping and a variety of other powerful instruction 
flow control functions. Examples of these other functions 
include: multiple ends to the same loop; Zero-delay branches 
without necessarily returning; Zero-delay "calls and 
returns'; and conditional Zero-delay branches. The basic 
function of loop logic 720 is nested Zero-overhead looping. 
For each of three possible loops there are four registers. 
These are: loop end registers LE2711, LE1712 and LE0713; 
loop start registers LS2721, LS1722 and LS0723; loop count 
registers LC2731, LC1732 and LC0733; and loop reload 
registers LR2741, LR1742 and LR0743. The entire loop 
logic process is controlled by the status of loop logic control 
register LCTL 705 in conjunction with the loop enable bit 
(bit 0) of program counter PC 701. In addition there are 
several register address locations LRS2-LRS0 and LRSE2 
LRSE0 that simultaneously load more than one of the 
primary registers. 

0485 Each set of four registers controls an independent 
Zero-overhead loop. A zero-overhead loop is the solution to 
a problem caused by the pipeline structure. A software 
branch performed by loading an address into program 
counter PC 701 occurs during the execute pipeline stage. 
Such a branch does not take place immediately because it 
does not change two instructions that were already fetched 
and in the instruction pipeline. These two instructions were 
fetched during the previous two fetch pipeline stages. This 
delay in branch implementation is called a pipeline hit and 
the two instructions following the branch instruction are 
called delay slots. Sometimes clever programming enables 
useful work during the delay slots, but this is not always 
possible. Loop logic 720 operates during the fetch pipeline 
stage and, once Some set up is accomplished, enables loops 
and branches without pipeline hits. Note that once the 
appropriate registers are loaded loop logic 720 does not 
require a branch instruction during looping and does not 
produce any delay slots. This loop logic 720 may be 
especially useful in algorithms with nested loops with 
numerous repetitions. 
0486 A simple example of loop logic 720 operation 
follows. Set up of loop logic 720 includes loading a par 
ticular loop end register, and the corresponding loop start 
register, loop count register and loop reload register. For 
example the loop end address is loaded into loop end register 
LE0713, the loop start address is loaded into loop start 
register LS0723 and the number of loop repetitions desired 
is loaded into loop count register LC0733 and loop reload 
register LR0743. During each fetch pipeline stage loop logic 
compares the address stored in program counter PC 701 with 
the loop end address stored in loop end register LE0713. If 
the current program address equals the loop end address, 
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loop logic 720 determines if the loop count stored in the 
corresponding loop count register, in this case loop count 
register LC0733, is “0”. If the loop count is not “0”, then 
loop logic 720 loads the loop start address stored in loop 
start register LS0723 into program counter PC 701. This 
repeats the loop starting from the loop start address. In 
addition, loop logic 720 decrements the loop count stored in 
the corresponding loop count register, in this case loop count 
register LC0733. If the loop count in the corresponding loop 
count register is “0”, then no branch is taken. Program flow 
control unit 130 increments program counter PC 701 nor 
mally to the next sequential instruction. In addition, loop 
logic 720 loads the loop count stored in the loop reload 
register LR0 into the loop count register LC0. This prepares 
loop logic 720 for another set of repetitions and is useful for 
inner loops of nested loops. Because all these processes 
occur during the fetch pipeline state no pipeline hit takes 
place. 

0487 FIG. 36 illustrates loop logic control register 705. 
Loop logic control register 705 controls operation of loop 
logic 720 based upon data stored in three sets of bits 
corresponding to the three loop end registers LE2-LE0711 
713. Loop logic control register 705 bits 3-0 control the loop 
associated with loop end register LE0713, bits 7-4 control 
the loop associated with loop end register LE1712, and bits 
11-8 control the loop associated with loop end register 
LE2711. The “E” bits (bits 11, 7 and 3) are enable bits. A “1” 
in the “E” bit enables the loop corresponding the associated 
loop end register. A “0” disables the associated loop. Thus 
setting bits 11, 7 and 3 to “0” completely disables loop logic 
720. Each loop end register LE2-LEO has an associated 
“LCn” field that assigns a loop count register LC2-LC0 for 
that loop end register. The coding of the “LCn” field is given 
in Table 33. 

TABLE 33 

LCn Loop Count 
field Register 

O O O Ole 
O O 1 LCO 
O 1 O LC1 
O 1 1 LC2 
1 X X reserved 

The assigned loop count register stores the corresponding 
loop count and is decremented each time the program 
address reaches the associated loop end address. Although 
the “LCn” field is coded to allow every loop end register to 
use any loop count register, not all combinations are Sup 
ported in the preferred embodiment. In the preferred 
embodiment the “LCn” field may assign: loop count register 
LC2 or LC0 to loop end register LE2711; register LC1 or 
LC0 to loop end register LE1712; and only loop count 
register LC0 to loop end register LE0713. In the case of a 
“LCn” field of "000, no loop count register is used and the 
program always branches to the loop start address stored in 
the corresponding loop start register. Also note that if bit 0 
of program counter PC 701 is “0”, then loop logic 720 is 
inhibited regardless of the status of loop control register 
LCTL 705. This permits loop logic inhibition without losing 
the assignment of loop count registers to loop end registers. 
When the count in the assigned loop count register reaches 
“0”, encountering the loop end address does not load pro 
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gram counter PC 701 with the address in the corresponding 
loop start register. Instead the loop count register is reloaded 
with the contents of the corresponding loop reload register 
LR2-LR0. By assigning loop counter register LC0733 to 
two or three loop end registers LE2-LE0, multiple end points 
to a loop are Supported. Note that the most significant bits of 
loop control register LCTL 705 and the “1XX” codings of 
the respective “LCn” fields are reserved for a possible 
extension of the loop logic to include more loops. 

0488 FIG. 37 illustrates loop logic 720. Loop logic 720 
includes previously mentioned: program counter PC 701; 
loop logic control register LCTL 705; the three loop end 
registers LE2-LE0711, 712 and 713; the three loop start 
registers LS2-LS0721, 722 and 723; the three loop counter 
registers LC2-LC0731, 732 and 733; the three loop reload 
registers LR2-LR0741, 742 and 743; comparitors 715, 716 
and 717; priority logic 725; loop logic control register 
“LCn' field decoders 735, 736 and 737; and Zero detectors 
745, 746 and 747. The respective “E” fields of loop logic 
control register LCTL 705 selectively enable comparitors 
715, 716 and 717 and loop logic control register “LCn” field 
decoders 735, 736 and 737. Comparitors 715, 716 and 717 
compare the address stored in program counter PC 701 with 
respective loop end registers LE2711, LE1712 and LE0713. 
Loop logic control register “LCn” field decoders 735, 736 
and 737 decode respective “LCn” fields of loop logic control 
register LCTL 705, ensuring that the assigned loop count 
register LC2-LC0 is decremented upon reaching a loop end. 
Zero detectors 745, 746 and 747 enable reload of respective 
loop count registers 731, 732 and 733 from the correspond 
ing loop reload registers 741, 742 and 743 when the loop 
count reaches “0”. 

