
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0077771 A1

Guttag et al.

US 20080077771 A1

(43) Pub. Date: Mar. 27, 2008

(54)

(76)

(21)

(22)

(62)

(51)

(52)

LONG INSTRUCTION WORD
CONTROLLING PLURAL INDEPENDENT
PROCESSOR OPERATIONS

Inventors: Karl M. Guttag, Missouri City, TX
(US); Christopher J. Read, Houston,
TX (US); Keith Balmer, Bedford (GB)

Correspondence Address:
Robert D. Marshall, Jr.
Texas Instruments Incorporated
P.O. BOX 655474
MAS 219
Dallas, TX 75265 (US)

Appl. No.:

Filed:

11/930,652

Oct. 31, 2007

Related U.S. Application Data

Division of application No. 10/119.254, filed on Apr.
9, 2002, which is a division of application No.
09/678,746, filed on Oct. 3, 2000, now Pat. No.
6,370.558, which is a division of application No.
08/632,785, filed on Apr. 15, 1996, now Pat. No.
5.742.538, which is a division of application No.
08/160,297, filed on Nov. 30, 1993, now Pat. No.
5,509,129.

Publication Classification

Int. C.
G06F 9/30 (2006.01)
U.S. Cl. .. 712/204; 712/E09

DIGITAL
IMAGE/
GRAPHICS
PROCESSOR

DIGITAL
IMAGE/

GRAPHICS
PROCESSOR

DIGITAL
IMAGE/

GRAPHICS
PROCESSOR

(57) ABSTRACT
This invention is a data processing apparatus which operates
on instruction controlling plural processor actions. Each
instruction includes a data unit section and a data transfer
section. These instruction sections are independent and may
include differing options. In the preferred embodiment, each
instruction is 64 bits. The data unit section includes a data
operation field that indicates the type of arithmetic logic unit
operation and six operand fields. The six operand fields
include four source data register fields and two destination
register fields. The data unit (110) includes a multiplication
unit (220) and an arithmetic logic unit (230). The data unit
(110) may include a barrel rotator (235) for one input of the
arithmetic logic unit (230). The rotated data may be stored
in the first destination register instead of the multiply result.
The address unit (120) operations according to the data
transfer operation field. This could be a load, a store or a
register to register move. Operations may be conditional
based upon conditions stored in a status register (210). The
status register (210) is set by a prior output of the arithmetic
logic unit (230) and the instruction may specify some of the
status bits protect from change. The address unit (120)
preferably includes a plurality of base address registers
(611), a full adder (615) and a left shifter (614). The full
adder (615) may add an index as scaled by the left shifter to
the base address or subtract the scaled index from the base
address. The full adder (615) output may update the base
address register (611), either before supply of the address or
following supply of the address. The index may be recalled
from an index register (612) or an immediate value. In the
preferred embodiment of this invention, the data unit (110)
including the data registers (200), the multiplication unit
(220) and the arithmetic logic unit (230), the address unit
(120) and the instruction decode logic (250, 660) are embod
ied in at least one digital image/graphics processor (71, 72,
73,74) as a part of a multiprocessor (100) formed in a single
integrated circuit used in image processing.

40398,57363534 3 3352 1 3029 282726

p
DIGITAL
IMAGE/ MASTER 80

GRAPHICS PROCESSOR
PROCESSOR

s IMAGE
s SYSTEM

BUS

H S
W C

f f f FIRST
|| || SE 55 g g g g gag

a; s SS t" SECOND
S2 | 2 || - IMAGE
T | 90 SYSTEM

2524 222 21 1413121

US 2008/0077771 A1 Patent Application Publication Mar. 27, 2008 Sheet 2 of 37

WHISKS

O S

- INSTRUCTION CACHE

o
n Y
-

r

DATA CACHE

DATA CACHE

INSTRUCTION CACHE Sy

PARAMETERS -

2 (f)I, H.

INSTRUCTION CACHE

DATA

DATA

DATA

PARAMETERS

INSTRUCTION CACHE

T 5) TT /H0WWI TWILIOIO
I

/Z | 87 || 6

an

DATA

DATA

DATA
C
n PARAMETERS

1 0 ZT /E0WWI TWILIOIO
|

/H0WWI TWILIOIO
I

T 5) F7I /50WWI TWILIOIO

Patent Application Publication Mar. 27, 2008 Sheet 3 of 37

INTFLG
COMM

DATA UNIT
ALU SOURCE

GLOBAL
ADDRESS
UNIT

610
LOCAL

ADDRESS

US 2008/0077771 A1

L-PORT G-PORT I-PORT I-PORT L-PORT G-PORT
w-v-7

DATA ADDRESSES

Patent Application Publication Mar. 27, 2008 Sheet 4 of 37 US 2008/0077771 A1

TIME->

FIC. 4

210
51 28 65 32 O

NCVZ---------------------RMSIZEASIZE
FIC.. 6

3 2 2 2 1 1 1 1 1 1 1
1 8 7 6 9 8 7 6 5 4 2 8 7 6 4 O

FMOD A EALU CISNE - DMS MR- DBR
FUNCTION EXTENDED ALU DEFAULT DEFAULT
MODIFIERS FUNCTION CODE MULTIPLY BARREL

SHIFT ROTATE
AMOUNT AMOUNT
(3-0)

ROUND MULTIPLY RESULT

MULTIPLE MULTIPLY (2,8X8)
EXPLICIT MULTIPLE CARRY-IN

NON-MULTIPLE MASK

SIGN EXTEND

INVERT CARRY--IN IF SIGN EXTEND

CARRY-IN

ARITHMETIC ENABLE

FIC. 9

US 2008/0077771 A1 Patent Application Publication Mar. 27, 2008 Sheet 5 of 37

9 'f)I, H.

BIGWNE OLEWHIIHW/04-/+

|×us, Rozz

US 2008/0077771 A1 Patent Application Publication Mar. 27, 2008 Sheet 6 of 37

Patent Application Publication Mar. 27, 2008 Sheet 7 of 37 US 2008/0077771 A1

208
ROT7(31) ROTO(31) y

IIII
31 23 15 7

||||||||||||||||||||||||||||
30 22 14 6

|||||||||||||||||||||||||||||||
29 21 13 5

|||||||||||||||||||||||||||||||
28 20 12 4.

|||||||||||||||||||||||||||||||
27 19 11 5

|||||||||||||||||||||||||||||||
26 18 10 2

||||||||||||||||||||||||||||
ROT5(24) 25 ROT2(24) 17 9 ROT4(0) ROT3(O) v. 1

IIII
24 16 8 O

w-a-7
ROTATION REGISTER BIT NUMBERS

HIC. 8

ROT6(15) ROT1 (15)

Patent Application Publication Mar. 27, 2008 Sheet 8 of 37 US 2008/0077771 A1

3 1
1 5 4 O

XXXXXXXXXXXXXXXIXs SIGNED INPUT
FIC. 1 OOL

5 52
1 O 9 O

SIGNED X SIGNED RESULT

FIC, 1 Ob ("01" IF HEX "8000' X HEX "8000")
3 1 1
1 6 5 O

FIC. 1 OC
5
1 O

FIC. 1 OOL

3

FIC. 1 1 O.
3 1 1

FIC. 1 1 b
3 3 1 11
1 O 6 5 4 O

SECOND SIGNED RESULT FIRST SIGNED RESULT

FIC. 1 1 C
3 11
1 6 5 O

SECOND UNSIGNED RESULT FIRST UNSIGNED RESULT

FIC. 1 1 Ol

Patent Application Publication Mar. 27, 2008 Sheet 9 of 37

FIRST OPERAND INPUT

US 2008/0077771 A1

SECOND
OPERAND

350
16X 16 OR 201
DUAL 8X8 16X16 OR
MULTIPLY DUAL 8X8

351 MULTIPLY

PPC5-PPCO

PPG5 PPG4 PPG3 PPG2 PPG1 PPGO

SECOND SECOND
OPERNINPUTY PARTIAL OPERAND INPUT EASA

ES-363 PRODUCT BOO GENERATOR 3 BOOGENERATOR O QUAD INPUT QUAD INPUT

SECOND SECOND
OPERANDPUTY PARTIAL OPERAND INPUTY PARTIAL

PRODUCT PRODUCT
BOO GENERATOR 4 BOO GENERATOR 1 QUAD INPUT QUAD INPUT

17-3 17-3
364 354

3651 ADDER B 3551 ADDER A
SECOND SECOND

OPERANPUTY PARTIAL
PRODUCT

BOOTH GENERATOR 5
QUAS INPUTC) 17-3

OPERAND INPUTY

QUAD INPU
566

367

DUAL 8X8
MULTIPLY

OUTPUT MULTIPLEXER

FIC. 12
MULTIPLIER OUTPUT

PARTIAL
BOOTH PRODUCT

T GENERATOR 2

356

357

368

16X16 OR

17-5

369

Patent Application Publication Mar. 27, 2008 Sheet 10 of 37 US 2008/0077771 A1

5 16 BIT INPUT DATA O

| | | | | | | | | | | | | | | |
: 8 O

STITITITIII
--TO PPG1

--TO PPG2

--TO PPG3

--TO PPG4 HIC. 1 3
--TO PPG5

--TO PPCO

1 SECOND 8 BIT FIRST 8 BIT
5 INPUT DATA 8 7 INPUT DATA O

| | | | | ||
a
|| || || || || || || ||

--TO PPG1

--TO PPG2

--TO PPC3

--TO PPG4 FIC. 1 4.
--TO PPG5

--TO PPCO

Patent Application Publication Mar. 27, 2008 Sheet 11 of 37 US 2008/0077771 A1

1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

FIC. 16b

1 1 1 1 1 1
7 6 4. 2 1 0 9 8 7 6 5 4 3 2 1 0

S FIC. 16b sssssssssss 7 BIT SIGNOP S

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

1 1
7 6

FIC, 16 colo 8 BIT UNSIGNOP 00000000
1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 O 9 8 7 6 5 4 3 2 1 0

FIC, 16d SSSI 7 BIT SIGNOP 00000000

2 1 1 1 1 1 1 1 1 1 1
O 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 O

2 2 2
3 2 1

3 3 2 2 2 2
1 O 9 8 7 6

1 1 1 1 1 1 1
6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

FIG. 1 7b

Patent Application Publication Mar. 27, 2008 Sheet 12 of 37 US 2008/0077771 A1

370 380 REDUNDANT-SIGN-DIGIT REDUNDANT-SIGN-DIGIT
WALUES 51-16 VALUES 15-0

SHIFTER

y5-0
CARRY PATH CONTROL CARRY PATH CONTROL
SIGNAL GENERATOR SIGNAL GENERATOR

SHIFT
AMOUNT

224

372 382

374

b BORROW Out RIPPLE In

378

R
390 MULTIPLEXER

ROUNDED
RESULT

FIC. 18

Patent Application Publication Mar. 27, 2008 Sheet 13 of 37 US 2008/0077771 A1

RESULTANT
LOGIC

CARRY
SENSE HIC. 19
SELECT

K-1
Cino

BOOLEAN INVERSE
FONTION (NION 4031 E. NSIGNALS

F7 TO FO
CARRY

A B, C 435 SENSE
SELECT

Patent Application Publication Mar. 27, 2008 Sheet 15 of 37 US 2008/0077771 A1

INSTRUCTION
INSTRUCTION BITS 57, INSTRUCTION DO BITS

BIT 59 55, 5351 BITS 58-51 HEX99 26-19

508

2450

6,4 7.5, 7-0 7-0 7-0 7-0 7-0 7-0 7-0
20 3, 1

CLASS(7-0)

MPYxADD
MPYxSUB

DIVI

MPYXEALUT
EALU

MPYxEALUF

ARITHMETIC
ENABLE

513

Ff- F5- ARITHMETIC
F4 FO OR EALU

Patent Application Publication Mar. 27, 2008 Sheet 16 of 37 US 2008/0077771 A1

CLASS(7-0) ANY EALU
INSTRUCTION

BIT 59

1 ARITHMETIC
OR EALU

HEXO

INSTRUCTION
BITS 58,

56, 54, 52

DO(31-28)
MASKGEN
OPER.

Mmux
OUTPUT=0

550
BUS 206
BIT 31 Do

INSTRUCTION 557
BITS57, 0100/1011

55, 53, 51 Rio 556

o ANDN-560
OMF CLASS Do

F7-FO MODIFIER
CODE

Patent Application Publication Mar. 27, 2008 Sheet 17 of 37 US 2008/0077771 A1

246

MF(31)
F7-FO

DO(18)
MPYxEALUF

BUS 206 BIT(31)
DO(17)
DO(16)

OPERAND C
BUS(O)

SR(30) e
O f F E D C B A

ARITHMETIC 595 Do
OR EALU

591

FM CODE Ele 590 o
592 585

MASKGEN OPER. 595 Do Ho
INSTRUCTION O110
BITS 57, OR 534

55, 53, 51 1001 o-T of class AND so HAND
932 LL ANY EALU Do HAND

DIVI

BIT O
FO CARRY-IN

INPUT C BUS (0) xOR BIT 8
XOR CARRY-IN

INPUT C BUS (8) v. MUX BIT 16
XOR CARRY-IN INPUT C BUS (16) 580

BIT24

INPUT C BUS (24) 599
4. DO (A)

DO (E) 577 ASIZE
HIC. 24.

Patent Application Publication Mar. 27, 2008 Sheet 18 of 37

BIT 0
CARRY-IN
GENERATOR

246

FUNCTION
SIGNALS

FUNCTION
SIGNALS

BIT O
CARRY-IN
GENERATOR

246

FUNCTION
SIGNALS

US 2008/0077771 A1

Patent Application Publication Mar. 27, 2008 Sheet 19 of 37 US 2008/0077771 A1

107
Gdst

GSrc

(A14/A6) GLOBAL ADDRESS UNIT

660 s
135 INSTRUCTION ZEROS

DECODE
LOGIC

TO CONTROLLED
CIRCUITS

641

LOCAL ADDRESS UNIT 1620

120
11

SIGN
GTA CONTROL EXTEND 651 CONTROL BUFFER

655 LOAD/
STORE

SIGN

BUFFER EXTEND Lb 10, O3
DMA LOAD/ US

HANDSHAKE STORE

TO
653-1 CONTROL GSrc 105 CONTROL

BYTE BYTE
STROBES STROBES

READ/ READ/
WRITE WRITE

SELECTS SELECTS

GRANT ADDRESS GRANT ADDRESS
w-a-y w-a-7

GLOBAL ADDRESS PORT LOCAL ADDRESS PORT
121 122

FIC. 27

Patent Application Publication Mar. 27, 2008 Sheet 20 of 37 US 2008/0077771 A1

107 IMMEDIATE-INDEX
Gdst

GSrC

611- ADDRESS INDEX
REGISTERS REGISTERS

610 IMM SIZE
Y MATHS

IMM/X INDEX

INDEX SCALED/UNSCALED
SCALER DATA SIZE

615

32-BIT ADD/SUB ADD/SUBTRACT
FIC. 28

PRE/POST INDEX

32 BII 616
ADDRESS

MOST SIGNIFICANT LEAST SIGNIFICANT

BYTE 3 BYTE 2 BYTE 1 BYTE O

FIG. 29O.

MOST SIGNIFICANT LEAST SIGNIFICANT

BYTE O BYTE 1 BYTE 2 BYTE 3

FIC. 29b.

Patent Application Publication Mar. 27, 2008 Sheet 21 of 37 US 2008/0077771 A1

DESTINATION BUS
147

LOAD SIGNAL

DATA SIZE
ZERO EXTEND
SIGN EXTEND

152

DATA SIZE
ENDIAN 151
ADDRESS BITS 1-0

CROSSBAR DATABUS

FIC. 3O

Patent Application Publication Mar. 27, 2008 Sheet 22 of 37 US 2008/0077771 A1

INTFLG LE1 c 252 742
LEO LCO LRO

721 COMMAND 733 743
WORD 722
UNIT LSO IPE N703

'' IPA N702
704

130
701 M1

29 133

752-1 IRE

133
INTERRUPT
PSEUDO

INSTRUCTION
2L 6

770
v=v-y COMMAND cryss ADPRESS INSTRUCTION WORD

WORDS DATA 131 132
w-a=

INTERRUPTS INSTRUCTION PORT
FIC. 31

Patent Application Publication Mar. 27, 2008 Sheet 23 of 37 US 2008/0077771 A1

701
31 3 2 1 0

29-BIT DOUBLE-WORD ADDRESS S

FIC. 32
702

31 O

32-BIT COPY OF THE PREVIOUS PC REGISTER

FIC. 33
L

704
31 3 2 1 0

29-BIT DOUBLE-WORD ADDRESS --

FIC. 34
708

31 9 8 7 6 5 4 3 2 1 0

25-BIT TAC VALUE 3|2|10---LRU

HIC. 36 SUB-BLOCK PRESENT BITS

705
51 11 7 3 O

--------------------E LCn ELCn ELCn
LEO FIC. 36 LE2 LE1

Patent Application Publication Mar. 27, 2008 Sheet 24 of 37 US 2008/0077771 A1

725

721

Patent Application Publication Mar. 27, 2008 Sheet 25 of 37 US 2008/0077771 A1

801

802 INITIALIZE
LOOPS

BLOCK O

BLOCK 1

805
COND
BRANCH

1

NO

COND
BRANCH

2
806

BLOCK 3 BLOCK 4

LOOP 0

813 FIC 38

LOOP START ADDRESS 1

805

LOOP START ADDRESS 0.2

BLOCK 5

Patent Application Publication Mar. 27, 2008 Sheet 26 of 37 US 2008/0077771 A1

D M P P P T X
I I I I P R R R A Y T
G G G G M E E B S P R
P P P P S N R K A A
3 2 1 0 CD R T P
M M M M O C
S S S S R H
G G G G FIG. 40

O

T M F T M
A S C C P
S G

D

F
L K

FIC 41
H

R H U | f O O O O O O O O O O O O K G O O F. M r r r r P

781
31 28 15 8

FSQP------------ SYNC BITS -----
2 1 0

PACKET REQUEST r r r r D D D D DIGP
e e e e I I I I

PR QUEUED S S S S G G G G NUMBER
SUSPEND P P P P
FOREGROUND FIC. 42 3 2 1 0

Patent Application Publication Mar. 27, 2008 Sheet 28 of 37 US 2008/0077771 A1

200C

BIT

O 215

FIC 44

Patent Application Publication Mar. 27, 2008 Sheet 29 of 37 US 2008/0077771 A1

1001 GN)

1005 (0) YESC Do 1002 1013

1005 (v) YSOki 1004 m=LM1A 1015
NO YES

1006 N.S.) Co D- we
1007- A 63. 1016 108

V sign= Ds--ar
1008 101

NO

t 1009 1020 1025

1010

1011

FIC 46

Csign change)NO
YES

loop=loop-1

1027

1050

1031 (ED

1025
1024

1029

C look0? YES
1028

Patent Application Publication Mar. 27, 2008 Sheet 30 of 37 US 2008/0077771 A1

1001

io9
1005 (0) YESCDo

1004 NO
C=LOOP

005YG)-YESObkhi st Lt.
NO

loop=16

1052 A=N
B=D 1042

V sign= AQKK1
1008 1041 loop=loop-1

Patent Application Publication Mar. 27, 2008 Sheet 31 of 37 US 2008/0077771 A1

diff= CurrPixel-PrevPixel

CurrPixel 45 DO 1A 33
1st Prevpixel -48 -10 -F1 -29 211

diff= rFD fr CO r29 rOA
O- 1 Carry outs O

SumABS= (SumABS+diff) 8:0MF (SumABS-diff) & OMF 258
SumABS FO E5 30 40
OMF (00 FF (00 (FF
diff -FD CO -29 --OA
SumABS= rF3 r A5 ro7
Corry outs O 1 1

2nd

211

Currpixel 37 20 55 33
Prevpixel -35 -AO
diff= rO2 fr80
Corry outs 1 O

3rd

211

SumABS= (SumABS+diff) &0MF (SumABS-diff) &0MF EXPANDER EXPANDER SumABS F3 A5 O7 4A 238
OMF FF 00 (FF 00
diff --02 -80 -05 -FF
SumABS= rF5 r25 roC r 4B
Carry outs O 1 O O

4th

211

8 TOTAL CARRY OUTS

| CurrPixel-PrevPixel

FIC. 47

Patent Application Publication Mar. 27, 2008 Sheet 32 of 37

1051 Pixeloo

FIC.

1060 MOx0
eliminated

1061
Mox1

eliminated
Mox2

Min Max

MinD 1062

Min1
Min2

MaxMin

eliminated eliminated

MedO 1064

Med1
Med2

HIC. 48 Ol

eliminated

1066

MoxMin 1067

MiniMax
MedMed

HIC. 482

eliminated

1069

MedO

Min()

Median

US 2008/0077771 A1

FIC. 43b

FIC. 48C

Medved

eliminoted

eliminated

Patent Application Publication Mar. 27, 2008 Sheet 33 of 37 US 2008/0077771 A1

1101 11

REGISTER
D

SHIFT

REGISTER
N MUX

FULL FULL FULL
ADDER ADDER ADDER

REGISTER

Hist
FIC. 6O

Patent Application Publication Mar. 27, 2008 Sheet 34 of 37 US 2008/0077771 A1

1101

O O O

O

1143

US 2008/0077771 A1 Patent Application Publication Mar. 27, 2008 Sheet 35 of 37

STE

70% |

-

-

cN
H

US 2008/0077771 A1

CONTROLLER OP

INSTRUCTION CACHE

INSTRUCTION CACHE

DATA CACHE

DATA CACHE

PARAMETERS

INSTRUCTION CACHE

PARAMETERS

ENIT ENOHdHTE||

Patent Application Publication Mar. 27, 2008 Sheet 37 of 37

US 2008/0077771 A1

LONG INSTRUCTION WORD CONTROLLING
PLURAL INDEPENDENT PROCESSOR

OPERATIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application relates to improvements in the
inventions disclosed in the following copending U.S. patent
applications, all of which are assigned to Texas Instruments:
0002 U.S. patent application Ser. No. 07/933,865 filed
Aug. 21, 1992 entitled “MULTI-PROCESSOR WITH
CROSSBAR LINK OF PROCESSORS AND MEMORIES
AND METHOD OF OPERATION', a continuation of U.S.
patent application Ser. No. 435,591 filed Nov. 17, 1989 and
now abandoned;

0003 U.S. Pat. No. 5.212,777, issued May 18, 1993, filed
Nov. 17, 1989 and entitled “SIMD/MIMD RECONFIG
URABLE MULTI-PROCESSOR AND METHOD OF
OPERATION:

0004 U.S. patent application Ser. No. 07/895,565 filed
Jun. 5, 1992 entitled “RECONFIGURABLE COMMUNI
CATIONS FOR MULTI-PROCESSORAND METHOD OF
OPERATION,” a continuation of U.S. patent application
Ser. No. 437,856 filed Nov. 17, 1989 and now abandoned;
0005 U.S. patent application Ser. No. 07/437,852 filed
Nov. 17, 1989 entitled “REDUCED AREA OF CROSSBAR
AND METHOD OF OPERATION:
0006 U.S. patent application Ser. No. 08/032,530 filed
Mar 15, 1993 entitled “SYNCHRONIZED MIND MULTI
PROCESSING SYSTEM AND METHOD OF OPERA
TION,” a continuation of U.S. patent application Ser. No.
07/437,853 filed Nov. 17, 1989 and now abandoned;

0007 U.S. Pat. No. 5,197,140 issued Mar. 23, 1993 filed
Nov. 17, 1989 and entitled “SLICED ADDRESSING
MULTI-PROCESSOR AND METHOD OF OPERATION:
0008 U.S. patent application Ser. No. 437,857 filed Nov.
17, 1989 entitled “ARITHMETIC LOGIC UNIT ONES
COUNTING LOGIC:

0009 U.S. Pat. No. 5,239,654 issued Aug. 24, 1993 filed
Nov. 17, 1989 and entitled “DUAL MODE SIMD/MIMD
PROCESSOR PROVIDING REUSE OF MIND INSTRUC
TION MEMORIES AS DATA MEMORIES WHEN OPER
ATING IN SIMD MODE:
0010 U.S. patent application Ser. No. 911,562 filed Jun.
29, 1992 entitled “IMAGING COMPUTER AND
METHOD OF OPERATION', a continuation of U.S. patent
application Ser. No. 437,854 filed Nov. 17, 1989 and now
abandoned; and
0011 U.S. Pat. No. 5.226,125 issued Jul. 6, 1993 filed
Nov. 17, 1989 and entitled “SWITCH MATRIX HAVING
INTEGRATED CROSSPOINT LOGIC AND METHOD
OF OPERATION.

0012. This application is also related to the following
concurrently filed U.S. patent applications, which include
the same disclosure:

0013 U.S. patent application Ser. No. (TI-15518)
“THREE INPUT ARITHMETIC LOGIC UNIT WITH
BARREL ROTATOR:

Mar. 27, 2008

0014 U.S. patent application Ser. No. (TI-15519)
ARITHMETIC LOGIC UNIT HAVING PLURAL INDE
PENDENT SECTIONS AND REGISTER STORING
RESULTANT INDICATOR BIT FROM EVERY SEC
TION:
0.015 U.S. patent application Ser. No. (TI-15520)
MEMORY STORE FROMA REGISTER PAIR CONDI
TIONAL:
0016 U.S. patent application Ser. No. (TI-15525)
“ITERATIVE DIVISION APPARATUS, SYSTEM AND
METHOD FORMING PLURAL. QUOTIENT BITS PER
ITERATION:
0017 U.S. patent application Ser. No. (TI-15526)
THREE INPUT ARITHMETICLOGICUNIT FORMING
MIXED ARITHMETIC AND BOOLEAN COMBINA
TIONS:
0018 U.S. patent application Ser. No. (TI-15527)
“METHOD, APPARATUS AND SYSTEM FORMING
THE SUM OF DATA IN PLURAL EQUAL SECTIONS OF
A SINGLE DATA WORD":
0.019 U.S. patent application Ser. No. (TI-15528)
“HUFFMAN ENCODING METHOD, CIRCUITS AND
SYSTEM EMPLOYING MOST SIGNIFICANT BIT
CHANGE FOR SIZE DETECTION:
0020 U.S. patent application Ser. No. (TI-15529)
“HUFFMAN DECODING METHOD, CIRCUIT AND
SYSTEM EMPLOYING CONDITIONAL SUBTRAC
TION FOR CONVERSION OF NEGATIVE NUMBERS:
0021 U.S. patent application Ser. No. (TI-15530)
“METHOD, APPARATUS AND SYSTEM FOR SUM OF
PLURAL ABSOLUTE DIFFERENCES:
0022 U.S. patent application Ser. No. (TI-15531)
“ITERATIVE DIVISION APPARATUS, SYSTEM AND
METHOD EMPLOYING LEFT MOST ONE'S DETEC
TION AND LEFT MOST ONE'S DETECTION WITH
EXCLUSIVE OR;
0023 U.S. patent application Ser. No. (TI-15532)
ADDRESS GENERATOR EMPLOYING SELECTIVE
MERGE OF TWO INDEPENDENT ADDRESSES”;
0024 U.S. patent application Ser. No. (TI-15535)
“METHOD, APPARATUS AND SYSTEM METHOD FOR
CORRELATION:
0.025 U.S. patent application Ser. No. (TI-15537)
LONG INSTRUCTION WORD CONTROLLING PLU
RAL INDEPENDENT PROCESSOR OPERATIONS:
0026 U.S. patent application Ser. No. (TI-15539)
ROTATION REGISTER FOR ORTHOGONAL DATA
TRANSFORMATION:
0027 U.S. patent application Ser. No. TI-15542
“MEDIAN FILTER METHOD, CIRCUIT AND SYS
TEM:

0028 U.S. patent application Ser. No. (TI-15544)
ARITHMETIC LOGIC UNIT WITH CONDITIONAL
REGISTER SOURCE Selection:
0029 U.S. patent application Ser. No. (TI-15651)
“APPARATUS, SYSTEM AND METHOD FOR DIVI
SION BY ITERATION

US 2008/0077771 A1

0030 U.S. patent application Ser. No. (TI-17919)
MULTIPLY ROUNDING USING REDUNDANT
CODED MULTIPLY RESULT:
0031 U.S. patent application Ser. No. (TI-18209)
“SPLIT MULTIPLY OPERATION:
0032 U.S. patent application Ser. No. (TI-18213)
MIXED CONDITION TEST CONDITIONAL AND
BRANCH OPERATIONS INCLUDING CONDITIONAL
TEST FOR ZERO”:
0033 U.S. patent application Ser. No. (TI-18214)
“PACKED WORD PAIR MULTIPLY OPERATION:
0034 U.S. patent application Ser. No. (TI-18570)
“THREE INPUT ARITHMETIC LOGIC UNIT WITH
SHIFTER

0035 U.S. patent application Ser. No. (TI-18571)
“THREE INPUT ARITHMETIC LOGIC UNIT WITH
MASK GENERATOR:
0.036 U.S. patent application Ser. No. (TI-18572)
“THREE INPUT ARITHMETIC LOGIC UNIT WITH
BARREL ROTATOR AND MASK GENERATOR:
0037 U.S. patent application Ser. No. (TI-18573)
“THREE INPUT ARITHMETIC LOGIC UNIT WITH
SHIFTER AND MASK GENERATOR:
0038 U.S. patent application Ser. No. (TI-18574)
THREE INPUT ARITHMETICLOGICUNIT FORMING
THE SUM OF A FIRST INPUT ADDED WITH A FIRST
BOOLEAN COMBINATION OF A SECOND INPUT AND
THIRD INPUT PLUS A SECOND BOOLEAN COMBI
NATION OF THE SECOND AND THIRD INPUTS:
0039 U.S. patent application Ser. No. (TI-18575)
THREE INPUT ARITHMETICLOGICUNIT FORMING
THE SUM OF FIRST BOOLEAN COMBINATION OF
FIRST, SECOND AND THIRD INPUTS PLUS ASECOND
BOOLEAN COMBINATION OF FIRST, SECOND AND
THIRD INPUTS:
0040 U.S. patent application Ser. No. (TI-18576)
THREE INPUT ARITHMETIC LOGIC UNITEMPLOY
ING CARRY PROPAGATE LOGIC; and
0041 U.S. patent application Ser. No. (TI-18577)
“DATA PROCESSING APPARATUS, SYSTEM AND
METHOD FOR IF, THEN, ELSE OPERATION USING
WRITE PRIORITY

TECHNICAL FIELD OF THE INVENTION

0042. The technical field of this invention is the field of
digital data processing and more particularly microprocessor
circuits, architectures and methods for digital data process
ing especially digital image/graphics processing.

BACKGROUND OF THE INVENTION

0043. This invention relates to the field of computer
graphics and in particular to bit mapped graphics. In bit
mapped graphics computer memory stores data for each
individual picture element or pixel of an image at memory
locations that correspond to the location of that pixel within
the image. This image may be an image to be displayed or
a captured image to be manipulated, stored, displayed or
retransmitted. The field of bit mapped computer graphics has

Mar. 27, 2008

benefited greatly from the lowered cost and increased capac
ity of dynamic random access memory (DRAM) and the
lowered cost and increased processing power of micropro
cessors. These advantageous changes in the cost and per
formance of component parts enable larger and more com
plex computer image systems to be economically feasible.
0044) The field of bit mapped graphics has undergone
several stages in evolution of the types of processing used
for image data manipulation. Initially a computer system
Supporting bit mapped graphics employed the system pro
cessor for all bit mapped operations. This type of system
suffered several drawbacks. First, the computer system
processor was not particularly designed for handling bit
mapped graphics. Design choices that are very reasonable
for general purpose computing are unsuitable forbit mapped
graphics systems. Consequently some routine graphics tasks
operated slowly. In addition, it was quickly discovered that
the processing needed for image manipulation of bit mapped
graphics was so loading the computational capacity of the
system processor that other operations were also slowed.
0045. The next step in the evolution of bit mapped
graphics processing was dedicated hardware graphics con
trollers. These devices can draw simple figures, such as
lines, ellipses and circles, under the control of the system
processor. Many of these devices can also do pixel block
transfers (PixBlt). A pixel block transfer is a memory move
operation of image data from one portion of memory to
another. A pixel block transfer is useful for rendering stan
dard image elements, such as alphanumeric characters in a
particular type font, within a display by transfer from
nondisplayed memory to bit mapped display memory. This
function can also be used for tiling by transferring the same
Small image to the whole of bit mapped display memory.
The built-in algorithms for performing some of the most
frequently used graphics functions provide a way of improv
ing system performance. However, a useful graphics com
puter system often requires many functions besides those
few that are implemented in Such a hardware graphics
controller. These additional functions must be implemented
in software by the system processor. Typically these hard
ware graphics controllers allow the system processor only
limited access to the bit map memory, thereby limiting the
degree to which system Software can augment the fixed set
of functions of the hardware graphics controller.
0046) The graphics system processor represents yet a
further step in the evolution of bit mapped graphics pro
cessing. A graphics system processor is a programmable
device that has all the attributes of a microprocessor and also
includes special functions for bit mapped graphics. The
TMS34010 and TMS34020 graphics system processors
manufactured by Texas Instruments Incorporated represent
this class of devices. These graphics system processors
respond to a stored program in the same manner as a
microprocessor and include the capability of data manipu
lation via an arithmetic logic unit, data storage in register
files and control of both program flow and external data
memory. In addition, these devices include special purpose
graphics manipulation hardware that operate under program
control. Additional instructions within the instruction set of
these graphics system processors controls the special pur
pose graphics hardware. These instructions and the hard
ware that supports them are selected to perform base level
graphics functions that are useful in many contexts. Thus a

US 2008/0077771 A1

graphics system processor can be programmed for many
differing graphics applications using algorithms selected for
the particular problem. This provides an increase in useful
ness similar to that provided by changing from hardware
controllers to programmed microprocessors. Because Such
graphics system processors are programmable devices in the
same manner as microprocessors, they can operate as stand
alone graphics processors, graphics co-processors slaved to
a system processor or tightly coupled graphics controllers.
0047 New applications are driving the desire to provide
more powerful graphics functions. Several fields require
more cost effective graphics operations to be economically
feasible. These include video conferencing, multi-media
computing with full motion video, high definition television,
color facsimile and digital photography. Each of these fields
presents unique problems, but image data compression and
decompression are common themes. The amount of trans
mission bandwidth and the amount of storage capacity
required for images and particular full motion video is
enormous. Without efficient video compression and decom
pression that result in acceptable final image quality, these
applications will be limited by the costs associated with
transmission bandwidth and storage capacity. There is also
a need in the art for a single system that can Support both
image processing functions such as image recognition and
graphics functions such as display control.

SUMMARY OF THE INVENTION

0.048. This invention is a data processing apparatus which
operates on instruction controlling plural processor actions.
Each instruction includes a data unit section and a data
transfer section. These instruction sections are independent
and may include differing options. In the preferred embodi
ment, each instruction is 64 bits.
0049. The data unit section includes a data operation field
that indicates the type of arithmetic logic unit operation and
six operand fields. The six operand fields include four source
data register fields and two destination register fields. Two
Source data register fields specify the inputs to a multipli
cation unit, whose output is specified by one of the desti
nation register fields. The remaining data register fields
specify the inputs to an arithmetic logic unit and the output
data register. The data unit may include a barrel rotator for
one input of the arithmetic logic unit. The rotate amount may
be stored in a default rotate amount field in a special data
register. The rotated data may be stored in the first destina
tion register instead of the multiply result.
0050. The data transfer section includes a data transfer
operation field and a transfer data register field. The data
transfer operation field indicates the type of data transfer
operation. This could be: a load or memory to data register
transfer, a store or data register to memory transfer, or a
register to register data transfer. The transfer data register
field specifies the destination in a load operation, the Source
in a store operation and the destination in a register to
register move operation.
0051. An instruction decode logic responds to the instruc
tion and controls both the data unit and the address unit.
Operations may be conditional based upon conditions stored
in a status register. In the preferred embodiment, the arith
metic logic unit operation and the data transfer operation
may be made conditional independently, however, if condi

Mar. 27, 2008

tional they are based upon the same condition. The status
register is set by a prior output of the arithmetic logic unit
and the instruction may specify some of the status bits
protect from change.
0052 The address unit preferably includes a plurality of
base address registers storing base addresses. A full adder
combines a base address corresponding to an instruction
base address register field with an index specified in an index
field. The index may be an index register or an immediate
value. The full adder may add the index to the base address
or subtract the index from the base address. A left shifter
optionally scales the index based upon a specified data size.
The full adder output may update the base address register,
either before supply of the address or following supply of the
address. The full adder and the left shifter may be used for
address arithmetic operations to update an address register
without making a memory access. The data transfer opera
tion field controls which operation the address unit per
forms. In the preferred embodiment, the address unit
includes two complete address generators with separate base
address registers, index registers, full adders and left
shifters. This permits two concurrent memory accesses.
0053. In the preferred embodiment of this invention, the
data unit including the data registers, the multiplication unit
and the arithmetic logic unit, the address unit and the
instruction decode logic are embodied in at least one digital
image/graphics processor as a part of a multiprocessor
formed in a single integrated circuit used in image process
1ng.