0489 Priority logic 725 decrements the assigned loop 
count register LC2-LC0 or loads program counter PC with 
the loop start address in loop start register LS2-LS0 depend 
ing upon the corresponding Zero detection. If two or three 
loops end at the same address then priority logic 725 set 
priorities for the loop end registers in the order from loop 
end register LE2 (highest) to loop end register LE0 (lowest). 
If no zero detector 745,756 or 747 detects “0”, then the loop 
start register LS2-LS0 associated with the highest priority 
loop end register LE2-LEO matching the program counter 
PC 701 is loaded into program counter PC 701 and the loop 
count register LC2-LC0 assigned to that highest priority 
loop end register LE2-LEO is decremented. If at least one 
Zero detector 745, 756 or 747 detects Zero, then the Zero 
value loop count register LC2-LC0 corresponding to each 
Zero value loop end register LE2-LEO matched is reloaded 
from the corresponding loop reload register LR2-LR0 and 
the non-Zero loop count register LC2-LCO assigned to the 
highest priority non-zero loop end register LE2-LEO 
matched is decremented. Program counter PC 701 is leaded 
with the loop start address associated with the highest 
priority loop end register that has a corresponding non-zero 
loop count register. Zero detector 747 has a disable line to 
Zero detector 746 to disable Zero detector 746 from causing 
reload if Zero detector 747 detects a Zero. Both Zero detec 
tors 747 and 74.6 may disable Zero detector 745 from causing 
reload if either Zero detector 747 or 746 detect Zero. Thus 
three nested loops may end at the same instruction with the 
loop associated with loop end register LS2711 the inner 
loop, and the loop associated with loop end register LS0 the 
outer loop. 
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0490 Loops can have any number of instructions within 
the address limit of the loop end registers LE2-LE0. Loop 
end registers LE2-LE0 and loop start registers LS2-LS0 
preferably include 29 address bits in the same fashion as 
program counter PC 701. The number of repetitions possible 
is limited by the capacity of the loop count registers and the 
loop reload registers. In the preferred embodiment the loop 
count registers LC2-LC0 and the loop reload registers 
LR2-LR0 each have 32 bits as most registers on digital 
image/graphics processor 71. For the sake of size, the 
capacity of the loop count and loop reload registers may be 
limited to 16 bits rather than 32 bits. In this case, the most 
significant 16 bits of these registers are not implemented. 
With 16 bit loop count and loop reload registers loops larger 
than 216=65536 can be implemented using outside software 
loops to restart the hardware loops. The addresses for loop 
starts and loop ends can be coincident, resulting in a single 
instruction loop. 

0491 FIG.38 illustrates an example of a program having 
three ends to one loop. This is achieved by assigning loop 
count register LC0733 to each of the loop end registers 
LE2-LE0. In the example illustrated in FIG. 38 loop start 
register LC0723 and loop start register LC2721 store the 
same address. Loop start register LC1722 stores a different 
start address. The program begins at block 801. Processing 
block 802 initializes the loops including storing the respec 
tive loop end addresses in loop end registers LE2-LE0. 
storing the respective loop start addresses in loop start 
registers LS2-LS0, loading loop control register LCTL 705 
to enable all three loops and assign loop count register 
LC0733 to all loop end registers LE2-LE0. Processing block 
803 is an instruction block 0 starting at loop start address 1. 
Processing block 804 is an instruction block 1 starting at 
start address 0 and 2. Decision block 805 is a conditional 
branch instruction 1. Decision block 806 is a conditional 
branch instruction 2. Assuming neither condition 1 nor 
condition 2 is satisfied, then the program executes process 
ing block 807 consisting of instruction block 3. Decision 
block 808 is the hardware loop decision corresponding to the 
loop end address stored in loop end register LE0713. If the 
count stored in loop count register LC0 is non-zero, the 
program flow returns to loop start address 0 that repeats the 
loop starting with instruction block 1. If the count stored in 
loop count register LC0 is “0”, the program ends at end 
block 813. In the case that condition 1 is not satisfied and 
condition 2 is satisfied, then the program executes process 
ing block 809 consisting of instruction block 4. Decision 
block 810 is the hardware loop decision corresponding to the 
loop end address stored in loop end register LE2711. If the 
count stored in loop count register LC0 is non-zero, the 
program flow returns to loop start address 2 that is the same 
as loop start address 0 which repeats the loop starting with 
instruction block 1. If the count stored in loop count register 
LC0 is “0”, the program ends at end block 813. In the case 
that condition 1 is satisfied, then the program executes 
processing block 811 consisting of instruction block 5. 
Decision block 812 is the hardware loop decision corre 
sponding to the loop end address stored in loop end register 
LE1712. If the count stored in loop count register LC0 is 
non-Zero, the program flow returns to loop start address 1 
and repeats the loop starting with instruction block 0. If the 
count stored in loop count register LC0 is “0”, the program 
ends at end block 813. The loop could finally terminate at 
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any of the loop end addresses according to the condition 
encountered by the conditional branches on the final time 
through the loop. 
0492 To save instructions during loop initialization, any 
write to a loop reload register LR2-LR0 writes the same data 
to the corresponding loop count register LC2-LC0. In the 
preferred embodiment, writing to a loop count register 
LC2-LC0 does not affect the corresponding loop reload 
register LR2-LR0. The reason for this difference will be 
explained below. When restoring loop values after task 
switches, the loop reload registers LR2-LR0 should be 
restored before restoring the loop count registers LC2-LC0. 
Thus the form for initializing a single loop is: 
0493 LSn=loop start address 
0494 LEn=loop end address 
0495 LRn=loop count 
0496 this also sets LCn=loop count 

0497 Load LCTL with bits 
0498) 
0499 assign LCn to LEn 

0500 Begin loop 

to enable loop n, and 

This procedure is suitable for loading a number of loops, 
which execute for a long time. This initialization pro 
cedure is repeated to implement additional loops. Note 
that since the loop registers are loaded by Software in 
the execute pipeline stage and used by the hardware in 
the fetch pipeline stage, there should be at least two 
instructions between loading any loop register and the 
loop end address where that loop register will be used. 

0501) The loop start address and the loop end address can 
be made independent of the position of the loop within the 
program by loading the loop start register LS2-LS0 and the 
loop end register LE2-LE0 as offsets to instruction pointer 
execute stage register IPE 703. Recall that instruction 
pointer-execute stage register IPE 703 stores the address of 
the instruction currently in the execute pipeline stage. For 
example, the instruction: 

loads loop start register LS0723 with a value 11 instructions 
(88 bytes) ahead of the current instruction. A similar instruc 
tion can load a loop end register LE2-LE0. 
0502. The preferred embodiment of this invention 
includes additional register addresses to Support even faster 
loop initialization for short loops. There are two sets of such 
register addresses, one set for multi-instruction loops and 
one set for single instruction loops. Writing to one of the 
register addresses LRS2-LRS0 used for multi-instruction 
loops loads the corresponding loop reload register LR2-LR0 
and its corresponding loop counter LC2-LC0. This write 
operation also loads the corresponding loop start LS2-LS0 
register with the address following the current address stored 
in program counter PC 701. This write operation also sets 
corresponding bits in loop control register LCTL 708 to 
enable the relevant loop. Thus, if n is a register set number 
from 2-0, writing to LRSn: loads LRn and LCn with the 
specified count; loads LSn with PC+1; loads LCTL to enable 
LEn and assign LCn. These operations all occur in a single 
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cycle, during the execute pipeline stage. There thus must be 
two delay slots between this instruction and the start of the 
loop. The instruction sequence for this multi-instruction 
loop short form initialization is: 

LEn = loop end address 
LRSn = count 
delay slot 1 
delay slot 2 
1st instruction in loop 
loop instruction 
loop instruction 
last instruction in loop 

loop start address: 

loop end address: 

Note that the loop could be as long as desired within the 
register space of the corresponding loop end register and 
loop start register. Also note that writing to LREn automati 
cally sets the loop start address as the instruction following 
the second delay slot. 
0503 Another set of register addresses is used for short 
form initialization of a single instruction loop. Writing to 
one of the register addresses LRSE2-LRSE0 initializes a 
single instruction loop. If n is a register set number from 2-0. 
writing to LRSEn: loads loop reload register LRn and loop 
count register LCn with the count; loads loop start register 
LSn with the address following the address currently in 
program counter PC 701; loads loop end register LEn with 
the address following the address currently in program 
counter PC 701; and sets loop control register LCTL 705 to 
enable loop end register LEn and assign loop count register 
LCn. As with writing to LRSn, these operations all occur in 
a single cycle during the execute pipeline stage and two 
delay slots are required between this instruction and the start 
of the loop. The instruction sequence for this single instruc 
tion loop short form initialization is: 

LRSEn = count 
delay slot 1 
delay slot 2 

loopn: one instruction loop 

This instruction sequence sets the loop start and loop end to 
the same address. This thus allows a single-instruction to be 
repeated count--1 times. 
0504 These short form loop initializations calculate the 
loop start address and the loop end address values from the 
address stored in program counter PC 701. They should 
therefore be used with care within the delay slots of a 
branch. If the branch is taken, the loop start address, and the 
loop end address for the case of LRSE2-LRSE0, is calcu 
lated after program counter PC 701 is loaded with the branch 
address. This effect can be annulled if the branch is condi 
tional, by setting the loop initialization to be conditional 
upon the inverse condition. 
0505) These short form loop initializations and the stan 
dard loop initialization, do involve delay slots in much the 
same manner as Software branches. However, the delay slots 
necessary for loop initialization occur once each loop ini 
tialization. The delay slots for branches formed with soft 
ware loops occur once each branch instruction. In addition, 
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there is a greater likelihood that useful instructions can 
occupy the delay slots during loop initialization than during 
loop branches. Thus the overhead needed for loop initial 
ization can be much less than the overhead involved in 
Software branches, particularly in short loops. 
0506 Software branches have priority over loop logic 
720. That is if a loop end register LE2-LEO stores the 
address of the second delay slot instruction following a 
program counter load operation, then loop logic 720 is 
inhibited for that cycle. Thus the loop counter is not decre 
mented, nor will any loop logic 720 program counter load 
take place. This enables a conditional software exit from a 
loop. If the loop logic 720 hardware loop has a single 
conditional branch instruction, then this instruction may be 
executed three times if the condition remains true. This is 
illustrated in FIG. 39. In instruction slot 901 the branch 
condition is not true So the branch is unsuccessful. Loop 
logic 720 has already reloaded the same instruction during 
the fetch pipeline stage of instruction slot 902. In instruction 
slot 902 the branch condition is true and the branch is taken, 
thereby loading the address of a target instruction into 
program counter PC 701. This change in program counter 
PC 701 does not change the two already loaded examples of 
the branch instruction in the pipeline in instruction slots 903 
and 904. Assuming the branch condition is still true, the 
execute pipeline stage of these instruction slots loads the 
address of the target instruction into program counter PC 
701. Thus the branch is taken three times in instruction slots 
902, 903 and 904 and the target instruction executes three 
times in instruction slots 905, 906 and 906. Finally in 
instruction slot 908 the instruction following the target 
instruction is reached. As further explained below, the single 
branch instruction may be coded with parallel operations 
that would also be executed multiple times and that may 
change the branch condition. 
0507 Loop control logic 720 permits zero delay branches 
and Zero delay conditional branches. In these cases the 
address of the point from which the branch is to be taken is 
loaded into a loop end register LE2-LE0. The destination 
address of the branch is loaded into the assigned loop start 
register LS2-LS0. Zero-delay branches may be implemented 
in two ways. Following loop initialization, the assigned loop 
count register LC2-LC0 is set to a non-zero number. Alter 
natively, the corresponding “LCn” field in loop control 
register LCTL 705 may be set to “000. In either case the 
branch will always be taken during the fetch pipeline stage 
with no pipeline hit or delay slots. Conditional Zero-delay 
branches (flow chart diamonds) are implemented similarly. 
During initialization the corresponding loop count register 
LC2-LC0 is assigned to the loop end register LE2-LEO by 
setting the corresponding “LCn” field in loop control reg 
ister LCTL. Before the conditional branch, a conditional 
value is loaded into the assigned loop count register LC2 
LC0. Upon encountering the loop end address, either the 
branch is taken to the loop start address stored in the 
corresponding loop start register LS2-LS0 if the conditional 
value is non-Zero, or the branch is not taken if the condi 
tional value is zero. Since the loop registers are loaded by 
Software in the execute pipeline stage and used by the 
hardware in the fetch pipeline stage, there should be at least 
two instructions between loading any loop register and the 
branch or conditional branch instruction at the loop end 
address. Otherwise, the previous value for that loop register 
is used by loop logic 720. 
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0508 Referring back to FIG. 31, program flow control 
unit 130 handles interrupts employing interrupt enable reg 
ister INTEN 706 and interrupt flag register INTFLG 707. 
Program flow control unit 130 may support up to 32 inter 
rupt sources represented by selectively setting bits of inter 
rupt flag register INTFLG 707. Each source can be indi 
vidually enabled via interrupt enable register INTEN 706. 
Pending interrupts are recorded in interrupt flag register 
INTFLG 707, which latches interrupt requests until they are 
specifically cleared by Software, normally during the inter 
rupt routine. The individual interrupt flag can alternatively 
be polled and cleared by a software loop. 

0509 FIG. 40 illustrates the field definitions for interrupt 
enable register INTEN 706 and interrupt flag register 
INTFLG 707. The bits labeled “r” are reserved for future use 
and bits labeled '-' are not implemented in the preferred 
embodiment but may be used in other embodiments. Inter 
rupts are prioritized from left to right. Each interrupt source 
can be individually enabled by setting a “1” in the corre 
sponding Enable (E) bit of interrupt enable register INTEN 
706. The interrupt source bits of interrupt flag register 
INTFLG 707 are in descending order of priority from right 
to left: Emulation interrupt ETRAP which is always 
enabled; XY patch interrupt, task interrupt; packet request 
busy interrupt PRB, packet request error interrupt PRERR: 
packet request successful interrupt PREND: master proces 
sor 60 message interrupt MPMSG; digital image/graphics 
processor 71 message interrupt DIGPOMSG; digital image/ 
graphics processor 72 message interrupt DIGP1MSG; digi 
tal image/graphics processor 73 message interrupt 
DIGP2MSG; digital image/graphics processor 74 message 
interrupt DIGP3MSG. Bits 31-28 are reserved for message 
interrupts from four additional digital image/graphics pro 
cessors in an implementation of multiprocessor integrated 
circuit 100 including eight digital image/graphics proces 
SOS. 