BRIEF DESCRIPTION OF THE FIGURES

0054 These and other aspects of the present invention are
described below together with the Figures, in which:
0.055 FIG. 1 illustrates the system architecture of an
image processing system such as would employ this inven
tion;
0056 FIG. 2 illustrates the architecture of a single inte
grated circuit multiprocessor that forms the preferred
embodiment of this invention;
0057 FIG. 3 illustrates in block diagram form one of the
digital image/graphics processors illustrated in FIG. 2;
0058 FIG. 4 illustrates in schematic form the pipeline
stages of operation of the digital image/graphics processor
illustrated in FIG. 2;
0059 FIG. 5 illustrates in block diagram form the data
unit of the digital image/graphics processors illustrated in
FIG. 3;

0060 FIG. 6 illustrates in schematic form field defini
tions of the status register of the data unit illustrated in FIG.
5:

0061 FIG. 7 illustrates in block diagram form the manner
of splitting the arithmetic logic unit of the data unit illus
trated in FIG. 5:
0062 FIG. 8 illustrates in block diagram form the manner
of addressing the data register of the data unit illustrated in
FIG. 5 as a rotation register;
0063 FIG. 9 illustrates in schematic form the field defi
nitions of the first data register of the data unit illustrated in
FIG. 5;

US 2008/0077771 A1

0064 FIG. 10a illustrates in schematic form the data
input format for 16 bit by 16 bit signed multiplication
operands;

0065 FIG. 10b illustrates in schematic form the data
output format for 16 bit by 16 bit signed multiplication
results;

0.066 FIG. 10c illustrates in schematic form the data
input format for 16 bit by 16 bit unsigned multiplication
operands;

0067 FIG. 10d illustrates in schematic form the data
output format for 16 bit by 16 bit unsigned multiplication
results;

0068 FIG. 11a illustrates in schematic form the data
input format for dual 8 bit by 8 bit signed multiplication
operands;

0069 FIG. 11b illustrates in schematic form the data
input format for dual 8 bit by 8 bit unsigned multiplication
operands;

0070 FIG. 11c illustrates in schematic form the data
output format for dual 8 bit by 8 bit signed multiplication
results;
0071 FIG. 11d illustrates in schematic form the data
output format for dual 8 bit by 8 bit unsigned multiplication
results;
0072 FIG. 12 illustrates in block diagram form the
multiplier illustrated in FIG. 5:
0.073 FIG. 13 illustrates in schematic form generation of
Booth quads for the first operand in 16 bit by 16 bit
multiplication;

0074 FIG. 14 illustrates in schematic form generation of
Booth quads for dual first operands in 8 bit by 8 bit
multiplication;

0075 FIG. 15a illustrates in schematic form the second
operand Supplied to the partial product generators illustrated
in FIG. 12 in 16 bit by 16 bit unsigned multiplication:
0076 FIG. 15b illustrates in schematic form the second
operand Supplied to the partial product generators illustrated
in FIG. 12 in 16 bit by 16 bit signed multiplication;
0.077 FIG. 16a illustrates in schematic form the second
operand Supplied to the first three partial product generators
illustrated in FIG. 12 in dual 8 bit by 8 bit unsigned
multiplication;

0078 FIG. 16b illustrates in schematic form the second
operand Supplied to the first three partial product generators
illustrated in FIG. 12 in dual 8 bit by 8 bit signed multipli
cation;

0079 FIG. 16c illustrates in schematic form the second
operand Supplied to the second three partial product gen
erators illustrated in FIG. 12 in dual 8 bit by 8 bit unsigned
multiplication;

0080 FIG. 16d illustrates in schematic form the second
operand Supplied to the second three partial product gen
erators illustrated in FIG. 12 in dual 8 bit by 8 bit signed
multiplication;

0081 FIG. 17a illustrates in schematic form the output
mapping for 16 bit by 16 bit multiplication;

Mar. 27, 2008

0082 FIG. 17b illustrates in schematic form the output
mapping for dual 8 bit by 8 bit multiplication;

0.083 FIG. 18 illustrates in block diagram form the
details of the construction of the rounding adder 226 illus
trated in FIG. 5:

0084 FIG. 19 illustrates in block diagram form the
construction of one bit circuit of the arithmetic logic unit of
the data unit illustrated in FIG. 5;

0085 FIG. 20 illustrates in schematic form the construc
tion of the resultant logic and carry out logic of the bit circuit
illustrated in FIG. 19:

0086 FIG. 21 illustrates in schematic form the construc
tion of the Boolean function generator of the bit circuit
illustrated in FIG. 19:

0087 FIG. 22 illustrates in block diagram form the
function signal selector of the function signal generator of
the data unit illustrated in FIG. 5;

0088 FIG. 23 illustrates in block diagram form the
function signal modifier portion of the function signal gen
erator of the data unit illustrated in FIG. 5:

0089 FIG. 24 illustrates in block diagram form the bit 0
carry-in generator of the data unit illustrated in FIG. 5:
0090 FIG. 25 illustrates in block diagram form a con
ceptual view of the arithmetic logic unit illustrated in FIGS.
19 and 20:

0091 FIG. 26 illustrates in block diagram form a con
ceptual view of an alternative embodiment of the arithmetic
logic unit;

0092 FIG. 27 illustrates in block diagram form the
address unit of the digital image/graphics processor illus
trated in FIG. 3;

0093 FIG. 28 illustrates in block diagram form an
example of a global or a local address unit of the address unit
illustrated in FIG. 27:

0094 FIG. 29a illustrates the order of data bytes accord
ing to the little endian mode;
0.095 FIG. 29b illustrates the order of data bytes accord
ing to the big endian mode;

0.096 FIG. 30 illustrates a circuit for data selection, data
alignment and sign or Zero extension in each data port of a
digital image/graphics processor,

0097 FIG. 31 illustrates in block diagram form the
program flow control unit of the digital image/graphics
processors illustrated in FIG. 3;

0.098 FIG. 32 illustrates in schematic form the field
definitions of the program counter of the program flow
control unit illustrated in FIG. 31;

0099 FIG. 33 illustrates in schematic form the field
definitions of the instruction pointer-address stage register of
the program flow control unit illustrated in FIG. 31;
0100 FIG. 34 illustrates in schematic form the field
definitions of the instruction pointer-return from subroutine
register of the program flow control unit illustrated in FIG.
31;

US 2008/0077771 A1

0101 FIG. 35 illustrates in schematic form the field
definitions of the cache tag registers of the program flow
control unit illustrated in FIG. 31;

0102 FIG. 36 illustrates in schematic form the field
definitions of the loop logic control register of the program
flow control unit illustrated in FIG. 31;

0103 FIG. 37 illustrates in block diagram form the loop
logic circuit of the program flow control unit;

0104 FIG. 38 illustrates in flow chart form a program
example of a single program loop with multiple loop ends;

0105 FIG. 39 illustrates the overlapping pipeline stages
in an example of a software branch from a single instruction
hardware loop:

0106 FIG. 40 illustrates in schematic form the field
definitions of the interrupt enable register and the interrupt
flag register of the program flow control unit illustrated in
FIG. 31;

0107 FIG. 41 illustrates in schematic form the field
definitions of a command word transmitted between proces
sors of the single integrated circuit multiprocessor illustrated
in FIG. 2;

0108 FIG. 42 illustrates in schematic form the field
definitions of the communications register of the program
flow control unit illustrated in FIG. 31;

0109 FIG. 43 illustrates in schematic form the instruc
tion word controlling the operation of the digital image/
graphics processor illustrated in FIG. 3;

0110 FIG. 44 illustrates in schematic form data flow
within the data unit during execution of a divide iteration
instruction;

0111 FIG. 45 illustrates in flow chart form the use of a
left most one’s function in a division algorithm;

0112 FIG. 46 illustrates in flow chart form the use of a
left most one’s function and an exclusive OR in a division
algorithm;

0113 FIG. 47 illustrates in schematic form within the
data flow during an example sum of absolute value of
differences algorithm;

0114 FIGS. 48a, 48b, 48c, 48d and 48e illustrate in
schematic form a median filter algorithm;
0115 FIG. 49 illustrates the overlapping pipeline stages
in an example of a single instruction hardware loop with a
conditional hardware branch;

0116 FIG. 50 illustrates in schematic form a hardware
divider that generates two bits of the desired quotient per
divide iteration;

0117 FIG. 51 illustrates in schematic form the data flow
within the hardware divider illustrated in FIG. 48;

0118 FIG. 52 illustrates in schematic form a hardware
divider that generates three bits of the desired quotient per
divide iteration;

0119 FIG. 53 illustrates in schematic form the data flow
within a hardware divider illustrated in FIG. 51; and

Mar. 27, 2008

0120 FIG. 54 illustrates in schematic form the multipro
cessor integrated circuit of this invention having a single
digital image/graphics processor in color facsimile system.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0121 FIG. 1 is a block diagram of an image data pro
cessing system including a multiprocessor integrated circuit
constructed for image and graphics processing according to
this invention. This data processing system includes a host
processing system 1. Host processing system 1 provides the
data processing for the host system of data processing
system of FIG. 1. Included in the host processing system 1
are a processor, at least one input device, a long term storage
device, a read only memory, a random access memory and
at least one host peripheral 2 coupled to a host system bus.
Arrangement and operation of the host processing system
are considered conventional. Because of its processing func
tions, the host processing system 1 controls the function of
the image data processing system.
0.122 Multiprocessor integrated circuit 100 provides
most of the data processing including data manipulation and
computation for image operations of the image data pro
cessing system of FIG. 1. Multiprocessor integrated circuit
100 is bi-directionally coupled to an image system bus and
communicates with host processing system 1 by way of this
image system bus. In the arrangement of FIG. 1, multipro
cessor integrated circuit 100 operates independently from
the host processing system 1. The multiprocessor integrated
circuit 100, however, is responsive to host processing system
1.

0123 FIG. 1 illustrates two image systems. Imaging
device 3 represents a document scanner, charge coupled
device Scanner or video camera that serves as an image input
device. Imagine device 3 Supplies this image to image
capture controller 4, which serves to digitize the image and
form it into raster scan frames. This frame capture process
is controlled by signals from multiprocessor integrated cir
cuit 100. The thus formed image frames are stored in video
random access memory 5. Video random access memory 5
may be accessed via the image system bus permitting data
transfer for image processing by multiprocessor integrated
circuit 100.

0.124. The second image system drives a video display.
Multiprocessor integrated circuit 100 communicates with
Video random access memory 6 for specification of a dis
played image via a pixel map. Multiprocessor integrated
circuit 100 controls the image data stored in video random
access memory 6 via the image system bus. Data corre
sponding to this image is recalled from video random access
memory 6 and supplied to video palette 7. Video palette 7
may transform this recalled data into another color space,
expand the number of bits per pixel and the like. This
conversion may be accomplished through a look-up table.
Video palette 7 also generates the proper video signals to
drive video display 8. If these video signals are analog
signals, then video palette 7 includes suitable digital to
analog conversion. The video level signal output from the
Video palette 7 may include color, Saturation, and brightness
information. Multiprocessor integrated circuit 100 controls
data stored within the video palette 7, thus controlling the
data transformation process and the timing of image frames.

US 2008/0077771 A1

Multiprocessor integrated circuit 100 can control the line
length and the number of lines per frame of the video display
image, the synchronization, retrace, and blanking signals
through control of video palette 7. Significantly, multipro
cessor integrated circuit 100 determines and controls where
graphic display information is stored in the video random
access memory 6. Subsequently, during readout from the
Video random access memory 6, multiprocessor integrated
circuit 100 determines the readout sequence from the video
random access memory 6, the addresses to be accessed, and
control information needed to produce the desired graphic
image on video display 8.

0125 Video display 8 produces the specified video dis
play for viewing by the user. There are two widely used
techniques. The first technique specifies video data in terms
of color, hue, brightness, and Saturation for each pixel. For
the second technique, color levels of red, blue and green are
specified for each pixel. Video palette 7 the video display 8
is designed and fabricated to be compatible with the selected
technique.

0126 FIG. 1 illustrates an addition memory 9 coupled to
the image system bus. This additional memory may include
additional video random access memory, dynamic random
access memory, static random access memory or read only
memory. Multiprocessor integrated circuit 100 may be con
trolled either in wholly or partially by a program stored in
the memory 9. This memory 9 may also store various types
of graphic image data. In addition, multiprocessor integrated
circuit 100 preferably includes memory interface circuits for
Video random access memory, dynamic random access
memory and static random access memory. Thus a system
could be constructed using multiprocessor integrated circuit
100 without any video random access memory 5 or 6.

0127 FIG. 1 illustrates transceiver 16. Transceiver 16
provides translation and bidirectional communication
between the image system bus and a communications chan
nel. One example of a system employing transceiver 16 is
Video conferencing. The image data processing system illus
trated in FIG. 1 employs imaging device 3 and image
capture controller 4 to form a video image of persons at a
first location. Multiprocessor integrated circuit 100 provides
Video compression and transmits the compressed video
signal to a similar image data processing system at another
location via transceiver 16 and the communications channel.
Transceiver 16 receives a similarly compressed video signal
from the remote image data processing system via the
communications channel. Multiprocessor integrated circuit
100 decompresses this received signal and controls video
random access memory 6 and video palette 7 to display the
corresponding decompressed video signal on video display
8. Note this is not the only example where the image data
processing system employs transceiver 16. Also note that the
bidirectional communications need not be the same type
signals. For example, in an interactive cable television signal
the cable system head in would transmit compressed video
signals to the image data processing system via the com
munications channel. The image data processing system
could transmit control and data signals back to the cable
system head in via transceiver 16 and the communications
channel.

0128 FIG. 1 illustrates multiprocessor integrated circuit
100 embodied in a system including host processing system

Mar. 27, 2008

1. Those skilled in the art would realize from the following
disclosure of the invention that multiprocessor integrated
circuit 100 may be employed as the only processor of a
useful system. In such a system multiprocessor integrated
circuit 100 is programmed to performall the functions of the
system.

0129. This invention is particularly useful in a processor
used for image processing. According to the preferred
embodiment, this invention is embodied in multiprocessor
integrated circuit 100. This preferred embodiment includes
plural identical processors that embody this invention. Each
of these processors will be called a digital image/graphics
processor. This description is a matter of convenience only.
The processor embodying this invention can be a processor
separately fabricated on a single integrated circuit or a
plurality of integrated circuits. If embodied on a single
integrated circuit, this single integrated circuit may option
ally also include read only memory and random access
memory used by the digital image/graphics processor.

0.130 FIG. 2 illustrates the architecture of the multipro
cessor integrated circuit 100 of the preferred embodiment of
this invention. Multiprocessor integrated circuit 100
includes: two random access memories 10 and 20, each of
which is divided into plural sections; crossbar 50; master
processor 60; digital image/graphics processors 71, 72, 73
and 74; transfer controller 80, which mediates access to
system memory; and frame controller 90, which can control
access to independent first and second image memories.
Multiprocessor integrated circuit 100 provides a high degree
of operation parallelism, which will be useful in image
processing and graphics operations, such as in the multi
media computing.

0131 Multiprocessor integrated circuit 100 includes two
random access memories. Random access memory 10 is
primarily devoted to master processor 60. It includes two
instruction cache memories 11 and 12, two data cache
memories 13 and 14 and a parameter memory 15. These
memory sections can be physically identical, but connected
and used differently. Random access memory 20 may be
accessed by master processor 60 and each of the digital
image/graphics processors 71, 72, 73 and 74. Each digital
image/graphics processor 71, 72, 73 and 74 has five corre
sponding memory sections. These include an instruction
cache memory, three data memories and one parameter
memory. Thus digital image/graphics processor 71 has cor
responding instruction cache memory 21, data memories 22,
23, 24 and parameter memory 25; digital image/graphics
processor 72 has corresponding instruction cache memory
26, data memories 27, 28, 29 and parameter memory 30:
digital image/graphics processor 73 has corresponding
instruction cache memory 31, data memories 32, 33, 34 and
parameter memory 35; and digital image/graphics processor
74 has corresponding instruction cache memory 36, data
memories 37, 38, 39 and parameter memory 40. Like the
sections of random access memory 10, these memory sec
tions can be physically identical but connected and used
differently. Each of these memory sections of memories 10
and 20 preferably includes 2 K bytes, with a total memory
within multiprocessor integrated circuit 100 of 50 K bytes.

0132) Multiprocessor integrated circuit 100 is con
structed to provide a high rate of data transfer between
processors and memory using plural independent parallel

US 2008/0077771 A1

data transfers. Crossbar 50 enables these data transfers. Each
digital image/graphics processor 71, 72,73 and 74 has three
memory ports that may operate simultaneously each cycle.
An instruction port (I) may fetch 64 bit data words from the
corresponding instruction cache. A local data port (L) may
read a 32 bit data word from or write a 32 bit data word into
the data memories or the parameter memory corresponding
to that digital image/graphics processor. A global data port
(G) may read a 32 bit data word from or write a 32 bit data
word into any of the data memories or the parameter
memories or random access memory 20. Master Processor
60 includes two memory ports. An instruction port (I) may
fetch a 32 bit instruction word from either of the instruction
caches 11 and 12. A data port (C) may read a 32 bit data word
from or write a 32 bit data word into data caches 13 or 14,
parameter memory 15 of random access memory 10 or any
of the data memories, the parameter memories or random
access memory 20. Transfer controller 80 can access any of
the sections of random access memory 10 or 20 via data port
(C). Thus fifteen parallel memory accesses may be requested
at any single memory cycle. Random access memories 10
and 20 are divided into 25 memories in order to support so
many parallel accesses.
0.133 Crossbar 50 controls the connections of master
processor 60, digital image/graphics processors 71, 72, 73
and 74, and transfer controller 80 with memories 10 and 20.
Crossbar 50 includes a plurality of crosspoints 51 disposed
in rows and columns. Each column of crosspoints 51 cor
responds to a single memory section and a corresponding
range of addresses. A processor requests access to one of the
memory sections through the most significant bits of an
address output by that processor. This address output by the
processor travels along a row. The crosspoint 51 correspond
ing to the memory section having that address responds
either by granting or denying access to the memory section.
If no other processor has requested access to that memory
section during the current memory cycle, then the crosspoint
51 grants access by coupling the row and column. This
Supplies the address to the memory section. The memory
section responds by permitting data access at that address.
This data access may be either a data read operation or a data
write operation.
0134) If more than one processor requests access to the
same memory section simultaneously, then crossbar 50
grants access to only one of the requesting processors. The
crosspoints 51 in each column of crossbar 50 communicate
and grant access based upon a priority hierarchy. If two
requests for access having the same rank occur simulta
neously, then crossbar 50 grants access on a round robin
basis, with the processor last granted access having the
lowest priority. Each granted access lasts as long as needed
to service the request. The processors may change their
addresses every memory cycle, so crossbar 50 can change
the interconnection between the processors and the memory
sections on a cycle by cycle basis.
0135 Master processor 60 preferably performs the major
control functions for multiprocessor integrated circuit 100.
Master processor 60 is preferably a 32 bit reduced instruc
tion set computer (RISC) processor including a hardware
floating point calculation unit. According to the RISC archi
tecture, all accesses to memory are performed with load and
store instructions and most integer and logical operations are
performed on registers in a single cycle. The floating point

Mar. 27, 2008

calculation unit, however, will generally take several cycles
to perform operations when employing the same register file
as used by the integer and logical unit. A register score board
ensures that correct register access sequences are main
tained. The RISC architecture is suitable for control func
tions in image processing. The floating point calculation unit
permits rapid computation of image rotation functions,
which may be important to image processing.
0.136 Master processor 60 fetches instruction words from
instruction cache memory 11 or instruction cache memory
12. Likewise, master processor 60 fetches data from either
data cache 13 or data cache 14. Since each memory section
includes 2 K bytes of memory, there is 4 K bytes of
instruction cache and 4K bytes of data cache. Cache control
is an integral function of master processor 60. As previously
mentioned, master processor 60 may also access other
memory sections via crossbar 50.
0.137 The four digital image/graphics processors 71, 72,
73 and 74 each have a highly parallel digital signal processor
(DSP) architecture. FIG. 3 illustrates an overview of exem
plary digital image/graphics processor 71, which is identical
to digital image/graphics processors 72, 73 and 74. Digital
image/graphics processor 71 achieves a high degree of
parallelism of operation employing three separate units: data
unit 110; address unit 120; and program flow control unit
130. These three units operate simultaneously on different
instructions in an instruction pipeline. In addition each of
these units contains internal parallelism.
0.138. The digital image/graphics processors 71, 72, 73
and 74 can execute independent instruction streams in the
multiple instruction multiple data mode (MIMD). In the
MIMD mode, each digital image/graphics processor
executes an individual program from its corresponding
instruction cache, which may be independent or cooperative.
In the latter case crossbar 50 enables inter-processor com
munication in combination with the shared memory. Digital
image/graphics processors 71, 72, 73 and 74 may also
operate in a synchronized MIMD mode. In the synchronized
MIMD mode, the program control flow unit 130 of each
digital image/graphics processor inhibits fetching the next
instruction until all synchronized processors are ready to
proceed. This synchronized MIMD mode allows the sepa
rate programs of the digital image/graphics processors to be
executed in lock step in a closely coupled operation.
0.139 Digital image/graphics processors 71, 72, 73 and
74 can execute identical instructions on differing data in the
single instruction multiple data mode (SIMD). In this mode
a single instruction stream for the four digital image/graph
ics processors comes from instruction cache memory 21.
Digital image/graphics processor 71 controls the fetching
and branching operations and crossbar 50 Supplies the same
instruction to the other digital image/graphics processors 72,
73 and 74. Since digital image/graphics processor 71 con
trols instruction fetch for all the digital image/graphics
processors 71, 72, 73 and 74, the digital image/graphics
processors are inherently synchronized in the SIMD mode.

0140 Transfer controller 80 is a combined direct memory
access (DMA) machine and memory interface for multipro
cessor integrated circuit 100. Transfer controller 80 intelli
gently queues, sets priorities and services the data requests
and cache misses of the five programmable processors.
Master processor 60 and digital image/graphics processors

US 2008/0077771 A1

71, 72,73 and 74 all access memory and systems external to
multiprocessor integrated circuit 100 via transfer controller
80. Data cache or instruction cache misses are automatically
handled by transfer controller 80. The cache service (S) port
transmits such cache misses to transfer controller 80. Cache
service port (S) reads information from the processors and
not from memory. Master processor 60 and digital image/
graphics processors 71, 72, 73 and 74 may request data
transfers from transfer controller 80 as linked list packet
requests. These linked list packet requests allow multi
dimensional blocks of information to be transferred between
Source and destination memory addresses, which can be
within multiprocessor integrated circuit 100 or external to
multiprocessor integrated circuit 100. Transfer controller 80
preferably also includes a refresh controller for dynamic
random access memory (DRAM) which require periodic
refresh to retain their data.

0141 Frame controller 90 is the interface between mul
tiprocessor integrated circuit 100 and external image capture
and display systems. Frame controller 90 provides control
over capture and display devices, and manages the move
ment of data between these devices and memory automati
cally. To this end, frame controller 90 provides simultaneous
control over two independent image systems. These would
typically include a first image system for image capture and
a second image system for image display, although the
application of frame controller 90 is controlled by the user.
These image systems would ordinarily include independent
frame memories used for either frame grabber or frame
buffer storage. Frame controlled 90 preferably operates to
control video dynamic random access memory (VRAM)
through refresh and shift register control.
0142 Multiprocessor integrated circuit 100 is designed
for large scale image processing. Master processor 60 pro
vides embedded control, orchestrating the activities of the
digital image/graphics processors 71, 72, 73 and 74, and
interpreting the results that they produce. Digital image/
graphics processors 71, 72,73 and 74 are well suited to pixel
analysis and manipulation. If pixels are thought of as high in
data but low in information, then in a typical application
digital image/graphics processors 71, 72, 73 and 74 might
well examine the pixels and turn the raw data into informa
tion. This information can then be analyzed either by the
digital image/graphics processors 71, 72, 73 and 74 or by
master processor 60. Crossbar 50 mediates inter-processor
communication. Crossbar 50 allows multiprocessor inte
grated circuit 100 to be implemented as a shared memory
system. Message passing need not be a primary form of
communication in this architecture. However, messages can
be passed via the shared memories. Each digital image/
graphics processor, the corresponding section of crossbar 50
and the corresponding sections of memory 20 have the same
width. This permits architecture flexibility by accommodat
ing the addition or removal of digital image/graphics pro
cessors and corresponding memory modularly while main
taining the same pin out.
0143. In the preferred embodiment all parts of multipro
cessor integrated circuit 100 are disposed on a single inte
grated circuit. In the preferred embodiment, multiprocessor
integrated circuit 100 is formed in complementary metal
oxide semiconductor (CMOS) using feature sizes of 0.6 um.
Multiprocessor integrated circuit 100 is preferably con
structed in a pin grid array package having 256 pins. The

Mar. 27, 2008

inputs and outputs are preferably compatible with transistor
transistor logic (TTL) logic Voltages. Multiprocessor inte
grated circuit 100 preferably includes about 3 million tran
sistors and employs a clock rate of 50MHz.
014.4 FIG. 3 illustrates an overview of exemplary digital
image/graphics processor 71, which is virtually identical to
digital image/graphics processors 72, 73 and 74. Digital
image/graphics processor 71 includes: data unit 110; address
unit 120; and program flow control unit 130. Data unit 110
performs the logical or arithmetic data operations. Data unit
110 includes eight data registers D7-D0, a status register 210
and a multiple flags register 211. Address unit 120 controls
generation of load/store addresses for the local data port and
the global data port. As will be further described below,
address unit 120 includes two virtually identical addressing
units, one for local addressing and one for global addressing.
Each of these addressing units includes an all “0” read only
register enabling absolute addressing in a relative address
mode, a stack pointer, five address registers and three index
registers. The addressing units share a global bit multiplex
control register used when forming a merging address from
both address units. Program flow control unit 130 controls
the program flow for the digital image/graphics processor 71
including generation of addresses for instruction fetch via
the instruction port. Program flow control unit 130 includes:
a program counter PC 701; an instruction pointer-address
stage IRA 702 that holds the address of the instruction
currently in the address pipeline stage; an instruction
pointer-execute stage IRE 703 that holds the address of the
instruction currently in the execute pipeline stage; an
instruction pointer-return from subroutine IPRS 704 holding
the address for returns from subroutines; a set of registers
controlling Zero overhead loops; four cache tag registers
TAG3-TAG0 collectively called 708 that hold the most
significant bits of four blocks of instruction words in the
corresponding instruction cache memory.
0145 Digital image/graphics processor 71 operates on a
three stage pipeline as illustrated in FIG. 4. Data unit 110.
address unit 120 and program flow control unit 130 operate
simultaneously on different instructions in an instruction
pipeline. The three stages in chronological order are fetch,
address and execute. Thus at any time, digital image/graph
ics processor 71 will be operating on differing functions of
three instructions. The phrase pipeline stage is used instead
of referring to clock cycles, to indicate that specific events
occur when the pipeline advances, and not during stall
conditions.

0146 Program flow control unit 130 performs all the
operations that occur during the fetch pipeline stage. Pro
gram flow control unit 130 includes a program counter, loop
logic, interrupt logic and pipeline control logic. During the
fetch pipeline stage, the next instruction word is fetched
from memory. The address contained in the program counter
is compared with cache tag registers to determine if the next
instruction word is stored in instruction cache memory 21.
Program flow control unit 130 supplies the address in the
program counter to the instruction port address bus 131 to
fetch this next instruction word from instruction cache
memory 21 if present. Crossbar 50 transmits this address to
the corresponding instruction cache, here instruction cache
memory 21, which returns the instruction word on the
instruction bus 132. Otherwise, a cache miss occurs and
transfer controller 80 accesses external memory to obtain the

US 2008/0077771 A1

next instruction word. The program counter is updated. If the
following instruction word is at the next sequential address,
program control flow unit 130 post increments the program
counter. Otherwise, program control flow unit 130 loads the
address of the next instruction word according to the loop
logic or software branch. If the synchronized MIMD mode
is active, then the instruction fetch waits until all the
specified digital image/graphics processors are synchro
nized, as indicated by Sync bits in a communications regis
ter.

0147 Address unit 120 performs all the address calcula
tions of the address pipeline stage. Address unit 120 includes
two independent address units, one for the global port and
one for the local port. If the instruction calls for one or two
memory accesses, then address unit 120 generates the
address(es) during the address pipeline stage. The
address(es) are supplied to crossbar 50 via the respective
global port address bus 121 and local port address bus 122
for contention detection/prioritization. If there is no conten
tion, then the accessed memory prepares to allow the
requested access, but the memory access occurs during the
following execute pipeline stage.

0148 Data unit 110 performs all of the logical and
arithmetic operations during the execute pipeline stage. All
logical and arithmetic operations and all data movements to
or from memory occur during the execute pipeline stage.
The global data port and the local data port complete any
memory accesses, which are begun during the address
pipeline stage, during the execute pipeline stage. The global
data port and the local data port perform all data alignment
needed by memory stores, and any data extraction and sign
extension needed by memory loads. If the program counter
is specified as a data destination during any operation of the
execute pipeline stage, then a delay of two instructions is
experienced before any branch takes effect. The pipelined
operation requires this delay, since the next two instructions
following Such a branch instruction have already been
fetched. According to the practice in RISC processors, other
useful instructions may be placed in the two delay slot
positions.

0149 Digital image/graphics processor 71 includes three
internal 32 bit data busses. These are local port data bus
Lbus 103, global port source data bus GSrc 105 and global
port destination data bus Gdst 107. These three buses
interconnect data unit 110, address unit 120 and program
flow control unit 130. These three buses are also connected
to a data portunit 140 having a local port 141 and global port
145. Data port unit 140 is coupled to crossbar 50 providing
memory access.

0150. Local data port 141 has a buffer 142 for data stores
to memory. A multiplexer/buffer circuit 143 loads data onto
Lbus 103 from local port data bus 144 from memory via
crossbar 50, from a local port address bus 122 or from global
port data bus 148. Local port data bus Lbus 103 thus carries
32 bit data that is either register sourced (stores) or memory
Sourced (loads). Advantageously, arithmetic results in
address unit 120 can be supplied via local port address bus
122., multiplexer buffer 143 to local port data bus Lbus 103
to supplement the arithmetic operations of data unit 110.
This will be further described below. Buffer 142 and mul
tiplexer buffer 143 performalignment and extraction of data.
Local port data bus Lbus 103 connects to data registers in

Mar. 27, 2008

data unit 110. A local bus temporary holding register LTD
104 is also connected to local port data Lbus 103.
0151 Global port source data bus GSrc 105 and global
port destination data bus Gdst 107 mediate global data
transfers. These global data transfers may be either memory
accesses, register to register moves or command word
transfers between processors. Global port source data bus
Gsrc 105 carries 32 bit source information of a global port
data transfer. The data source can be any of the registers of
digital image/graphics processor 71 or any data or parameter
memory corresponding to any of the digital image/graphics
processors 71, 72, 73 or 74. The data is stored to memory via
the global port 145. Multiplexer buffer 146 selects lines from
local port data Lbus 103 or global port source data bus Gsrc
105, and performs data alignment. Multiplexer buffer 146
writes this data onto global port data bus 148 for application
to memory via crossbar 50. Global port source data bus Gsrc
105 also supplies data to data unit 110, allowing the data of
global port source data bus GSrc 105 to be used as one of the
arithmetic logic unit sources. This latter connection allows
any register of digital image/graphics processor 71 to be a
Source for an arithmetic logic unit operation.
0152 Global port destination data bus Gdst 107 carries
32 bit destination data of a global bus data transfer. The
destination is any register of digital image/graphics proces
sor 71. Buffer 147 in global port 145 sources the data of
global port destination data bus Gdst 107. Buffer 147
performs any needed data extraction and sign extension
operations. This buffer 115 operates if the data source is
memory, and a load is thus being performed. The arithmetic
logic unit result serves as an alternative data source for
global port destination data bus Gdst 107. This allows any
register of digital image/graphics processor 71 to be the
destination of an arithmetic logic unit operation. A global
bus temporary holding register GTD 108 is also connected
to global port destination data bus Gdst 107.
0.153 Circuitry including multiplexer buffers 143 and
146 connect between global port source data bus GSrc 105
and global port destination data bus Gdst 107 to provide
register to register moves. This allows a read from any
register of digital image/graphics processor 71 onto global
port source data bus GSrc 105 to be written to any register
of digital image/graphics processor 71 via global port des
tination data bus Gdst 107.

0154) Note that it is advantageously possible to perform
a load of any register of digital image/graphics processor 71
from memory via global port destination data bus Gdst 107.
while simultaneously sourcing the arithmetic logic unit in
data unit 110 from any register via global port Source data
bus GSrc 105. Similarly, it is advantageously possible to
store the data in any register of digital image/graphics
processor 71 to memory via global port source data bus GSrc
105, while saving the result of an arithmetic logic unit
operation to any register of digital image/graphics processor
71 via global port destination data bus Gdst 107. The
usefulness of these data transfers will be further detailed
below.

0.155) Program flow control unit 130 receives the instruc
tion words fetched from instruction cache memory 21 via
instruction bus 132. This fetched instruction word is advan
tageously stored in two 64 bit instruction registers desig
nated instruction register-address stage IRA 751 and instruc

US 2008/0077771 A1

tion register-execute stage IRE 752. Each of the instruction
registers IRA and IRE have their contents decoded and
distributed. Digital image/graphics processor 71 includes
opcode bus 133 that carries decoded or partially decoded
instruction contents to data unit 110 and address unit 120. As
will be later described, an instruction word may include a 32
bit, a 15 bit or a 3 bit immediate field. Program flow control
unit 130 routes such an immediate field to global port source
data bus GSrc 105 for supply to its destination.
0156 Digital image/graphics processor 71 includes three
address buses 121, 122 and 131. Address unit 120 generates
addresses on global port address bus 121 and local port
address bus 122. As will be further detailed below, address
unit 120 includes separate global and local address units,
which provide the addresses on global port address bus 121
and local port address bus 122, respectively. Note that local
address unit 620 may access memory other than the data
memory corresponding to that digital image/graphics pro
cessor. In that event the local address unit access is via
global port address bus 121. Program flow control unit 130
Sources the instruction address on instruction port address
bus 131 from a combination of address bits from a program
counter and cache control logic. These address buses 121,
122 and 131 each carry address, byte strobe and read/write
information.

0157 FIG. 5 illustrates details of data unit 110. It should
be understood that FIG. 5 does not illustrate all of the
connections of data unit 110. In particular various control
lines and the like have been omitted for the sake of clarity.
Therefore FIG. 5 should be read with the following descrip
tion for a complete understanding of the operation of data
unit 110. Data unit 110 includes a number of parts advan
tageously operating in parallel. Data unit 110 includes eight
32 bit data registers 200 designated D7-D0. Data register D0
may be used as a general purpose register but in addition has
special functions when used with certain instructions. Data
registers 200 include multiple read and write ports con
nected to data unit buses 201 to 206 and to local port data
bus Lbus 103, global port source data bus GSrc 105 and
global port destination data bus Gdst 107. Data registers 200
may also be read “sideways' in a manner described as a
rotation register that will be further described below. Data
unit 110 further includes a status register 210 and a multiple
flags register 211, which stores arithmetic logic unit result
ant status for use in certain instructions. Data unit 110
includes as its major computational components a hardware
multiplier 220 and a three input arithmetic logic unit 230.
Lastly, data unit 110 includes: multiplier first input bus 201,
multiplier second input bus 202, multiplier destination bus
203, arithmetic logic unit destination bus 204, arithmetic
logic unit first input bus 205, arithmetic logic unit second
input bus 206: buffers 104, 106, 108 and 236; multiplexers
Rmux 221, Imux 222, MSmux 225, Bmux 227, Amux 232,
Smux 231. Cmux 233 and Mmux 234; and product left
shifter 224, adder 226, barrel rotator 235, LMO/RMO/
LMBC/RMBC circuit 237, expand circuit 238, mask gen
erator 239, input A bus 241, input B bus 242, input C bus
243, rotate bus 244, function signal generator 245, bit 0
carry-in generator 246, and instruction decode logic 250, all
of which will be further described below.

0158. The following description of data unit 110 as well
as further descriptions of the use of each digital image/
graphics processor 71, 72, 73 and 74 employ several sym

Mar. 27, 2008

bols for ease of expression. Many of these symbols are
standard mathematical operations that need no explanation.
Some are logical operations that will be familiar to one
skilled in the art, but whose symbols may be unfamiliar.
Lastly, Some symbols refer to operations unique to this
invention. Table 1 lists some of these symbols and their
corresponding operation.

TABLE 1.

Symbol Operation

-- bit wise NOT
& bit wise AND

bit wise OR
M bit wise exclusive OR
(a) multiple flags register expand
% mask generation
% modified mask generation
W rotate left
<< shift left

>> shift right Zero extend
>>S shift right sign extend
>> shift right sign extend

default case
| parallel operation
*(A + X) memory contents at

address base register A + index
register X
or offset X

&*(A + X) address unit arithmetic
address base register A + index
register X
or offset X

*(A + X) memory contents at
address base register A+ Scaled
index register X
or offset X

The implications of the operations listed above in Table 1
may not be immediately apparent. These will be explained
in detail below.

0159 FIG. 6 illustrates the field definitions for status
register 210. Status register 210 may be read from via global
port source data bus GSrc 105 or written into via global port
destination data bus Gdst bus 107. In addition, status register
210 may write to or load from a specified one of data
registers 200. Status register 210 is employed in control of
operations within data unit 110.

0.160 Status register 210 stores four arithmetic logic unit
result status bits “N”, “C”, “V” and “Z”. These are indi
vidually described below, but collectively their setting
behavior is as follows. Note that the instruction types listed
here will be fully described below. For instruction words
including a 32 bit immediate fields, if the condition code
field is “unconditional then all four status bits are set
according to the result of arithmetic logic unit 230. If the
condition code field specifies a condition other than “uncon
ditional', then no status bits are set, whether or not the
condition is true. For instruction words not including a 32 bit
immediate field operations and not including conditional
operations fields, all status bits are set according to the result
of arithmetic logic unit 230. For instruction words not
including a 32 bit immediate field that permit conditional
operations, if the condition field is “unconditional”, or not
“unconditional and the condition is true, instruction word
bits 28-25 indicate which status bits should be protected. All
unprotected bits are set according to the result of arithmetic

US 2008/0077771 A1

logic unit 230. For instruction words not including a 32 bit
immediate field, which allow conditional operations, if the
condition field is not “unconditional and the condition is
false, no status bits are set. There is no difference in the
status setting behavior for Boolean operations and arithmetic
operations. As will be further explained below, this behavior,
allows the conditional instructions and Source selection to
perform operations that would normally require a branch.
0161 The arithmetic logic unit result bits of status reg
ister 210 are as follows. The “N' bit (bit 31) stores an
indication of a negative result. The “N' bit is set to “1” if the
result of the last operation of arithmetic logic unit 230 was
negative. This bit is loaded with bit 31 of the result. In a
multiple arithmetic logic unit operation, which will be
explained below, the “N' bit is set to the AND of the Zero
compares of the plural sections of arithmetic logic unit 230.
In a bit detection operation performed by LMO/RMO/
LMBC/RMBC circuit 237, the “N bit is set to the AND of
the Zero compares of the plural sections of arithmetic logic
unit 230. Writing to this bit in software overrides the normal
arithmetic logic unit result writing logic.
0162 The “C” bit (bit 30) stores an indication of a carry

result. The “C” bit is set to “1” if the result of the last
operation of arithmetic logic unit 230 caused a carry-out
from bit 31 of the arithmetic logic unit. During multiple
arithmetic and bit detection, the “C” bit is set to the OR of
the carry outs of the plural sections of arithmetic logic unit
230. Thus the “C” bit is set to “1” if at least one of the
sections has a carry out. Writing to this bit in software
overrides the normal arithmetic logic unit result writing
logic.

0163 The “V” bit (bit 29) stores an indication of an
overflow result. The 'V' bit is set to “1” if the result of the
last operation of arithmetic logic unit 230 created an over
flow condition. This bit is loaded with the exclusive OR of
the carry-in and carry-out of bit 31 of the arithmetic logic
unit 230. During multiple arithmetic logic unit operation the
“V” bit is the AND of the carry outs of the plural sections
of arithmetic logic unit 230. For left most one and right most
one bit detection, the “V” bit is set to “1” if there were no
“1s” in the input word, otherwise the “V” bit is set to “0”.
For left most bit change and right most bit change bit
detection, the “V” bit is set to “1” is all the bits of the input
are the same, or else the “V” bit is set to “0”. Writing to this
bit in software overrides the normal arithmetic logic unit
result writing logic.

0164. The “Z” bit (bit 28) stores and indication of a “0”
result. The “Z” bit is set to “1” if the result of the last
operation of arithmetic logic unit 230 produces a “0” result.
This “Z” bit is controlled for both arithmetic operations and
logical operations. In multiple arithmetic and bit detection
operations, the “Z” bit is set to the OR of the Zero compares
of the plural sections of arithmetic logic unit 230. Writing to
this bit in software overrides the normalarithmetic logic unit
result writing logic circuitry.

0165. The “R” bit (bit 6) controls bits used by expand
circuit 238 and rotation of multiple flags register 211 during
instructions that use expand circuit 238 to expand portions
of multiple flags register 211. If the “R” bit is “1”, then the
bits used in an expansion of multiple flags register 211 via
expand circuit 238 are the most significant bits. For an
operation involving expansion of multiple flags register 211

Mar. 27, 2008

where the arithmetic logic unit function modifier does not
specify multiple flags register rotation, then multiple flags
register 211 is “post-rotated left according to the “Msize”
field. If the arithmetic logic unit function modifier does
specify multiple flags register rotation, then multiple flags
register 211 is rotated according to the “Asize’ field. If the
“R” bit is “0”, then expand circuit 238 employs the least
significant bits of multiple flags register 211. No rotation
takes place according to the “Msize’ field. However, the
arithmetic logic unit function modifier may specify rotation
by the “Asize” field.
0166 The “Msize” field (bits 5-3) indicates the data size
employed in certain instruction classes that Supply mask
data from multiple flags register 211 to the C-port of
arithmetic logic unit 230. The “Msize’ field determines how
many bits of multiple flags register 211 uses to create the
mask information. When the instruction does not specify
rotation corresponding to the “Asize field and the “R” bit
is “1, then multiple flags register 211 is automatically
“post-rotated left by an amount set by the “Msize’ field.
Codings for these bits are shown in Table 2.

TABLE 2

Msize Data Multiple Flags Register

Field Size Rotate No. of Bit(s) used

5 4 3 bits amount bits used R = 1 R = 0

O O O O 64 64
O O 1 1 32 32 31-0 31-0
O 1 O 2 16 16 31-16 1S-O
O 1 1 4 8 8 31-24 7-O
1 O O 8 4 4 31-28 3-0
1 O 1 16 2 2 31-30 1-0
1 1 O 32 1 1 31 O
1 1 1 64 O O

0.167 As noted above, the preferred embodiment Sup
ports “Msize” fields of “100”, “101” and “110 correspond
ing to data sizes of 8, 16 and 32 bits, respectively. Note that
rotation for an “Msize’ field of "001 results in no change
in data output. “Msize fields of "001”, “010 and “011” are
possible useful alternatives. “Msize” fields of “000 and
"111” are meaningless but may be used in an extension of
multiple flags register 211 to 64 bits.

0168 The “Asize” field (bits 2-0) indicate the data size
for multiple operations performed by arithmetic logic unit
230. Arithmetic logic unit 230 preferably includes 32 par
allel bits. During certain instructions arithmetic logic unit
230 splits into multiple independent sections. This is called
a multiple arithmetic logic unit operation. This splitting of
arithmetic logic unit 230 permits parallel operation on pixels
of less than 32 bits that are packed into 32 bit data words.
In the preferred embodiment arithmetic logic unit 230
supports: a single 32 bit operation; two sections of 16 bit
operations; and four sections of 8 bit operations. These
options are called word, half-word and byte operations.
0169. The “Asize” field indicates: the number of multiple
sections of arithmetic logic unit 230; the number of bits of
multiple flags register bits 211 set during the arithmetic logic
unit operation, which is equal in number to the number of
sections of arithmetic logic unit 230; and the number of bits
the multiple flags register should “post-rotate left after

US 2008/0077771 A1

output during multiple arithmetic logic unit operation. The
rotation amount specified by the “Asize’ field dominates
over the rotation amount specified by the “Msize’ field and
the “R” bit when the arithmetic logic unit function modifier
indicates multiple arithmetic with rotation. Codings for
these bits are shown in Table 3. Note that while the current
preferred embodiment of the invention supports multiple
arithmetic of one 32 bit section, two 16 bit sections and four
8 bit sections the coding of the “Asize’ field supports
specification of eight sections of 4 bits each, sixteen sections
of 2 bits each and thirty-two sections of 1 bit each. Each of
these additional section divisions of arithmetic logic unit
230 are feasible. Note also that the coding of the “Asize”
field further supports specification of a 64 bit data size for
possible extension of multiple flags register 211 to 64 bits.

TABLE 3

Asize Data Multiple Flags Register

Field Size Rotate No. of Bit(s)

2 1 O bits amount bits set Set

O O O O 64 64
O O 1 1 32 32 31-0
O 1 O 2 16 16 1S-O
O 1 1 4 8 8 7-O
1 O O 8 4 4 3-0
1 O 1 16 2 2 1-0
1 1 O 32 1 1 O
1 1 1 64 O O

0170 The “Msize” and “Asize fields of status register
210 control different operations. When using the multiple
flags register 211 as a source for producing a mask applied
to the C-port of arithmetic logic unit 230, the “Msize’ field
controls the number of bits used and the rotate amount. In
such a case the “R” bit determines whether the most sig
nificant bits or least significant bits are employed. When
using the multiple flags register 211 as a destination for the
status bits corresponding to sections of arithmetic logic unit
230, then the “Asize’ field controls the number and identity
of the bits loaded and the optional rotate amount. If a
multiple arithmetic logic unit operation with "Asize’ field
specified rotation is specified with an instruction that Sup
plies mask data to the C-port derived from multiple flags
register 211, then the rotate amount of the “Asize’ field
dominates over the rotate amount of the combination of the
“R” bit and the “Msize field.

0171 The multiple flags register 211 is a 32 bit register
that provides mask information to the C-port of arithmetic
logic unit 230 for certain instructions. Global port destina
tion data bus Gdst bus 107 may write to multiple flags
register 211. Global port source bus Gsrc may read data from
multiple flags register 211. In addition multiple arithmetic
logic unit operations may write to multiple flags register 211.
In this case multiple flags register 211 records either the
carry or Zero status information of the independent sections
of arithmetic logic unit 230. The instruction executed con
trols whether the carry or Zero is stored.
0172. The “Msize” field of status register 210 controls the
number of least significant bits used from multiple flags
register 211. This number is given in Table 2 above. The “R”
bit of status register 210 controls whether multiple flags
register 211 is pre-rotated left prior to supply of these bits.

Mar. 27, 2008

The value of the "Msize’ field determines the amount of
rotation if the “R” bit is “1”. The selected data supplies
expand circuit 238, which generates a 32 bit mask as
detailed below.

0173 The “Asize” field of status register 210 controls the
data stored in multiple flags register 211 during multiple
arithmetic logic unit operations. As previously described, in
the preferred embodiment arithmetic logic unit 230 may be
used in one, two or four separate sections employing data of
32 bits, 16 bits and 8 bits, respectively. Upon execution of
a multiple arithmetic logic unit operation, the “Asize’ field
indicates through the defined data size the number of bits of
multiple flags register 211 used to record the status infor
mation of each separate result of the arithmetic logic unit.
The bit setting of multiple flags register 211 is summarized
in Table 4.

TABLE 4

Data ALU carry-out bits ALU result bits equal to
Size setting MF bits Zero setting MF bits

bits 3 2 1 O 3 2 1 O

8 31 23 15 7 31-24 23-16 15-8 7-O
16 31 15 31-16 1S-O
32 31 31-0

Note that Table 4 covers only the cases for data sizes of 8,
16 and 32 bits. Those skilled in the art would easily realize
how to extend Table 4 to cover the cases of data sizes of 64
bits, 4 bits, 2 bits and 1 bit. Also note that the previous
discussion referred to storing either carry or Zero status in
multiple flags register 211. It is also feasible to store other
status bits such as negative and overflow.
0.174 Multiple flags register 211 may be rotated left a
number of bit positions upon execution of each arithmetic
logic unit operation. The rotate amount is given above.
When performing multiple arithmetic logic unit operations,
the result status bit setting dominates over the rotate for
those bits that are being set. When performing multiple
arithmetic logic unit operations, an alternative to rotation is
to clear all the bits of multiple flags register 211 not being
set by the result status. This clearing is after generation of
the mask data if mask data is used in that instruction. If
multiple flags register 211 is written by software at the same
time as recording an arithmetic logic unit result, then the
preferred operation is for the software write to load all the
bits. Software writes thus dominate over rotation and clear
ing of multiple flags register 211.

0.175 FIG. 7 illustrates the splitting of arithmetic logic
unit 230 into multiple sections. As illustrated in FIG. 7, the
32 bits of arithmetic logic unit 230 are separated into four
sections of eight bits each. Section 301 includes arithmetic
logic unit bits 7-0, section 302 includes bits 15-8, section
303 includes bits 23-16 and section 304 includes bits 31-24.
Note that FIG. 7 does not illustrate the inputs or outputs of
these sections, which are conventional, for the sake of
clarity. The carry paths within each of the sections 301,302,
303 and 303 are according to the known art.
0176) Multiplexers 311, 312 and 313 control the carry
path between sections 301,302,303 and 304. Each of these
multiplexers is controlled to select one of three inputs. The

US 2008/0077771 A1

first input is a carry look ahead path from the output of the
previous multiplexer, or in the case of the first multiplexer
311 from bit 0 carry-in generator 246. Such carry lookahead
paths and their use are known in the art and will not be
further described here. The second selection is the carry-out
from the last bit of the corresponding section of arithmetic
logic unit 230. The final selection is the carry-in signal from
bit 0 carry-in generator 246. Multiplexer 314 controls the
output carry path for arithmetic logic unit 230. Multiplexer
314 selects either the carry look ahead path from the
carry-out selected by multiplexer 313 or the carry-out signal
for bit 31 from Section 304.

0177) Multiplexers 311, 312, 313 and 314 are controlled
based upon the selected data size. In the normal case
arithmetic logic unit 230 operates on 32 bit data words. This
is indicated by an “Asize’ field of status register 210 equal
to “110'. In this case multiplexer 311 selects the carry-out
from bit 7, multiplexer 312 selects the carry-out from bit 15,
multiplexer 313 selects the carry-out from bit 23 and mul
tiplexer 314 selects the carry-out from bit 31. Thus the four
sections 301, 302,303 and 304 are connected together into
a single 32 bit arithmetic logic unit. If status register 210
selected a half-word via an “Asize’ field of “101, then
multiplexer 311 selects the carry-out from bit 7, multiplexer
312 selects the carry-in from bit 0 carry-in generator 246,
multiplexer 313 selects the carry-out from bit 23 and mul
tiplexer 314 selects the carry-in from bit 0 carry-in generator
246. Sections 301 and 302 are connected into a 16 bit unit
and sections 303 and 304 are connected into a 16 bit unit.
Note that multiplexer 312 selects the bit 0 carry-in signal for
bit 16 just like bit 0, because bit 16 is the first bit in a 16 bit
half-word. If status register 210 selected a byte via an
“Asize” field of “100, then multiplexers 311, 312 and 313
select the carry-in from bit 0 carry-in generator 246. Sec
tions 301, 302, 303 and 304 are split into four independent
8 bit units. Note that selection of the bit 0 carry-in signal at
each multiplexer is proper because bits 8, 16 and 24 are each
the first bit in an 8 bit byte.
0178 FIG. 7 further illustrates zero resultant detection.
Each 8 bit Zero detect circuit 321, 322, 323 and 324
generates a “1” output if the resultant from the correspond
ing 8 bit section is all Zeros "00000000”. AND gate 331 is
connected to 8 bit Zero detect circuits 321 and 322, thus
generating a “1” when all sixteen bits 15-0 are “0”. AND
gate 332 is similarly connected to 8 bit Zero detect circuits
321 and 322 for generating a “1” when all sixteen bits 31-16
are “O”. Lastly, AND gate 341 is connected to AND gates
331 and 332, and generates a “1” when all 32 bits 31-0 are
“O.

0179. During multiple arithmetic logic unit operations
multiple flags register 211 may store either carry-outs or the
Zero comparison, depending on the instruction. These stored
resultants control masks to the C-port during later opera
tions. Table 4 shows the source for the status bits stored. In
the case in which multiple flags register 211 stores the
carry-out signal(s), the “Asize’ field of status register 210
determines the identity and number of carry-out signals
stored. If the “Asize’ field specifies word operations, then
multiple flags register 211 stores a single bit equal to the
carry-out signal of bit 31. If the “Asize’ field specifies
half-word operations, then multiple flags register 211 stores
two bits equal to the carry-out signals of bits 31 and 15,
respectfully. If the “Asize’ field specifies byte operations,

Mar. 27, 2008

then multiple flags register 211 stores four bits equal to the
carry-out signals of bits 31, 23, 15 and 7, respectively. The
“Asize’ field similarly controls the number and identity of
Zero resultants stored in multiple flags register 211 when
storage of Zero resultants is selected. If the “Asize’ field
specifies word operations, then multiple flags register 211
stores a single bit equal to output of AND gate 341 indicat
ing if bits 31-0 are “0”. If the “Asize field specifies
half-word operations, then multiple flags register 211 stores
two bits equal to the outputs of AND gates 331 and 332,
respectfully. If the “Asize’ field specifies byte operations,
then multiple flags register 211 stores four bits equal to the
outputs of 8 bit Zero detect circuits 321, 322, 323 and 324,
respectively.
0180. It is technically feasible and within the scope of
this invention to allow further multiple operations of arith
metic logic unit 230 such as: eight sections of 4 bit opera
tions; sixteen sections 2 bit operations; and thirty-two sec
tions single bit operations. Note that both the “Msize' and
the “Asize’ fields of status register 210 include coding to
Support Such additional multiple operation types. Those
skilled in the art can easily modify and extend the circuits
illustrated in FIG. 7 using additional multiplexers and AND
gates. These latter feasible options are not Supported in the
preferred embodiment due to the added complexity in con
struction of arithmetic logic unit 230. Note also that this
technique can be extended to a data processing apparatus
employing 64 bit data and that the same teachings enable
Such an extension.

0181 Data registers 200, designated data registers D7-D0
are connected to local port data bus Lbus 103, global port
source data bus GSrc 105 and global port destination data
bus Gdst 107. Arrows within the rectangle representing data
registers 200 indicate the directions of data access. A left
pointing arrow indicates data recalled from data registers
200. A right pointing arrow indicates data written into data
registers 200. Local port data bus Lbus 103 is bidirectionally
coupled to data registers 200 as a data source or data
destination. Global port destination data bus Gdst 107 is
connected to data registers 200 as a data source for data
written into data registers 200. Global port source data bus
Gsrc 107 is connected to data registers 200 as a data
destination for data recalled from data registers 200 in both
a normal data register mode and in a rotation register feature
described below. Status register 210 and multiple flags
register 211 may be read from via global port source data bus
Gsrc 106 and written into via global port destination data bus
Gdst 107. Data registers 200 supply data to multiplier first
input bus 201, multiplier second input bus 202, arithmetic
logic unit first input bus 205 and arithmetic logic unit second
input bus 206. Data registers 200 are connected to receive
input data from multiplier destination bus 203 and arithmetic
logic unit destination bus 204.
0182 Data registers 200, designated registers D7-D0, are
connected to form a 256 bit rotate register as illustrated in
FIG.8. This rotate register is collectively designated rotation
(ROT) register ROT 208. This forms a 256 bit register
comprising eight 32 bit rotation registers ROTO, ROT1, ..
. ROT7. FIG. 8 illustrates in part the definitions of the
rotation registers ROT0, ROT1, ... ROT7. These rotation
registers are defined sideways with respect to data registers
D7-D0. The rotation register 208 may be rotated by a
non-arithmetic logic unit instruction DROT, as described

US 2008/0077771 A1

below. During this rotation the least significant bit of data
register D7 rotates into the most significant bit of data
register D6, etc. The least significant bit of data register D0
is connected back to the most significant bit of data register
D7. ROT register 208 may be read in four 8 bit bytes at a
time. The four 8 bit bytes are respective octets of bits having
the same bit number in each of data registers 200 as shown
below in Table 5 and illustrated in FIG. 8.

TABLE 5

Rotation Octet of bits
Register from each

bits D7-DO Bit

31-24 24
23-16 16
15-8 8
7-O O

When a DROT instruction is executed the 256 bit rotation
register 208 is rotated right one bit place. The least signifi
cant bit 0 of each byte A, B, C, D of each register such as
D7 is mapped as shown to a particular bit number of the
ROT register output onto the global port source data bus
Gsrc 105. ROT register 208 is read only in the preferred
embodiment, but can be writable in other embodiments.

0183 ROT register 208 is useful in image rotations,
orthogonal transforms and mirror transforms. Performing 32
bit stores to memory from the rotation register 208 in
parallel with eight DROT instructions rotates four 8 by 8 bit
patches of data clockwise ninety degrees. The rotated data is
stored in the target memory locations. Various combinations
of register loading, memory address storing, and data size
alteration, can enable a variety of clockwise and counter
clockwise rotations of 8 by 8 bit patches to be performed.
Rotation of larger areas can then be performed by moving
whole bytes. This remarkable orthogonal structure that pro
vides register file access to registers D7-D0 in one mode,
and rotation register access in the DROT operation, is only
slightly more complex than a register file alone.

0184 The data register D0 has a dual function. It may be
used as a normal data register in the same manner as the
other data registers D7-D1. Data register D0 may also define
certain special functions when executing some instructions.
Some of the bits of the most significant half-word of data
register D0 specifies the operation of all types of extended
arithmetic logic unit operations. Some of the bits of the least
significant half-word of data register D0 specifies multiplier
options during a multiple multiply operation. The 5 least
significant bits of data register D0 specify a default barrel
rotate amount used by certain instruction classes. FIG. 9
illustrates the contents of data register D0 when specifying
data unit 110 operation.

0185. The “FMOD field (bits 31-28) of data register D0
allow modification of the basic operation of arithmetic logic
unit 230 when executing an instruction calling for an
extended arithmetic logic unit (EALU) operation. Table 6
illustrates these modifier options. Note, as indicated in Table
6, certain instruction word bits in Some instruction formats
are decoded as function modifiers in the same fashion. These
will be further discussed below.

Mar. 27, 2008

TABLE 6

Function
Modifier
Code Modification Performed

0 0 () () normal operation
0 0 O cin
0 0 1 0 % if mask generation instruction

LMO if not mask generation instruction
O O 1 (% and cin) if mask generation instruction

RMO if not mask generation instruction
0 1 0 () A-port=0
O 1 O A-port=0 and cin
0 1 1 0 (A-port=0 and %) if mask generation instruction

LMBC if not mask generation instruction
O 1 1 (A-port-O and % and cin) if mask generation instruction

RMBC if not mask generation instruction
1 0 () () Multiple arithmetic logic unit operations,

carry-Out(s) -----> multiple flags register
1 O O Multiple arithmetic logic unit operations,

Zero result(s) ------ multiple flags register
1 0 1 0 Multiple arithmetic logic unit operations,

carry-Out(s) - - - - - multiple flags register,
rotate by "Asize" field of status register

1 O 1 Multiple arithmetic logic unit operations,
zero result(s) ------ multiple flags register,
rotate by "Asize" field of status register

1 1 0 () Multiple arithmetic logic unit operations,
carry-Out(s) - - - - - multiple flags register,
clear multiple flags register

1 1 0 1 Multiple arithmetic logic unit operations,
Zero result(s) ------ multiple flags register,
clear multiple flags register

1 1 1 0 Reserved
1 1 1 1 Reserved

Instruction word bit Data Register D0 bit

52 - 28
54 - 29
56 - 30
58 - 31

The modified operations listed in Table 6 are explained
below. If the “FMOD' field is "0000, the normal, unmodi
fied operation results. The modification “cin' causes the
carry-in to bit 0 of arithmetic logic unit 230 to be the “C” bit
of status register 210. This allows add with carry, subtract
with borrow and negate with borrow operations. The modi
fication “%!” works with mask generation. When the “%!”
modification is active mask generator 239 effectively gen
erates all “1s' for a zero rotate amount rather than all "0’s”.
This function can be implemented by changing the mask
generated by mask generator 239 or by modifying the
function of arithmetic logic unit 230 so that mask of all “0’s”
supplied to the C-port operates as if all “1s” were supplied.
This modification is useful in some rotate operations. The
modifications “LMO, “RMO, “LMBC and “RMBC
designate controls of the LMO/RMO/LMBC/RMBC circuit
237. The modification “LMO’ finds the left most “1” of the
second arithmetic input. The modification “RMO' finds the
right most “1”. The modification “LMBC finds the left
most bit that differs from the sign bit (bit 31). The “RMBC
modification finds the right most bit that differs from the first
bit (bit 0). Note that these modifications are only relevant if
the C-port of arithmetic logic unit 230 does not receive a
mask from mask generator 239. The modification “A-port=
O' indicates that the input to the A-port of arithmetic logic
unit 230 is effectively zeroed. This may take place via
multiplexer AmuX 232 providing a Zero output, or the
operation of arithmetic logic unit 230 may be altered in a
manner having the same effect. An "A-port=0” modification

US 2008/0077771 A1

is used in certain negation, absolute value and shift right
operations. A "multiple arithmetic logic unit operation”
modification indicates that one or more of the carry paths of
arithmetic logic unit 230 are severed, forming in effect one
or more independent arithmetic logic units operating in
parallel. The “Asize’ field of status register 210 controls the
number of Such multiple arithmetic logic unit sections. The
multiple flags register 211 stores a number of status bits
equal to the number of sections of the multiple arithmetic
logic unit operations. In the “carry-out(s)-->multiple flags'
modification, the carry-out bit or bits are stored in multiple
flags register 211. In the “Zero result(s)-->multiple flags'
modification, an indication of the Zero resultant for the
corresponding arithmetic logic unit section is stored in
multiple flags register 211. This process is described above
together with the description of multiple flags register 211.
During this storing operation, bits within multiple flags
register 211 may be rotated in response to the "rotate'
modification or cleared in response to the “clear” modifica
tion. These options are discussed above together with the
description of multiple flags register 211.
0186 The “A” bit (bit 27) of data register D0 controls
whether arithmetic logic unit 230 performs an arithmetic or
Boolean logic operation during an extended arithmetic logic
unit operation. This bit is called the arithmetic enable bit. If
the “A” bit is “1, then an arithmetic operation is performed.
If the “A” bit is “0”, then a logic operation is performed. If
the “A” bit is “0”, then the carry-in from bit 0 carry-in
generator 246 into bit 0 of the arithmetic logic unit 230 is
generally 'O'. As will be further explained below certain
extended arithmetic logic unit operations may have a carry
in bit of “0” even when the “A” bit is “0” indicating a logic
operation.

0187. The “EALU” field (bits 19-26) of data register D0
defines an extended arithmetic logic unit operation. The
eight bits of the “EALU field specify the arithmetic logic
unit function control bits used in all types of extended
arithmetic logic unit operations. These bits become the
control signals to arithmetic logic unit 230. They may be
passed to arithmetic logic unit 230 directly, or modified
according to the “FMOD' field. In some instructions the bits
of the “EALU” field are inverted, leading to an “EALUF or
extended arithmetic logic unit false operation. In this case
the eight control bits supplied to arithmetic logic unit 230 are
inverted.

0188 The “C” bit (bit 18) of data register D0 designates
the carry-in to bit 0 of arithmetic logic unit 230 during
extended arithmetic logic unit operations. The carry-in value
into bit 0 of the arithmetic logic unit during extended
arithmetic logic unit operations is given by this “C” bit. This
allows the carry-in value to be specified directly, rather than
by a formula as for non-EALU operations.
0189 The “1” bit (bit 17) of data register D0 is desig
nated the invert carry-in bit. The “1” bit, together with the
“C” bit and the “S” bit (defined below), determines whether
or not to invert the carry-in into bit 0 of arithmetic logic unit
230 when the function code of an arithmetic logic unit
operation are inverted. This will be further detailed below.
0190. The “S” bit (bit 16) of data register D0 indicates
selection of sign extend. The “S” bit is used when executing
extended arithmetic logic unit operations (“A” bit=1). If the
“S” bit is “1”, then arithmetic logic unit control signals

Mar. 27, 2008

F3-F0 (produced from bits 22-19) should be inverted if the
sign bit (bit 31) of the data first arithmetic logic unit input
bus 206 is “0”, and not inverted if this sign bit is “1”. The
effect of conditionally inverting arithmetic logic unit control
signals F3-F0 will be explained below. Such an inversion is
useful to sign extend a rotated input in certain arithmetic
operations. If the extended arithmetic logic unit operation is
Boolean (“A” bit=0), then the “S” bit is ignored and the
arithmetic logic unit control signals F3-F0 are unchanged.

0191 Table 7 illustrates the interaction of the “C”, “I”
and “S” bits of data register D0. Note that an “X” entry for
either the “I” bit or the first input sign indicates that bit does
not control the outcome, i.e. a "don't care” condition.

TABLE 7

S I First Input Sign Invert C2 Invert F3-FO

O X X O O
1 O O O O
1 O 1 O yes
1 1 O O O
1 1 1 yes yes

If the “S” bit equals “1” and the sign bit of the first input
destined for the B-port of arithmetic logic unit 230 equals
“0”, then the value of the carry-in to bit 0 of arithmetic logic
unit 230 set by the “C” bit value can optionally be inverted
according to the value of the “1” bit. This allows the carry-in
to be optionally inverted or not, based on the sign of the
input. Note also that arithmetic logic unit control signals
F3-F0 are optionally inverted based on the sign of the input,
if the “S” bit is '1'. This selection of inversion of arithmetic
logic unit control signals F3-F0 may be overridden by the
“FMOD field. If the “FMOD field specifies “Carry-in
=Status Register's Carry bit, then the carry-in equals the
“C” bit of status register 210 whatever the value of the “S”
and “I” bits. Note also that the carry-in for bit 0 of arithmetic
logic unit 230 may be set to “1” via the “C” bit for extended
arithmetic logic unit operations even if the “A” bit is “O'”
indicating a Boolean operation.

0.192 The “N' bit (bit 15) of data register D0 is used
when executing a split or multiple section arithmetic logic
unit operation. This “N' bit is called the non-multiple mask
bit. For some extended arithmetic logic unit operations that
specify multiple operation via the “FMOD field, the
instruction specifies a mask to be passed to the C-port of
arithmetic logic unit 230 via mask generator 239. This “N”
bit determines whether or not the mask is split into the same
number of sections as arithmetic logic unit 230. Recall that
the number of such multiple sections is set by the “Asize
field of status register 210. If the “N' bit is “0”, then the
mask is split into multiple masks. If the “N' bit is “1”, then
mask generator 239 produces a single 32 bit mask.

0193 The “E” bit (bit 14) designates an explicit multiple
carry-in. This bit permits the carry-in to be specified at run
time by the input to the C-port of arithmetic logic unit 230.
If both the “A bit and the “E” bit are “1” and the “FMOD’
field does not designate the cin function, then the effects of
the “S”, “I” and “C” bits are annulled. The carry input to
each section during multiple arithmetic is taken as the
exclusive OR of the least significant bit of the corresponding
section input to the C-port and the function signal F0. If

US 2008/0077771 A1

multiple arithmetic is not selected the single carry-in to bit
0 of arithmetic logic unit 230 is the exclusive OR of the least
significant bit (bit 0) the input to the C-port and the function
signal F0. This is particularly useful for performing multiple
arithmetic in which differing functions are performed in
different sections. One extended arithmetic logic unit opera
tion corresponds to (A, B)&C (AB)&C. Using a mask for
the C-port input, a section with all “0’s” produces addition
with the proper carry-in of “0” and a section of all “1s'
produces subtraction with the proper carry-in of “1”.

0194 The “DMS field (bits 12-8) of data register D0
defines the shift following the multiplier. This shift takes
place in product left shifter 224 prior to saving the result or
passing the result to rounding logic. During this left shift the
most significant bits shifted out are discarded and Zeroes are
shifted into the least significant bits. The “DMS field is
effective during any multiply/extended arithmetic logic unit
operation. In the preferred embodiment data register D0 bits
9-8 select 0, 1, 2 or 3 place left shifting. Table 8 illustrates
the decoding.

TABLE 8

DMS field

Left shift amount

The “DMS field includes 5 bits that can designate left shift
amounts from 0 to 31 places. In the preferred embodiment
product left shifter 224 is limited to shifts from 0 to 3 places
for reasons of size and complexity. Thus bits 12-10 of data
register D0 are ignored in setting the left shift amount.
However, it is feasible to provide a left shift amount within
the full range from 0 to 31 places from the “DMS field if
desired.

0.195 The “M” bit (bit 7) of data register D0 indicates a
multiple multiply operation. Multiplier 220 can multiply two
16 bit numbers to generate a 32 bit result or of simulta
neously multiplying two pair of 8 bit numbers to generate a
pair of 16 bit resultants. This “M” bit selects either a single
16 by 16 multiply if “M”="0, or two 8 by 8 multiplies if
“M'='1'. This operation is similar to multiple arithmetic
logic unit operations and will be further described below.
0196) The “R” bit (bit 6) of data register D0 specifies
whether a rounding operation takes place on the resultant
from multiplier 220. If the “R” bit is “1”, the a rounding
operation, explained below together with the operation of
multiplier 220, takes place. If the “R” bit is “0”, then no
rounding takes place and the 32 bit resultant form multiplier
220 is written into the destination register. Note that use of
a predetermined bit in data register D0 is merely a preferred
embodiment for triggering this mode. It is equally feasible
to enable the rounding mode via a predetermined instruction
word bit.

0197) The “DBR' field (bits 4-0) of data register D0
specifies a default barrel rotate amount used barrel rotator
235 during certain instructions. The “DBR' field specifies
the number of bit positions that barrel rotator 235 rotates

Mar. 27, 2008

left. These 5 bits can specify a left rotate of 0 to 31 places.
The value of the “DBR' field may also be supplied to mask
generator 239 via multiplexer Mmux 234. Mask generator
239 forms a mask supplied to the C-port of arithmetic logic
unit 230. The operation of mask generator 239 will be
discussed below.

0198 Multiplier 220 is a hardware single cycle multi
plier. As described above, multiplier 220 operates to multi
ply a pair of 16 bit numbers to obtain a 32 bit resultant or to
multiply two pairs of 8 bit numbers to obtain two 16 bit
resultants in the same 32 bit data word.

0199 FIGS. 10a, 10b, 10c and 10d illustrate the input and
output data formats for multiplying a pair of 16 bit numbers.
FIG. 10a shows the format of a signed input. Bit 15 indicates
the sign of this input, a “0” for positive and a “1” for
negative. Bits 0 to 14 are the magnitude of the input. Bits 16
to 31 of the input are ignored by the multiply operation and
are shown as a don't care 'X'. FIG. 10b illustrates the
format of the resultant of a signed by signed multiply. Bits
31 and 30 are usually the same and indicate the sign of the
resultant. If the multiplication was of Hex “8000” by Hex
“8000, then bits 31 and 30 become “01. FIG. 10c illus
trates the format of an unsigned input. The magnitude is
represented by bits 0 to 15, and bits 16 to 31 are don't care
“X”. FIG. 10d shows the format of the resultant of an
unsigned by unsigned multiply. All 32 bits represent the
resultant.

0200 FIG. 11 illustrates the input and output data formats
for multiplying two pair of 8 bit numbers. In each of the two
8 bit by 8 bit multiplies the two first inputs on multiplier first
input bus 201 are always unsigned. The second inputs on
multiplier second input bus 202 may be both signed, result
ing in two signed products, or both unsigned, resulting in
two unsigned products. FIG. 11a illustrates the format of a
pair of signed inputs. The first signed input occupies bits 0
to 7. Bit 7 is the sign bit. The second signed input occupies
bits 8 to 15, bit 15 being the sign bit. FIG.11b illustrates the
format of a pair of unsigned inputs. Bits 0 to 7 form the first
unsigned input and bits 8 to 16 form the second unsigned
input. FIG. 11c illustrates the format of a pair of signed
resultants. As noted above, a dual unsigned by signed
multiply operation produces such a pair of signed resultants.
The first signed resultant occupies bits 0 to 15 with bit 15
being the sign bit. The second signed resultant occupies bits
16 to 31 with bit 31 being the sign bit. FIG. 11d illustrates
the format of a pair of unsigned resultants. The first unsigned
resultant occupies bits 1 to 15 and the second unsigned
resultant occupies bits 16 to 31.
0201 Multiplier first input bus 201 is a 32bit bus sourced
from a data register within data registers 200 selected by the
instruction word. The 16 least significant bits of multiplier
first input bus 201 supplies a first 16 bit input to multiplier
220. The 16 most significant bits of multiplier first input bus
201 supplies the 16 least significant bits of a first input to a
32 bit multiplexer Rimux 221. This data routing is the same
for both the 16 bit by 16 bit multiply and the dual 8 bit by
8 bit multiply. The 5 least significant bits multiplier first
input bus 201 Supply a first input to a multiplexer Smux 231.
0202) Multiplier second input bus 202 is a 32 bit bus
sourced from one of the data registers 200 as selected by the
instruction word or from a 32 bit, 5 bit or 1 bit immediate
value imbedded in the instruction word. A multiplexer Imux

US 2008/0077771 A1

222 Supplies such an immediate multiplier second input bus
202 via a buffer 223. The instruction word controls multi
plexer Imux 222 to supply either 32 bits, 5 bits or 1 bit from
an immediate field of the instruction word to multiplier
second input bus 202 when executing an immediate instruc
tion. The short immediate fields are Zero extended in mul
tiplexer ImuX 222 upon Supply to multiplier second input
bus 202. The 16 least significant bits of multiplier second
input bus 202 supplies a second 16 bit input to multiplier
220. This data routing is the same for both the 16 bit by 16
bit multiply and the dual 8 bit by 8 bit multiply. Multiplier
second input bus 202 further supplies one input to multi
plexer Amux 232 and one input to multiplexer CmuX 233.
The 5 least significant bits of multiplier second input bus 202
Supply one input to multiplexer MmuX 234 and a second
input to multiplexer Smux 231.
0203 The output of multiplier 220 supplies the input of
product left shifter 224. Product left shifter 224 can provide
a controllable left shift of 3, 2, 1 or 0 bits. The output of
multiply shift multiplexer MSmux 225 controls the amount
of left shift of product left shifter 224. Multiply shift
multiplexer MSmux 225 selects either bits 9-8 from the
“DMS field of data register D0 or all zeroes depending on
the instruction word. In the preferred embodiment, multiply
shift multiplexer MSmux 225 selects the “0” input for the
instructions MPYx|ADD and MPYx|SUB. These instruc
tions combine signed or unsigned multiplication with addi
tion or subtractions using arithmetic logical unit 230. In the
preferred embodiment, multiply shift multiplexer MSmux
225 selects bits 9-8 of data register D0 for the instructions
MPYXEALUX. These instructions combine signed or
unsigned multiplication with one of two types of extended
arithmetic logic unit instructions using arithmetic logic unit
230. The operation of data unit 110 when executing these
instructions will be further described below. Product left
shifter 224 discards the most significant bits shifted out and
fills the least significant bits shifted in with Zeros. Product
left shifter 224 supplies a 32 bit output connected to a second
input of multiplexer Rimux 221.