0510) The “W bit (bit 0) of interrupt enable register 
INTEN 706 controls writes to interrupt flag register 
INTFLG 707. This bit would ordinarily control whether the 
emulation interrupt is enabled. Since in the preferred 
embodiment the emulation interrupt cannot be disabled there 
is no need for an enable bit for this interrupt in interrupt 
enable register INTEN 706. Bit 0 of interrupt enable register 
INTEN 706 modifies the behavior of the interrupt flag 
register INTFLG 707. When the “W' bit of interrupt enable 
register INTEN 706 is “1”, software writes to interrupt flag 
register INTFLG 707 can only set bits to “1”. Under these 
conditions, an attempt to write a “0” to any bit of interrupt 
flag register INTFLG 707 has no effect. When this “W' bit 
“0”, writing a “1” to any bit of interrupt flag register 
INTFLG 707 clears that bit to “0”. An attempt to write a “0” 
to any bit of interrupt flag register INTFLG 707 has no 
effect. This allows individual interrupt flags within interrupt 
flag register INTFLG 707 to be cleared without disturbing 
the state of others. Each interrupt service routine should 
clear its corresponding interrupt flag before returning 
because these flags are not cleared by hardware in the 
preferred embodiment. The emulation interrupt ETRAP, the 
only exception to this, is cleared by hardware because this 
interrupt is always enabled. If a particular interrupt source is 
trying to set a bit within interrupt flag register INTFLG 707 
simultaneously as a software write operation attempts to 
clear it, logic causes the bit to be set. 
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0511. The ETRAP interrupt flag (bit 0 of interrupt flag 
register INTFLG 707) is set from either analysis logic or an 
ETRAP instruction. This interrupt is normally serviced 
immediately because it cannot be disabled, however inter 
rupt servicing does wait until pipeline stall conditions such 
as memory contention via crossbar 50 are resolved. The 
ENTRAP interrupt flag is the only interrupt bit in interrupt 
flag register INTFLG 707 cleared by hardware when the 
interrupt is serviced. 
0512. The XY PATCH interrupt flag (bit 11 of interrupt 
flag register INTFLG 707) is set under certain conditions 
when employing the global address unit 610 and local 
Address unit 620 combine to perform XY addressing. As 
previously described in conjunction with FIG. 27 and the 
description of address unit 120, XY patched addressing may 
generate interrupts on certain conditions. The instruction 
word calling for XY patched addressing indicates whether 
Such an interrupt may be generated and whether a permitted 
interrupt is made on an address inside or outside a desig 
nated patch. 
0513. The TASK interrupt flag (bit 14 in interrupt flag 
register INTFLG 707) is set upon receipt of a command 
word from master processor 60. This interrupt causes digital 
image/graphics processor 71 to load its TASK interrupt 
vector. This interrupt may cause a selected digital image/ 
graphics processor 71, 72, 73 or 74 to switch tasks under 
control of master processor 70, for instance. 
0514) The packet request busy interrupt flag PRB (bit 17 
of interrupt flag register INTFLG 707) is set if software 
writes a “1” to the packet request bit of communications 
register COMM 781 when the queue active bit is a “1”. This 
allows packet requests to be Submitted without checking that 
the previous one has finished. If the previous packet request 
is still queued then this interrupt flag becomes set. This will 
be further explained below in conjunction with a description 
of communications register COMM 781. 
0515) The packet request error interrupt flag PRERR (bit 
18 of interrupt flag register INTFLG 707) is set if transfer 
controller 80 encounters an error condition while executing 
a packet request Submitted by the digital image/graphics 
processor. 

0516) The packet request end interrupt flag PREND (bit 
19 of interrupt flag register INTFLG 707) is set by transfer 
controller 80 when it encounters the end of the digital 
image/graphics processor's linked-list, or when it completes 
a packet request that instructs transfer controller 80 to 
interrupt the requesting digital image/graphics processor 
upon completion. 
0517. The master processor message interrupt flag 
MPMSG (bit 20 of interrupt flag register INTFLG 707) is 
becomes set when master processor 60 sends a message 
interrupt to that digital image/graphics processor. 

0518) Bits 27-24 of interrupt flag register INTFLG 707 
log message interrupts from digital image/graphics proces 
sors 71, 72, 73 and 74. Note that a digital image/graphics 
processor 71, 72, 73 or 74 can send a message to itself and 
interrupt itself via the corresponding bit of interrupt flag 
register INTFLG 707. The digital image/graphics processor 
0 message interrupt flag DIGPOMSG (bit 24 of interrupt 
flag register INTFLG 707) is set when digital image/graph 
ics processor 71 sends a message interrupt to the digital 
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image/graphics processor. In a similar fashion, digital 
image/graphics processor 1 message interrupt flag 
DIGP1MSG (bit 25 of interrupt flag register INTFLG 707) 
is set when digital image/graphics processor 72 sends a 
message interrupt, digital image/graphics processor 2 mes 
sage interrupt flag DIGP2MSG (bit 26 of interrupt flag 
register INTFLG 707) is set when digital image/graphics 
processor 73 sends a message interrupt, and digital image/ 
graphics processor 3 message interrupt flag DIGP3MSG (bit 
27 of interrupt flag register INTFLG 707) is set when digital 
image/graphics processor 74 sends a message interrupt. As 
previously stated, bits 31-28 of interrupt flag register 
INTFLG 707 are reserved for message interrupts from four 
additional digital image/graphics processors in an imple 
mentation of multiprocessor integrated circuit 100 including 
eight digital image/graphics processors. 

0519. When an enabled interrupt occurs, an interrupt 
pseudo-instruction unit 770, which may be a small state 
machine, injects the following a set of pseudo-instructions 
into the pipeline at instruction register-address stage 751: 

0520) *(A14-=16)=SR 
0521 *(A14+12)=PC 
0522 BR=*vectadd;Two LS bits of vectadd=“11”, 
0523 to load S. G and L 

0524) *(A14+8)=IPA 
0525) *(A14+4)-IPE 

0526. These pseudo-instructions are referred to as PS1, 
PS2, PS3, PS4 and PS5, respectively. Instruction pointer 
return from subroutine IPRS 704 is not saved by this 
sequence. If an interrupt service routine performs any 
branches then instruction pointer-return from subroutine 
IPRS 704 should first be pushed by the interrupt service 
routine, and then restored before returning. Note that the 
vector fetch is a load of the entire program counter PC 701, 
with instruction pointer-return from subroutine IPRS 704 
protected. Since this causes the S, G and L. bits of program 
counter PC 701 to be loaded, the three least significant bits 
of all interrupt vectors are made “0”. One exception to this 
statement is that the task vector fetched after a reset should 
have the “L” bit (bit 0 of program counter PC 701) set, in 
order to disable looping. 
0527 The respective addresses of starting points of inter 
rupt service routines for any interrupt represented in the 
interrupt flag register INTFLG 707 are called the digital 
image/graphics processor interrupt vectors. These addresses 
are generated by Software and loaded as data to the param 
eter memory 25, 30, 35 and 40 corresponding to the respec 
tive interrupted digital image/graphics processor 71, 72, 73 
and 74 at the fixed addresses shown in Table 34. Interrupt 
pseudo-instruction PS3 takes the 32 bit address stored in the 
indicated address in the corresponding parameter memory 
25, 30, 35 or 40 and stored this in program counter PC 701. 
Interrupt pseudo-instruction unit 770 computes the 
addresses for the corresponding parameter memory based 
upon the highest priority interrupt enabled via interrupt 
enable register 706. Interrupt pseudo-instruction unit 770 
operates to include the digital image/graphics processor 
number from communications register COMM 781 in order 
to generate unique addresses for each digital image/graphics 
processor. Note interrupt pseudo-instruction PS4 and PS5 
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are in the delay slots following this branch to the interrupt 
service routine. 