0204 FIG. 12 illustrates internal circuits of multiplier
220 in block diagram form. The following description of
multiplier 220 points out the differences in organization
during 16 bit by 16 bit multiplies from that during dual 8 bit
by 8 bit multiplies. Multiplier first input bus 201 supplies a
first data input to multiplier 220 and multiplier second input
bus 202 supplies a second data input. Multiplier first input
bus 201 supplies 19 bit derived value circuit 350. Nineteen
bit derived value circuit 350 forms a 19 bit quantity from the
16 bit input. Nineteen bit derived value circuit 350 includes
a control input indicating whether multiplier 220 executes a
single 16 bit by 16 bit multiplication or dual 8 bit by 8 bit
multiplication. Booth quad re-coder 351 receives the 19 bit
value from 19 bit derived value circuit 350 and forms control
signals for six partial product generators 353,354, 356,363,
364 and 366 (PPG5-PPG0). Booth quad re-coder 351 thus
controls the core of multiplier 220 according to the first input
or inputs on multiplier first input bus 201 for generating the
desired product or products.
0205 FIGS. 13 and 14 schematically illustrate the opera
tion of 19 bit derived value circuit 350 and Booth quad
re-coder 351. For all modes of operation, the 16 most
significant bits of multiplier first input bus 201 are ignored
by multiplier 220. FIG. 13 illustrates the 19 bit derived value

Mar. 27, 2008

for 16 bit by 16 bit multiplications. The 16 bits of the first
input are left shifted by one place and sign extended by two
places. In the unsigned mode, the sign is “0”. Thus bits
18-17 of the 19 bit derived value are the sign, bits 16-1
correspond to the 16 bit input, and bit 0 is always “0”. The
resulting 19 bits are grouped into six overlapping four-bit
units to form the Booth quads. Bits 3-0 form the first Booth
quad controlling partial product generator PPG0353, bits 6-3
control partial product generator PPG1354, bits 9-6 control
partial product generator PPG2356, bits 12-9 control partial
product generator PPG3363, bits 15-12 control partial prod
uct generator PPG 4364, and bits 18-15 control partial prod
uct generator PPG5366. FIG. 14 illustrates the 19 bit derived
value for dual 8 bit by 8 bit multiplications. The two inputs
are pulled apart. The first input is left shifted by one place,
the second input is left shifted by two places. Bits 0 and 9
of the 19 bit derived value are set to “0”, bit 18 to the sign.
The Booth quads are generated in the same manner as in 16
bit by 16 bit multiplication. Note that placing a “0” in bit 9
of the derived value makes the first three Booth quads
independent of the second 8 bit input and the last three
Booth quads independent of the first 8 bit input. This enables
separation of the two products at the multiplier output.

0206. The core of multiplier 220 includes: six partial
product generators 353, 354,356, 363, 364 and 366, which
are designated PPG0 to PPG5, respectively; five adders 355,
365,357, 267 and 368, designated adders A, B, C, D and E:
and an output multiplexer 369. Partial product generators
353, 354, 356, 363, 364 and 366 are identical. Each partial
product generator 353, 354, 356, 363, 364 and 366 forms a
partial product based upon a corresponding Booth quad.
These partial products are added to form the final product by
adders 355, 365,357, 367 and 368.

0207. The operation of partial product generator 353,
354, 356, 363, 364 and 366 is detailed in Tables 9 and 10.
Partial product generators 353, 354, 356,363, 364 and 366
multiply the input data derived from multiplier second input
buS 202 by integer amounts ranging from -4 to +4. The
multiply amounts for the partial product generators are
based upon the value of the corresponding Booth quad. This
relationship is shown in Table 9 below.

TABLE 9

Quad Multiply Amount

OOOO O
OOO1 1
OO10 1
OO11 2
O1OO 2
O101 3
O110 3
O111 4
1OOO -4
1001 -3
1010 -3
1011 -2
1100 -2
1101 -1
1110 -1
1111 -O

0208 Table 10 lists the action taken by the partial product
generator based upon the desired multiply amount.

US 2008/0077771 A1

TABLE 10

Multiply Partial Product
Amount Generator Action

O select all zeros
1 pass input straight through
2 shift left one place
3 select output of 3x generator

+4 shift left two places

0209. In most cases, the partial product is easily derived.
An all “0” output is selected for a multiply amount of 0. A
multiply amount of 1 results in passing the input unchanged.
Multiply amounts of 2 and 4 are done simply by shifting. A
dedicated piece of hardware generates the multiple of 3. This
hardware essentially forms the addition of the input value
and the input left shifted one place.
0210 Each partial product generator 353, 354, 356, 363,
364 and 366 receives an input value based upon the data
received on multiply second input bus 202. The data on
multiply second input bus 202 is 16 bits wide. Each partial
product generator 353,354,356,363, 364 and 366 needs to
be 18 bits to hold the 16 bit number shifted two places left,
as in the multiply by 4 case. The output of each partial
product generator 353,354,356,363,364 and 366 is shifted
three places left from that of the preceding partial product
generator 353,354,356,363,364 and 366. Thus each partial
product generator output is weighted by 8 from its prede
cessor. This is shown in FIG. 12, where bits 2-0 of each
partial product generator 353,354,356,363, 364 and 366 is
handled separately. Note that adders A, B, C, D and E are
always one bit wider than their input data to hold any
overflow.

0211. The adders 355,357, 365, 367 and 368 used in the
preferred embodiment employ redundant-sign-digit nota
tion. In the redundant-sign-digit notation, a magnitude bit
and a sign bit represents each bit of the number. This known
format is useful in the speeding the addition operation in a
manner not important to this invention. However this inven
tion is independent of the adder type used, so for simplicity
this will not be further discussed. During multiply opera
tions data from the 16 least significant bits on multiply
second input bus 202 is fed into each of the six partial
product generator 353, 354, 356, 363, 364 and 366, and
multiplied by the amount determined by the corresponding
Booth quad.
0212 Second input multiplexer 352 determines the data
supplied to the six partial produce generators 353, 354, 356,
363, 364 and 366. This data comes from the 16 least
significant bits on multiply second input bus 202. The data
supplied to partial products generators 353, 354, 356, 363,
364 and 366 differ depending upon whether multiplier 220
executes a single 16 bit by 16 bit multiplication or dual 8 bit
by 8 bit multiplication. FIG. 15 illustrates the second input
data supplied to the six partial produce generators 353, 354,
356, 363, 364 and 366 during a 16 bit by 16 bit multiply.
FIG. 15a illustrates the case of unsigned multiplication. The
16 bit input is zero extended to 18 bits. FIG. 15b illustrates
the case of signed multiplication. The data is sign extended
to 18 bits by duplicating the sign bit (bit 15). During 16 bit
by 16 bit multiplication and of the six partial produce
generators 353, 354, 356, 363, 364 and 366 receives the
same second input.

18
Mar. 27, 2008

0213) The six partial produce generators 353, 354, 356,
363, 364 and 366 do not receive the same second input
during dual 8 bit by 8 bit multiplication. Partial product
generators 353, 345 and 356 receive one input and partial
product generators 363, 364 and 366 receive another. This
enables separation of the two inputs when operating in
multiple multiply mode. Note that in the multiple multiply
mode there is no overlap of second input data Supplied to the
first three partial product generators 353, 345 and 356 and
the second three partial product generators 363, 364 and
366. FIG. 16 illustrates the second input data supplied to the
six partial produce generators 353, 354, 356, 363, 364 and
366 during a dual 8 bit by 8 bit multiply. FIG. 16a illustrates
the second input data Supplied to partial product generators
353,354 and 356 for an unsigned input. FIG. 16a illustrates
the input Zero extended to 18 bits. FIG. 16b illustrates the
second input data Supplied to partial product generators 353,
354 and 356 for a signed input, which is sign extended to 18
bits. FIG. 16c illustrates the second input data supplied to
partial product generators 363, 364 and 366 for an unsigned
input. FIG. 16c illustrates the input at bits 15-8 with the
other places of the 18 bits set to “0”. FIG.16d illustrates the
second input data Supplied to partial product generators 363,
364 and 366 for a signed input. The 7 bit magnitude is at bits
14-8, bits 17-15 hold the sign and bits 7-0 are set to “0”.
0214) Note that it would be possible to have added the
partial products of partial product generators 353, 354, 356,
363, 364 and 366 in series. The present embodiment illus
trated in FIG. 12 has two advantages over such a series of
additions. This embodiment offers significant speed advan
tages by performing additions in parallel. This embodiment
also lends itself well to performing dual 8 bit by 8 bit
multiplies. These can be very useful in speeding data
manipulation and data transfers where an 8 bit by 8 bit
product provides the data resolution needed.
0215. A further multiplexer switches between the results
of a 16 bit by 16 bit multiply and dual 8 bit by 8 bit
multiplies. Output multiplexer 369 is controlled by a signal
indicating whether multiplier 220 executes a single 16 bit by
16 bit multiplication or dual 8 bit by 8 bit multiplication.
FIG. 17 shows the derivation of each bit of the resultant.
FIG. 17a illustrates the derivation of each bit for a 16 bit by
16 bit multiply. Bits 31-9 of the resultant come from bits
22-0 of adder E 368, respectively. Bits 8-6 come from bits
2-0 of adder C357, respectively. Bits 5-3 come from bits 2-0
of adder A355, respectively. Bits 2-0 come from bits 2-0 of
partial product generator 353. FIG. 17b illustrates the deri
vation of each bit for the case of dual 8 bit by 8 bit
multiplication. Bits 31-16 of the resultant in this case come
from bits 15-0 of adder D 367, respectively. Bits 15-6 of the
resultant come from bits 9-0 of adder C 357 respectively. As
in the case illustrated in FIG. 17a, bits 5-3 come from bits
2-0 of adder A355 and bits 2-0 come from bits 2-0 of partial
product generator 353.

0216. It should be noted that in the actual implementation
of output multiplexer 369 requires duplicated data paths to
handle both the magnitude and sign required by the redun
dant-sign-digit notation. This duplication has not been
shown or described in detail. The redundant-sign-digit nota
tion is not required to practice this invention, and those
skilled in the art would easily realize how to construct output
multiplexer 369 to achieve the desired result in redundant
sign-digit notation. Note also when using the redundant

US 2008/0077771 A1

sign-digit notation, the resultant generally needs to be con
verted into standard binary notation before use by other parts
of data unit 110. This conversion is known in the art and will
not be further described.

0217. It can be seen from the above description that with
the addition of a small amount of logic the same basic
hardware can perform 16 bit by 16 multiplication and dual
8 bit by 8 bit multiplications. The additional hardware
consists of multiplexers at the two inputs to the multiplier
core, a modification to the Booth re-coder logic and a
multiplexer at the output of the multiplier. This additional
hardware permits much greater data through put when using
dual 8 bit by 8 bit multiplication.
0218. Adder 226 has three inputs. A first input is set to all
Zeros. A second input receives the 16 most significant bits
(bits 31-16) of the left shifted resultant of multiplier 220. A
carry-in input receives the output of bit 15 of this left shifter
resultant of multiplier 220. Multiplexer Rmux 221 selects
either the entire 32 bit resultant of multiplier 220 as shifted
by product left shifter 224 to supply to multiply destination
bus 203 via multiplexer Bmux 227 or the sum from adder
226 forms the 16 most significant bits and the 16 most
significant bits of multiplier first input bus 201 forms the 16
least significant bits. As noted above, in the preferred
embodiment the state of the “R” bit (bit 6) of data register
D0 controls this selection at multiplexer Rimux 221. If this
“R” bit is “0”, then multiplexer Rmux 221 selects the shifted
32 bit resultant. If this “R” bit is “1”, then multiplexer Rmux
221 selects the 16 rounded bits and the 16 most significant
bits of multiplier first input bus 201. Note that it is equally
feasible to control multiplexer Rimux 221 via an instruction
word bit.

0219. Adder 226 enables a multiply and round function
on a 32 bit data word including a pair of packed 16 bit half
words. Suppose that a first of the data registers 200 stores a
pair of packed half words (a::b), a second data register stores
a first half word coefficient (X::c1) and a third data register
stores a second half word coefficient (X::c2), where X may
be any data. The desired resultant is a pair of packed half
words (ac2:b*c.1) with a c2 and b*c1 each being the
rounded most significant bits of the product. The desired
resultant may be formed in two instructions using adder 226
to perform the rounding. The first instruction is:

indst = mSrc.1: nSrC2

(b: c1 :: a) = (a :: b): (X :: C1)

As previously described multiplier first input bus 201 Sup
plies its 16 least significant bits, corresponding to b, to the
first input of multiplier 220. At the same time multiply
second input bus 202 Supplies its 16 least significant bits,
corresponding to c1, to the second input of multiplier 220.
This 16 by 16 bit multiply produces a 32 bit product. The 16
most significant bits of the 32 bit resultant form one input to
adder 226 with "O' supplied to the other input of adder 226.
If bit 15 of the 32 bit resultant is “1, then the 16 most
significant bits of the resultant is incremented, otherwise
these 16 most significant bits are unchanged. Thus the 16
most significant bits of the multiply operation are rounded in
adder 226. Note that one input to multiplexer Rimux 221

Mar. 27, 2008

includes the 16 bit resultant from adder 226 as the 16 most
significant bits and the 16 most significant bits from multi
plier first input bus 201, which is the value a, as the least
significant bits. Also note that the 16 most significant bits on
multiplier second input bus 202 are discarded, therefore
their initial state is unimportant. Multiplexer Rimux selects
the combined output from adder 226 and multiplier first
input bus 201 for storage in a destination register in data
registers 200.
0220. The packed word multiply/round operation contin
ues with another multiply instruction. The resultant
(b.c1::a) of the first multiply instruction is recalled via
multiply first input bus 201. This is shown below:

indst = mSrc.1: nSrC2

(a : c2 :: b : c1) = (b: c1 :: a): (X :: c2)

The multiply occurs between the 16 least significant bits on
the multiplier first input bus 201, the value a, and the 16 least
significant bits on the multiplier second input bus 202, the
value c2. The 16 most significant bits of the resultant are
rounded using adder 226. These bits become the 16 most
significant bits of one input to multiplexer Rimux 221. The
16 most significant bits on multiplier first input bus 201, the
value bc1, becomes the 16 least significant bits of the input
to multiplexer Rmux 221. The 16 most significant bits on the
multiplier second input bus 202 are discarded. Multiplexer
Rmux 221 then selects the desired resultant (ac2::b*c.1) for
storage in data registers 200 via multiplexer Bmux 227 and
multiplier destination bus 203. Note that this process could
also be performed on data scaled via product left shifter 224,
with adder 226 always rounding the least significant bit
retained. Also note that the factors c 1 and c2 may be the
same or different.

0221) This packed word multiply/round operation is
advantageous because the packed 16 bit numbers can reside
in a single register. In addition fewer memory loads and
stores are needed to transfer Such packed data than if this
operation was not supported. Also note that no additional
processor cycles are required in handling this packed word
multiply/rounding operation. The previous description of the
packed word multiply/round operation partitioned multiplier
first input bus 201 into two equal halves. This is not
necessary to employ the advantages of this invention. As a
further example, it is feasible to partition multiplier first
input bus 201 into four 8 bit sections. In this further example
multiplier 220 forms the product of the 8 least significant
bits of multiplier first input bus 201 and the 8 least signifi
cant bits of multiplier second input bus 202. After optional
Scaling in product left shifter 224 and rounding via adder
226, the 8 most significant bits of the product form the most
significant bits of one input to multiplexer Mmux 221. In
this further example, the least significant 24 bits of this
second input to multiplexer Mmux 221 come from the most
significant 24 bits on multiplier first input bus 201. This
further example permits four 8 bit multiplies on such a
packed word in 4 passes through multiplier 220, with all the
intermediate results and the final result packed into one 32
bit data word. To further generalize, this invention partitions
the original N bit data word into a first set of M bits and a
second set of L bits. Following multiplication and rounding,

US 2008/0077771 A1

a new data word is formed including the L. most significant
bits of the product and the first set of Mbits from the first
input. The data order in the resultant is preferably shifted or
rotated in some way to permit repeated multiplications using
the same technique. As in the further example described
above, the number of bits M need not equal the number of
bits L. In addition, the sum of M and L need not equal the
original number of bits N.

0222. In the preferred embodiment the round function
selected by the “R” (bit 6) of data register D0 is imple
mented in a manner to increase its speed. Multiplier 220
employs a common hardware multiplier implementation that
employs internally a redundant-sign-digit notation. In the
redundant-sign-digit notation each bit of the number is
represented by a magnitude bit and a sign bit. This known
format is useful in the internal operation of multiplier 220 in
a manner not important to this invention. Multiplier 220
converts the resultant from this redundant-sign-digit nota
tion to standard binary notation before using the resultant.
Conventional conversion operates by Subtracting the nega
tive signed magnitude bits from the positive signed magni
tude bits. Such a subtraction ordinarily involves a delay due
to borrow ripple from the least significant bit to the most
significant bit. In the packed multiply/round operation the
desired result is the 16 most significant bits and the rounding
depends upon bit 15, the next most significant bit. Though
the results are the most significant bits, the borrow ripple
from the least significant bit may affect the result. Conven
tionally the borrow ripple must propagate from the least
significant bit to bit 15 before being available to make the
rounding decision.

0223 FIG. 18 illustrates in block diagram form hardware
for speeding this rounding determination. In FIG. 18 the 32
bit multiply resultant from multiplier 220 is separated into a
most significant 16 bits (bits 31-16) coded in redundant
sign-digit form stored in register 370 and a least significant
16 bits (bits 15-0) coded in redundant-sign-digit form stored
in register 380. In FIG. 18 product left shifter 224 is used for
scaling as previously described. Product left shifter 224 left
shifts both the magnitude bit and the sign bit for each bit of
the of redundant-sign-digit form stored in registers 370 and
380 of multiplier 220 prior to forming the resultant. The shift
amount comes from multiply shift multiplexer MSmux 225
as previously described above.
0224 Conventionally such redundant-sign-digit notation

is converted to standard binary notation by generating
carry/borrow control signals. Carry path control signal gen
erator 382 forms three carry path control signals, propagate,
kill and generate, from the magnitude and sign bits of the
corresponding desired resultant bit. These signals are easily
derived according to Table 11.

TABLE 11

Carry Path
Magnitude Sign Indicates Control Signal

O X Zero (0) Propagate (P)
1 O Plus One (1) Kill (K)

Minus One (T) Generate (G)

Carry path control signal generator 382 Supplies these carry
path control signals to borrow ripple unit 386. Borrow ripple

20
Mar. 27, 2008

unit 386 uses the bit wise carry path control signals to
control borrow ripple during the Subtraction of the nega
tively signed bits from the positively signed bits. Note from
Table 11 that the three signals propagate, kill and generate
are mutually exclusive. One and only one of these signals is
active at any particular time. A propagate signal causes any
borrow signal from the previous less significant bit to
propagate unchanged to the next more significant bit. A kill
signal absorbs any borrow signal from the prior bit and
prevents propagation to the next bit. A generate signal
produces a borrow signal to propagate to the next bit
whatever the received borrow signal. Borrow ripple unit 386
propagates the borrow signal from the least significant bit to
the most significant bit. As illustrated in FIG. 18, bits 15-0
are converted in this manner. The only part of the result used
is the data of bit 15 d15 and the borrow output signal of bit
15 b15).
0225. The circuit illustrated in FIG. 18 employs a differ
ent technique to derive the 16 most significant bits. Note that
except for the rounding operation that depends upon bit 15,
only the 16 most significant bits are needed in the packed
multiply/round operation. There are two possible resultants
for bits 31-16 depending upon the rounding determination.
The circuit of FIG. 18 computes both these possible result
ants in parallel and the selects the appropriate resultant
depending upon the data of bit 15 d15 and the borrow
output signal of bit 15 b15). This substantially reduces
the delay forming the rounded value. Note that using adder
226 to form the rounded value as illustrated in FIG. 5
introduces an additional carry ripple delay within adder 226
when forming the Sum.

0226. The circuit illustrated in FIG. 18 forms the mini
mum and maximum possible rounded results simulta
neously. If R is the simple conversion of the 16 most
significant bits, then the rounded final result may be R-1, R
or R+1. These are selected based upon the data of bit 15
d15 and the borrow output signal of bit 15 b15
according to Table 12.

cut

TABLE 12

d15 bout 15 Final Result

O O R Neither increment nor decrement
O 1 R - 1 Decrement only
1 O R + 1 Increment only
1 1 R Both increment and decrement

The circuit of FIG. 18 computes the value R-1 for the 16
most significant bits employing carry path control signal
generator 372 and borrow ripple unit 376. Carry path control
signal generator 372 is the same as carry path control signal
generator 382 and operates according to Table 11. Borrow
ripple unit 376 is the same as borrow ripple unit 386. Borrow
ripple unit 376 computes the value R-1 because the borrow
in input is always supplied with a borrow value of “1”, thus
always performing a decrement of the simple conversion
value R.

0227. The circuit of FIG. 18 forms the value R+1 by
adding 2 to the value of R-1. Note that a binary number may
be incremented by 1 by toggling all the bits up to and
including the right most “0” bit in the original binary
number. The circuit of FIG. 18 employs this technique to

US 2008/0077771 A1

determine bits 31-17. This addition takes place in two stages
in a manner not requiring a carry borrow for the entire 16
bits. In the first stage, mask ripple unit 374 generates a mask
from the carry path control signals. An intermediate mask is
formed with a “1” in any bit position in which the converted
result is known to be “0” or known to differ from the result
of the prior bit. Mask ripple unit 374 sets other bit positions
to “0”. The manner of forming this intermediate mask is
shown in Table 13.

TABLE 13

Final Result Intermediate
Bitn Bitn - 1 of Bitn Mask Value

T(G) T(G) O 1
() (P) T(G) 1 O
1 (K) T(G) O 1
T(G) () (P) Different from Bitn - 1 1
() (P) () (P) Same as Bitn - 1 O
1 (K) () (P) Different from Bitn - 1 1
T(G) 1 (K) 1 O
() (P) 1 (K) O 1
1 (K) 1 (K) 1 O

Review of the results of Table 13 reveal that this operation
can be performed by the function Pn XNOR Kn-1). Thus
a simple circuit generates the intermediate mask for each bit.
Mask ripple unit 374 ripples through the intermediate mask
until reaching the right most “0”. Those bits including the
right most “0” bit are set to “1”, and all more significant bits
are set to “0”. This toggle mask and the R-1 result from
borrow ripple unit 376 are supplied to exclusive OR unit
378. Exclusive OR unit 378 toggles those bits from borrow
ripple unit 376 corresponding to the mask generated by
mask ripple unit 374.

0228) Multiplexer 390 assembles the rounded resultant.
This operation takes place as shown in Tables 14 and 15.
Table 14 shows the derivation of bit 16, the least significant
rounded bit of the desired resultant, depending upon the data
of bit 15 d15 and the borrow output signal of bit 15
b. 15). These results from the 16 least significant bits of
the output of multiplier 220 are available from borrow ripple
unit 386.

TABLE 1.4

Final Result
d15 b.15 for Bit 16

O ~ R - 116
1 R - 116
O R - 116
1 ~ R - 116

0229. The data of bit 15 d15), the borrow output signal
of bit 15 b15 and the final result of bit 16 determine bits
31-17 according to Table 15.

TABLE 1.5

Final Result Final Result
d15 bout 15 of Bit 16 Bits 31-17

O O O R+ 131-17
O O 1 R - 131-17

Mar. 27, 2008

TABLE 15-continued

Final Result Final Result
d15 bout 15 of Bit 16 Bits 31-17

O 1 X R - 131-17
1 O X R+ 131-17
1 1 O R+ 131-17
1 1 1 R - 131-17

Thus multiplexer 390 forms the desired rounded resultant,
which is the same as formed by adder 226. The manner of
generation of the rounded resultant Substantially eliminates
the carry ripple delay associated with adder 226. Note that
FIG. 5 contemplates circuits similar to carry path control
signal generators 372 and 382 and borrow ripple units 376
and 386 to generate the output of multiplier 220 in normal
coded form. Thus the circuit illustrated in FIG. 18 substitutes
the delay of exclusive OR unit 378 and multiplexer 390 for
the carry ripple delay of adder 226. The delay of exclusive
OR unit 378 and multiplexer 390 is expected to be consid
erably less than the delay of adder 226. This is in a critical
path, because the rounding performed by adder 226 follows
the operation of multiplier 220. Thus this reduction in delay
enables speeding up of the entire execute pipeline stage.
This in turn enhances the rate of operation of multi-proces
sor integrated circuit 100.

0230 Note that the circuit illustrated in FIG. 18 is
employed as described above only if the “R” bit of data
register 200 D0 selects the packed word multiply/rounding
operation. In the event that the “R” bit of data register 200
D0 is “0”, the packed word multiply/round operation is not
enabled. In this event borrow ripple units 376 and 386 may
be connected conventionally, with the signal b15 from
borrow ripple unit 386 coupled to the borrow input b, of
borrow ripple unit 376. Borrow ripple units 376 and 386 thus
produce the shifted 32 bit resultant of multiplier 220 for
selection by multiplexer Rmux 221.
0231 Arithmetic logic unit 230 performs arithmetic and
logic operations within data unit 110. Arithmetic logic unit
230 advantageously includes three input ports for perform
ing three input arithmetic and logic operations. Numerous
buses and auxiliary hardware Supply the three inputs.
0232. Input A bus 241 supplies data to an A-port of
arithmetic logic unit 230. Multiplexer Amux 232 supplies
data to input Abus 241 from either multiplier second input
bus 202 or arithmetic logic unit first input bus 205 depending
on the instruction. Data on multiplier second input bus 202
may be from a specified one of data registers 200 or from an
immediate field of the instruction via multiplexer Imux 222
and buffer 223. Data on arithmetic logic unit first input bus
205 may be from a specified one of data registers 200 or
from global port source data bus Gsrc bus 105 via buffer
106. Thus the data supplied to the A-port of arithmetic logic
unit 230 may be from one of the data registers 200, from an
immediate field of the instruction word or a long distance
Source from another register of digital image/graphics pro
cessor 71 via global source data bus Gsrc 105 and buffer
106.

0233. Input B bus 242 supplies data to the B-port of
arithmetic logic unit 230. Barrel rotator 235 supplies data to
input B bus 242. Thus barrel rotator 235 controls the input

US 2008/0077771 A1

to the B-port of arithmetic logic unit 230. Barrel rotator 235
receives data from arithmetic logic unit second input bus
206. Arithmetic logic unit second input bus 206 supplies
data from a specified one of data registers 200, data from
global port source data bus GSrc bus 105 via buffer 104 or
a special data word from buffer 236. Buffer 236 supplies a
32 bit data COnStant of
“00000000000000000000000000000001” (also called Hex
“1”) to arithmetic logic unit second input bus 206 if enabled.
Note hereinafter data or addresses preceded by “Hex' are
expressed in hexadecimal. Data from global port source data
bus GSrc 105 may be supplied to barrel rotator 235 as a long
distance source as previously described. When buffer 236 is
enabled, barrel rotator 235 enables generation on input B bus
242 of any constant of the form 2, where N is the barrel
rotate amount. Constants of this form are useful in opera
tions to control only a single bit of a 32 bit data word. The
data Supplied to arithmetic logic unit second input bus 206
and barrel rotator 235 depends upon the instruction.
0234 Barrel rotator 235 is a 32 bit rotator that may rotate

its received data from 0 to 31 positions. It is a left rotator,
however, a right rotate of n bits may be obtained by left
rotating 32-n bits. A five bit input from rotate bus 244
controls the amount of rotation provided by barrel rotator
235. Note that the rotation is circular and no bits are lost.
Bits rotated out the left of barrel rotator 235 wrap back into
the right. Multiplexer Smux 231 supplies rotate bus 244.
Multiplexer Smux 231 has several inputs. These inputs
include: the five least significant bits of multiplier first input
bus 201; the five least significant bits of multiplier second
input bus 202: five bits from the “DBR' field of data register
D0; and a five bit Zero constant "00000'. Note that because
multiplier second input bus 202 may receive immediate data
via multiplexer Imux 222 and buffer 223, the instruction
word can Supply an immediate rotate amount to barrel
rotator 235. Multiplexer Smux 231 selects one of these
inputs to determine the amount of rotation in barrel rotator
235 depending on the instruction. Each of these rotate
quantities is five bits and thus can set a left rotate in the range
from 0 to 31 bits.

0235 Barrel rotator 235 also supplies data to multiplexer
Bmux 227. This permits the rotated data from barrel rotator
235 to be stored in one of the data registers 200 via
multiplier destination bus 203 in parallel with an operation
of arithmetic logic unit 230. Barrel rotator 235 shares
multiplier destination bus 203 with multiplexer Rimux 221
via multiplexer Bmux 227. Thus the rotated data cannot be
saved if a multiply operation takes place. In the preferred
embodiment this write back method is particularly supported
by extended arithmetic logic unit operations, and can be
disabled by specifying the same register destination for
barrel rotator 235 result as for arithmetic logic unit 230
result. In this case only the result of arithmetic logic unit 230
appearing on arithmetic logic unit destination bus 204 is
saved.

0236 Although the above description refers to barrel
rotator 235, those skilled in the art would realize that
substantial utility can be achieved using a shifter which does
not wrap around data. Particularly for shift and mask opera
tions where not all of the bits to the B-port of arithmetic
logic unit 230 are used, a shifter controlled by rotate bus 244
provides the needed functionality. In this event an additional
bit. Such as the most significant bit on the rotate bus 244.

22
Mar. 27, 2008

preferably indicates whether to form a right shift or a left
shift. Five bits on rotate bus 244 are still required to
designate the magnitude of the shift. Therefore it should be
understood in the description below that a shifter may be
substituted for barrel rotator 235 in many instances.
0237 Input C bus 243 supplies data to the C-port of
arithmetic logic unit 230. Multiplexer Cmux 233 supplies
data to input C bus 243. Multiplexer Cmux 233 receives data
from four sources. These are LMO/RMO/LMBC/RMBC
circuit 237, expand circuit 238, multiplier second input bus
202 and mask generator 239.
0238 LMO/RMO/LMBC/RMBC circuit 237 is a dedi
cated hardware circuit that determines either the left most
“1”, the right most “1”, the left most bit change or the right
most bit change of the data on arithmetic logic unit second
input bus 206 depending on the instruction or the “FMOD'
field of data register D0. LMO/RMO/LMBC/RMBC circuit
237 supplies to multiplexer CmuX 233 a 32 bit number
having a value corresponding to the detected quantity. The
left most bit change is defined as the position of the left most
bit that is different from the sign bit 32. The right most bit
change is defined as the position of the right most bit that is
different from bit 0. The resultant is a binary number
corresponding to the detected bit position as listed below in
Table 16. The values are effectively the big endian bit
number of the detected bit position, where the result is

TABLE 16

bit
position result

O 31
1 30
2 29
3 28
4 27
5 26
6 25
7 24
8 23
9 22
10 21
11 2O
12 19
13 18
14 17
15 16
16 15
17 14
18 13
19 12
2O 11
21 10
22 9
23 8
24 7
25 6
26 5
27 4
28 3
29 2
30 1
31 O

This determination is useful for normalization and for image
compression to find a left most or right most “1” or changed
bit as an edge of an image. The LMO/RMO/LMBC/RMBC
circuit 237 is a potential speed path, therefore the source
coupled to arithmetic logic unit second input bus 206 is

US 2008/0077771 A1

preferably limited to one of the data registers 200. For the
left most “1” and the right most “1” operations, the “V” bit
indicating overflow of status register 210 is set to “1” if there
were no “1s' in the source, and “O'” if there were. For the
left most bit change and the right most bit change operations,
the “V” bit is set to “1” if all bits in the source were equal,
and “0” if a change was detected. If the “V” bit is set to “1”
by any of these operations, the LMO/RMO/LMBC/RMBC
result is effectively 32. Further details regarding the opera
tion of status register 210 appear above.

0239 Expand circuit 238 receives inputs from multiple
flags register 211 and status register 210. Based upon the
“Msize field of status register 210 described above, expand
circuit 238 duplicates some of the least significant bits stored
in multiple flags register 211 to fill 32 bits. Expand circuit
238 may expand the least significant bit 32 times, expand the
two least significant bits 16 times or expand the four least
significant bits 8 times. The “Asize’ field of status register
210 controls processes in which the 32 bit arithmetic logic
unit 230 is split into independent sections for independent
data operations. This is useful for operation on pixels sizes
less than the 32 bit width of arithmetic logic unit 230. This
process, as well as examples of its use, will be further
described below.

0240 Mask generator 239 generates 32 bit masks that
may be supplied to the input C bus 243 via multiplexer
Cmux 233. The mask generated depends on a 5 bit input
from multiplexer Mmux 234. Multiplexer Mmux 234 selects
either the 5 least significant bits of multiplier second input
bus 202, or the “DBR' field from data register D0. In the
preferred embodiment, an input of value N causes mask
generator 239 to generate a mask generated that has N “1s'
in the least significant bits, and 32-N "0’s” in the most
significant bits. This forms an output having N right justified
“1s'. This is only one of four possible methods of operation
of mask generator 239. In a second embodiment, mask
generator 239 generates the mask having N right justified
“O’s', that is N “O’s” in the least significant bits and
N-32"1s' in the most significant bits. It is equally feasible
for mask generator 239 to generate the mask having N left
justified “1’s” or N left justified “O’s”. Table 17 illustrates
the operation of mask generator 239 in accordance with the
preferred embodiment when multiple arithmetic is not
selected.

TABLE 17

Mask
Generator
Inpu Mask - Nonmultiple Operation

O O O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
O O O O 1 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO1
O O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO11
O O O 1 OOOOOOOOOOOOOOOOOOOOOOOOOOOOO111
O O 1 O O OOOOOOOOOOOOOOOOOOOOOOOOOOOO 1111
O O 1 O 1 OOOOOOOOOOOOOOOOOOOOOOOOOOO1 1111
O O 1 O OOOOOOOOOOOOOOOOOOOOOOOOOO11 1111
O O 1 1 OOOOOOOOOOOOOOOOOOOOOOOOO1111111
O 1 O O O OOOOOOOOOOOOOOOOOOOOOOOO 11111111
O 1 O O 1 OOOOOOOOOOOOOOOOOOOOOOO1 11111111
O 1 O O OOOOOOOOOOOOOOOOOOOOOO11 11111111
O 1 O 1 OOOOOOOOOOOOOOOOOOOOO11111111111
O 1 1 O O OOOOOOOOOOOOOOOOOOOO 111111111111
O 1 1 0 1 OOOOOOOOOOOOOOOOOOO1 111111111111
O 1 1 O OOOOOOOOOOOOOOOOOO11 111111111111

Mar. 27, 2008

TABLE 17-continued

Mask
Generator

Input Mask - Nonmultiple Operation

O 1 1 OOOOOOOOOOOOOOOOO
O O O O OOOOOOOOOOOOOOOO
O O O OOOOOOOOOOOOOOO1
O O O OOOOOOOOOOOOOO11
O O OOOOOOOOOOOOO111
O 1 O O OOOOOOOOOOOO 1111
O 1 O OOOOOOOOOOO1 1111
O 1 O OOOOOOOOOO11 1111
O 1 OOOOOOOOO111 1111
1 O O O OOOOOOOO 1111 1111
1 O O OOOOOOO1 1111 1111
1 O O OOOOOO11 11111111
1 O OOOOO111 11111111
1 1 0 O OOOO 1111 11111111
1 1 O OOO1 1111 11111111
1 1 O OO11 1111 11111111
1 1 O111111111111111

A value N of “0” thus generates 320's. In some situations
however it is preferable that a value of “0” generates 32
“1s”. This function is selected by the “%!” modification
specified in the “FMOD field of status register 210 or in bits
52, 54, 56 and 58 of the instruction when executing an
extended arithmetic logic unit operation. This function can
be implemented by changing the mask generated by mask
generator 239 or by modifying the function of arithmetic
logic unit 230 so that mask of all "0’s” supplied to the C-port
operates as if all “1s' were supplied. Note that similar
modifications of the other feasible mask functions are pos
sible. Thus the “% modification can change a mask
generator 239 which generates a mask having N right
justified “O’s” to all “0’s” for N=0. Similarly, the “%!”
modification can change a mask generator 239 which gen
erates N left justified “1s' to all “1’s” for N=0, or change
a mask generator 239 which generates N left justified “O’s”
to all “O’s’ for N=0.

0241 Selection of multiple arithmetic modifies the
operation of mask generator 239. When the “Asize’ field of
status register is “110, this selects a data size of 32 bits and
the operation of mask generator 239 is unchanged from that
shown in Table 17. When the “Asize’ field of status register
is “101, this selects a data size of 16 bits and mask
generator 239 forms two independent 16 bit masks. This is
shown in Table 18. Note that in this case the most significant
bit of the input to mask generator 239 is ignored. Table 18
shows this bit as a don't care 'X'.

TABLE 1.8

Mask
Generator

Input Mask - Half Word Operation

X O O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
X O O O 1 OOOOOOOOOOOOOOO1 OOOOOOOOOOOOOOO1
X O O 1 O OOOOOOOOOOOOOO11 OOOOOOOOOOOOOO11
X O O 1 1 OOOOOOOOOOOOO111 OOOOOOOOOOOOO111
X 0 1 O O OOOOOOOOOOOO 1111 OOOOOOOOOOOO 1111
X 0 1 O 1 OOOOOOOOOOO1 1111 OOOOOOOOOOO1 1111
X 0 1 1 O OOOOOOOOOO11 1111 OOOOOOOOOO11 1111
X 0 1 1 1 OOOOOOOOO111 1111 OOOOOOOOO111 1111
X 1 O O O OOOOOOOO 1111 1111 OOOOOOOO 1111 1111

US 2008/0077771 A1

TABLE 18-continued

Mask
Generator

Input Mask - Half Word Operation

X 1 O O 1 OOOOOOO1 1111 1111 OOOOOOO1 1111 1111
X 1 O 1 O OOOOOO11 1111 1111 OOOOOO11 1111 1111
X 1 O 1 1 OOOOO111 1111 1111 OOOOO11111111111
X 1 1 O O OOOO 111111111111 OOOO 1111 11111111
X 1 1 O 1 OOO1 111111111111 OOO1 1111 11111111
X 1 1 1 O OO11 1111 11111111 OO11 1111 11111111
X 1 1 1 1 O1111111 11111111 O111 111111111111

0242. The function of mask generator 239 is similarly
modified for a selection of byte data via an “Asize’ field of
“100'. Mask generator 239 forms four independent masks
using only the three least significant bits of its input. This is
shown in Table 19.

TABLE 19

Mask
Generator

Input Mask - Byte Operation

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOO1 OOOOOOO1 OOOOOOO1 OOOOOOO1
OOOOOO11 OOOOOO11 OOOOOO11 OOOOOO11
OOOOO111 OOOOO111 OOOOO111 OOOOO111
OOOO 1111 OOOO 1111 OOOO 1111 OOOO 1111
OOO1 1111 OOO1 1111 OOO1 1111 OOO1 1111
OO11 1111 OO11 1111 OO11 1111 OO11 1111
O1111111 O1111111 O1111111 O1111111

As noted above, it is feasible to support multiple operations
of 8 sections of 4 bits each, 16 sections of 2 bits each and
32 single bit sections. Those skilled in the art would realize
that these other data sizes require similar modification to the
operation of mask generator 239 as shown above in Tables
17, 18, and 19.