TABLE 34 

INTFLG 
bit Interrupt Name Address 

31 Reserved for DIGP7 Message O1 OOii1FC 
30 Reserved for DIGP6 Message O10(OH1F8 
29 Reserved for DIGP5 Message O10(OH1F4 
28 Reserved for DIGP4 Message O10(OH1FO 
27 DIGP3 Message O1 OOH1EC 
26 DIGP2 Message O1OOii1E8 
25 DIGP1 Message O1OOii1E4 
24 DIGPO Message O1OOii1EO 
23 Spare O10(OH1DC 
22 Spare O1 OOii1D8 
21 Spare O1 OOii1D4 
2O Master Processor Message O1 OOii1DO 
19 Packet Request Successful O10(OH1CC 
18 Packet Request Error O1 OOii1 C8 
17 Packet Request Busy O1 OOii1C4 
16 Spare O1 OOii1CO 
15 Spare O10(OH1BC 
14 TASK interrupt O1 OOii1B8 
13 Spare O1 OOii1B4 
12 Spare O1 OOii1BO 
11 XY Patching O1OOhi1 AC 
10 Reserved O1OOii1A8 
9 Reserved O1OOii1A4 
8 Reserved O1OOii1 AO 
7 Reserved O1 OOii19C 
6 Reserved O10(OH198 
5 Reserved O1OOH.194 
4. Reserved O10(OH190 
3 Reserved O1 OOii18C 
2 Spare O1OOH.188 
1 Spare O1OOhi184 
O Emulation O10(OH18O 

In each address the “if” is replaced by the digital image/ 
graphics processor number obtained from communications 
register COMM 781. 
0528. The final 4 instructions of an interrupt service 
routine should contain the following (32 bit data, unshifted 
index) operations: 

These instructions are referred to as RETI1, RETI2, 
RETI3 and RETI4, respectively. Other operations can 
be coded in parallel with these if desired, but none of 
these operations should modify status register 211. 

0533. The interrupt state can be saved if a new task is to 
be executed on the digital image/graphics processor, and 
then restored to the original state after finishing the new task. 
The write mode controlled by the “W' bit on interrupt 
enable register INTEN 706 allows this to be done without 
missing any interrupts during the saving or restoring opera 
tions. This may be achieved by the following instruction 
sequence. First, disable interrupts via a DINT instruction. 
Next save both interrupt enable register INTEN 706 and 
interrupt flag register INTFLG 707. Set the “W' bit (bit 0) 
of interrupt enable register INTEN 706 to “0” and then write 
Hex “FFFFFFFF to interrupt flag register INTFLG 707. 
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Run the new task, which may include enabling interrupts. 
Following completion of the new task, recover the original 
task. First, disable interrupts via the DINT instruction. Set 
the “W' bit of interrupt enable register INTEN 706 to “1”. 
Restore the status of interrupt flag register INTFLG 707 
from memory. Next, restore the status of interrupt enable 
register INTEN from memory. Last, enable interrupts via the 
EINT instruction. 

0534 Each digital image/graphics processor 71, 72, 73 
and 74 may transmit command words to other digital 
image/graphics processors and to master processor 60. A 
register to register move with a destination of register A15. 
the Zero value address register of the global address unit, 
initiates a command word transfer to a designated processor. 
Note that this register to register transfer can be combined in 
a single instruction with operations of data unit 110 and an 
access via local data port 144, as will be described below. 
This command word is transmitted to crossbar 50 via global 
data port 148 accompanied by a special command word 
signal. This allows master processor 60 and digital image/ 
graphics processors 71, 72, 73 and 74 to communicate with 
the other processors of multiprocessor integrated circuit 100. 
0535 FIG. 41 illustrates schematically the field defini 
tions of these command words. In the preferred embodiment 
command words have the same 32 bit length as data trans 
mitted via global data port 148. The least significant bits of 
each command word define the one or more processors and 
other circuits to which the command word is addressed. 
Each recipient circuit responds to a received command word 
only if these bits indicate the command word is directed to 
that circuit. Bits 3-0 of each command word designate 
digital image/graphics processors 74,73, 72 and 71, respec 
tively. Bits 7-4 are not used in the preferred embodiment, but 
are reserved for use in a multiprocessor integrated circuit 
100 having eight digital image/graphics processors. Bit 8 
indicates the command word is addressed to master proces 
sor 60. Bit 9 indicates the command word is directed to 
transfer controller 80. Bit 10 indicates the command word is 
directed to frame controller 90. Note that not all circuits are 
permitted to send all command words to all other circuits. 
For example, system level command words cannot be sent 
from a digital image/graphics processor to another digital 
image/graphics processor or to master processor 60. Only 
master processor 60 can send command words to transfer 
controller 80 or to frame controller 90. The limitations on 
which circuit can send which command words to which 
other circuits will be explained below in conjunction with 
the description of each command word field. 
0536 The “R” bit (bit 31) of the command word is a reset 

bit. Master processor 60 may issue this command word to 
any digital image/graphics processor, or a digital image/ 
graphics processor may issue this command word to itself. 
No digital image/graphics processor may reset another digi 
tal image/graphics processor. Note throughout the following 
description of the reset sequence each digit “if” within an 
address should be replaced with the digital image/graphics 
processor number, which is stored in bits 1-0 of command 
register COMM 781. When a designated digital image/ 
graphics processor receives a reset command word, it first 
sets its halt latch and sends a reset request signal to transfer 
controller 80. Transfer controller 80 sends a reset acknowl 
edge signal to the digital image/graphics processor. The 
resetting digital image/graphics processor performs no fur 
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ther action until receipt of this reset acknowledge signal 
from transfer processor 80. Upon receipt of the reset 
acknowledge signal, the digital image/graphics processor 
initiates the following sequence of operations: sets the halt 
latch if not already set; clears to “0” the “F”, “P”, “Q and 
“S” bits of communications register COMM 781 (the use of 
these bits will be described below; clears any pending 
memory accesses by address unit 120; resets any instruction 
cache service requests; loads into instruction register-ex 
ecute stage IRE 752 the instruction 

which unconditionally loads the contents of the Stack pointer 
A14 left shifted one bit to program counter PC 701 with the 
negative, carry, overflow and Zero status bits protected from 
change and with the “R” bit set to reset stack pointer A14 in 
parallel with a load of the stack pointer A14; loads into 
instruction register-address stage IRA 751 the instruction 

which instruction stores the contents of program counter PC 
701 at the address indicated by the sum of the address PBA 
and Hex “FC; sets interrupt pseudo-instruction unit 770 to 
next load interrupt pseudo-instruction PS3; sets bit 14 of 
interrupt flag register INTFLG 707 indicating a task inter 
rupt; clears bit 0 of interrupt flag register INTFLG 707 thus 
clearing the emulator trap interrupt ETRAP; and clears bits 
11, 7 and 3 of loop control register LCTL thus disabling all 
three loops. 
0537 Execution by the digital image/graphics processor 
begins when master processor 60 transmits an unhalt com 
mand word. Once execution begins the digital image/graph 
ics processor: save address stored in program counter PC 
701 to address Hex “0100+7FC, this saves the prior con 
tents of stack pointer A14 left-shifted by one place and the 
current value of the control bits (bits 2-0) of program counter 
PC 701; loads the address Hex “0100H7FO into stack 
pointer A14; loads program counter PC 701 with the task 
interrupt vector, where control bits 2-0 are "000; stores the 
contents of instruction register-address stage IPA 751 includ 
ing control bits 2-0 at address Hex “0100+7F8'; stores the 
contents of instruction register-execute stage IPE including 
control bits 2-0 at address Hex “0100if7F4'; and begins 
program execution at the address given by the Task inter 
rupt. The stack-state following reset is shown in Table 35. 