0243 Data unit 110 includes a three input arithmetic
logic unit 230. Arithmetic logic unit 230 includes three input
inputs: input AbuS 241 Supplies an input to an A-port; input
B bus 242 supplies an input to a B-port; and input C bus 243
supplies an input to a C-port. Arithmetic logic unit 230
Supplies a resultant to arithmetic logic unit destination bus
204. This resultant may be stored in one of the data registers
of data registers 200. Alternatively the resultant may be
stored in another register within digital image/graphics
processor 71 via buffer 108 and global port destination data
bus Gdst 107. This function is called a long distance
operation. The instruction specifies the destination of the
resultant. Function signals Supplied to arithmetic logic unit
230 from function signal generator 245 determine the par
ticular three input function executed by arithmetic logic unit
230 for a particular cycle. Bit 0 carry-in generator 246 forms
a carry-in signal supplied to bit 0, the first bit of arithmetic
logic unit 230. As previously described, during multiple
arithmetic operations bit 0 carry-in generator 246 Supplies
the carry-in signal to the least significant bit of each of the
multiple sections.

0244 FIG. 19 illustrates in block diagram form the
construction of an exemplary bit circuit 400 of arithmetic
logic unit 230. Arithmetic logic unit 230 preferably operates

24
Mar. 27, 2008

on data words of 32 bits and thus consists of 32 bit circuits
400 in parallel. Each bit circuit 400 of arithmetic logic unit
230 receives: the corresponding bits of the three inputs A,
B, and C.; a Zero carry-in signal designated co from the
previous bit circuit 400; a one carry-in signal designated c
from the previous bit circuit 400; an arithmetic enable signal
A; an inverse kill signal K from the previous bit circuit;
a carry sense select signal for selection of carry-in signal co
or c, and eight inverse function signals F7-F0. The
carry-in signals co and c; for the first bit (bit 0) are
identical and are generated by a special circuit that will be
described below. Note that the input signals A, B, and Care
formed for each bit of arithmetic logic unit 230 and may
differ. The arithmetic enable signal A and the inverted
function signals F7-F0 are the same for each of the 32 bit
circuits 400. Each bit circuit 400 of arithmetic logic unit 230
generates: a corresponding one bit resultant S; an early Zero
signal Z, a Zero carry-out signal designated co that forms
the Zero carry-in signal co for the next bit circuit; a one
carry-out signal designated c. that forms the one carry-in
signal c, for the next bit circuit; and an inverse kill signal
K that forms the inverse kill signal K for the next bit
circuit. A selected one of the Zero carry-out signal coor the
one carry-out signal c of the last bit in the 32 bit
arithmetic logic unit 230 is stored in status register 210,
unless the “C” bit is protected from change for that instruc
tion. In addition during multiple arithmetic the instruction
may specify that carry-out signals from separate arithmetic
logic unit sections be stored in multiple flags register 211. In
this event the selected Zero carry-out signal coor the one
carry-out signal c, will be stored in multiple flags register
211.

0245 Bit circuit 400 includes resultant generator 401,
carry out logic 402 and Boolean function generator 403.
Boolean function generator 403 forms a Boolean combina
tion of the respective bits inputs A, B, and C, according to
the inverse function signals F7-F0. Boolean function gen
erator produces a corresponding propagate signal P, a
generate signal G, and a kill signal K. Resultant logic 401
combines the propagate signal P, with one of the carry-in
signal co or carry-in signal c, as selected by the carry
sense select signal from a prior bit circuit 400 and forms the
bit resultant S; and an early Zero signal Z. Carry out logic
402 receives the propagate signal P, the generate signal G.
the kill signal Ki, the two carry-in signals co and c, and
an arithmetic enable signal A. Carry out logic 402 pro
duces two carry-out signals co and cut that are Supplied
to the next bit circuit 400.

cut

0246 FIGS. 20 and 21 together illustrate an exemplary
bit circuit 400 of arithmetic logic unit 230. FIG. 20 illus
trates the details of a resultant logic 401 and carry out logic
402 of each bit circuit 400 of arithmetic logic unit 230. FIG.
21 illustrates the details of the corresponding Boolean
function generator 403 of each bit circuit 400 of arithmetic
logic unit 230.
0247 Each resultant logic 401 generates a corresponding
resultant signal S, and an early Zero signal Z. Resultant logic
420 forms these signals from the two carry-in signals, an
inverse propagate signal P, an inverse kill signal K from
the previous bit circuit and a carry sense select signal. The
carry out logic 402 forms two carry-out signals and an
inverse kill signal K. These signals are formed from the two
carry-in signals, an inverse propagate signal P, an inverse

US 2008/0077771 A1

generate signal G, and a kill signal K, for that bit circuit 400.
Each propagate signal indicates whether a “1” carry-in
signal propagates through the bit circuit 400 to the next bit
circuit 400 or is absorbed. The generate signal indicates
whether the inputs to the bit circuit 400 generate a “1”
carry-out signal to the next bit circuit 400. The kill signal
indicates whether the input to the bit circuit 400 generate a
“0” carry-out signal to the next bit circuit. Note that the
propagate signal P, the generate signal G, and the kill signal
Ki are mutually exclusive. Only one of these signals is
generated for each combination of inputs.
0248. Each bit circuit 400 of arithmetic logic unit 230
employs a technique to reduce the carry ripple time through
the 32 bits. Arithmetic logic unit 230 is divided into carry
sections, preferably 4 sections of 8 bits each. The least
significant bit circuit 400 of each such section has its zero
carry-in signal co hardwired to “0” and its one carry-in
signal chardwired to “1”. Each bit circuit 400 forms two
resultants and two carry-out signals to the next bit circuit.
Once the carry ripple through each section is complete, the
actual carry output from the most significant bit of the
previous carry section forms the carry sense select signal.
This carry select signal permits selection of the actual
resultant generated by the bits of a section via a multiplexer.
The first carry section receives its carry select signal from bit
0 carry-in generator 246 described in detail below. This
technique permits the carry ripple through the carry sections
to take place simultaneously. This reduces the length of time
required to generate the resultant at the cost of some
additional hardware for the redundant carry lines and the
carry sense selection.
0249 Carry out logic 402 controls transformation of the
carry-in signals into the carry-out signals. Carry out logic
402 includes identical circuit operating on the two carry-in
signals cino and c.1. The inverse propagate signal P, and its
inverse, the propagate signal P. formed by invertor 412,
control pass gates 413 and 423. If the propagate signal P is
“1”, then one carry-in line 410 is connected to one carry-out
line 411 via pass gate 413 and Zero carry-in line 420 is
connected to Zero carry-out line 421 via pass gate 423. Thus
the carry-in signal is propagated to the carry-out. If the
propagate signal P, is “0”, then one carry-in line 410 is
isolated from one carry-out line 411 and Zero carry-in line
420 is isolated from carry-out line 421. If the generate signal
G is “1, that is if the inverse generate signal G, is “0”, then
P-channel MOSFET (metal oxide semiconductor field effect
transistor) 414 is turned on to couple the Supply Voltage to
carry-out line 411 and P-channel MOSFET 424 is turned on
to couple the supply voltage to carry-out line 421. If the
generate signal G, is “0”, that is if the inverse generate signal
G, is “1”, then the P-channel MOSFETs 414 and 424 are cut
off and do not affect the carry-out lines 411 and 421. If the
kill signal K, is “1”, then N-channel MOSFET 415 couples
ground to carry-out line 411 and N-channel MOSFET 425
couples ground to carry-out line 421. If the kill signal K is
“0”, then the N-channel MOSFETs 415 and 425 are cut off
and do not affect the carry-out lines 411 and 421. Invertor
422 generates the inverse kill signal K. Supplied to the next
bit circuit.

0250) Exclusive OR circuits 431 and 433 form the two
resultants of resultant logic 401. Exclusive OR circuits 431
and 433 each receive the propagate signal P. from invertor
427 on an inverting input and the inverse propagate signal P.

Mar. 27, 2008

from invertor 428 on a noninverting input. Exclusive OR
circuit 431 receives the inverse Zero carry-in signal co from
invertor 426 on a noninverting input and forms the resultant
for the case of a “0” carry-in to the least significant bit of the
current carry section. Likewise, exclusive OR circuit 433
receives the inverse one carry-in signal c, from invertor
416 on a noninverting input and forms the resultant for the
case of a “1” carry-in to the least significant bit of the current
carry section. Invertors 432 and 434 supply inputs to mul
tiplexer 435. Multiplexer 435 selects one of these signals
based upon the carry sense select signal. This carry sense
select signal corresponds to the actual carry-out signal from
the most significant bit of the previous carry section. The
inverted output of multiplexer 435 from invertor 436 is the
desired bit resultant S.

0251 Resultant logic 401 also forms an early zero signal
Z, for that bit circuit. This early Zero signal Z, gives an early
indication that the resultant S of that bit circuit 400 is going
to be “0”. Exclusive OR circuit 437 receives the propagate
signal P. from invertor 427 on an inverting input and the
inverse propagate signal P. from invertor 428 on a nonin
verting input. Exclusive OR circuit 437 also receives the
inverse kill signal K from the previous bit circuit 400 on
a noninverting input. Exclusive OR circuit 437 forms early
Zero signal Z, for the case in which the previous bit kill
signal K-1 generates a “0” carry-out signal and the propagate
signal P, is also “0”. Note that if K is “0”, then both the
Zero carry-out signal co and the one carry-out signal cut
are “0” whatever the state of the carry-in signals co and
c. Note that this early zero signal Z, is available before the
carry can ripple through the carry section. This early Zero
signal Z, may thus speed the determination of a Zero output
from arithmetic logic unit 230.

0252 Boolean function generator 403 of each bit circuit
400 of arithmetic logic unit 230 illustrated in FIG. 21
generates the propagate signal P, the generate signal G, and
the kill signal K, for bit circuit 400. Boolean function
generator 403 consists of four levels. The first level includes
pass gates 451, 452, 453, 454, 455, 456, 457 and 458. Pass
gates 451, 453,455 and 457 are controlled in a first sense by
input C, and inverse input C. from invertor 459. Pass gates
452, 454, 456 and 458 are controlled in an opposite sense by
input C. and inverse input C. Depending on the state of input
C, either pass gates 451, 453, 455 and 457 are conductive
or pass gates 452, 454, 456 and 458 are conductive. The
second level includes pass gates 461, 462, 463 and 464. Pass
gates 461 and 463 are controlled in a first sense by input B,
and inverse input B, from invertor 465. Pass gates 462 and
464 are controlled in the opposite sense. Depending on the
state of input B, either pass gates 461 and 463 are conduc
tive or pass gates 462 and 464 are conductive. The third level
includes pass gates 471, 472 and 473. Pass gates 471 is
controlled in a first sense by input A and inverse input A
from invertor 473. Pass gates 472 and 473 are controlled in
the opposite sense. Depending on the State of input A, either
pass gates 471 is conductive or pass gates 472 and 473 are
conductive. The first level includes invertors 441, 442, 443,
444, 445, 446, 447 and 448 that are coupled to correspond
ing inverted function signals F7-F0. Invertors 441, 442, 443,
444, 445, 446, 447 and 448 provide input drive to Boolean
function generator 403 and determine the logic function
performed by arithmetic logic unit 230.

US 2008/0077771 A1

0253 Boolean function generator 403 forms the propa
gate signal P. based upon the corresponding input signals A.
B, and C, and the function selected by the state of the
inverted function signals F7-F0. The propagate signal P, at
the input to invertor 476 is “1” if any path through pass gates
451, 452, 453, 454, 455, 456,457, 458, 461, 462, 463,464,
471 or 472 couples a “1” from one of the invertors 441, 442,
443, 444, 445, 446, 447 or 448. In all other cases this
propagate signal P, is “0”. Invertor 476 forms the inverse
propagate signal P, which is connected to resultant logic
401 illustrated in FIG. 20.

0254 Each pass gate 451, 452, 453, 454, 455, 456, 457,
458, 461, 462, 463,464, 471, 472 and 473 consists of an
N-channel MOSFET and a P-channel MOSFET disposed in
parallel. The gate of the N-channel MOSFET receives a
control signal. This field effect transistor is conductive if its
gate input is above the Switching threshold Voltage. The gate
of the P-channel MOSFET is driven by the inverse of the
control signal via one of the invertors 459, 465 or 474. This
field effect transistor is conductive if its gate input is below
a switching threshold. Because the P-channel MOSFET
operates in inverse to the operation of N-channel MOSFET,
the corresponding invertor 459, 467 or 474 assures that these
two field effect transistors are either both conducting or both
non-conducting. The parallel N-channel and P-channel field
effect transistors insure conduction when desired whatever
the polarity of the controlled input.
0255 Tri-state AND circuit 480 forms the generate signal
G, and the kill signal K. The generate signal G, the kill
signal K and the propagate signal P are mutually exclusive
in the preferred embodiment. Therefore the propagate signal
P, controls the output of tri-state AND circuit 480. If the
propagate signal P, is “1”, then tri-state AND circuit 480 is
disabled and both the generate signal G, and the kill signal
K. are “0”. Thus neither the generate signal G, nor the kill
signal K change the either carry signal. Pass gate 473
couples the output from part of Boolean function generator
403 to one input of tri-state AND circuit 480. The gate inputs
of pass gate 473 are coupled to the first input bit A in the first
sense. An N-channel MOSFET 475 conditionally couples
this input of tri-state AND circuit 480 to ground. The inverse
of the first input bit A supplies the gate input to N-channel
MOSFET 475. Pass gate 473 and N-channel MOSFET 475
are coupled in a wired OR relationship, however no OR
operation takes place because their gate inputs cause them to
be conductive alternately. N-channel MOSFET 475 serves to
force a “0” input into tri-state AND circuit 480 when A="0.
An arithmetic enable signal Supplies the second input to
tri-state AND circuit 480.

0256 The tri-state AND gate 480 operates as follows. If
the propagate signal P, is “1”, then both P-channel MOSFET
481 and N-channel MOSFET 482 are conductive and pass
gate 483 is non-conductive. This cuts off P-channel MOS
FETs 414 and 424 and N-channel MOSFETs 415 and 425 so
that none of these field effect transistor conducts. The output
of tri-state AND circuit 480 thus is a high impedance state
that does not change the signal on the carry-out lines 411 and
421. If the propagate signal P, is “0”, then both P-channel
MOSFET 481 and N-channel MOSFET 482 are non-con
ductive and pass gate 483 is conductive. The circuit then
forms a logical AND of the two inputs. If either arithmetic
enable or the signal at the junction of N-channel MOSFET
475 and pass gate 473 is “0” or both are “0”, then at least one

26
Mar. 27, 2008

of P-channel MOSFET 484 or P-channel MOSFET 485
connects the Supply Voltage V+ (a logic “1”) as the inverse
generate signal G. to the gates of P-channel MOSFETs 414
and 424 of carry out logic 402. Thus P-channel MOSFETs
414 and 424 are non-conductive. At the same time pass gate
483 is conductive and supplies this “1” signal as kill signal
K, to the gates of N-channel MOSFETs 415 and 425 of carry
out logic 402. This actively pulls down the signal on Zero
carry-out line 421 forcing the Zero carry-out signal co to
“0” and one carry-out line 411 forcing the one carry-out
signal c, to “0”. If both the inputs are “1”, then the series
combination of N-channel MOSFET 486 and N-channel
MOSFET 487 supplies ground (a logic “0”) to the gates of
N-channel MOSFETs 415 and 425. N-channel MOSFETs
415 and 425 of carry out logic 402 are cut off and non
conductive. At the same time pass gate 483 couples this “O'”
to the gates of P-channel MOSFETs 414 and 424. Thus
P-channel MOSFETs 414 and 424 of carry out logic 402 are
conductive. This actively pulls up the signal on Zero carry
out line 421 forcing the Zero carry-out signal co to “1” and
one carry-out line 411 forcing the one carry-out signal c
to “1.

outl

0257) The bit circuit construction illustrated in FIGS. 20
and 21 forms a propagate term, a generate term, a resultant
term and two carry-out terms. Bit circuit 400 forms the
propagate term P. as follows:

Bit circuit 400 forms the generate term G, as follows:

Bit circuit 400 forms the kill terms K, as follows:
K=-G&P,

Bit circuit 400 forms the resultant term S, as follows:
S=P, (co&CSSc;1&-CSS)

where: CSS is the carry sense select signal. Bit circuit 400
forms the two carry-out signals co and c, as follows:

Note that for any particular bit i the propagate signal P, the
generate signal G, and the kill signal Ki are mutually exclu
sive. No two of these signals occurs simultaneously.

0258. The construction of each bit circuit 400 enables
arithmetic logic unit 230 to perform any one of 256 possible
3 input Boolean functions or any one of 256 possible 3 input
mixed Boolean and arithmetic functions depending upon the
inverted function signals F7-F0. The nine inputs including
the arithmetic enable signal and the inverted function signals

US 2008/0077771 A1

F7-F0 permit the selection of 512 functions. As will be
further described below the data paths of data unit 110
enable advantageous use of three input arithmetic logic unit
230 to speed operations in many ways.

0259 Table 20 lists the simple Boolean logic functions of
bit circuit 400 in response to single function signals F7-F0.
Since these are Boolean logic functions and the arithmetic
enable signal is “0”, both the generate and kill functions are
disabled. Note that for Boolean extended arithmetic logic
unit operations it is possible to specify the carry-in signals
co, and c, from bit 0 carry-in generator 246 as previously
described, thus permitting a carry ripple.

TABLE 20

8-bit ALU Function Logical
code field Signal Operation

58 F7 A & B & C
57 F6 -A & B & C
56 F5 A & B & C
55 F4 -A & B & C
S4 F3 A & B & C
53 F2 -A & B & C
52 F1 A & B & C
51 FO -A & B & C

These functions can be confirmed by inspecting FIGS. 20
and 21. For the example of F7='1' and F6-F0 all equal to
“0”, invertors 441, 442, 443, 444, 446, 447 and 448 each
output a “0”. Only invertor 445 produces a “1” output. The
propagate signal is “1” only if C='1' turning on pass gate
455, B="1 turning on pass gate 463 and A="1 turning on
pass gate 472. All other combinations result in a propagate
signal of “0”. Since this is a logical operation, both the Zero
carry-in signal co and the one carry-in signal c, are '0'.
Thus S=“1” because both exclusive OR circuits 431 and 433
return the propagate signal. The other entries on Table 20
may be similarly confirmed.

0260 A total of 256 Boolean logic functions of the three
inputs A, B and C are enabled by proper selection of function
signals F7-F0. Note that the state table of three inputs
includes 8 places, thus there are 2°=256 possible Boolean
logic functions of three inputs. Two input functions are
Subset functions achieved by selection of function signals
F7-F0 in pairs. Suppose that a Boolean function of B and C,

8-bit ALU

27

code field

57 55 53 51

O O O

O O O
O O 1
O O 1
O 1 O

O 1 O
O 1 1

Mar. 27, 2008

without relation to input A, is desired. Selection of F7=F6,
F5=F4, F3=F2 and F1=F0 assures independence from input
A. Note that the branches of Boolean function generator 403
connected to pass gates 471 and 472 are identically driven.
This ensures that the result is the same whether A="1" or
A="0. Such a selection still provides 4 controllable func
tion pairs permitting specification of all 16 Boolean logic
functions of inputs B and C. Note that the state table of two
inputs includes four places, thus there are 2'-16 possible
Boolean logic functions of three inputs. Similarly, selection
of F7=F5, F6=F4, F3=F1 and F2=F0 ensures independence
from input B and provides 4 controllable function pairs for
specification of 16 Boolean logic functions of inputs A and
C. Selection of F7=F3, F6=F2, F5=F1 and F4=F0 permits
selection via 4 controllable function pairs of 16 Boolean
logic functions of inputs A and B independent of input C.

0261) The instruction word determines the function per
formed by arithmetic logic unit 230 and whether this opera
tion is arithmetic or Boolean logic. As noted in Table 20, the
instruction word includes a field coded with the function
signals for Boolean logic operations. This field, the “8 bit
arithmetic logic unit field (bits 58-51) of the instruction
word, is directly coded with the function signals when the
instruction specifies a Boolean logic operation for arithmetic
logic unit 230.

0262 The “8 bit arithmetic logic unit” field is differently
coded when the instruction specifies arithmetic operations.
Study of the feasible arithmetic functions indicates that a
subset of these arithmetic functions specify the most often
used operations. If the set of function signals F7-F0 is
expressed as a two place hexadecimal number, then these
most often used functions are usually formed with only the
digits a, 9, 6 and 5. In these sets of function signals F7=-F6,
F5=-F4, F3=-F2 and F1=-F0. Bits 57, 55, 53 and 51
specify fifteen operations, with an “8 bit arithmetic logic
unit field of all Zeros reserved for the special case of
non-arithmetic logic unit operations. Non-arithmetic logic
unit operations will be described below. When executing an
arithmetic operation function signal F6=bit 57, function
signal F4=bit 55, function signal F4=bit 53 and function
signal F2=bit 51. The other function signals are set by
F7=F6, F5=F4, F3=F2 and F1=F0. These operations and
their corresponding function signals are shown in Table 21.
Table 21 also shows the modifications to the default coding.

TABLE 21

Derived
Function Signal

FO Hex Description of operation

1 O 1 O 1 O 1 O AA reserved for non-arithmetic
logic unit operations
A - B shift left “1” extend
A + B shift left “O'” extend
A - C
A - B shift right “1” extend
if sign = 0 flips to 95
A - B shift right sign

A9
A6
AS

1
1
1
1 9A

1
1
1
O

extend
1 O O 1 1 O O 1 99 A - B
1 O O 1 O 1 1 O 96 A+ B/A - B depending on C

if -(a)MF flips to 99 A - B
if sign = 1 A + B

US 2008/0077771 A1
28

TABLE 21-continued

8-bit ALU Derived
code field Function Signal

Mar. 27, 2008

57 55 53 51 F7 F6 F5 F4 F3 F2 F1 FO Hex Description of operation

1 1 1 1 O O 1 O 1 O 1 95 A - B shift rig
6A A+ B shift rig 1

O O 1 O 1 1 0 1 0 O 1 69 A - BA + B

hit “O'” extend
hit “O'” extend

if ~(a)MF flips to 66 A+ B
if sign = 1 A

O 1 O O 1 1 O O 1 1 O 66 A+ B
O 1 1 0 1 1 O O 1 O 1 65 A+ B shift right “1” extend

if sign = 0 flips to 6A
A + B shift right sign
extend

1 1 O O O 1 O 1 1 0 1 O SA A - C
1 1 0 1 0 1 0 1 1 O O 1 59 A - B shift le
1 1 1 O O 1 O 1 O 1 1 O 56 A+ B shift le
1 1 1 1 0 1 1 0 O O O O

Several codings of instruction word bits 57, 55, 53 and 51
are executed in modified form as shown in Table 21. Note
that the functions that list left or right shifts are employed in
conjunction with barrel rotator 235 and mask generator 238.
These operations will be explained in detail below. The
“sign” referred to in this description is bit 31 of arithmetic
logic unit second input bus 206, the bus driving barrel
rotator 235. This is the sign bit of a signed number. A “0” in
this sign bit indicates a positive number and a “1” in this sign
bit indicates a negative (two’s complement) number. A bit
57, 55,53 and 51 state of "0100 results in a normal function
of A-B with shift right “1” extend. If bit 31 of arithmetic
logic unit second input bus 206 is “0”, then the operation
changes to A-B with shift right sign extend. A bit 57, 55, 53
and 51 state of "0110' results in a normal function of A-B
or A+B depending on the bit wise state of C. If the
instruction does not specify a multiple flags register mask
operation ((a)MF) then the operation changes to A-B. If bit
31 of arithmetic logic unit second input bus 206 is “1”, then
the operation changes to A+B (A plus the absolute value of
B). A bit 57, 55,53 and 51 state of “1011” results in a normal
function of A+B or A-B depending on the bit wise state of
C. If the instruction does not specify a multiple flags register
mask operation (-(a)MF) then the operation changes to A+B.
If bit 31 of arithmetic logic unit second input bus 206 is “1”.
then the operation changes to A-B (A minus the absolute
value of B). A bit 57, 55, 53 and 51 state of “1001 results
in a normal function of A+B with shift right “1” extend. If
bit 31 of arithmetic logic unit second input bus 206 is “0”.
then the operation changes to A+B with shift right sign
extend.

0263 Two codes are modified to provide more useful
functions. A bit 57, 55, 53 and 51 state of "0000 results in
a normal function of ~A (not A), which is reserved to Support
non-arithmetic logic unit operations as described below. A
bit 57, 55, 53 and 51 state of “1111 results in a normal
function of A. This is modified to (A&C)+(B&C) or a field
add of A and B controlled by the state of C.
0264. The base set of operations listed in Table 21 may be
specified in arithmetic instructions. Note that instruction
word bits 58, 56, 54 and 52 control modifications of these
basic operations as set forth in Table 6. These modifications
were explained above in conjunction with Table 6 and the

“O'” extend
“1” extend

60 (A&C) + (B&C), field A+ B

description of status register 210. As further described below
certain instructions specify extended arithmetic logic unit
operations. It is still possible to specify each of the 256
arithmetic operations via an extended arithmetic logic unit
(EALU) operation. For these instructions the “A” (bit 27) of
data register D0 specifies either an arithmetic or Boolean
logic operation, the “EALU field (bits 26-19) specifies the
function signals F7-F0 and the “FMOD field (bits 31-28)
specifies modifications of the basic function. Also note that
the “C”, “I”, “S”, “N” and “E” fields of data register D0
permit control of the carry-in to bit 0 of arithmetic logic unit
230 and to the least significant bit of each section if multiple
arithmetic is enabled. There are four forms of extended
arithmetic logic unit operations. Two of these specify par
allel multiply operations using multiplier 220. In an
extended arithmetic logic unit true (EALUT) operation, the
function signals F7-F0 equal the corresponding bits of the
“EALU field of data register D0. In an extended arithmetic
logic unit false (EALUF) operation, the individual bits of the
“EALU” field of data register D0 are inverted to form the
function signals F7-F0. The extended arithmetic logic unit
false operation is useful because during some algorithms the
inverted functions signals perform a useful related opera
tion. Inverting all the function signals typically specifies an
inverse function. Thus this related operation may be
accessed via another instruction without reloading data
register 208. In the other extended arithmetic logic unit
operations the function signals F7-F0 equal the correspond
ing bits of the “EALU field of data register D0, but differing
data paths to arithmetic logic unit 230 are enabled. These
options will be explained below.
0265 Data unit 110 operation is responsive to instruction
words fetched by program flow control unit 130. Instruction
decode logic 250 receives data corresponding to the instruc
tion in the execute pipeline stage via opcode bus 133.
Instruction decode logic 250 generates control signals for
operation of multiplexers Fmux 221, Imux 222, MSmux
225, Bmux 227, Amux 232. Cmux 233, Mmux 234 and
Smux 231 according to the received instruction word.
Instruction decode logic 250 also controls operation of
buffers 104, 106, 108,223 and 236 according to the received
instruction word. Control lines for these functions are omit
ted for the sake of clarity. The particular controlled functions

US 2008/0077771 A1

of the multiplexers and buffers will be described below on
description of the instruction word formats in conjunction
with FIG. 42. Instruction decode logic 250 also supplies
partially decoded signals to function signal generator 245
and bit 0 carry-in generator 246 for control of arithmetic
logic unit 230. Particular hardware for this partial decoding
is not shown, however, one skilled in the art would be able
to provide these functions from the description of the
instruction word formats in conjunction with FIG. 42.
Instruction decode logic 250 further controls the optional
multiple section operation of arithmetic logic unit 230 by
control of multiplexers 311, 312, 313 and 314, previously
described in conjunction with FIG. 7.
0266 FIG. 22 illustrates details of the function signal
selector 245a. Function signal selector 245a forms a part of
function signal generator 245 illustrated in FIG. 5. For a full
picture of function signal generation, FIG. 22 should be
considered with the function signal modifier 245b illustrated
in FIG. 23. Multiplexers are shown by rectangles having an
arrow representing the flow of bits from inputs to outputs.
Inputs are designated with lower case letters. Control lines
are labeled with corresponding upper case letters drawn
entering the multiplexer rectangle perpendicular to the
arrow. When a control line designated with a particular
upper case letter is active, then the input having the corre
sponding lower case letter is selected and connected to the
output of the multiplexer.
0267 Input “a” of multiplexer Omux 500 receives an
input in two parts. Bits 57, 55, 53 and 51 of the instruction
word are connected to bit lines 6, 4, 2 and 0 of input “a”,
respectively. Invertor 501 inverts the respective instruction
word bits and supplies them to bit lines 7.5, 3 and 1 of input
“a”. Input “a” is selected if control line “A” goes active, and
when selected the eight input bit lines are connected to their
eight corresponding numbered output bit lines 7-4 and 3-0.
Control line “A” is fed by AND gate 502. AND gate 503
receives a first input indicating execution of an instruction in
any of the instruction classes 7-0. Instruction word bit 63
indicates this. These instruction classes will be further
described below. AND gate 502 has a second input fed by bit
59 of the instruction word. As will be explained below, a bit
59 equal to “1” indicates an arithmetic operation. NAND
gate 503 supplies a third input to AND gate 502. NAND gate
503 senses when any of the four instruction word bits 57,55,
53 or 51 is low. Control input 'A' is thus active when any
of the instruction classes 7-0 is selected, and arithmetic bit
59 of the instruction word is “1” and instruction word bits
57, 55, 53 and 51 are not all “1”. Recall from Table 21 that
a bit 57,55, 53 and 51 state of “1111 results in the modified
function signals Hex “60 rather than the natural function
signals.
0268 Input “b” to multiplexer Omux 500 is a constant
Hex “60. Multiplexer Omux 500 selects this input if AND
gate 504 makes the control “B” active. AND gate 504 makes
control “B” active if the instruction is within classes 7-0 as
indicate by instruction word bit 63, the instruction word bit
59 is “1” indicating an arithmetic operation, and a bit 57,55,
53 and 51 state of “1111'. As previously described in
conjunction with Table 21, under these conditions the func
tion Hex “60 is substituted for the function signals indi
cated by the instruction.
0269. Input “c” to multiplexer Omux 500 receives all
eight instruction word bits 58-51. Multiplexer Omux 500

29
Mar. 27, 2008

selects this input if AND gate 505 makes control “C” active.
AND gate 505 receives instruction word bit 59 inverted via
invertor 506 and an indication of any of the instruction
classes 7-0. Thus instruction word bits 58-51 are selected to
perform any of the 256 Boolean operations in instruction
classes 7-0.

0270. Instruction words for the operations relevant to
control inputs “D”, “E”, “F”, “G” and “H” have bits 63-61
equal to “011”. If this condition is met, then bits 60-57 define
the type of operation. These operations are further described
below in conjunction with Table 35.
0271 Input “d” to multiplexer Omux 500 is a constant
Hex “66”. This input is selected for instructions that execute
a parallel signed multiply and add (MPYSADD) or a
parallel unsigned multiply and add (MPYUIADD). These
instructions are collectively referred to by the mnemonic
MPYx|ADD.
0272 Input “e” to multiplexer Omux 500 is a constant
Hex '99'. This input is selected for instructions that execute
a parallel signed multiply and subtract (MPYSSUB) or a
parallel unsigned multiply and subtract (MPYUISUB).
These instructions are collectively referred to by the mne
monic MPYx|SUB.
0273) Input “f” to multiplexer Omux 500 is a constant
Hex'A6”. This input is selected for the DIVI operation. The
operation of this DIVI operation, which is employed in
division, will be further described below.
0274) Input “g to multiplexer Omux 500 is supplied
from the “EALU field (bits 26-19) of data register D0
according to an extended arithmetic logic unit function code
from bits 26-19 therein. Control input “G” goes active to
select this “EALU” field from data register D0 if OR gate
507 detects either a MPYx|EALUT operation or and an
EALU operation. As previously described, the T suffix in
EALUT signifies EALU code true in contrast to the inverse
(false) in EALUF. The EALU input is active to control input
“G” when the “EALU” field of data register D0 indicates
either EALU or EALU 96.

0275 Invertor 508 inverts the individual bits of the
“EALU” field of data register D0 for supply to input “h” of
multiplexer Omux 500. Input “h” of multiplexer Omux 500
is selected in response to detection of a MPYXEALUF
operation at control input “H”. As previously described, the
F suffix of EALUF indicates that the individual bits of the
“EALU field of register D0 are inverted for specification of
function signals F7-F0.
0276 Multiplexer AEmux 510, which is also illustrated
in FIG. 22, generates the arithmetic enable signal. This
arithmetic enable signal is Supplied to tri-state AND gate
480 of every bit circuit 400. The “a” input to multiplexer
AEmux 510 is the “A” bit (bit 27) of data register D0. OR
gate 511 receives three inputs: MPYx|EALUT, EALU, and
MPYx|EALUF. If the instruction selects any of these three
operations, then control input 'A' to multiplexer AEmux
selects the “A” bit (bit 27) of data register D0. The “b’ input
to multiplexer AEmux 510 is the “ari” bit (bit 59) of the
instruction word. As will be described below, this “ari' bit
selects arithmetic operations for certain types of instruc
tions. This input is selected if the instruction is any of the
instruction classes 7-0. In this case the “ari' bit signifying an
arithmetic operation (“ari'-'1') or a Boolean operation

US 2008/0077771 A1

“ari’="0") is passed directly to the arithmetic logic unit
230. The 'c' input of multiplexer AEmux 510 is a constant
“1”. The gate 512 selects this input if the instruction is
neither an extended arithmetic logic unit instruction nor
within instruction classes 7-0. Such instructions include the
DIVI operation and the MPYx|ADD and MPYx|SUB
operations. OR gate 513 provides an arithmetic or EALU
signal when the instruction is either an arithmetic operation
as indicated by the output of multiplexer AEmux 510 or an
“any EALU operation as indicated by OR gate 511.

0277 FIG. 23 illustrates function signal modifier 245b.
Function signal modifier 245b modifies the function signal
set from function signal generator 245a according to the
“FMOD field of data register D0 or the instruction bits 58,
56, 54 and 52 depending on the instruction. Multiplexer
Fmux 520 selects the function modifier code.

0278. The “a” input to multiplexer Fmux 520 is all “0’s”
(Hex “0”). NOR gate 521 supplies control line “A” of
multiplexer Fmux 520. NOR gate 521 has a first input
receiving the “any EALU signal from OR gate 511 illus
trated in FIG.22 and a second input connected to the output
of AND gate 522. AND gate 522 receives a first input from
the “ari' bit (bit 59) of the instruction word and a second
input indicating the instruction is in instruction classes 7-0.
Thus NOR gate 521 generates an active output that selects
the Hex “O'” input to Fmux 520 if the instruction is not any
extended arithmetic logic unit operation and either the “ari'
bit of the instruction word is “0” or the instruction is not
within instruction classes class 7-0.

0279. The “b’ input to multiplexer Fmux 520 receives
bits 58, 56, 54 and 52 of the instruction word. The control
input “B” receives the output of AND gate 522. Thus
multiplexer Fmux 520 selects bits 58, 56, 54 and 52 of the
instruction word when the instruction is in any instruction
class 7-0 and the “ari' bit of the instruction is set.

0280. The “c” input of multiplexer Fmux 520 receives
bits of the “FMOD field (bits 31-28) of data register D0.
The control input “C” receives the “any EALU signal from
OR gate 511. Multiplexer Fmux 520 selected the “FMOD
field of data register D0 if the instruction calls for any
extended arithmetic logic unit operation.

0281 Multiplexer Fmux 520 selects the active function
modification code. The active function modification code
modifies the function signals Supplied to arithmetic logic
unit 230 as described below. The function modification code
is decoded to control the operations specified in Table 6. As
explained above, these modified operations include con
trolled splitting of arithmetic logic unit 230, setting one or
more bits of multiple flags register 211 by Zero(es) or
carry-out(s) from arithmetic logic unit 230, rotating or
clearing multiple flags register 211, operating LMO/RMO/
LMBC/RMBC circuit 237 in one of its four modes, oper
ating mask generation 239 and operating bit 0 carry-in
generator 246. The operations performed in relation to a
particular state of the function modification code are set
forth in Table 6.

0282) Three circuit blocks within function modifier 245b
may modify the function signals F7-F0 from multiplexer
Omux 500 illustrated in FIG. 22. Mmux block 530 may
operate to effectively set the input to the C-port to all “1s'.
A-port block 540 may operate to effectively set the input to

30
Mar. 27, 2008

the A-port to all “0’s”. Sign extension block 550 is a sign
extension unit that may flip function signals F3-F0.

0283 Mmux block 530 includes a multiplexer 531 that
normally passes function signals F3-F0 without modifica
tion. To effectively set the input to the C-port of arithmetic
logic unit 230 to “1s', multiplexer 531 replicates function
signals F7-F4 onto function signals F3-F0. Multiplexer 531
is controlled by AND gate 533. AND gate 533 is active to
effectively set the input to the C-port to all “1s' provided all
three of the following conditions are present: 1) the function
modifier code multiplexer Fmux 520 is any of the four codes
“0010”, “0011”, “0110” or “0111” as detected by “OXLX”
match detector 532 (X=don't care); 2) the instruction calls
for a mask generation operation; and 3) the output from
multiplexer Mmux 234 is “0”. As previously described
above, duplication of functions signals F7-F4 onto function
signals F3-F0, that is selection of F7=F3, F6=F2, F5=F1 and
F4=F0, enables selection of the 16 Boolean logic functions
of inputs A and B independent of input C. Note from Table
6 that the four function modifier codes "OXLX include the
“%!” modification. According to FIG. 23, the “%!” modi
fication is achieved by changing the function signals sent to
arithmetic logic unit 230 rather than by changing the mask
generated by mask generator 239.