TABLE 35 

Address Contents 

HexO1OOhifFC stack pointer register A14 from 
before reset left shifted one place 
instruction register-address stage IRA 
from before reset 
instruction register-execute stage IRE 
from before reset 

HexO1OOhifF8 

HexO1OOhifF4 

The prior states of instruction register-address stage IRA 751 
and instruction register-execute stage IRE 752 include the 
control bits 2-0. Note that stack pointer A14 now contains 
the address Hex “O1 OOH7FO’. 
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high priority by setting the “F” bit (bit 31) to “1” or a low 
priority by clearing the “F” bit “0”. 

0548 Transfer controller 80 recognizes when the “P” bit 
is set and assigns a priority to the packet request based upon 
the State of the “F” bit. Transfer controller 80 clears the “P” 
bit and sets the "Qbit, indicating that a packet request is in 
queue. Transfer controller 80 then accesses the predeter 
mined address Hex "0100HOFC within the corresponding 
parameter memory and services the packet request based 
upon the linked-list. Upon completion of the packet request, 
transfer controller 80 clears the “Q bit to “0” indicating that 
the queue is no longer active. The digital image/graphics 
processor may periodically read this bit for an indication that 
the packet request is complete. Alternatively, the packet 
request itself may instruct transfer controller 80 to interrupt 
the requesting digital image/graphics processor when the 
packet request is complete. In this case, transfer controller 
80 sends an interrupt to the digital image/graphics processor 
by setting bit 19, the packet request end interrupt bit 
PREND, in interrupt flag register INTFLG 707. In transfer 
controller 80 encounters an error in servicing the packet 
request, it sends an interrupt to the digital image/graphics 
processor by setting bit 18, the packet request error interrupt 
bit PRERROR, in interrupt flag register INTFLG 707. The 
digital image/graphics processor has the appropriate inter 
rupt vectors stored at the locations noted in Table 34 and the 
appropriate interrupt service routines. 
0549. The digital image/graphics processor may request 
another packet while transfer controller 80 is servicing a 
prior request. In this event the digital image/graphics pro 
cessor sets the “P” bit to “1” while the “Q' bit is “1”. If this 
occurs, transfer controller 80 sends a packet request busy 
interrupt PRB to the digital image/graphics processor by 
setting bit 17 of interrupt flag register INTFLG 707. Transfer 
controller 80 then clears the “P” bit to “0”. The interrupt 
service routine of requesting digital image/graphics proces 
Sor may suspend the second packet request while the first 
packet request is in queue, cancel the packet request or take 
some other corrective action. This feature permits the digital 
image/graphics processor to Submit packet requests without 
first checking the “Q' bit of communications register 
COMM 781. 

0550 The digital image/graphics processor may suspend 
service of the packet request by setting the “S” bit to “1”. 
Transfer controller 80 detects when the “S” bit is “1”. If this 
occurs while a packet request is in queue, the transfer 
controller copies the “Q' bit into the “P” bit and clears the 
“Q bit. This will generally set the “P” bit to “1”. Software 
within the requesting digital image/graphics processor may 
then change the status of the “S” and “P” bits. Transfer 
controller 80 retains in memory its location within the 
linked-list of the Suspended packet request. If transfer con 
troller 80 determines that the “S” bit is “O'” and the “P” bit 
is simultaneously '1', then the Suspended packet request is 
resumed. 

0551) The “Sync bits” field (bits 15-8) of communica 
tions register COMM 781 are used in a synchronized 
multiple instruction, multiple data mode. This operates for 
any instructions bounded by a lock instruction LCK, which 
enables the synchronized multiple instruction, multiple data 
mode, and an unlock instruction UNLCK, which disables 
this mode. Bits 11-8 indicate whether instruction fetching is 
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to be synchronized with digital image/graphics processors 
74, 73, 72 and 71, respectively. A “1” in any of these bits 
indicates the digital image/graphics processor delays 
instruction fetch until the corresponding digital image/ 
graphics processor indicates it has completed execution of 
the prior instruction. The other digital image/graphics pro 
cessors to which this digital image/graphics processor is to 
be synchronized will similarly have set the corresponding 
bits in their communication register COMM 781. It is not 
necessary that the “Sync bit corresponding to itself be set 
when a digital image/graphics processor is in the synchro 
nized multiple instruction, multiple data mode, but this does 
no harm. Note that bits 15-12 are reserved for a possible 
extension to eight digital image/graphics processors. 

0552) The “DIGP#” field (bits 2-0) of communications 
register COMM 781 are unique to each particular digital 
image/graphics processor on multiprocessor integrated cir 
cuit 100. These bits are read only, and any attempt to write 
to these bits fails. This is the only part of the digital 
image/graphics processors 71, 72, 73 and 74 that is not 
identical. Bits 1-0 are hardwired to a two bit code that 
identifies the particular digital image/graphics processor as 
shown in Table 36. 

TABLE 36 

COMM 
field Parallel 

1 O Processor 

O O DIGPO (71) 
O 1 DIGP1 (72) 
1 O DIGP2 (73) 
1 1 DIGP3 (74) 

Note that bit 2 is reserved for future use in a multiprocessor 
integrated circuit 100 having eight digital image/graphics 
processors. In the current preferred embodiment this bit is 
hardwired to “0” for all four digital image/graphics proces 
sors 71, 72, 73 and 74. 

0553) This part of communications register COMM 781 
serves to identify the particular digital image/graphics pro 
cessor. The identity number of a digital image/graphics 
processor may be extracted by ANDing communications 
register COMM 781 with 7 (Hex “0000007). The instruc 
tion “D0=COMM&7” does this, for example. This instruc 
tion returns only the data in bits 2-0 of communications 
register COMM 781. Note that this instruction is suitable for 
embodiments having eight digital image/graphics proces 
sors. Since the addresses of the data memories and param 
eter memories corresponding to each digital image/graphics 
processor depend on the identity of that digital image/ 
graphics processor, the identity number permits software to 
compute the addresses for these corresponding memories. 
Using this identity number makes it is possible to write 
Software that is independent of the particular digital image/ 
graphics processor executing the program. Note that digital 
image/graphics processor independent programs may also 
use registers PBA and DBA for the corresponding parameter 
memory base address and data memory base address. 
0554 Table 37 lists the coding of registers called the 
lower 64 registers. Instruction words refer to registers by a 
combination of register bank and register number. If no 



US 2008/0077771 A1 

register bank designation is permitted in that instruction 
word format, then the register number refers to one of the 
data registers 200 D7-D0. Some instruction words include 3 
bit register bank fields. For those instructions words the 
register is limited to the lower 64 registers listed in Table 37, 
with a leading “0” implied in the designated register bank. 
Otherwise, the instruction word refers to a register by a four 
bit register bank and a three bit register number. 