0284. A-port block 540 includes multiplexer 541 and
connection circuit 542 that normally pass function signals
F7-F0 without modification. To effectively set the input to
the A-port of arithmetic logic unit 230 to all “0s, multi
plexer 541 and connection circuit 541 replicates function
signals F6, F4, F2 and F0 onto function signals F7, F5, F3
and F1, respectively. Multiplexer 541 and connection circuit
542 make this substitution when activated by OR gate 544.
OR gate 544 has a first input connected to “OLOX match
detector 543, and a second input connected to AND gate
546. AND gate 546 has a first input connected to “011X”
match detector 545. Both match detectors 543 and 545
determine whether the function modifier code matches their
detection state. AND gate 546 has a second input that
receives a signal indicating whether the instruction calls for
a mask generation operation. The input to the A-port of
arithmetic logic unit 230 is effectively zeroed by swapping
function signals F6, F4, F2 and F0 for function signals F7.
F5, F3 and ul, respectively. As previously described, this
substitution makes the output of arithmetic logic unit 230
independent of the A input. This substitution takes place if:
1) the function modifier code finds a match in “OLOX”
match detector 543; or 2) the instruction calls for a mask
generation operation and the function modifier code find a
match in "OLOX' match detector 545 and the instruction
calls for a mask generation operation.

0285) Sign extension block 550 includes exclusive OR
gate 551, which normally passes function signals F3-F0
unmodified. However, these function signals F3-F0 are
inverted for arithmetic logic unit sign extension and absolute
value purposes under certain conditions. Note that function
signals F7-F4 from A-port block 540 are always passed
unmodified by sign extension block 550. AND gate 552
controls whether exclusive OR gate 551 inverts function
signals F3-F0. AND gate 552 has a first input receiving the
arithmetic or extended arithmetic logic unit signal from OR
gate 513 illustrated in FIG. 22. The second input to AND
gate 552 is from multiplexer 553.

US 2008/0077771 A1

0286) Multiplexer 553 is controlled by the “any EALU
signal from OR gate 511 of FIG. 22. Multiplexer 553 selects
a first signal from AND gate 554 when the “any EALU
signal is active and selects a second signal from compound
AND/OR gate 556 when the “any EALU signal is inactive.
The output of AND gate 554 equals “1” when the data on
arithmetic logic unit second input bus 206 is positive, as
indicated by the sign bit (bit 31) as inverted by invertor 555,
and the “S” bit (bit 16) of data register D0 is “1”. The output
of compound AND/OR gate 556 is active if: 1) the data on
arithmetic logic unit second input bus 206 is positive, as
indicated by the sign bit (bit 31) as inverted by invertor 555:
2) the instruction is within instruction classes 7-0; and 3)
either a) instruction bits 57, 55, 53 and 51 find a match in
“0100/“1011” match detector 557 or b) AND gate 560
detects that instruction word bits 57, 55, 53 and 51 find a
match in “1001/“O110 match detector 558, and the instruc
tion does not call for a multiple flags register mask operation
(aMF) as indicated by invertor 559.
0287 Sign extension block 550 implements the excep
tions noted in Table 21. An inactive “any EALU signal,
which indicates that the instruction specified an arithmetic
operation, selects the second input to multiplexer 553.
Compound AND/OR gate 556 determines that the instruc
tion is within instruction classes 7-0 and that the sign bit is
“O’. Under these conditions, if instruction word bits 57,55,
53 and 51 equal "0100 and then the function signal flips
from Hex “9a to Hex “95” by inverting function signal bits
F3-F0. Similarly, if instruction word bits 57, 55, 53 and 51
equal “1011 and then the function signal flips from Hex
“65” to Hex “6a” by inverting function signal bits F3-F0. If
instruction word bits 57,55, 53 and 51 equal “1001” and the
instruction does not call for a multiple flags register mask
operation as indicated by invertor 599, then the function
signal flips from Hex “69 to Hex “66”. This set of function
signals causes arithmetic logic unit 230 to implement A-B,
A minus the absolute value of B. If instruction word bits 57,
55, 53 and 51 equal “0110' and the instruction does not call
for a multiple flags register mask operation, then the func
tion signal flips from Hex “96” to Hex “99”. This executes
the function A+B, A plus the absolute value of B. Note that
these flips of the function signals are based on the sign bit
(bit 31) of the data on arithmetic logic unit second input bus
206.

0288 FIG. 24 illustrates bit 0 carry-in generator 246. As
previously described bit, 0 carry-in generator 246 produces
the carry-in signal c, Supplied to the first bit of arithmetic
logic unit 230. In addition this carry-in signal c, from bit 0
carry-in generator 246 is generally supplied to the first bit of
each of the multiple sections, if the instruction calls for a
multiple arithmetic logic unit operation. Multiplexer Zmux
570 selects one of six possible sources for this bit 0 carry-in
signal c, based upon six corresponding controls inputs from
instruction decode logic 250.
0289. Input “a” of multiplexer. Zmux 570 is supplied with

bit 31 of multiple flags register 211. Multiplexer Zmux 570
selects this input as the bit 0 carry-in signal c, if the
instruction calls for a DIVI operation.

0290 Inputs “b”, “c” and “d” to multiplexer Zmux 570
are formed of compound logic functions. Input “b' of
multiplexer. Zmux 570 receives a signal that is a Boolean
function of the function signals F6, F2 and F0. This Boolean

Mar. 27, 2008

expression, which is formed by circuit 571, is (F0 &
-F6) (F0 & -F2)(-F2 & -F6). Input “c” of multiplexer
Zmux 570 is fed by exclusive OR gate 572, which has a first
input supplied by exclusive OR gate 573 and a second input
supplied by AND gate 574. The exclusive OR gate 573 has
as a first input the “C” bit (bit 18) of data register D0, which
indicates whether the prior operation of arithmetic logic unit
230 produced a carry-out signal cat bit 31, the last bit. The
second input of XOR gate 573 receives a signal indicating
the instruction calls for a MPYx|EALUF operation. AND
gate 574 has a first input from invertor 575 inverting the sign
bit (bit 31) present on arithmetic logic unit second input bus
206 for detecting a positive sign. AND gate 574 has a second
input from the “I” bit (bit 17) of data register D0 and a third
input from the “S” bit (bit 16) of data register D. As
explained above, the “I” bit causes inversion of carry-in
when the “S” bit indicates sign extend is enabled. This
operation complements the sign extend operation of AND
gate 554 and XOR gate 551 of the function modifier 246b
illustrated in FIG. 23. Input “d” of multiplexer Zmux 570
comes from XOR gate 576. XOR gate 576 has a first input
Supplied the function signal F0 and a second input Supplied
bit 0 of the data on input C bus 243.
0291 Input “b” of multiplexer Zmux 570 is selected
when AND gate 581 sets control input “B” active. This
occurs when the “arithmetic or EALU” from OR gate 513 is
active, the instruction does not call for an extended arith
metic logic unit operation as indicated by invertor 582 and
no other multiplexer Zmux 570 input is applicable as
controlled by invertors 583,584 and 585.
0292. Input “c” of multiplexer Zmux 570 is selected
when AND gate 586 supplies an active output to control
input “C”. AND gate 586 is responsive to a signal indicating
the instruction calls for “any EALU operation. The rest of
the inputs to AND gate 586 assure that AND gate 586 is not
active if any of inputs 'd', 'e' or “fare active via invertors
584,585 and 595.

0293 Input “d” of multiplexer Zmux 570 is selected
when control line “D is from AND gate 587. AND gate 587
is active when the instruction is an arithmetic operation oran
extended arithmetic logic unit operation, AND gate 589 is
active and input 'e' is not selected as indicated by invertor
585. AND gate 589 is active when the instruction specifies
a multiple flags register mask operation ((a)MF) expansion
and instruction word bits 57, 55, 53 and 51 find a match in
“O110/1001 match circuit 588. These instruction word
bits correspond to function signals Hex “69 and Hex “96”.
which cause addition or subtraction between ports A and B
depending on the input to port C. No function signal flipping
is involved since the instruction class involves multiple flags
register expansion. FIG. 7 illustrates providing this carry-in
signal to plural sections of a split arithmetic logic unit in
multiple mode.

0294 Input 'e' of multiplexer Zmux 570 comes from the
“C” bit (bit 30) of status register 210. As previously
described, this “C” bit of status register 210 is set to “1” if
the result of the last operation of arithmetic logic unit 230
caused a carry-out from bit 31. AND gate 594 supplies
control input “E”. AND gate 594 goes active when the
instruction specifies an arithmetic operation or an extended
arithmetic logic unit operation and the following logic is
true: 1) the function modifier code finds a match in “OXO1

US 2008/0077771 A1

match detector 591; or (OR gate 590) 2) the instruction calls
for a mask generation operation and (AND gate 593) the
function modifier code finds a match in “OX11 match
detector 592.

0295). Input “f” of multiplexer Zmux 570 is supplied with
a constant 'O'. Multiplexer Zmux 570 selects this input
when the “arithmetic or EALU signal from OR gate 513
indicates the instruction specifies a Boolean operation as
inverted by invertor 595.
0296. The output of Zmux 570 normally passes through
Ymux 580 unchanged and appears at the bit 0 carry-in
output. In a multiple arithmetic operation in which data
register D0“A” bit (bit 27) and “E” bit (bit 14) are not both
“1”. Ymux produces plural identical carry-in signals. Selec
tion of half word operation via "Asize’ field of status
register 210 causes Ymux to produce the supply the output
of Zmux 570 to both the bit 0 carry-in output and the bit 16
carry-in output. Likewise, upon selection of byte operation
Ymux 580 supplies the output of Zmux 570 to the bit 0
carry-in output, the bit 8 carry-in output, the bit 16 carry-in
output and the bit 24 carry-in output.
0297. The operation of Ymux 580 differs when data
register D0“A” bit (bit 27) and “E” bit (bit 14) are both “1”.
AND gate 577 forms this condition and controls the opera
tion of Ymux 580. This is the only case in which the carry-in
signals Supplied to different sections of arithmetic logic unit
230 during multiple arithmetic differ. If AND gate 577
detects this condition, then the carry-in signals are formed
by the exclusive OR of function signal F0 and the least
significant bit of the C input of the corresponding section of
arithmetic logic unit 230. If the “Asize’ field selects word
operation, that is if arithmetic logic unit 230 forms a single
32 bit section, then the bit 0 carry-in output formed by Ymux
580 is the exclusive OR of function signal FO and input C
bus bit 0 formed by XOR gate 596. No other carry-in signals
are formed. If the “Asize’ field selects half word operation
forming two 16 bit sections, then the bit 0 carry-in output
formed by Ymux 580 is the output of XOR gate 596 and the
carry-in to bit 16 is the exclusive OR of function signal F0
and input C bus bit 16 formed by XOR gate 598. Lastly, for
byte multiple arithmetic the bit 0 carry-in output formed by
Ymux 580 is the output of XOR gate 596, the bit 8 carry-in
is formed by XOR gate 597, and the bit 16 carry-in is formed
by XOR gate 598 and the bit 24 carry-in is formed by XOR
gate 599.
0298 FIGS. 22, 23 and 24 not only represent specific
blocks implementing the Tables but also illustrates the
straightforward process by which the Tables and Figures
compactly define logic circuitry to enable the skilled worker
to construct the preferred embodiment even when a block
diagram of particular circuitry may be absent for concise
ness. Note that the circuits of FIGS. 22 and 23 do not cover
control for the various multiplexers and special circuits via
instruction decode logic 250 that are a part of data unit 110
illustrated in FIG. 5. However, control of these circuits is
straight forward and within the capability of one of ordinary
skill in this art. Therefore these will not be further disclosed
for the sake of brevity.
0299 Arithmetic logic unit 230 includes three 32 bit
inputs having differing hardware functions preceding each
input. This permits performance of many different functions
using arithmetic logic unit 230 to combine results from the

32
Mar. 27, 2008

hardware feeding each input. Arithmetic logic unit 230
performs Boolean or bit by bit logical combinations, arith
metic combinations and mixed Boolean and arithmetic com
binations of the 3 inputs. Mixed Boolean and arithmetic
functions will hereafter be called arithmetic functions due to
their similarity of execution. Arithmetic logic unit 230 has
one control bit that selects either Boolean functions or
arithmetic functions. Boolean functions generate no carries
out of or between bit circuits 400 of arithmetic logic unit
230. Thus each bit circuit 400 of arithmetic logic unit 230
combines the 3 inputs to that bit circuit independently
forming 32 individual bit wise results. During arithmetic
functions, each bit circuit 400 may receive a carry-in from
the adjacent lesser significant bit and may generate a carry
out to the next most significant bit location. An 8 bit control
signal (function control signals F7-F0) control the function
performed by arithmetic logic unit 230. This enables selec
tion of one of 256 Boolean functions and one of 256
arithmetic functions. The function signal numbering of
function signals F7-F0 is identical to that used in
Microsoft(R) Windows. Bit 0 carry-in generator 246 supplies
carry-in signals when in arithmetic mode. In arithmetic
mode, arithmetic logic unit 230 may be split into either two
independent 16 bit sections or four independent 8 bit sec
tions to process in parallel multiple Smaller data segments.
Bit 0 carry-in generator 246 supplies either one, two or four
carry-in signals when arithmetic logic unit 230 operates in
one, two or four sections, respectively. In the preferred
embodiment, an assemblier for data unit 110 includes an
expression evaluator that selects the proper set of function
signals based upon an algebraic input syntax.

0300. The particular instruction being executed deter
mines the function of arithmetic logic unit 230. As will be
detailed below, in the preferred embodiment the instruction
word includes a field that indicates either Boolean or arith
metic operations. Another instruction word field specifies
the function signals Supplied to arithmetic logic unit 230.
Boolean instructions specify the 8 function signals F7-F0
directly. In arithmetic instructions a first subset of this
instruction word field specifies a subset of the possible
arithmetic logic unit operations according to Table 21. A
second subset of this instruction word field specifies modi
fications of instruction function according to Table 6. All
possible variations of the function signals and the function
modifications for both Boolean and arithmetic instructions
may be specified using an extended arithmetic logic unit
(EALU) instruction. In this case the predefined fields within
data register D0 illustrated in FIG. 9 specify arithmetic logic
unit 230 operation.

0301 Though arithmetic logic unit 230 can combine all
three inputs, many useful functions don't involve some of
the inputs. For example the expression A&B treats the C
input as a don't care, and the expression AC treats the B
input as a don't care. Because different data path hardware
precedes each input, the ability to use or ignore any the
inputs Supports the selection of data path hardware needed
for the desired function. Table 22 shows examples of useful
three input expressions where the C-input is treated as a
mask or a merging control. Because data unit 110 includes
expand circuit 238 and mask generator 239 in the data path
of the C-input of arithmetic logic unit 230, it is natural to
employ the C-input as a mask.

US 2008/0077771 A1

TABLE 22

Logical
Function Typical use

(A & C) (B & ~C) Bit by bit multiplexing (merge) of
A and B based on C. A chosen if
corresponding bit in C is 1
Bit by bit multiplexing (merge) of
A and B based on C. B chosen if
corresponding bit in C is 1

(A & -C) (B & C)

(A|B) & ~C Logic OR of A and B and then force
to 0 everywhere that C is a 1

(A & B) & C Logic AND of A and B and then force
to 0 everywhere C is a 1

A (B & C) If C is 0 then force the B-input to
O before logical ORing with A

A (B-C) If C is 0 then force the B-input to
1 before logical ORing with A

0302) The three input arithmetic logic unit 230 can per
form mixed Boolean and arithmetic functions in a single
pass through arithmetic logic unit 230. The mixed Boolean
and arithmetic functions Support performing Boolean func
tions prior to an arithmetic function. Various compound
functions such as shift and add, shift and subtract or field
masking prior to adding or Subtracting can be performed by
the appropriate arithmetic logic unit function in combination
with other data path hardware. Note arithmetic logic unit
230 supports 256 different arithmetic functions, but only a
subset of these will be needed for most programming.
Additionally, further options such as carry-in and sign
extension need to be controlled. Some examples expected to
be commonly used are listed below in Table 23.

TABLE 23

Func
Code Default
Hex Function Carry-In Common Use

66 A + B O A + B ignore C
99 A - B 1 A - B ignore C
5A A + C O A + C ignore B
AS A - C 1 A - C ignore B
6A A + (B & C) O A + B shift right

O exten
C shift mask

95 A - (B & C) 1 A - B shift right
O exten
C shift mask

56 A + (BC) O A + B shift left
O exten
C shift mask

A9 A - (BC) 1 A - B shift left
1 exten
C shift mask

A6 A + (B & ~C) O A + B shift left
O exten
C shift mask

59 A - (B & ~C) 1 A - B shift left
O exten
C shift mask

65 A + (B-C) O A + B shift right
sign exten
C shift mask

9A. A - (B-C) 1 A - B shift right
sign exten
C shift mask

60 (A & C) + (B & C) O A + B mask by C
9F (A & C) - (B & C) 1 A - B mask by C
O6 (A & -C) + (B & ~C) O A + B mask by ~C

Mar. 27, 2008

TABLE 23-continued

Func
Code Default
Hex Function Carry-In Common Use

F9 (A & ~C) - (B & ~C) 1 A - B mask by ~C
LSB of C A + B or A - B

based on C
LSB of -C A+ B or A - B

based on C
CC B O B ignore A and C
33 -B 1 Negative B

ignore A and C
FO C O C ignore A and B
OF -C 1 Negative C

ignore A and B
CO (B & C) O B shift righ

“O'” extend
C shift mask

3F -(B & C) 1 Negative B shift

FC (BC) O B shift left
“1” extend
C shift mask

O3 -(BC) 1 Negative B shift

OC (B & ~C) O B shift left
“O'” extend
C shift mask

F3 -(B & ~C) 1 Negative B shift

CF (B-C) O B shift righ

C shift mask
Negative B shift
right sign extend
C shift mask

LSB of C -B or B based on -C
LSB of -C B or -B based on C

30 -(B | -C) 1

The most generally useful set of arithmetic functions com
bined with default carry-in control and sign extension
options are available directly in the instruction set in a base
set of operations. These are listed in Table 21. This base set
include operations that modify the arithmetic logic units
functional controls based on sign bits and that use default
carry-in selection. Some examples of these are detailed
below.

0303 All 256 arithmetic functions along with more
explicit carry-in and sign extension control are available via
the extended arithmetic logic unit (EALU) instruction. In
extended arithmetic logic unit instructions the function
control signals, the function modifier and the explicit carry
in and sign extension control are specified in data register
D0. The coding of data register D0 during such extended
arithmetic logic unit instructions is described above in
relation to FIG. 9.

0304 Binary numbers may be designated as signed or
unsigned. Unsigned binary numbers are non-negative inte
gers within the range of bits employed. An N bit unsigned
binary number may be any integer between 0 and 2-1.
Signed binary numbers carry an indication of sign in their
most significant bit. If this most significant bit is “0” then the
number is positive or zero. If the most significant bit is “1”
then the number is negative or Zero. An N bit signed binary
number may be any integer from -2'-1 to 2-1. Know

US 2008/0077771 A1

ing how and why numbers produce a carry out or overflow
is important in understanding operation of arithmetic logic
unit 230.

0305 The sum of two unsigned numbers overflows if the
Sum can no longer be expressed in the number of bits used
for the numbers. This state is recognized by the generation
of a carry-out from the most significant bit. Note that
arithmetic logic unit 230 may be configured to operation on
numbers of 8 bits, 16 bits or 32 bits. Such carry-outs may be
stored in Mflags register 211 and employed to maintain
precision. The difference of two unsigned numbers under
flows when the difference is less than Zero. Note that
negative numbers cannot be expressed in the unsigned
number notation. The examples below show how carry-outs
are generated during unsigned Subtraction.
0306 The first example shows 7"00000111 minus
5"00000110. Arithmetic logic unit 230 performs subtrac
tion by two’s complement addition. The two’s complement
of an unsigned binary number can be generated by inverting
the number and adding 1, thus -X=~X--1. Arithmetic logic
unit 230 negates a number by logically inverting (or one's
complementing) the number and injecting a carry-in of 1
into the least significant bit. First the 5 is bit wise inverted
producing the one’s complement “11111001. Arithmetic
logic unit 230 adds this to 7 with a “1” injected into the
carry-in input of the first bit. This produces the following
result.

OOOOO 111

+11111010

+1

10000000

Note that this produces a carry-out of “1” from the most
significant bit. In two’s complement Subtraction, such a
carry-out indicates a not-borrow. Thus there is no underflow
during this subtraction. The next example shows 7-5. Note
that the 8 bit one's complement of "00000111” is
“11111 OOO.

OOOOO 101

+11111000

+1

100000010

In this case the carry-out of “O'” indicates a borrow, thus the
result is less than Zero and an underflow has occurred. The
last example of unsigned subtraction is 0-0. Note that the 8
bit one's complement of 0 is “11111111'.

OOOOOOOO O

+11111111 - O
+1

1 00000000

The production of a carry-out of “1” indicates no underflow.
0307 The situation for signed numbers is more complex.
An overflow on a signed add occurs if both operands are

34
Mar. 27, 2008

positive and the sign bit of the result is a 1 (i.e., negative)
indicating that the result has rolled over from positive to
negative. Overflow on an add also occurs if both operands
are negative and the result has a 0 (i.e., positive) sign bit. Or
in other words overflow on addition occurs if both of the
sign bits of the operands are the same and the result has a
different sign bit. Similarly a subtraction of can overflow if
the operands have the same sign and the result has a different
sign bit.

0308 When setting the carry bit in status register 210 or
in the Mflags register 211, the bit or bits are always the
“natural carry outs generated by arithmetic logic unit 230
Most other microprocessors set “carry status' based upon
the carry-out bit during addition but set it based upon
not-carry-out (or borrow) during subtraction. These other
microprocessors must re-invert the not-carry when perform
ing Subtract with borrow to get the proper carry-in to the
arithmetic logic unit. This difference results in a slightly
different set of conditional branch equations using this
invention than other processors to get the same branch
conditions. Leaving the sense of carries/not-borrows the
same as those generated by arithmetic logic unit 230 sim
plifies many ways in which each digital image/graphics
processor can utilize them.

0309. In the base set of arithmetic instructions, the
default carry-in is “0” for addition and “1” for subtraction.
The instruction set and the preferred embodiment of the
assembler will automatically set the carry-in correctly for
addition or subtraction in 32-bit arithmetic operations. The
instruction set also supports carry-in based on the status
registers carry-out to Support multiple precision add-with
carry or subtract-with-borrow operations.

0310. As will be explained in more detail later, some
functions arithmetic logic unit 230 support the C-port con
trolling whether the input to the B-port is added to or
subtracted from the input to the A-port. Combining these
arithmetic logic unit functions with multiple arithmetic
permits the input to the C-port to control whether each
section of arithmetic logic unit 230 adds or subtracts. The
base set of operations controls the carry-in to each section of
arithmetic logic unit 230 to supply a carry-in of “0” that
section is performing addition and a carry-in of “1” if that
section is performing Subtraction. The hardware for Supply
ing the carry-in to these sections is described above regard
ing FIG. 24.

0311. The following details the full range of arithmetic
functions possible using digital image/graphics processor 71
3-input arithmetic logic unit 230. For most algorithms, the
subset of instructions listed above will be more than
adequate. The more detailed description following is
included for completeness.

0312 Included in the description below is information
about how to derive the function code for arithmetic logic
unit 230. Some observations about function code F7-F0 will
be helpful in understanding how arithmetic logic unit 230
can be used for various operations and how to best use
extended arithmetic logic unit instructions. The default
carry-in is equal to F0, the least significant bit of the function
code, except for the cases where the input to the C-port
controls selection of addition or subtraction between A and

US 2008/0077771 A1

B. Inverting all the function code bits changes the sign of the
operation. For example the function codes Hex “66', which
specifies A+B, and Hex '99', which specifies A-B, are bit
wise inverses. Similarly, function code Hex “65”
(A+(B-C)) and Hex"9A". (A-(B-C)) are bit wise inverses.
Extended arithmetic logic unit instructions come in the pairs
of extended arithmetic logic unit true (EALUT) and
extended arithmetic logic unit false (EALUF). The extended
arithmetic logic unit false instruction inverts the arithmetic
logic unit control code stored in bits 26-19 of data register
D0. As noted above, this inversion generally selects between
addition and Subtraction. Inverting the 4 least significant bits
of the function code Hex “6A' for A+(B&C) yields gives
Hex"65” that is the function A+(B-C). Similarly, inverting
the 4 least significant bits of function code Hex “95” for
A-(B&C) yields the function code Hex "9A that is
A-(B-C). The B&C operation Zero's bits in B where C is
“0” and the operation B-C forces bits in B to “1” where C
is “0”. This achieves the opposite masking function with
respect to C. As will be explained below selectively invert
ing the 4 least significant bits of the function code based on
a sign bit performs sign extension before addition or Sub
traction.

0313 All the 256 arithmetic functions available employ
ing arithmetic logic unit 230 can be expressed as:

0314 where: S is the arithmetic logic unit resultant; and
F1 (B.C) and F2(B,C) can be any of the 16 possible Boolean
functions of B and C shown below in Table 24.

TABLE 24

F1 F2
Code Code Subfunction Common Use

OO OO O Zeros term
AA FF all 1's =-1 Sets term to all 1's
88 CC B B
22 33 -B - 1 Negate B
AO FO C C
OA OF -C - 1 Negate C
8O CO B & C Force bits in B to 0

where C is 0
2A 3F -(B & C) - 1 Force bits in B to 0

where C 15 O
and negate

A8 FC BC Force bits in B to 1
where C is 1

O2 03 -(BC) - 1 Force bits in B to 1
where C is 1
and negate

O8 OC B & C Force bits in B to 0
where C is 1

A2 F3 -(B & ~C) - 1 Force bits in B to 0
where C is 1
and negate

8A CF B | -C Force bits in B to 1
where C is 0

2O 30 -(B-C) - 1 Force bits in B to 1
where C is 0
and negate

28 3C (B & ~C) ((-B - 1) & C) Choose B if C = all O’s
and -B if C = all 1's

82 C3 (B & C) ((-B - 1) & ~C) Choose B is C = all 1's
and -B if C = all O's

FIG. 25 illustrates this view of arithmetic logic unit 230 in
block diagram form. Arithmetic unit 491 forms the addition
of the equation. Arithmetic unit 491 receives a carry input

Mar. 27, 2008

for bit 0 from bit 0 carry-in generator. The AND gate 492
forms A AND F1(B,C). Logic unit 493 forms the subfunc
tion F1 (B.C) from the function signals as listed in Table 24.
Logic unit 494 forms the subfunction F2(B.C) from the
function signals as listed in Table 24. This illustration of
arithmetic logic unit 230 shows that during mixed Boolean
and arithmetic operations the Boolean functions are per
formed before the arithmetic functions. A set of the bit
circuits 400 illustrated in FIGS. 19, 20 and 21 together with
the function generator illustrated in FIG. 22, the function
modifier illustrated in FIG. 23 and the bit 0 carry-in gen
erator illustrated in FIG. 24 form the preferred embodiment
of the arithmetic logic unit 230 illustrated in FIG. 25. Those
skilled in the art would recognize that there are many other
feasible ways to implement arithmetic logic unit 230 illus
trated in FIG. 25.

0315. As clearly illustrated in FIG. 25, the subfunctions
F1 (B.C) and F2(B.C) are independent and may be different
Subfunctions for a single operation of arithmetic logic unit
230. The subfunction F2(B,C) includes both the negative of
B and the negative of C. Thus either B or C may be
subtracted from Aby adding its negative. The codes for the
Subfunctions F1 (B.C) and F2(B.C) enable derivation of the
function code F7-FO for arithmetic logic unit 230 illustrated
in FIGS. 20 and 21. The function code F7-FO for arithmetic
logic unit 230 is the exclusive OR of the codes for the
corresponding subfunctions F1 (B.C) and F2(B,C). Note the
codes for the subfunctions have been selected to provide this
result, thus these subfunctions do not have identical codes
for the same operation.

0316) The subfunctions of Table 24 are listed with the
most generally useful ways of expression. There are other
ways to represent or factor each function. For example by
applying DeMorgan's Law, the function B-C is equivalent
to ~(~B&C). Because -X=-X-1, ~(~B&C) is equivalent
-(-B&C)-1 and B-C is equivalent to B (-C-1). Note that
the negative forms in Table 24 each have a trailing “-1
term. As explained above negative numbers are two’s
complements. These are equivalent to the bit wise logical
inverse, which forms the 1s complement, minus 1. A
carry-in of “1” may be injected into the least significant bit
to cancel out the -1 and form the two’s complement. In the
most useful functions with a negative Subfunction, only the
F2(B.C) subfunction produces a negative.

0317. Often it will be convenient to think of the Boolean
Subfunctions in Table 24 as performing a masking operation.
As noted in Table 24, the subfunction B&C can be inter
preted as forcing the B input value to “0” where the
corresponding bit in C is "0. The subfunction B-C can be
interpreted as forcing the B input value to “1” for every bit
where the C input is “0”. Because mask generator 234 and
expand circuit 238 feed the C-port of arithmetic logic unit
230 via multiplexer 233, in most cases the C-port will be
used as a mask in subfunctions that involve both B and C
terms. Table 24 has factored the expression of each sub
function in terms assuming that the input to the C-port is
used as a mask. The equation above shows that the A-input
cannot be negated in the arithmetic expression. Thus arith
metic logic unit 230 cannot subtract A from either B or C.
On the other hand, either B or C can be subtracted from A
because the subfunctions F1 (B.C) and F2(B.C) support
negation/inversion of B and C.

US 2008/0077771 A1

0318. The subfunctions of Table 24 when substituted into
the above equation produces all of the 256 possible arith
metic functions that arithmetic logic unit 230 can perform.
Occasionally, some further reduction in the expression of the
resultant yields an expression that is equivalent to the
original and easier to understand. When reducing Such
expressions, several tips can be helpful. The base instruction
set defaults to a carry-in of “0” for addition and a carry-in
of “1” when the subfunction F2(B.C) has a negative B or C
term as expressed in Table 24. This carry-in injection has the
effect of turning the one's complement (logical inversion)
into a two’s complement by effectively canceling the -1 on
the right hand side of the expression of these subfunctions.
The logic AND of A all “1s' equals A. Thus subfunction
F1 (B.C) may be set to yield all “1s' to get A on the left side
of the equation. Note also that all “1s' equals two's
complement signed binary number minus 1 (-1).
0319. The examples below show how to use the equation
and the subfunctions of Table 24 to derive any of the
possible arithmetic logic unit functions and their corre
sponding function codes. The arithmetic function A+B can
be expressed as A&(all “1s')+B. This requires F1 (B.C)=all
“1’s” and F2(B,C)=B. The F1 code for all “1s” is Hex “AA'
and the F2 code for B is Hex “CC. Bit-wise XORing Hex
“AA’ and Hex “CC” gives Hex “66”. Table 23 shows that
Hex '66' is function code for A+B.

0320 The arithmetic function A-B can be expressed as
A&(all “1s”)+(-B-1)+1. This implies F1 (B,C)=all “1’s”
(F1 code Hex “AA') and F2(B,C)=-B-1 (F2 code Hex
“33”) with a carry-in injection of “1”. Recall that a carry-in
of “1” is the default for subfunctions F2 that include
negation. Bit-wise XORing the F1 code of Hex “AA’ and
with the F2 code of Hex “33” gives Hex “99”. Table 23
shows that Hex '99 is the function code for A-B assuming
a carry-in of “1”.
0321) The arithmetic function A+C is derived similarly to
A+B. Thus A+C=A&(all “1s')+C. This can be derived by
choosing F1 (B,C)=all “1’s” and F2(B,C)=C. The exclusive
OR of the F1 code of Hex 'AA' and the F2 code of Hex
“FO produces Hex “5A the function code for A+C. Like
wise, A-C is the same as A&(all “1s')+(-C-1)+1. The
exclusive OR of the F1 code of Hex'AA' and the F2 code
of Hex “OF produces Hex “A5” the function code for A-C.
0322 Three input arithmetic logic unit 230 provides a
major benefit by providing masking and/or conditional func
tions between two of the inputs based on the third input. The
data path of data unit 110 enables the C-port to be most
useful as a mask using mask generator 234 or conditional
control input using expand circuit 238. Arithmetic logic unit
230 always performs Boolean functions before arithmetic
functions in any mixed Boolean and arithmetic function.
Thus a carry could ripple out of unmasked bits into one or
more bits that were Zeroed or set by a Boolean function. The
following examples are useful in masking and conditional
operations.

0323 The function A+(B&C) can be expressed as A&(all
“1s”)+(B&C). Choosing F1(B,C)=all “1s” (F1 code of Hex
“AA') and F2(B,C)=B&C (F2 code of Hex “CO") gives
A+(B&C). The bit-wise exclusive OR of HEX “AA’ and
Hex “CO' gives the arithmetic logic unit function code of
Hex “6A' listed in Table 23. This function can strip off bits
from unsigned numbers. As shown below, this function can

36
Mar. 27, 2008

be combined with barrel rotator 235 and mask generator 234
in performing right shift and add operations. In this case C
acts as a bit mask that Zeros bits of Beverywhere C is “0”.
Since mask generator 234 can generate a mask with right
justified ones, selection of mask generator 234 via multi
plexer Cmux 233 permits this function to zero some of the
most significant bits in B before adding to A. Another use of
this function is conditional addition of B to A. Selection of
expand circuit 238 via multiplexer Cmux 233 enables con
trol of whether B is added to A based upon bits in Mflags
register 211. During multiple arithmetic, bits in Mflags
register 211 can control corresponding sections of arithmetic
logic unit 230.
0324. The function A+(B-C) can be expressed as A&(all
“1S)+(B-C). Choosing F1 (B-C)=all “1s” (F1 code of
Hex'AA') and F2(B,C)=B-C (F2 code of “CF) yields this
expression. The bit-wise exclusive OR of Hex 'AA' and
Hex 'CO' obtains the function code of Hex “65 as listed in
Table 23.

0325 The function A-(B&C) can be expressed as A&(all
“1s”)+(-(B&-C)-1)+1. Choosing F1 (B,C)=all “1’s” (F1
code Hex “AA') and F2(B,C)=-(B&C)-1 (F2 code Hex
“3F) with a carry-in injection of “1” yields this expression.
The bit-wise exclusive OR of Hex 'AA' and Hex “3F
yields the function code Hex “95” as listed in Table 23. This
function can strip off or mask bits in the B input by the C
input before subtracting from A.
0326. There are 16 possible functions where the subfunc
tion F1 (B.C)=0. These functions are commonly used with
other hardware to perform negation, absolute value, bit
masking, and/or sign extension of the B-input by the C-in
put. When subfunction F1 (B.C)=0 then the arithmetic logic
unit function is given by subfunction F2(B,C).
0327. The function -(B&C) may be expressed as
(A&“0”)+(-(B&C)). This expression can be formed by
choosing F1 (B,C)=0 (F1 code Hex “00) and F2(B,C)=-
(B&C)-1 (F2 code Hex “3F) with a carry-in injection of
“1”. The exclusive OR of Hex “00” and Hex “3F" yields the
function code Hex “3F as shown in Table 23. This function
masks bits in B by a mask C and then negates the quantity.
This function can be used as part of a shift right and negate
operation.
0328 Several functions support masking both terms of
the sum in the equation above in a useful manner. The
function (A&C)+(B&C) can be achieved by choosing F1 (B.
C)=C(F1 code Hex “AO”) and F2(B,C)=B&C (F2 code Hex
“CO). The exclusive OR of Hex “AO” and Hex “FO yields
the function code Hex “60 as shown in Table 23. This
function will effectively zero the corresponding bits of the A
and B inputs where C is “0” before adding. It should be
noted that the Boolean function is applied before the addi
tion and that one or more carries can ripple into the bits that
have been Zeroed. When using multiple arithmetic such
carries do not cross the boundaries between the split sections
of arithmetic logic unit 230. A common use for this function
is to Sum multiple Smaller quantities held in one register. The
B-port receives a rotated version of the number going to the
A-port and the C-port provides a mask for the bits that
overlap. Four 8 bit numbers can be summed into two 16 bit
numbers or two 16 bit numbers summed into one 32 bit
number in a single instruction.
0329. The similar function (A&C)-(B&C) is achieved by
choosing F1(B,C)=C (F1 code Hex AO”) and F2(B,C)=-

US 2008/0077771 A1

(B&C)-1 and injecting a carry-in of “1”. The exclusive OR
of Hex “AO” and Hex “3F" yields the function code Hex
“9F as shown in Table 23. This function can produce
negative Sums with the C-port value acting as a mask of the
A and B inputs.
0330. The function (A&B)+B is achieved by choosing
F1 (B.C)=C (F1 code Hex “AO”) and F2(B,C)=B (F2 code
Hex “CC). The exclusive OR of Hex “AO” and Hex “CC”
yields the function code Hex “6C. This function can
conditionally double B based on whether A is all “1s' or all
“0s.

0331 FIG. 26 illustrates in block diagram form an alter
native embodiment of arithmetic logic unit 230. The arith
metic logic unit 230 of FIG. 26 forms the equation:

where: S is the arithmetic logic unit resultant; and F3 (A.B.
C) and F4(A.B.C) can be any of the 256 possible Boolean
functions of A, B and C. Adder 495 forms the addition of this
equation and includes an input for a least significant bit carry
input from bit 0 carry-in generator 246. Boolean function
generator 496 forms the function F3(A,B,C) as controlled by
input function signals. Boolean function generator 497 simi
larly forms the function F4(A,B,C) as controlled by input
function signals. Note that Boolean function generators 496
and 497 independently form selected Boolean combinations
of A, B and C from a set of the 256 possible Boolean
combinations of three inputs. Note that it is clear from this
construction that arithmetic logic unit 230 forms the Bool
ean combinations before forming the arithmetic combina
tion. The circuit in FIG. 21 can be modified to achieve this
result. The generate/kill function illustrated in FIG. 21
employs a part of the logic tree used in the propagate
function. This consists of pass gates 451, 452, 453, 454, 461
and 462. Providing a separate logic tree for this function that
duplicates pass gates 451, 452, 453, 454, 461 and 462 and
eliminating the NOT A gate 475 results in a structure
embodying FIG. 26. Note in this construction one of the
generate or kill terms may occur simultaneously with the
propagate term. This construction provides even greater
flexibility than that illustrated in FIG. 25.
0332 The three input arithmetic logic unit 230, the
auxiliary data path hardware and knowledge of the binary
number system can be used to form many useful elementary
functions The instruction set of the digital image/graphics
processors makes more of the hardware accessible to the
programmer than typical in microprocessors. Making hard
ware more accessible to the programmer exposes some
aspects of architecture that are hidden on most other pro
cessors. This instruction set Supports forming custom opera
tions using the elemental functions as building blocks. This
makes greater functionality accessible to the programmer
beyond the hardware functions commonly found within
other processors, the digital image/graphics processors have
hardware functions that can be very useful for image,
graphics, and other processing. This combination of hard
ware capability and flexibility allows programmers to per
form in one instruction what could require many instructions
on most other architectures. The following describes some
key elemental functions and how two or more of them can
be combined to produce a more complex operation.
0333. The previous sections described the individual
workings of each functional block of data unit 110. This

37
Mar. 27, 2008

section will discuss how these functions can be used in
combination to perform more complex operations. Barrel
rotator 235, mask generator 239 and 3-input arithmetic logic
unit 230 can work together to perform shift left, unsigned
shift right, and signed shift right either alone or combination
with addition or Subtraction in a single arithmetic logic unit
instruction cycle. An assembler produces program code for
digital image/graphics processors 71, 72, 73 and 74. This
assemblier preferably supports the symbols “>>u' for
unsigned (logical) right shift, “>> or “>>s' for arithmetic
(signed) right shift, and '-' for a left shift. These shift
notations are in effect macro functions that select the appro
priate explicit functions in terms of rotates, mask generation,
and arithmetic logic unit function. The assemblier also
preferably Supports explicitly specifying barrel rotation
(“\\'), mask generation (“6” and “%), and the arithmetic
logic unit function. The explicit notation will generally be
used only when specifying a custom function not expressible
by the shift notation.
0334 Data unit 110 performs left shift operations in a
single arithmetic logic unit cycle. Such a left shift operation
includes barrel rotator via barrel rotator 235 by the number
of bits of the left shift. As noted above during such rotation,
bits that rotate out the left wrap around into the right and thus
need to be stripped off to perform a left shift. The rotated
output is sent to the B-port of arithmetic logic unit 230.
Mask generator 239 receives the shift amount and forms a
mask with a number of right justified ones equal to the shift
amount. Note that the same shift amount supplies the rotate
control input of barrel rotator 235 from second input bus 202
via multiplexer Smux 231 and mask generator 239 from
second input bus 202 via multiplexer Mmux 234. Mask
generator 239 supplies the C-port of arithmetic logic unit
230. Arithmetic logic unit 230 combines the rotated output
with the mask with the Boolean function B&-C. Left shifts
are expressed in the assemblier below:

Left Shift=Input-Shift Amount

This operation is equivalent to the explicit notation:
Left Shift=(Input\\Shift Amount)&-% Shift Amount

The following example shows of a left shift of Hex
“53FFFFA7” by 4 bits. While shown in several steps, data
unit 110 performs this in a single pass arithmetic logic unit
cycle The original number in binary notation is:

0335) 01 01 00111111111111111111 10100111
Rotation by 4 places in barrel rotator 235 yields:

0336 00111111111111111111101001110101
Mask generator 239 forms the following mask:

0337 0000 0000 0000 0000 0000 0000 0000 1111
Arithmetic logic unit 230 forms the logical combination
B&-C. This masks bits in the rotated amount causing
them to be “0” and retains the other bits. This yields the
left shift result:

0338 0011111111111111111110100111 0000
The left shift of the above example results in an arithmetic

overflow, because some bits have "overflowed'. Dur
ing a shift left, arithmetic overflow occurs for unsigned
numbers if any bits are shifted out. Arithmetic overflow
may also occur for signed numbers if the resulting sign

US 2008/0077771 A1

bit differs from the original sign bit. Arithmetic logic
unit 230 of this invention does not automatically detect
arithmetic overflow on left shifts. Left shift overflow
can be detected by Subtracting the left-most-bit-change
amount of the original number generated by LMO/
RMO/LMBC/RMBC circuit 237 from the left shift
amount. If the difference is less than or equal to Zero,
then no bits will overflow during the shift. If the
difference is greater than Zero, this difference is the
number of bits that overflow.

0339) The assemblier further controls data unit 110 to
perform left shift and add operations and left shift and
subtract operations. The assemblier translates the A+(B<<n)
function into control of barrel shifter 235, mask generator
239, and arithmetic logic unit 230 to performed the desired
operation. A shift left and add operation works identically to
the above example of a simple shift except for the operation
of arithmetic logic unit 230. Instead of performing the
logical function B&-C as in a simple shift, the arithmetic
logic unit performs the mixed arithmetic and logical func
tion A+(B&-C). A left shift and add operation is expressed
in the assemblier notation as:

LShift Add=Input1+Input2<<Shift Amount

This operation is equivalent to:
LShift Add=Input1+(Input2\\Shift Amount)&-%
Shift Amount

The following example shows a left shift of Hex
“53FFFFA7” by 4 bits followed by addition of Hex
"000000A'. Note that all these steps require only a single
arithmetic logic unit cycle. The original Input2 in binary
notation is:

0340) 01 01 00111111111111111111 10100111
Rotation by 4 places in barrel rotator 235 yields:
0341 00111111111111111111 101001110101
Mask generator 239 forms the mask:
0342) 0000 0000 0000 0000 0000 0000 0000 1111
Arithmetic logic unit 230 forms the logical combination
B&-C producing a left shift result:

0343 00111111111111111111 10100111 0000
The other operand Input1 in binary notation is:

0344) 0000 0000 0000 0000 0000 0000 1010 1010
Finally the sum is:

0345 001111111111111111111011 00011010
Note that arithmetic logic unit 230 forms the logical

combination and the arithmetic combination is a single
cycle and that the left shift result shown above is not
available as an intermediate result. Note also that the
sum may overflow even if the left shift does not
produce an overflow. Overflow of the sum is detected
by generation of a carry-out from the most significant
bit of arithmetic logic unit 230. This condition is
detected and stored in the “V” bit of status register 210.

0346) The shift left and subtract operation also breaks
down into a set of functions performed by barrel rotator 235,
mask generator 237, and arithmetic logic unit 239 in a single
arithmetic logic unit cycle. The left shift and subtract

38
Mar. 27, 2008

operation differs from the previously described left shift
operation and left shift and add operation only in the
function of arithmetic logic unit 230. During left shift and
subtract arithmetic logic unit 230 performs the mixed arith
metic and logical function A+(B-C)+1. Arithmetic logic
unit 230 performs the "+1 operation by injection of a “1”
into the carry input of the least significant bit. This injection
of a carry-in takes place at bit 0 carry-in generator 246. Most
Subtraction operations with this invention take place using
such a carry-in of “1” to the least significant bit. The
assemblier notation expresses left shift and Subtract opera
tions as follows:

LShift Sub=Input1-Input2<<Shift Amount

This operation is equivalent to:
LShift Sub=Input1-(Input2\\Shift Amount)&-%
Shift Amount-1

The following example shows a left shift of Hex
“53FFFFA7” by 4 bits followed by subtraction of Hex
"000000AA’. Note that all these steps require only a single
arithmetic logic unit cycle. The original Input2 in binary
notation is:

0347) 01 01 00111111111111111111 10100111
Rotation by 4 places in barrel rotator 235 yields:
0348 00111111111111111111 101001110101
Mask generator 239 forms the mask:
0349 0000 0000 0000 0000 0000 0000 0000 1111
The result of the logical combination ~BC is as follows:
0350) 1100 0000 0000 0000 0000 01.01 1000 1111
The other operand Input1 in binary notation is:

0351 0000 0000 0000 0000 0000 0000 1010 1010
The sum A+(-BC) is:
0352) 1100 0000 0000 0000 0000 0110 0011 1001
Finally the addition of the “1” injected into the least

significant bit carry-in yields:

0353) 1100 0000 0000 0000 0000 0110 00111010
Note that arithmetic logic unit 230 forms the logical

combination and the arithmetic combination is a single
cycle and that neither the left shift result nor the partial
Sum shown above are available as intermediate results.

0354) The assemblier of the preferred embodiment can
control data unit 110 to perform an unsigned right shift with
Zeros shifted in from the left in a single arithmetic logic unit
cycle. Since barrel rotator 235 performs a left rotate, at net
right rotate may be formed with a rotate amount of 32-n,
where n is the number of bits to rotate right. Note, only the
5 least significant bits of the data on second input bus 202
are used by barrel rotator 235 and mask generator 239.
Therefore the amounts 32 and 0 are equivalent in terms of
controlling the shift operation. The assembler will automati
cally make the 32-n computation for shifts with an imme
diate right shift amount. The assemblier of the preferred
embodiment requires the programmer form the quantity
32-n on register based shifts.
0355 Once the accommodation for right rotation is
made, the unsigned shift right works the same as the shift left

US 2008/0077771 A1

except that arithmetic logic unit 230 performs a different
function. This operation includes rotation by the quantity
32-n via barrel rotator 235. The result of this net rotate right
will to have bits wrapped around from the least significant
to the most significant part of the word. The same quantity
(32-n) controls mask generator 239, which will generate
32-n right justified ones. Mask generator 239 is controlled
with the “” option so that a shift amount of Zero produces
a mask of all “1s’. In this case no bits are to be stripped off.
Arithmetic logic unit 230 then forms a Boolean combination
of the outputs of barrel rotator 235 and mask generator 239.
0356. An example of an unsigned right shift operation is
shown below. The assemblier notation for an unsigned right
shift is:

Unsigned Right Shift=Input>>u(32-Shift Amount)

0357 The equivalent operation explicitly showing the
functions performed is:

Unsigned Right Shift =
(Input\\(32-Shift Amount))&% (32-Shift Amount)

99 Note in the equation above the mask operator “% speci
fies that if the shift amount is zero, an all “1” mask will be
generated. The example below shows the unsigned shifting
the number Hex “53FFFFA7” right by 4 bit positions. The
original number in binary form is:

0358) 01 01 00111111111111111111 10100111
This number when left rotated by 32-4=28 places

becomes:

0359) 01110101 00111111111111111111 1010
Mask generator 239 forms a mask from the input 32-4=

28, which is:

0360 0000 1111111111111111 1111 11111111
Lastly arithmetic logic unit 230 forms the Boolean com

bination B&C yielding the result:

0361 0000 01.01 001111111111111111111010
0362 Data unit 110 may perform either unsigned right
shift and add or unsigned right shift and Subtract operations.
In the preferred embodiment the assemblier translates the
notation A+B>>u(n) into an instruction that controls barrel
shifter 235, mask generator 239 and arithmetic logic unit
230 to performed an unsigned right shift and add operation.
The unsigned shift right and add works identically to the
previous example of a simple unsigned shift right except that
arithmetic logic unit 230 performs the function A+(B&C). In
the preferred embodiment the assemblier translates the nota
tion A-B>>u(n) into an instruction that controls barrel
shifter 235, mask generator 239 and arithmetic logic unit
230 to performed an unsigned right shift and subtract
operation. The unsigned shift right and Subtract works
similarly to the previous example of a simple unsigned shift
right except that arithmetic logic unit 230 performs the
function A-(-BC)+1. As with left shift and subtract the
“+1 operation involves injection of a “1” carry-in into the
least significant bit via bit 0 carry-in generator 246.

39
Mar. 27, 2008

0363 The assemblier of the preferred embodiment can
control data unit 110 to perform a signed right shift with sign
bits shifted in from the left in a single arithmetic logic unit
cycle. The assembler will automatically make the 32-n
computation for such shifts with an immediate right shift
amount. Data unit 110 includes hardware that detects that
state of the most significant bit, called the sign bit, of the
input into barrel rotator 235. This sign bit may control the 4
least significant bits of the function code. When using this
hardware, the 4 least significant bits of the function code are
inverted if the sign bit is “0”. Signed right shift operations
use this sign detection hardware to control the function
arithmetic logic unit 230 performs based on the sign of the
input to barrel rotator 235. This operation can be explained
using the following elemental functions. Barrel rotator 235
performs a net rotate right by rotating left by 32 minus the
number of bits of the desired signed right shift (32-n). This
shift amount (32-n) is supplied to mask generator 237, which
will thus generate 32-n right justified “1s'. The “1s' of this
mask will select the desired bits of the number that is right
shifted. The “O’s” of this mask will generate sign bits equal
to the of the most significant bit input to barrel rotator 235.
Arithmetic logic unit 230 then combines the rotated number
from barrel rotator 235 and the mask from mask generator
237. The Boolean function performed by arithmetic logic
unit 230 depends upon the sign bit at the input to barrel
rotator 235. If this sign bit is “0”, then arithmetic logic unit
230 receives function signals to perform B&C. While select
ing the rotated number unchanged, this forces “0” any bits
that are “O'” in the mask. Thus the most significant bits of the
result are “0” indicating the same sign as the input to barrel
rotator 235. If the sign bit is “1, then arithmetic logic unit
230 received function signal to perform B-C. This function
selects the rotated amount unchanged while forcing to “1”
any bits that are “O'” in the mask. The change in function
code involves inverting the 4 least significant bits if the
detected sign bit is “0”. Thus the most significant bits of the
result are “1”, the same sign indication as the input to barrel
rotator 235.

0364 Two examples of the unsigned right shift operation
are shown below. Signed right shift is the default assemblier
notation for right shifts. The two permitted assemblier
notations for a signed right shift are:

Signed Right Shift = Input>>s(32-Shift Amount)
Signed Right Shift = Input>>(32-Shift Amount)

Because this operation uses the sign detection hardware,
there is no explicit way in the notation of the preferred
embodiment of the assemblier to specify this operation in
terms of rotation and masking. In the preferred embodiment
the sign of the input to barrel rotator 235 controls inversion
of the function signals F3-F0. The first example shows a 4
place signed right shift of the negative number Hex
“ECFFFFA7”. The original number in binary notation is:

0365) 1110 1100 1111111111111111 10100111
Left rotation by 28 (32-4) places yields:
0366 01 11 1110 1100 1111111111111111 1010
Mask generator 237 forms this mask:
0367 0000 1111111111111111111111111111

US 2008/0077771 A1

Because the most significant bit of the input to barrel
rotator 235 is “1”, arithmetic logic unit 230 forms the
Boolean combination of B-C. This yields the result:

0368 11111110 1100 11111111 1111 1111 1010
In this example “1’s are shifted into the most significant

bits of the shifted result, matching the sign bit of the
original number. The second example shows a 4 place
signed right shift of the positive number Hex
“5CFFFFA7”. The original number in binary notation
1S

0369) 0101 1100 1111111111111111 10100111
Left rotation by 28 (32-4) places yields:

0370) 01110101 1100 1111111111111111 1010
Mask generator 237 forms this mask:

0371 0000 1111111111111111111111111111
Because the most significant bit of the input to barrel

rotator 235 is “0”, arithmetic logic unit 230 forms the
Boolean combination of B&C by inversion of the four
least significant bits of the function code. This yields
the result:

0372 0000 01.01 1100 11111111111111111010
Note that upon this right shift “0’s” are shifted in the most

significant bits, matching the sign bit of the original
number.

0373) Data unit 110 may perform either signed right shift
and add or signed right shift and Subtract operations. In the
preferred embodiment the assemblier translates the nota
tions A+B>>(n) or A+B>>S(n) into an instruction that con
trols barrel rotator 235, mask generator 239 and arithmetic
logic unit 230 to perform a signed right shift and add
operation. The signed shift right and add works identically
to the previous example of the signed shift right except for
the function performed by arithmetic logic unit 230. In the
signed right shift and add operation arithmetic logic unit 230
performs the function A+(B&C) if the sign bit of the input
to barrel rotator 235 is “0”. If this sign bit is “1”, then
arithmetic logic unit 230 performs the function A+(B-C). In
the preferred embodiment the assemblier translates the nota
tions A-B>>S(n) or A-B>>(n) into an instruction that con
trols barrel shifter 235, mask generator 239 and arithmetic
logic unit 230 to perform a signed right shift and subtract
operation. The signed shift right and Subtract operation
works similarly to the previous example of a simple signed
shift right except for the function of arithmetic logic unit
230. When the sign bit is “1”, arithmetic logic unit 230
performs the function A-(B&C)+1. When the sign bit is “0”.
arithmetic logic unit 230 performs the alternate function
A-(B-C)+1. As in the case of left shift and subtract the "+1”
operation involves injection of a “1” carry-in into the least
significant bit via bit 0 carry-in generator 246.
0374 Barrel rotator 235, mask generator 237 and arith
metic logic unit 230 can perform field extraction in a single
cycle. A field extraction takes a field of bits in a word starting
at any arbitrary bit position, strips off the bits outside the
field and right justifies the field. Such a field extraction is
performed by rotating the word left the number of bits
necessary to right justify the field and masking the result of

40
Mar. 27, 2008

the rotation by the number of bits in the size of the field.
Unlike the cases for shifting, the rotation amount, which is
based on the bit position, and the mask input, which is based
on the field size, are not necessarily the same amount. The
assemblier of the preferred embodiment employs the fol
lowing notation for field extraction:

Field Extract=(ValueW(32-starting bit))&%lField size

The “% operator causes mask generator 237 to form a
mask having a number of right justified “1s' equal to the
field size, except for an input of Zero. In that case all bits of
the generated mask are “1”. So that no bits are masked by the
logical AND operation. This rotation and masking may
produce wrapped around bits if the field size is greater than
the starting bit position. These parameters specify an anoma
lous case in which the specified field extends beyond the end
of the original word. Data unit 110 provides no hardware
check to for this case. It is the responsibility of the pro
grammer to prevent this result. The example below demon
strates field extraction of a 4-bit field starting at bit 24, which
is the eight bit from the left, of the number Hex
“5CFFFFA7”. The number in binary form is:

0375 01.01 1100 1111111111111111 10100111
The number must be rotated left by 32-24 or 8 bits to right

justify the field. The output from barrel rotator 235 is:
0376) 1111111111111111101001110101 1100
Mask generator 237 forms the following mask from the

field size of 4 bits:

0377 0000 0000 0000 0000 0000 0000 0000 1111
Lastly, arithmetic logic unit 230 forms the Boolean com

bination B&C. This produces the extracted field as
follows:

0378) 0000 0000 0000 0000 0000 0000 0000 1100
0379 Mflags register 211 is useful in a variety of image
and graphics processing operations. These operations fall
into two classes. The first class of Mflags operations require
a single pass through arithmetic logic unit 230. A number is
loaded into Mflags register 211 and controls the operation of
arithmetic logic unit 230 via expand circuit 238, multiplexer
Cmux 233 and the C-port of arithmetic logic unit 230. Color
expansion is an example of these single pass operations. The
second class of Mflags operations require two passes
through arithmetic logic unit 230. During a first pass certain
bits are set within Mflags register 211 based upon the carry
of Zero results of arithmetic logic unit 230. During a second
pass the contents of Mflags register 211 control the operation
of arithmetic logic unit 230 via expand circuit 238, multi
plexer Cmux 233 and the C-port of arithmetic logic unit 230.
Such two pass Mflags operations are especially useful when
using multiple arithmetic. Numerous match and compare,
transparency, minimum, maximum and Saturation opera
tions fall into this second class.

0380 A basic graphics operation is the conversion of one
bit per pixel shape descriptors into pixel size quantities. This
is often called color expansion. In order to conserve memory
space the shape of bit mapped text fonts are often stored as
shapes of one bit per pixel. These shapes are then
“expanded into the desired color(s) when drawn into the
display memory. Generally “1s” in the shape descriptor
select a “one color” and “O’s' in the shape descriptor select

US 2008/0077771 A1

a "zero color. A commonly used alternative has “O’s' in the
shape descriptor serving as a place saver or transparent
pixel.
0381. The following example converts 4 bits of such
shape descriptor data into 8 bit pixels. In this example the
data size of the multiple arithmetic operation is 8 bits. Thus
arithmetic logic unit 230 operates in 4 independent 8 bit
sections. The four bits of descriptor data “0110” are loaded
into Mflags register 211:

0382 XXXXXXXX XXXXXXXX XXXXXXXX XXXX0110
The bits listed as 'X' are don't care bits that are not

involved in the color expansion operation. Expand
circuit 238 expands these four bits in Mflags register
211 into blocks of 8 bit “1s’ and “O’s as follows:

0383) 00000000 1111111111111111 00000000
The one color is supplied to the A-port of arithmetic logic

unit 230 repeated for each of the 4 pixels within the 32
bit data word:

0384) 11110000 11110000 11110000 11110000
The Zero color is supplied to the B-port of arithmetic logic

unit 230, also repeated for each of the 4 pixels:
0385) 10101010 10101010 1010101010101010
Arithmetic logic unit 230 forms the Boolean combination
(A&C)(B&-C) which yields:

0386) 1010101011110000 11110000 10101010
0387 Color expansion is commonly used with a PixBlt
algorithm. To perform a complete PixBlt, the data will have
to be rotated and merged with prior data to align the bits in
the data to be expanded with the pixel alignment of the
destination words. Barrel rotator 235 and arithmetic logic
unit 230 can align words into Mflags register 211. This
example assumed that the shape descriptor data was prop
erly aligned to keep the example simple. Note also that
Mflags register 211 has its own rotation capability upon
setting bits and using bits. Thus a 32 bit word can be loaded
into Mflags register 211 and the above instruction repeated
8 times to generate 32 expanded pixels.
0388 Simple color expansion as in the above example
forces the result to be one of two solid colors. Often,
particularly with kerned text letters whose rectangular boxes
can overlap, it is desirable to expand “1s' in the shape
descriptor to the one color but have “O’s serve as place
saver or transparent pixels. The destination pixel value is
unchanged when moving such a transparent color. Data unit
110 can perform a transparent color expand by simply using
a register containing the original contents of the destination
as the Zero value input. An example of this appears below.
Arithmetic logic unit 230 performs the same function as the
previous color expansion example. The only difference is the
original destination becomes one of the inputs to arithmetic
logic unit 230. The four bits of descriptor data “0110” are
loaded into Mflags register 211:

0389 XXXXXXXX XXXXXXXX XXXXXXXX XXXX0110
Expand circuit 238 expands these four bits in Mflags

register 211 into blocks of 8 bit “1s” and “0’s” as
follows:

0390 00000000 1111111111111111 00000000

Mar. 27, 2008

The one color is supplied to the A-port of arithmetic logic
unit 230 repeated for each of the 4 pixels within the 32
bit data word:

0391) 11110000 11110000 11110000 11110000
The original destination data is supplied to the B-port of

arithmetic logic unit 230, original destination data
including 4 pixels:

0392) 11001100 1010101011101110 11111111
Arithmetic logic unit 230 again forms the Boolean com

bination (A&C)(B&-C) which yields:
0393) 11001100 11110000 11110000 11111111
Note that the result includes the one color for pixels

corresponding to a “1” in Mflags register 211 and the
original pixel value for pixels corresponding to a “0” in
Mflags register 211.

0394 Data unit 110 can generate a 1 bit per pixel mask
based on an exact match of a series of 8 bit quantities to a
fixed compare value. This is shown in the example below.
The compare value is repeated four times within the 32 bit
word. Arithmetic logic unit 230 subtracts the repeated com
pare value from a data word having four of the 8 bit
quantities. During this subtraction, arithmetic logic unit 230
is split into 4 sections of 8 bits each. The Zero detectors 321,
322, 323 and 324 illustrated in FIG. 7 supply are data to be
stored in Mflags register 211. This example includes two
instructions in a row to demonstrate accumulating by rotat
ing Mflags register 211. Initially Mflags register 211 stores
don't care data:

0395 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
The first quantity for comparison is:

0396) 00000011 00001111 00000001 00000011
The compare value is "00000011”. This is repeated four

times in the 32 bit word as:

0397) 00000011 00000011 00000011 00000011
Arithmetic logic unit 230 subtracts the compare value

from the first quantity. The resulting difference is:
0398 00000000 00001100 11111110 00000000
This forms the following Zero compares “1001 that are

stored in Mflags register 211. In this example Mflags
register 211 is pre-cleared before storing the Zero
results. Thus Mflags register 211 is:

0399) 00000000 00000000 00000000 00001001
The second quantity for comparison is:

04.00 0000011111111100 00000011 00000000
The result of a second subtraction of the same compare

value is:

04.01 00000100 11111001 00000000 11111101
This forms the new zero compares "0010 that are stored

in Mflags register 211 following rotation of four places:

0402 00000000 00000000 00000000 10010010
Additional compares may be made in the same fashion

until Mflags register 211 stores 32 bits. Then the

US 2008/0077771 A1

contents of Mflags register 211 may be moved to
another register or written to memory.

Threshold detection involves comparing pixel values to a
fixed threshold. Threshold detection sets a 1 bit value
for each pixel which signifies the pixel value was
greater than or less than the fixed threshold. Depending
on the particular application, the equal to case is
grouped with either the greater than case or the less
than case. Data unit 110 may be programmed to from
the comparison result in a single arithmetic logic unit
cycle. Arithmetic logic unit 230 forms the difference
between the quantity to be tested and the fixed thresh
old. The carry-outs from each section of arithmetic
logic unit 230 are saved in Mflags register 211. If the
quantity to be tested I has the fixed threshold T sub
tracted from it, a carry out will occur only if I is greater
than or equal to T. As stated above, arithmetic logic unit
230 performs subtraction by two’s complement addi
tion and under these circumstances a carry-out indi
cates a not-borrow. Below is an example of this process
for four 8 bit quantities in which the threshold value is
"00000111'. Let four 8 bit quantities I to be tested be:

0403 00001100 00000001 00000110 00000111
The threshold value T repeated four times within the 32

bit word is:

0404 00000111 00000111 00000111 00000111
The difference is:

04.05 000001011111101011111111 00000000
which produces the following carry-outs "1001'. This

results in a Mflags register 211 of:
0406 XXXXXXXX XXXXXXXX XXXXXXXX XXXX1001
As in the case of match detection, this single instruction

can be repeated for new data with Mflags resister
rotation until 32 bits are formed.

0407 When adding two unsigned numbers, a carry-out
indicates that the result is greater than can be expressed in
the number of bits of the result. This carry-out represents the
most significant bit of precision of the result. Thus saving the
carry-outs in Mflags register 211 can be used to maintain
precision. These carry-out bits may be saved for later
addition to maintain precision. Particularly when used with
multiple arithmetic, limiting the precision to fewer bits often
enables the same process to be performed in fewer arith
metic logic unit cycles.
0408 Mflags operations of the second type employ both
setting bits within Mflags register 211 and employing bits
stored in Mflags register 211 to control the operation of
arithmetic logic unit 230. Multiple arithmetic can be used it
in combination with expands of Mflags register 211 to
perform multiple parallel byte or half-word operations.
Additionally, the setting of bits in Mflags register 211 and
expanding Mflags register 211 to arithmetic logic unit 230
are inverse space conversions that can be used in a multitude
of different ways.
04.09 The example below shows a combination of an 8
bit multiple arithmetic instruction followed by an instruction
using expansion to perform a transparency function. Trans
parency is commonly used when performing rectangular

42
Mar. 27, 2008

PixBlts of shapes that are not rectangular. The transparent
pixels are used as place saver pixels that will not affect the
destination and thus are transparent so the original destina
tion shows through. With transparency, only the pixels in the
Source that are not equal to the transparent code are replaced
in the destination. In a first instruction the transparent color
code is subtracted from the source and Mflags register 211
is set based on equal Zero. If a given 8 bit quantity matches
the transparent code, a corresponding “1” will be set in
Mflags register 211. The second instruction uses expansion
circuit 238 to expand Mflags register 211 to control selection
on a pixel by pixel basis of the source or destination.
Arithmetic logic unit 230 performs the function
(A&C)(B&-C) to make this selection. While this Boolean
function is performed bit by bit, Mflags register 211 has been
expanded to the pixel size of 8 and thus it selects between
pixels. The pixel source is:

0410 0000001101110011 00000011 00000001
The transparent code TC is "00000011”. Repeated 4 times

to fill the 32 bit word this becomes:

0411 00000011 00000011 00000011 00000011
The difference SRC-TC is:

0412 0000000001110000 00000000 11111110
which produces the Zero detection bits “1010'. Thus

Mflags register 211 stores:

0413 XXXXXXXX XXXXXXXX XXXXXXXX XXXX1010
In the second instruction, expand circuit 238 expands

Mflags register 211 to:
0414) 11111111 00000000 11111111 00000000
The original destination DEST is:
0415) 11110001 001100110111011111111111
The original source SRC forms a third input to arithmetic

logic unit 230. Arithmetic logic unit 230 then forms the
Boolean combination (DEST&(a)MF) (SRC&-(a)MF)
which is:

0416) 11110001 000100110111011 1 00000001
Note that the resultant has the state of the source where

the source was not transparent, otherwise it has the state
of the destination. This is the transparency function.

Data unit 110 can perform maximum and minimum
functions using Mflags register 211 and two arithmetic
logic unit cycles. The maximum function takes the
greater of two unsigned pixel values as the result. The
minimum function takes the lesser of two unsigned
pixel values as the result. In these operations the first
instruction performs multiple subtractions, setting
Mflags register 211 based on carry-outs. Thus for status
setting arithmetic logic unit 230 forms OP1-OP2. This
first instruction only sets Mflags register 211 and the
resulting difference is discarded. When performing the
maximum function the second instruction, arithmetic
logic unit 230 performs the operation
(OP1&(a)MF)|(OP2&-(a)MF). This forms the maxi
mum of the individual pixels. Let the first operand OP1
be:

0417 0000000111111110 00000011 00000100

US 2008/0077771 A1

and the second operand OP2 be:

0418 00000011 00000111 00000111 00000011
The difference OP1-OP2 is:

0419) 11111110 1111011111111100 00000000
This produces carry-outs (not-borrows) “0101 setting

Mflags register 211 as:

0420 XXXXXXXX XXXXXXXX XXXXXXXX XXXX0101
In the second instruction the four least significant bits in

Mflags register 211 are expanded via expand circuit
238 producing:

0421 00000000 11111111 00000000 11111111
Arithmetic logic unit 230 performs the Boolean function

(OP1&(a)MF)I(OP2&-(a)MF). This produces the
result:

0422) 0000001111111110 00000111 00000100
Note that each 8 bit section of the result has the state of

the greater of the corresponding sections of OP1 and
OP2. This is the maximum function. The minimum
function operates similarly to the maximum function
above except that in the second instruction arithmetic
logic unit 230 performs the Boolean function
(OP1&-(a)MF) (OP2&(a)MF). This Boolean function
selects the lesser quantity rather than greater quantity
for each 8 bit section.

Data unit 110 may also perform an add-with-saturate
function. The add-with-saturate function operates like a
normal add unless an overflow occurs. In that event the
add-with-saturate function clamps the result to all
“1s'. The add-with-saturate function is commonly
used in graphics and image processing to keep Small
integer results from overflowing the highest number
back to a low number. The example below shows
forming the add-with-saturate function using multiple
arithmetic on four 8 bit pixels in two instructions. First
the addition takes place with the carry-outs stored in
Mflags register 211. A carry-out of “1” indicates an
overflow, thus that sum should be set to all '1's', which
is the saturated value. Then expand circuit 238 expands
Mflags register 211 to control selection of the sum or
the saturated value. The first operand OP1 is:

0423) 0000000111111001 00000011 00111111
The second operand OP2 is:

0424) 11111111 00001011 000001110111111
Arithmetic logic unit 230 forms the sum OP1+OP2=
RESULT resulting in:

0425 00000000 00000100 0000101010111110
with corresponding carry-outs of “1100'. These are stored

in Mflags register 211 as:

0426 XXXXXXXX XXXXXXXX XXXXXXXX XXXX1100
In the second instruction expand circuit 238 expands the

four least significant bits of Mflags register 211 to:

0427) 1111111111111111 00000000 00000000

Mar. 27, 2008
43

Arithmetic logic unit 230 performs the Boolean function
RESULT(a)MF forming:

0428 1111111111111111 00001010 10111110

Note the result of the second instruction equals the sum
when the sum did not overflow and equals “11111111
when the sum overflowed.

0429 Data unit 110 can similarly perform a subtract
with-saturate function. The subtract-with-saturate function
operates like a normal Subtract unless an underflow occurs.
In that event the subtract-with-saturate function clamps the
result to all “O’s'. The subtract-with-saturate function may
also be commonly used in graphics and image processing.
The data unit 110 performs the subtract-with-saturate func
tion similarly to the add-with-saturate function shown
above. First the subtraction takes place with the carry-outs
stored in Mflags register 211. A carry-out of “O'” indicates a
borrow and thus an underflow. In that event the difference
should be set to all '0's', which is the saturated value. Then
expand circuit 238 expands Mflags register 211 to control
selection of the difference or the saturated value. During this
second instruction arithmetic logic unit 230 performs the
Boolean function RESULT&(a)MF. This forces the combi
nation to “O'” if the corresponding carry-out was “0”, thereby
saturating the difference at all “O’s”. On the other hand if the
corresponding carry-out was “1”, then the Boolean combi
nation is the same as RESULT.

0430 FIG. 27 illustrates in block diagram form the
construction of address unit 120 of digital image/graphics
processor 71 according to the preferred embodiment of this
invention. The address unit 120 includes: a global address
unit 610; a local address unit 620; a global/local multiplexer
control register GLMUX 631; a pair of Zero detectors 631
and 632; a multiplexer 641; four control circuits 642, 643,
653, 654; a global temporary address register GTA 651; a
local temporary address register LTA 652; a pair of address
unit arithmetic buffers 655 and 656; an instruction decode
logic 660; a global address port 121; and a local address port
122. As illustrated in FIG. 27, global/local address multi
plexer register GLMUX 630 is coupled to global port source
data bus GSrc 105 and to global port destination data bus
Gdst 107. Global/local address multiplexer register
GLMUX 630 is in the register space of digital image/
graphics processor 71 and may be written to or read from as
any other register. Global temporary address register GTA
651 is connected to global port source data bus Gsrc 105
only. Though global temporary address register GTA is
within the register space of digital image/graphics processor
71, the preferred embodiment allows reads from but not
writes to this register. An attempted write to global tempo
rary address register GTA 651 is ignored. Note that local
temporary address register LTA 652 is coupled to neither
global port source data bus GSrc 105 nor global port desti
nation data bus Gdst 107. This register is not within the
register space of digital image/graphics processor 71 and
cannot be accessed. As previously described each digital
image/graphics processor 71, 72, 73 and 74 includes both a
global data port and a local data port, which may operate
simultaneously. Separate global and local address units
allow generation of independent addresses for these inde
pendent data transfers. In addition, some combined
addresses are permitted as will be further described below.
Note that all the functions of address unit 120 are controlled

US 2008/0077771 A1

by instruction decode logic 660, which is responsive to the
instruction currently in the address pipeline stage via opcode
bus 133. The details of these control lines are omitted from
FIG. 27 for the sake of clarity. However, these control
functions are within the capability of one skilled in the art
from this description and the description of the instruction
word formats in conjunction with FIG. 43. Tables 25 and 26
detail the permitted addresses generated by the respective
global and local data ports of digital image/graphics pro
cessors 71, 72, 73 and 74. Table 25 indicates the permitted
data space addresses in hexadecimal according to the form
Hex “0000????”, where the range of the final four digits
“????' is shown in Table 25.

TABLE 25

Global Local Ports

Ports DIGP 71 DIGP 72 DIGP 73 DIGP 74

OOOO-3FFF OOOO-OFFF 1000-1FFF 2000-2FFF 3000-3FFF
8OOO-8FFF 8000-87FF 9000-97FF AOOO-A7FF BOOO-B7FF
9000-97FF
AOOO-A7FF
BOOO-B7FF

0431. In a similar fashion, Table 26 indicates the permit
ted parameter space addresses in hexadecimal according to
the form Hex "0100????", where the range of the final four
digits “????” is shown in Table 26.

TABLE 26

Global Local Ports

Ports DIGP 71 DIGP 72 DIGP 73 DIGP 74

OOOO-07FF OOOO-07FF 1000-17FF 2000-27FF 3000-37FF
1000-17FF
2000-27FF
3000-37FF

Tables 25 and 26 show the limitations on addressing of the
local data ports. As previously described, the global data
ports (G) of the four digital image/graphics processors 71,
72, 73 and 74 may address any location within a data
memory or a parameter memory. At the same time the local
data ports (L) of each digital image/graphics processor 71,
72, 73 and 74 may only address the data and parameter
memories corresponding to that digital image/graphics pro
CSSO.

0432 FIG. 28 illustrates in block diagram form the
construction of global address unit 610. In accordance with
the preferred embodiment, local address unit 620 is con
structed identically. Global address unit 610 includes: a set
of address registers 611; a set of index registers 612:
multiplexers 613 and 616; an index scaler circuit 614; and an
addition/subtraction unit 615. According to the preferred
embodiment the addresses include 32 bits, therefore address
registers 611 and index registers 612 store data words of 32
bits and addition/subtraction unit 615 operates on data words
of 32 bits.

0433 Table 27 lists the address register assignments.
Note that address registers 611 are coupled to both global
port source data bus GSrc 105 and global port destination

44
Mar. 27, 2008

data bus Gdst 107. These connections allow register loads
from memory, register stores to memory, and register to
register data transfer with other registers within that digital
image/graphics processor, such as data registers 200 within
data unit 110. Various uses of these connections will be
described below.

TABLE 27

Address
Register Register Assignment

AO Local address unit
AO Local address unit
A2 Local address unit
A3 Local address unit
A4 Local address unit
AS reserved
A6 Global Local address units

shared Stack pointer
A7 Local address unit

read only, all Zeros
A8 Global address unit
A9 Global address unit
A1O Global address unit
A11 Global address unit
A12 Global address unit
A13 reserved
A14 Global Local address units

shared Stack pointer
A15 Global address unit

read only, all Zeros

Address registers A0, A1, A2, A3 and A4 are within local
address unit 620 and are available for general use. Address
register A5 is not supported in the current embodiment, but
its address is reserved for future expansion of the local
address unit 620. Address registers A8, A9, A10, A11 and
A12 are within global address unit 620 and are available for
general use. Address register A13 is not supported in the
current embodiment, but its address is reserved for future
expansion of the global address unit 610. Address registers
A6 and A14 are embodied by a single register accessible by
local address unit 620 at address A6 and by address unit 610
at address A14. This combined register A14/A6 will gener
ally be used as a stack pointer. Note that stack operations are
only allowed on aligned 32 bit word boundaries. Conse
quently the two least significant bits of combined register
A14/A6 are hardwired to “00. Writing to these two bits has
no effect and they are always read as "00". Registers A7 and
A15 are also embodied by the same hardware and both
global address sun-unit 610 and local address unit 620 may
use this combined register in the same instruction. Register
A7 is accessible to local address unit 620 and register A15
is accessible to global address unit 610. Combined register
A15/A7 is hardwired to all “0’s”. Writing to either of these
two registers has no effect and they are always read as all
“O’s”. In the preferred embodiment these two registers are
embodied by the same hardware accessible at differing
addresses.