TABLE 37 

Reg. Reg. Register 
Bank No. Name 

OOOO OOO AO 
OOOO OO A1 
OOOO O10 A2 
OOOO O A3 
OOOO 100 reserved 
OOOO 10 reserved 
OOOO 110 A6 
OOOO 1 A7 
OOO1 OOO A8 
OOO1 OO A9 
OOO1 O10 A1O 
OOO1 O A11 
OOO1 100 reserved 
OOO1 10 reserved 
OOO1 110 A14 
OOO1 1 A15 
OO10 OOO XO 
OO10 OO X1 
OO10 O10 X2 
OO10 O X3 
OO10 100 reserved 
OO10 10 reserved 
OO10 110 reserved 
OO10 1 reserved 
OO11 OOO X8 
OO11 OO X9 
OO11 O10 X10 
OO11 O X11 
OO11 100 reserved 
OO11 10 reserved 
OO11 110 reserved 
OO11 1 reserved 
O1OO OOO DO 
O1OO OO D1 
O1OO O10 D2 
O1OO O D3 
O1OO 100 D4 
O1OO 10 D5 
O1OO 110 D6 
O1OO 1 D7 
O101 OOO ROT 
O101 OO SR 
O101 O10 MF 
O101 O reserved 
O101 100 reserved 
O101 10 reserved 
O101 110 reserved 
O101 1 reserved 
O110 OOO GLMUX 
O110 OO reserved 
O110 O10 reserved 
O110 O reserved 
O110 100 reserved 
O110 10 reserved 
O110 110 reserved 
O110 1 reserved 
O111 OOO PCCALL 
O111 OO IPABR 
O111 O10 IPE 
O111 O IPRS 
O111 100 INTEN 
O111 10 INTFLG 
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TABLE 37-continued 

Reg. Reg. Register 
Bank No. Name 

O111 110 COMM 
O111 111 LCTL 

Registers A0 through A15 are address unit base address 
registers 611. Registers X0 through X15 are address unit 
index address registers 612. Registers D0 through D7 are 
data unit data registers 200. Register ROT is the rotation data 
register 208. Register SR is the data unit status register 210. 
Register MF is the data unit multiple flags register 211. 
Register GLMUX is the address unit global/local address 
multiplex register 630. Register PC is the program flow 
control unit 130 program counter PC 701 that points to the 
instruction being fetched. Reading from this register address 
obtains the address of the next instruction to be fetched. 
Writing to this register address causes a software call 
(CALL). This changes the next instruction pointed to by 
program counter PC 701 and loads the previous contents of 
program counter PC 701 into instruction pointer-return from 
subroutine IPRS 704. Register IPA is the program flow 
control unit instruction pointer-address stage 702, which 
holds the address of the instruction currently controlling the 
address pipeline stage. Reading from this register address 
obtains the address of the instruction currently in the address 
pipeline stage. Writing to this register address executes a 
software branch (BR). This alters the address stored in 
program counter PC 701 without changing the address 
stored in either instruction pointer-address stage IPA 702 or 
instruction pointer-return from subroutine IPRS 704. Reg 
ister IPE is the program flow control unit instruction pointer 
execute stage 703, which holds the address of the instruction 
currently controlling the execute pipeline stage. Software 
would not ordinarily write to either of these two registers. 
Register IPRS is the program flow control unit instruction 
pointer-return from subroutine 704. Instruction pointer-re 
turn from Subroutine IPRS 704 is loaded with the value of 
program counter PC 701 incremented in bit 3 upon every 
write to program counter PC 701. This provides a return 
address for a Subroutine call as the next sequential instruc 
tion. Register INTEN is the program flow control unit 
interrupt enable register 706 that controls the enabling and 
disabling of various interrupt sources. Register INTFLG is 
the program flow control unit interrupt flag register 707. 
This register contains bits representative of the interrupt 
Sources that are set upon receipt of a corresponding inter 
rupt. Register COMM is the program flow control unit 130 
communications register 781. This register controls packet 
requests by the digital image/graphics processor to the 
transfer controller 80, synchronization between digital 
image/graphics processors during synchronized MIMD 
operation and includes hardwired bits identifying the digital 
image/graphics processor. Register LCTL is the program 
flow control unit loop control register 705, which controls 
whether hardware loop operations are enabled and which 
loop counter to decrement. 

0555 Table 38 lists the coding of registers called the 
upper 64 registers. These registers have register banks in the 
form 1XXX. 
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TABLE 38 

Reg. Reg. Register 
Bank No. Name 

OOO OOO reSewe 
OOO OO reSewe 
OOO O10 reSewe 
OOO O reSewe 
OOO 100 reSewe 
OOO 10 reSewe 
OOO 110 reSewe 
OOO 1 reSewe 
OO1 OOO reSewe 
OO1 OO reSewe 
OO1 O10 reSewe 
OO1 O reSewe 
OO1 100 reSewe 
OO1 10 reSewe 
OO1 110 reSewe 
OO1 1 reSewe 
O10 OOO ANACNTL 
O10 OO ECOMCNTL 
O10 O10 ANASTAT 
O10 O EVTCNTR 
O10 100 CNTCNTL 
O10 10 ECOMCMD 
O10 110 ECOMIDATA 
O10 1 BRK1 
O11 OOO BRK2 
O11 OO TRACE1 
O11 O10 TRACE2 
O11 O TRACE3 
O11 100 reSewe 
O11 10 reSewe 
O11 110 reSewe 
O11 1 reSewe 
OO OOO LCO 
OO OO LC1 
OO O10 LC2 
OO O reSewe 
OO 100 LRO 
OO 10 LR1 
OO 110 LR3 
OO 1 reSewe 
O1 OOO LRSEO 
O1 OO LRSE1 
O1 O10 LRSE2 
O1 O reSewe 
O1 100 LRSO 
O1 10 LRS1 
O1 110 LRS2 
O1 1 reSewe 
O OOO LSO 
O OO LS1 
O O10 LS2 
O O reSewe 
O 100 LEO 
O 10 LE1 
O 110 LE2 
O 1 reSewe 
1 OOO CACHE 
1 OO GTA 
1 O10 reSewe 
1 O reSewe 
1 100 TAGO 
1 10 TAG1 
1 110 TAG2 
1 1 TAG3 

In Table 38 the registers ANACNTL, ECOMCNTL, ANAS 
TAT, EVTCNTR, CNTCNTL, ECOMCMD, ECOMDATA, 
BRK1, BRK2, TRACE1, TRACE2 and TRACE3 are used 
with an on chip emulation technique. These registers form 
no part of the present invention and will not be further 
described. The registers LC0, LC1 and LC2 are loop count 
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registers 733, 732 and 731, respectively, within the program 
flow control unit 130 that are assigned to store the current 
loop count for hardware loops. The registers LR0, LR1 and 
LR2 are program flow control unit 130 loop reload registers 
743, 742 and 741, respectively. These registers store reload 
values for the corresponding loop count registers LC0, LC1 
and LC2 permitting nested loops. The register addresses 
corresponding to LRSE0, LRSE1, LRSE2, LRS0, LRS1 and 
LRS2 are write only addresses used for fast loop initializa 
tion. Any attempt to read from these register addresses 
returns null data. Writing a count into one of registers LRS0, 
LRS1 or LRS2: writes the same count into corresponding 
loop count register and loop reload register, writes the 
address stored in program counter PC 701 incremented in bit 
3 into the corresponding loop start address register, and 
writes to loop control register LCTL 705 to enable the 
corresponding hardware loop. These registers enable fast 
initialization of a multi-instruction loop. Writing a count into 
one of registers LRSE0, LRSE1 or LRSE2: writes the same 
count into corresponding loop count register and loop reload 
register, writes the address stored in program counter PC 
701 incremented in bit 3 into the corresponding loop start 
address register and loop end address register, and writes to 
loop control register LCTL 705 to enable the corresponding 
hardware loop. These registers enable fast initialization of a 
loop of a single instruction. The registers LSO, LS1 and LS2 
are loop start address registers 723, 722 and 721, respec 
tively, for corresponding hardware loops. The registers LE0. 
LE1 and LE2 are loop end address registers 713, 712 and 
711, respectively, for corresponding hardware loops. Reg 
ister CACHE is register 709 that mirrors the digital image/ 
graphics processor instruction cache coding. Register GTA 
is the global temporary register 108 that stores the results of 
the global address unit operation for later reuse upon con 
tention or pipeline stall. This register is read only and an 
attempt to write to this register is ignored. Registers TAG3. 
TAG2, TAG1 and TAG0 are cache tag registers designated 
collectively as 708, which store the relevant address portions 
of data within the data cache memory corresponding to that 
digital image/graphics processor. 
0556 FIG. 43 illustrates the format of the instruction 
word for digital image/graphics processors 71, 72, 73 and 
74. The instruction word has 64 bits, which are generally 
divided into two parallel sections as illustrated in FIG. 42. 
The most significant 25 bits of the instruction word (bits 
63-39) specify the type of operation performed by data unit 
110. The least significant 39 bits of the instruction word (bits 
38-0) specify data transfers performed in parallel with the 
operation of data unit 110. There are five formats A, B, C, 
D and E for operation of data unit 110. There are ten types 
of data transfer formats 1 to 10. The instruction word may 
specify a 32 bit immediate value as an alternative to speci 
fying data transfers. The instruction word is not divided into 
the two sections noted above when specifying a 32 bit 
immediate value, this being the exception to the general rule. 
Many instructions perform operations that do not use data 
unit 110. These instructions may allow parallel data transfer 
operations or parallel data transfer operations may be pro 
hibited depending on the instruction. In other respects the 
operations specified for data unit 110 are independent of the 
operations specified for data transfer. 
0557. The instruction word alternatives are summarized 
as follows. The operation of data unit 110 may be a single 
arithmetic logic unit operation or a single multiply opera 
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tion, or one of each can be performed in parallel. All 
operations of data unit 110 may be made conditional based 
upon a field in the instruction word. The parallel data 
transfers are performed on local port 141 and global port 145 
of data port unit 140 to and/or from memory. Two data 
transfer operations are independently specified within the 
instruction word. Twelve addressing modes are Supported 
for each memory access, with a choice of register or offset 
index. An internal register to register transfer within data 
unit 110 can be specified in the instruction word instead of 
a memory access via global port 145. When an operation of 
data unit 110 uses a non-data unit register as a source or 
destination, then some of the parallel data transfer section of 
the instruction word specifies additional register informa 
tion, and the global port source data bus Gsrc 105 and global 
port destination data bus Gdst 107 transfer the data to and 
from data unit 110. 

0558) A part of the instruction word that normally speci 
fies the local bus data transfer has an alternative use. This 
alternative use allows conditional data unit 110 operation 
and/or global memory access or a register to register move. 
Limited conditional source selection is Supported in the 
operation of data unit 110. The result of data unit 110 can be 
conditionally saved or discarded, advantageously condition 
ally performing an operation without having to branch. 
Update of each individual bit of a status register can also be 
conditionally selected. Conditional stores to memory choose 
between two registers. Conditional loads from memory 
either load or discard the data. Conditional register to 
register moves either write to the destination, or discard the 
data. 

0559) Description of the types of instruction words of 
FIG. 43 and an explanation or glossary of various bits and 
fields of the five data unit operation formats follows. The bits 
and fields define not only the instruction words but also the 
circuitry that decodes the instruction words according to the 
specified logic relationships. This circuitry responds to a 
particular bit or field or logical combination of the instruc 
tion words to perform the particular operation or operations 
represented. Accordingly, in this art the specification of bits, 
fields, formats and operations defines important and advan 
tageous features of the preferred embodiment and specifies 
corresponding logic circuitry to decode or implement the 
instruction words. This circuitry is straight forwardly imple 
mented from this specification by the skilled worker in a 
programmable logic array (PLA) or in other circuit forms 
now known or hereafter devised. A description of the legal 
operation combinations follows the description of the 
instruction word format. 

0560 Data unit format A is recognized by bit 63='1' and 
bit 44="0. Data unit format A specifies a basic arithmetic 
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logic unit operation with a 5 bit immediate field. The “class' 
field (bits 62-60) designates the data routing within data unit 
110 with respect to arithmetic logic unit 230. Table 39 shows 
the definition of the data routings corresponding to the 
“class' field for data unit formats A, B and C. 

TABLE 39 

Class 

field 

62 61 60 Input A Input B Input C maskgen rotate 

O O O Src2/im Src.1 (a)MF O 

O O 1 distic Src.1 Src2/im DO(4-0) 

O 1 O distic Src.1 mask Src2/im O 

O 1 1 distic Src.1 mask Src2/im Src2/im 

1 O O Src2/im Src.1 mask DO(4-0) DO(4-0) 

1 O 1 Src2/im Src.1 (a)MF DO(4-0) 
1 1 O distic Src.1 Src2/im O 

1 1 1 Src.1 Hex 1 Src2/im Src2/im 

0561. In Table 39 “Input A’ is the source selected by 
Amux 232 for input A bus 241. The source “src2/im” is 
either the five bit immediate value of “immed field (bits 
43-39) in data unit format A, the data register 200 designated 
by the “src2 field (bits 41-39) in data unit format B, or the 
32 bit immediate value of the “32-bit immediate” field (bits 
31-0) in data unit format C. The source “dstc' is a compan 
ion data register 200 to the destination of the arithmetic logic 
unit 230 result. This companion data register 200 has a 
register designation with the upper four bits equal to “0110. 
thereby specifying one of data registers 200, and a lower 
three bits specified by the “dst” field (bits 50-48). Compan 
ion registers are used with transfer formats 6 and 10 which 
use an “Adstbnk” field (bits 21-18) to specify the register 
bank of the destination and an “As 1 bank' (bits 9-6) to 
specify the register bank of Input B. This is known as a long 
distance destination, because the destination is not one of 
data registers 200. Thus one source and the destination may 
have different register banks with the same register numbers. 
Table 40 shows the companion registers to various other 
digital image/graphics processor registers based upon the 
register bank specified in the “Adstbnk” field. Note that with 
any other transfer formats this source register is the data 
register 200 having the register number specified by the 
“dst field. 

TABLE 40 

Companion Data Registers 

DO D1 D2 D3 D4 D5 D6 D7 

AO A1 A2 A3 A4 A6 A7 
A8 A9 A10 A11 A12 A14 A15 
XO X1 X2 
X8 X9 X10 






































