0434 Table 28 lists the index register assignments. Index
registers 612 are coupled to both global port source data bus
Gsrc 105 and global port destination data bus Gdst 107.
These connections permits register loads from memory,
register stores to memory, and register to register data
transfer with other registers within that digital image/graph
ics processor, such as data registers 200 within data unit 110.
Various uses of these connections will be described below.

US 2008/0077771 A1

TABLE 28

Index
Register Register Assignment

XO Local address unit
X1 Local address unit
X2 Local address unit
X3 reserved
X4 reserved
X5 reserved
X6 reserved
X7 reserved
X8 Global address unit
X9 Global address unit
X10 Global address unit
X11 reserved
X12 reserved
X13 reserved
X14 reserved
X15 reserved

Index registers X0, X1 and X2 are within local address unit
620 and are available for general use. Index registers X3.
X4, X5, X6 and X7 are not supported in the current
embodiment, but their addresses are reserved for future
expansion of the local address unit 620. Index registers X8.
X9 and X10 are within global address unit 620 and are
available for general use. Index registers X1, X12, X13, X14
and X15 are not supported in the current embodiment, but
their addresses are reserved for future expansion of the
global address unit 610.
0435 Global address unit 610 generates a 32 bit address.
Either an index stored in a specified index register within
index registers 612 or an offset field from the instruction
word is selected at multiplexer 613. This selection is con
trolled by the instruction via instruction decode logic 660
(FIG. 27). Multiplexer 613 also selects the size of the offset
field again based on the instruction. As will be further
discussed below, global address unit 610 may receive a 15
bit offset field or a 3 bit offset field. Whether the offset field
is 15 bits or 3 bits, this value is Zero extended to 32 bits
before use.

0436 Index scaler 614 optionally left shifts the data
selected by multiplexer 613. This optional left shift is
selected by a scaled/unscaled input that corresponds to the
function of the instruction. This left shift is 0, 1 or 2 bits
depending on the indicated data size. As previously
described the pixel data may be specified as 8 bits (byte), 16
bits (half word) or 32 bits (word). If scaling is selected, then
the data is left shifted with Zero filling 0 bit places for byte
data, 1 bit place for half word data and 2 bit places for word
data. Since no scaling ever occurs for byte data transfers, the
instruction word bit specifying scaling is available for other
purposes. In the preferred embodiment this instruction word
bit is used as an additional offset bit. Thus if the data size is
8 bits, the instruction can supply a 16 bit offset index rather
than a 15 bit offset index or a 4 bit offset index rather than
a 3 bit offset index. This address index scaling feature
permits addressing that is independent from the data size.
This feature is useful in certain applications such as look up
table operations.

0437 Addition/subtraction unit 615 receives a base
address from an address register selected by the instruction
and the index. The instruction selects either addition of the

45
Mar. 27, 2008

index to the base address or subtraction of the index from the
base address. The resultant forms one input to multiplexer
616. The base address from the selected address register
forms the other input to multiplexer 616. Multiplexer 616
selects one of these addresses depending on whether the
instruction specifies pre-indexing or post-indexing. If the
instruction specifies pre-indexing, then the resultant of addi
tion/subtraction unit 615 is selected by multiplexer 616 as
the output address. If the instruction specified post-indexing,
then the base address from address registers 611 is selected
by multiplexer 616 as the output address.
0438. The modified address may be written into the
selected address register. In pre-indexing, then instruction
selects whether to write the modified address into the source
address register within address registers 611. In post-index
ing, then the modified address is always written into the
Source address register within address registers 611. In the
preferred embodiment, the instruction word specifies one of
12 modes for each of the global address unit 610 and the
local address unit 620. These twelve modes include: pre
addition of an offset index without base address modifica
tion; pre-addition of an offset index with base address
modification; post-addition of an offset index with base
address modification; pre-subtraction of an offset index
without base address modification; pre-subtraction of an
offset index with base address modification; post-subtraction
of an offset index with base address modification; pre
addition from an index register without base address modi
fication; pre-addition from an index register with base
address modification; post-addition from an index register
with base address modification; pre-subtraction from an
index register without base address modification; pre-Sub
traction from an index register with base address modifica
tion; and post-Subtraction from an index register with base
address modification.

0439 Special read only Zero value address registers A15/
A7 permit special functions. Specification of the corre
sponding one of these registers as the Source of the base
address converts the index address into an absolute address.
Specification of one of these Zero value address registers
may also load an offset index.
0440 Hardware associated with each address unit per
mits specification of the base address of the data memories
and the parameter memory corresponding to each digital
image/graphics processor. This specification occurs employ
ing two pseudo address registers. Specification of “PBA as
the address register produces the address of the parameter
memory corresponding to that digital image/graphics pro
cessor. The parameter memory base address register of each
digital image/graphics processor permanently stores the
base address of the corresponding parameter memory. The
parameter memory 25 corresponds to digital image/graphics
processor 71, parameter memory 30 corresponds to digital
image/graphics processor 72, parameter memory 35 corre
sponds to digital image/graphics processor 73, and param
eter memory 40 corresponds to digital image/graphics pro
cessor 74. Specification of “DBA as the address register
produces the address of the base data memory corresponding
to that digital image/graphics processor. The data memory
22 includes the lowest address corresponding to digital
image/graphics processor 71, data memory 27 includes the
lowest address corresponding to digital image/graphics pro
cessor 72, data memory 32 includes the lowest address

US 2008/0077771 A1

corresponding to digital image/graphics processor 73 and
data memory 37 includes the lowest address corresponding
to digital image/graphics processor 74.

0441 These pseudo address registers may be used in
global address unit 610 and local address unit 620 and with
indices in any of the 12 permitted combinations of pre- and
post-addition or Subtraction, except that these may not be
address destinations. There are restrictions on the permitted
data transfers when using these pseudo address registers.
These are called pseudo address registers because no actual
address register corresponds to these designations. Instead
each address unit employs hardware in conjunction with an
identifier in a command register (to be later described) to
produce the required address.

0442. The particular addresses for the preferred embodi
ment of this invention are listed below in Table 29. The
pseudo address register PBA produces an address of the
form Hex"0100H000 and the pseudo address register DBA
produces an address of the form Hex "0000+000, where it
is the digital image/graphics processor number.

TABLE 29

Digital
Image? Parameter Data
Graphics Memory Memory
Processor Base Base
Number Address Address

O O1 OOOOOO OOOOOOOO
1 O1 OO1OOO OOOO1OOO
2 O10O2OOO OOOO2OOO
3 O10O3OOO OOOO3OOO

0443) These pseudo address registers are advantageously
used in programs written independent of the particular
digital image/graphics processor. These pseudo address reg
isters allow program specification of addresses that corre
spond to the particular digital image/graphics processor.
Thus programs may be written which are independent of the
particular digital image./graphics processor executing the
programs.

0444 Referring back to FIG. 27, address unit 120 forms
respective addresses on global address port 121 and local
address port 122. In the least complex case, the global
address generated by global address unit 610 passes through
multiplexer 641 and is stored in global temporary address
register GTA 651. Global address port 121 passes this
address together with byte strobe, read/write and select
signals to crossbar 50. Similarly the local address generated
by local address unit 620 is stored in local temporary address
register LTA 652 for supply to crossbar 50 via local address
port 122 together with accompanying byte strobe, read/write
and select signals. Global temporary address register 651
and local temporary address register 652 hold the generated
addresses for reuse in case of crossbar contention. This is
more convenient than recomputing the address for reuse
because the possibility of address register modification
would require conditional recomputation.

0445 Sometimes an address generated by local address
unit 620 passes to crossbar 50 via global address port 121
rather than by local address port 122. Control circuit 654
determines if the address generated by local address unit 620

46
Mar. 27, 2008

is a legal local address. Note that the local ports may only
address the corresponding data or parameter memory. If
local address unit 620 generates an address outside its
permitted range, and no global port access is specified, then
control circuit 654 signals control circuit 642 to cause
multiplexer 641 to select the local address generated by local
address unit 620. This address is then stored in global
temporary address register GTA 651. If a global port access
is specified, this is serviced first and then control circuit 654
signals control circuit 642 to cause multiplexer 641 to select
the address stored in local temporary address register LTA
652. In either case global temporary address register GTA
653 supplies the address to the global address port 121.
0446 Global/local address multiplexer register GLMUX
630 permits a single address to be formed from parts of the
addresses generated by global address unit 610 and local
address unit 620. This is known as XY patching that forms
a patched address. Global/local address multiplexer register
GLMUX 630 is coupled to both global port source data bus
Gsrc 105 and global port destination data bus Gdst 107 and
can be accessed within the register space of digital image/
graphics processor 71. Global/local address multiplexer
register GLMUX 630 includes 30 bits. For each bit position
of global/local address multiplexer register GLMUX 630 a
“1” selects the corresponding bit from global address unit
610 and a “0” selects the corresponding bit from local
address unit 620. Global/local address multiplexer register
GLMUX 630 signals control circuit 642 to make the corre
sponding bit selections within multiplexer 641. The patched
address from multiplexer 641 is stored in global temporary
address register GTA 651 for application to global address
port 121 in the manner previously described.
0447. In the preferred embodiment XY patched address
ing only Supports post-indexing due to speed considerations.
Note that XY patch address selection must occur following
address generation by both global address unit 610 and local
address unit 620. Thus XY patch address selection takes
more time than normal addressing. Limiting XY patch
addressing to post-indexing insures that this address is
available not later than other addresses. Note that if the
timing of this address generation is not an problem, then XY
patch addressing may support all the address modes listed in
Tables 45 and 47.

0448. When executing an instruction calling for global/
local address multiplexing, the instruction can specify XY
patch detection. XY patch detection determines when the
address specified by the global or local address unit is
outside a defined boundary or patch. A one bit patch option
field in the instruction word (bit 34) enables XY patch
detection. If this patch option field is “1”, then specified
operations are performed when the generated address is
outside the XY patch. If this patch option field is “0”, then
these specified operations are performed if the generated
address is inside the XY patch. Zero detectors 631 and 632
perform the patch detection. Zero detector 631 masks the
global port address generated by global address unit 610
with the contents of global/local address multiplexer register
630. If this masked address is non-zero, then the global
address from global address unit 610 includes a “1” in a data
position assigned to local address unit 620. This indicates
the global address is outside the patch. Similarly Zero
detector 633 masks the local port address generated by local
address unit 620 with the inverse of the contents of global/

US 2008/0077771 A1

local address multiplexer register GLMUX 630. If this
masked address is non-zero, then the local address is outside
the patch. The logical OR of these two outputs indicates
whether the patched address is inside or outside the patch.
0449 The instruction word specifies alternative actions
to be taken based upon whether the patched address is inside
or outside the patch. A conditional access one bit field
specifies conditional memory access. If this conditional
access field is '1', then memory access is unconditional and
is performed whether the address is inside or outside the XY
patch. If the conditional access field is “0”, then the memory
access, either a load or a store, is conditional based upon the
state of the patch option field. An interrupt one bit field
indicates whether to issue an interrupt upon patch detection.
When the interrupt field is “1”, address unit 120 issues an
interrupt upon patch detection in the sense specified by the
patch option field. When the interrupt field is “0”, no
interrupt issues regardless of patch detection.
0450. These XY patched address modes have several
uses. A display screen can be addressed in rows and columns
by segregating the address between global address unit 610
and local address unit 620. Thus the name XY patch
addressing. The conditional memory accessing or interrupt
generation can then signal branch operations for window
clipping. It is also feasible to use this addressing mode in
Software "pseudo data caching to detect cache hit or cache

1SS.

0451 Control circuits 653 and 654 control interface
between data unit 120 and crossbar 50. Each unit generates
byte strobe signals, a read/write signal and select signals.
These signals control the data transfer operation. In addition
each control circuit 653 and 654 receives from crossbar 50
a grant signal. Receipt of this grant signal indicates that the
contention circuits of crossbar 50 have granted access to the
corresponding port. This could be either because there is no
contention for memory access or any memory access con
tention has been resolved by granting access to the corre
sponding port. Upon retry after an access failure due to
memory contention, these signals are reconstituted from the
instruction word stored in the instruction register-address
stage IRA 751 and the generated address stored in either
global temporary address register GTA 651 or local tempo
rary address register LTA 652.
0452. The byte strobe signals handle the cases for writing
data less than 32 bits wide. The data size for data transfers
of byte (8bits), half-word (16 bits) or word (32 bits) is set
by the instruction. If the data size is 8 bits, then the data is
replicated 4 times to fill a 32 bit word. Similarly if the data
size is 16 bits, this data is duplicated to fill 32 bits. There are
four byte strobe signals corresponding to the four bytes in
the 32 bit data word. Each of these four byte strobes may be
active (“1”) indicating write that byte or inactive ("0")
indicating do not write that byte. The byte strobes are set
according to the 2 least significant bits (bits 1-0) of the
generated address and the current endian mode.
0453 The endian mode indicates the byte order
employed in multi-byte data. FIG. 29a illustrates the byte
order within a 32 bit data word according to the little endian
mode. In the little endian mode the least significant byte has
a byte address of “0” and the most significant byte has a byte
address of “3”. FIG. 29b illustrates the byte order within a
32 bit data word according to the big endian mode. In the big

47
Mar. 27, 2008

endian mode the most significant byte has a byte address of
“0” and the least significant byte has a byte address of “3.
Master processor 60 sets the endian mode, which is not
expected to change dynamically. Note that the bit order
within bytes does not change based upon the endian mode.
The convention forbit order within bytes would generally be
set by the connections between the external data bus of
transfer controller 80 and the host data bus. Table 30 lists the
byte strobes for the various combinations of address bits 1-0.
data size and the endian mode.

TABLE 30

Address Little Endian Big Endian
bits Data size in bits Data size in bits

1 O 8 16 32 8 16 32

O O OOO1 OO11 1111 1OOO 11 OO 1111
O 1 OO10 OO11 1111 O1OO 11 OO 1111
1 O O1 OO 1100 1111 OO10 OO11 1111
1 1 1OOO 1100 1111 OOO1 OO11 1111

As indicated in Table 30, if the two least significant address
bits are “00', and the data size is 8 bits, then the last byte
strobe for bits 7-0 is active in the little endian mode and the
first byte strobe for bits 31-24 is active in the big endian
mode. When the data size is less than 32 bits, a write cycle
is accomplished by a read-modify-write operation. The byte
strobes determine the bytes modified by the data to be
written into memory. As previously described, it is techni
cally feasible to support data sizes of 4 bits, 2 bits and 1 bit
besides the data sizes noted above. Those skilled in the art
would understand how to extend the byte strobe concept
explained above to Support these other data sizes.
04.54 Each control circuit 653 and 654 generates a read/
write signal. The read/write signal indicates that the memory
access is a memory read or memory write operation. A single
bit field in the instruction field for each active port indicates
whether the data transfer is a load operation, which is a
memory read, or a store operation, which is a memory write.
Control circuits 653 and 654 generate the corresponding
read/write signal to crossbar 50 based upon the correspond
ing single bit field in the instruction word.
0455 Each control circuit 653 and 654 generates two
strobe signals. An active data-space select signal indicates
that the memory transfer is to data memory. An active
parameter-space select signal indicates that the memory
transfer is to parameter memory. Neither select signal is
active during execution of an instruction not specifying a
data transfer operation via that port. Bit 24 of the generated
address controls these select signals due to the address
partitioning. The data-space select signal is active when bit
24 of the address is “0” and the parameter-space select signal
is active when bit 24 of the address is “1”.

0456 Global address unit 610 and local address unit 620
may be used for additional arithmetic operations. The use of
an address unit for arithmetic operations is called address
unit arithmetic. An address unit arithmetic operation may be
Substituted for any memory load operation. Any instruction
word with specifies data transfer operations includes a bit
that specifies whether the data transfer is a load (data transfer
from memory to a register) or a store (data transfer from a
register to memory). These instruction words also include a

US 2008/0077771 A1

bit that specifies whether the data is sign extended on load.
Sign extension fills the higher order bits of the data written
to the destination with the same state as the most significant
bit of the data in case the data size is less than 32 bits. The
otherwise meaningless combination of store with sign
extend enables address unit arithmetic. Rather than fetching
the memory data located at the address generated by the
address unit and storing it in the destination register, an
address unit arithmetic operation stores the calculated
address in the destination register. Buffer 655 supplies the
output from global temporary address register GTA 651 to
global port source data bus GSrc 105 for supply to a specified
destination register when the instruction word indicates sign
extend and a load operation. Similarly, buffer 656 supplies
the output from local temporary address register LTA 652 to
local port bus Lbus 103 for supply to a specified destination
register when the instruction word indicates sign extend and
a load operation. Under these conditions control circuits 653
and 654 do not generate their control signals to crossbar 50.
Thus the generated address is diverted from the address bus
of crossbar 50 to the corresponding digital image/graphics
processor data bus.
0457. Address unit arithmetic operations enable addi
tional parallel arithmetic operations. In the preferred
embodiment, each digital image/graphics processor 71, 72.
73 and 74 can perform a multiply and three additions in one
instruction. It is preferably also possible to perform a
multiply, two additions and a data transfer operation in
parallel in one instruction. All of the indexing, address
modification and offset operations available for the corre
sponding load operation are available during address unit
arithmetic. Thus an address unit arithmetic operation can
compute a result to be stored in the destination register while
also modifying a bass address register either by pre-incre
menting, post-incrementing, pre-decrementing or post-dec
rementing. An address unit arithmetic operation adding an
offset index to a Zero base address from address registers
A15/A7 can load an offset field in parallel with any data unit
operation. Address unit arithmetic operations can be per
formed conditionally in the same manner as conditional data
transfers. As in other conditional data transferS modification
of the base address register occurs unconditionally, only the
transfer of the result is conditional. The preferred embodi
ment also supports address unit arithmetic of patched
addresses. Like all other address computations address unit
arithmetic calculations occur in the address pipeline stage
and are written to the destination register during the execute
pipeline stage. Note that the “address' computed during an
address unit arithmetic operation is not checked for range.
This is because no actual memory access occurs when an
address unit arithmetic operation executes.
0458. Address unit arithmetic operations are best used to
reduce the number of instructions needed for a loop kernel
in a loop that is repeated a large number of times. Graphics
and image operations often require large numbers of repeti
tions of short loops. Often reduction of a loop kernel by only
a single instruction can greatly improve the performance of
the process.
0459 Data transfers between digital image/graphics pro
cessor 71 and memory 20 are made via data port unit 140.
Data port unit 140 handles data alignment, sign or Zero
extension and the like for data passing through. FIG. 30
illustrates details of this portion of buffer 147 illustrated in

48
Mar. 27, 2008

FIG. 3. Note that this same structure could also be used
within multiplexer buffer 143 of local data port 141. Data
from the crossbar data bus is divided into four data streams
of 8 bits each. Data alignment multiplexer 151 selects and
aligns the received data based upon the current data size,
endian mode and the two least significant bits of the gen
erated address. For a data size of 32 bits, no selection or
alignment is needed and the four 8 bit data streams pass
through data alignment multiplexer 151 unchanged. For a
data size of 16 bits, data alignment multiplexer 151 selects
either the most significant 16 bits or the least significant 16
bits for supply via the 16 least significant output bits. This
selection contemplates the current endian mode and address
bits 1-0. If address bit 1 is “0”, then data alignment multi
plexer 151 selects the least significant 16 bits in little endian
mode and the most significant bits in big endian mode. The
opposite selection is made if address bit 1 is “1”. Similarly,
if the data size is 8 bits, data alignment multiplexer 151
selects either bits 31-24, bits 23-16, bits 15-8 or bits 7-0
based upon the current endian mode and address bits 1-0.
0460 Once the data selection and alignment have been
made, sign/Zero extend multiplexer 152 provides sign or
Zero extension. For the case of 32 bit data, no sign or Zero
extend is made and the data passes through sign/Zero extend
multiplexer 152 unchanged. Bus drivers 153 then supply the
corresponding destination bus; global port data destination
bus Gdst 107 for the global port and local port data bus Lbus
103 for the local port. If the data size is 16 bits, then
sign/Zero extend multiplexer 152 passes data bits 15-0
unchanged. For this case data bits 31-16 are filled with “0”
if Zero extension is selected. Data bits 31-16 are sign
extended, that is filled with the state of bit 15, is sign
extension is selected. For 8 bit data, sign/Zero extend mul
tiplexer 152 passes bits 7-0 unchanged. Bits 31-8 are filled
with “0” if zero extension is selected and filled with the state
of bit 7 is sign extension is selected.
0461 This data selection, alignment, and sign or Zero
extension is available for register to register moves as well
as register loads from memory. For register to register moves
the instruction word includes a field that specifies a two bit
item number. This item number, treated as if in little endian
mode, substitutes for the address bits 1-0. In other respects
the circuit illustrated in FIG. 30 operates as just described.
0462 Data port unit 140 operates specially for local port
illegal addresses. Recall that each local port can only address
memories corresponding to that digital image/graphics pro
cessor. If the local address unit 620 generates an address
outside its permitted range, then this address is shunted to
global address port 121. If a global port access is also
specified for that instruction, this is serviced first and then
the local port access is serviced via global address port 121.
Under these conditions during a store operation data from
local data port bus Lbus 103 supplies buffer multiplexer 146,
which Supplies to the addressed memory location via global
data port 148. Similarly, when using the global port for a
local load operation buffer multiplexer 143 supplies the
received data from global data port 148 to local port data bus
Lbus 103.

0463 FIG. 31 illustrates in block diagram form program
flow control unit 130. Program flow control unit 130 per
forms all the operations that occur during the fetch pipeline
stage. Program flow control unit 130 controls: fetching

US 2008/0077771 A1

instruction words from the corresponding instruction cache;
instruction cache management including handshakes with
transfer controller 80; program counter modification by
branches, interrupts and loops; pipeline control, including
control over data unit 110 and address unit 120; synchroni
Zation with other digital image/graphics processors in Syn
chronized MIMD mode; and receipt of command words
from other processors. As illustrated in FIG. 31 program
flow control unit 130 includes the following registers: pro
gram counter PC 701; instruction pointer-address stage IPA
702; instruction pointer-execute stage IPE 703; instruction
pointer-return from subroutine IPRS 704; three loop end
registers LE2-LE0711, 712 and 713; three loop start regis
ters LS2-LS0721, 722 and 723; three loop counter registers
LC2-LC0731, 732 and 733; three loop reload registers
LR2-LR0741, 742 and 743; loop control register LCTL 705:
interrupt enable register INTEN 706; interrupt flag register
INTFLG 707; four cache tag registers TAG3-TAG0, collec
tively called cache tag registers 708; a read only CACHE
register 709; and a communications register COMM 781.
There are two sets of write only register addresses (LRS2
LRS0 and LRSE2-LRSEO) employed for fast hardware loop
initialization. These will be further discussed below.

0464) Program flow control unit 130 also includes an
instruction register-address stage IRA 751 and an instruction
register-execution stage IRE 752. These registers are not
user accessible and do not appear in the register space.
Instruction register-address stage IRA 751 contains the
instruction word for the current address pipeline stage.
Instruction register-execution stage IRE 752 contains the
instruction word for the current execute pipeline stage.
These registers control the operations during the respective
address and execute pipeline stages. The program flow
control unit 130 pushes the fetched instruction word located
at the address in program counter PC 701 into the instruction
register-address stage IRA 751. In addition, the pipeline
pushes the instruction word in the instruction register
address stage IRA 751 into the instruction register-execute
stage IRE 752 upon each pipeline stage advance.

0465 Program flow control unit 130 operates predomi
nantly in the Fetch pipeline. Since the program flow control
unit 130 contains the instruction register-address stage IRA
751 and instruction register-execute stage IRE 752, it
extracts and distributes control information needed by data
unit 110 and address unit 120 via opcode bus 133. Program
flow control unit 130 also controls the aligner/extractors on
the data port unit 140.

0466. The major task of program flow control unit 130 is
control of instruction fetch during the fetch pipeline stage.
The address of the next instruction word to be fetched is
stored in program counter PC 701. FIG. 32 illustrates
schematically the bits of program counter PC 701. In the
preferred embodiment of this invention, internal and exter
nal memory is byte addressable. That is, each address word
points to a byte (8bits) of data in memory. As explained in
detail below, each instruction word of digital image/graphics
processor 71 is a 64bit double word, which is 8 bytes. Since
these instruction words are aligned on even double word
boundaries, only 29 bits are necessary to specify any Such
instruction word. As illustrated in FIG. 32 bits 31-3 of
program counter PC 701 provide this 29 bit double word
address. During normal sequential instruction operation

49
Mar. 27, 2008

program flow control unit 130 increments bit 3 of program
counter PC 701 to address the next 64 bit instruction.

0467 Program counter PC 701 has two write register
addresses. Writing to program counter PC 701 executes a
subroutine call. The write alters program counter PC 701. At
the same time program flow control unit 130 causes the
previous contents of program counter PC 701 to be written
into instruction pointer-return from subroutine IPRS 704.
This enables a return instruction to reload program counter
PC 701 from instruction pointer-return from subroutine
IPRS 704. Writing to a different register address designated
branch BR executes a software branch. This write alters only
program counter PC 701 and instruction pointer-return from
subroutine IPRS 704 is unchanged.

0468. As noted above bits 2-0 of program counter PC 701
are not needed to specify instruction words. These otherwise
unused bits are employed to specify other things. These bits
include an “S” bit (bit 2), a “G” bit (bit 1) and an “L” bit (bit
0).
0469. The “S” bit (bit 2) indicates whether the digital
image/graphics processor 71 is in the synchronized MIMD
mode. As previously described, when in the synchronized
MIMD mode program control flow unit 130 inhibits fetching
the next instruction word until all synchronized processors
are ready to proceed. If the “S” bit is “1”, then the digital
image/graphics processor 71 is currently executing synchro
nized code. Note that the identity of the other digital
image/graphics processors synchronized to digital image/
graphics processor 71 is stored in the communications
register COMM
0470 781. Otherwise, digital image/graphics processor
71 will not wait for other digital image/graphics processors
to be ready before fetching the next instruction word.
Execution of a lock instruction (LCK) sets this “S” bit of
program counter PC 701 during the address pipeline stage to
enable synchronized MIMD mode. Execution of an unlock
(UNLCK) instruction clears this “S” bit during the address
pipeline stage thus disabling the synchronized MIMD mode.
Normal register writes to program counter PC 701 do not
change the state of this “S” bit.
0471) The “G” bit (bit 1) indicates whether global inter
rupts are enabled. When this “G” bit is “0”, the program flow
control unit 130 ignores all interrupt sources, except the
emulation trap. If this “G” bit is “1”, then program flow
control unit 130 responds to those interrupt sources indi
vidually enabled in interrupt enable register INTEN 706.
Execution of an enable interrupt instruction (EINT) sets this
“G” bit of program counter PC 701 during the address
pipeline stage to enable interrupts. Execution of a disable
interrupt instruction (DINT) clears this “G” bit during the
address pipeline stage of thereby disabling most interrupt
sources. Normal register writes to program counter PC 701
do not change the state of this “G” bit.

0472. The “L” bit (bit 0) indicates whether hardware loop
logic is enabled. This hardware loop logic will be fully
described below. If the “L” bit is “1”, then the hardware loop
logic is disabled. Otherwise, hardware loops are individually
enabled according to the loop control register LCTL 708.
Hardware loops are normally disabled via this “L” bit only
during the return sequence from an interrupt, because loops
are “unwrapped during the entry into an interrupt routine.

US 2008/0077771 A1

Normal register writes to program counter PC 701 do not
change the state of this “L” bit.
0473 FIG.33 illustrates schematically the bits of instruc
tion pointer-address stage IPA 702. This register is loaded
with the contents of program counter PC 701 upon each
pipeline stage advance. In the first two pseudo-instructions
of an interrupt, the “L” bit (bit 0) of instruction pointer
address stage IPA 702 is forced to “1” whatever the state of
this bit in program counter PC 701. The other bits of
program counter PC 701 are copied into instruction pointer
address stage IPA 702 without alteration. This register stores
the address of the instruction currently in the Address
pipeline stage.
0474 Instruction pointer-execute stage IPE 703 is loaded
with the contents of instruction pointer-address stage IPA
702 upon each pipeline stage advance. This register is useful
in relative program counter computations. Note that instruc
tion pointer-execute stage IPE 703 stores the address of the
instruction currently in the execute pipeline stage. Using this
register for relative program counter computations is better
than using program counter PC 701 due to the possibility of
branches, loops or interrupts and because no offset is
required.
0475 Instruction pointer-return from subroutine register
IPRS 704 Stores the Subroutine return address. FIG. 34
illustrates the bits of this register schematically. Instruction
pointer-return from subroutine register IPRS 704 is updated
with the address previously stored in program counter PC
701 incremented at bit 3 whenever software writes to
program counter PC 701. This is the address following the
second delay slot of the software branch. Thus, as implied by
the name, instruction pointer-return from Subroutine register
IPRS 704 stores the address for returns from subroutines.
Executing a return instruction loads the address stored in
instruction pointer-return from subroutine register IPRS 704
into program counter PC 701 during the execute pipeline
stage. Only bits 31-3 of instruction pointer-return from
subroutine register IPRS 704 are used. Bits 2-0 of program
counter PC 701 are not stored in instruction pointer-return
from subroutine IPRS 704 upon a software branch and these
bits are not read from instruction pointer-return from sub
routine IPRS 704 during restoration of program counter PC
701.

0476. The program flow control unit of each digital
image/graphics processor includes an instruction cache con
troller 760. This instruction cache controller 760 includes a
set of four cache tag registers TAG3-TAG0708, a least
recently used control circuit 761 and an address encoder
762. The instruction cache controller 760 controls a section
of memory dedicated to instruction caching for that digital
image/graphics processor. This instruction cache memory is
preferably 2K bytes in size. Instruction cache controller 760
treats the instruction cache memory as holding 256, 64 bit
instructions in one set with 4 blocks Supported by 4-way
least recently used operations. Each block has 4 sub-blocks
of 16 instructions. Thus each of the cache tag registers
TAG3-TAG0708 includes 4 “present” bits for a total of 16
“present” bits.

0477 FIG. 35 illustrates the fields of each cache tag
register TAG3-TAG0. The tag value field (bits 31-9) of each
of the tag registers holds a tag value. This tag value is the
virtual address of the start of the corresponding cache block

50
Mar. 27, 2008

in the instruction cache memory. Sub-block present bits (bits
8-5) of each cache tag register TAG3-TAG0 are associated
with the respective four sub-blocks 3-0 in the block to which
that cache tag register relates. Thus bit 8 represents the most
significant Sub-block and bit 5 represents the least significant
sub-block. The “LRU” field (bits 1-0) indicates how recently
the block was used. These bits are as defined in Table 31.

TABLE 31

LRU
bits Position in

1 O use stack

most-recently used
next-most recently used
next-least recently used
least recently used

Bits 4 to 2 of cache tag registers TAG3-TAG0708 are not
implemented. These bits are reserved for a possible exten
sion of the instruction cache memory to include additional
sub-blocks. Cache tag registers TAG3-TAG0708 appear in
the register map as listed in Tables 37 and 38.
0478 Instruction cache controller 760 of each digital
image/graphics processor 71, 72, 73 or 74 may be flushed by
master processor 60 or by the digital image/graphics pro
cessor itself. Note that a cache flush resets only the cache tag
registers TAG3-TAG0708 within program flow control unit
130 and does not clear data from the corresponding instruc
tion cache memory. An instruction cache flush is performed
by writing a cache flush command word to address register
A15 with the “1” bit (bit 28) set. Reset does not automati
cally flush the cache. An instruction cache flush causes the
cache tag value field to be set to the cache tag register's own
number (i.e., TAG3=3, TAG2=2, TAG1=1, TAG0=0), clears
all their present bits, and sets the LRU bits to the tag
register's own number (i.e., TAG3(LRU)="11.
TAG2(LRU)=“10, TAG1(LRU)="01" and TAGO(LRU)=
“00). Cache tag register TAG3 is thus the least-recently
used following a cache flush.
0479. Program flow control unit 130 compares corre
sponding bits of the address stored in program counter PC
701 to the cache tag registers TAG3-TAG0708 during each
fetch pipeline stage. This comparison yields either a cache
miss result or a cache hit result. A cache miss may be either
a block miss or a Sub-block miss. In a block miss the most
significant 23 bits of program counter PC 701 does not equal
the corresponding 23 bits of any of the cache tag registers
TAG3-TAG 0708. In this case, least recently used control
circuit 761 chooses the least recently used block to discard,
and clears all the present bits of the corresponding cache tag
register. In a Sub-block miss the most significant 23 bits of
program counter PC 701 matches the corresponding 23 bits
of one of the cache tag registers TAG3-TAG0708, but the
present bits (one of bits 8-5 of the tag register) indicating
presence of the sub-block corresponding to bits 8-7 of
program counter PC 701 is “0”. This means that one of the
cache tag registers TAG3-TAG 0708 is assigned that memory
block, but that the sub-block is not present within the
instruction cache.

0480. If either type of cache miss occurs, then program
flow control unit 130 requests transfer controller 80 to

US 2008/0077771 A1

service the instruction cache memory via an external access.
Program control flow unit 130 passes the external address
and the internal sub-block address to the transfer controller
80. Program flow control unit 130 signals transfer controller
80 the cache miss information via crossbar 50. Transfer
controller 80 services the cache miss by fetching the entire
sub-block of instructions including the address of the cur
rently sought instruction word. This block of instructions is
stored in the least recently used block within the instruction
cache memory 21, 26, 31 and 36 corresponding to the
requesting digital image/graphics processor 71, 72, 73 and
74, respectively. Program flow control unit 130 then sets the
proper values in the corresponding cache tag register TAG3
TAG0708. The instruction fetch operation is then repeated,
with a cache hit guaranteed.
0481 Cache miss information may be accessed by read
ing from the register in the register space at register bank
“1111 register number “000. This register is called the
CACHE register 709 in Table 38. Program flow control unit
130 provides 27 bits. These 27 bits are the 23 most signifi
cant address of program counter PC 701 (the tag bits) plus
2 sub-block bits from cache tag registers TAG3-TAG 0708
and two bits encoding the identity of the least-recently-used
block from least recently used control circuit 761. CACHE
register 709 is read only, any attempt to write to write to this
register is ignored. Thus CACHE register 709 is connected
to only global port source data bus GSrc bus 105 and not
connected to global port destination data bus Gdst 107.
0482 If a cache hit occurs, then the desired instruction
word is stored in the corresponding instruction cache. As
previously described, each instruction cache memory 21, 26.
31, 36 includes 2 K bytes. Since internal and external
memory is byte addressable in the preferred embodiment, 11
address bits are required. However, each instruction is
aligned with a 64 bit double word boundary and thus the
three least significant bits of an instruction address are
always “000'. The 2 most significant bits of the 11 bit
instruction address on instruction port address bus 131
correspond to the cache tag register TAG3-TAG0708 suc
cessfully matched with program counter PC 701. These
address bits 10-9 are encoded as shown in Table 32.

TABLE 32

Address Cache
bits tag

10 9 register

O O TAGO
O 1 TAG1
1 O TAG2
1 1 TAG3

The bits 8-3 of the instruction address on instruction port
address bus 131 are bits 8-3 of the 29 bit double word
address stored in program counter PC 701. The cache tag
comparison is made fast enough to output the 8 bit address
via the instruction port with an implied read signal from the
digital image/graphics processor to the corresponding
instruction cache memory. This retrieves the addressed 64
bit instruction word into instruction register-address stage
IRA 751 before the end of the fetch pipeline stage.
0483 Program flow control unit 130 next updates pro
gram counter PC 701. If the next instruction is at the next

Mar. 27, 2008

sequential address, program control flow unit 130 post
increments program counter PC 701 during the fetch pipe
line stage. Note this post increment means that program
counter PC 701 stores the address of the next instruction to
be fetched. Otherwise, program control flow unit 130 loads
the address of the next instruction into program counter PC
701 according to loop logic 720 (FIG. 37) or software
branch. When in the synchronized MIMD mode, program
flow control unit delays the instruction fetch until all the
digital image/graphics processors specified by Sync bits in
communications register COMM 781 are synchronized.
0484 Program flow control unit 130 includes loop logic
720 employed with a number of registers in nested Zero
overhead looping and a variety of other powerful instruction
flow control functions. Examples of these other functions
include: multiple ends to the same loop; Zero-delay branches
without necessarily returning; Zero-delay "calls and
returns'; and conditional Zero-delay branches. The basic
function of loop logic 720 is nested Zero-overhead looping.
For each of three possible loops there are four registers.
These are: loop end registers LE2711, LE1712 and LE0713;
loop start registers LS2721, LS1722 and LS0723; loop count
registers LC2731, LC1732 and LC0733; and loop reload
registers LR2741, LR1742 and LR0743. The entire loop
logic process is controlled by the status of loop logic control
register LCTL 705 in conjunction with the loop enable bit
(bit 0) of program counter PC 701. In addition there are
several register address locations LRS2-LRS0 and LRSE2
LRSE0 that simultaneously load more than one of the
primary registers.

0485 Each set of four registers controls an independent
Zero-overhead loop. A zero-overhead loop is the solution to
a problem caused by the pipeline structure. A software
branch performed by loading an address into program
counter PC 701 occurs during the execute pipeline stage.
Such a branch does not take place immediately because it
does not change two instructions that were already fetched
and in the instruction pipeline. These two instructions were
fetched during the previous two fetch pipeline stages. This
delay in branch implementation is called a pipeline hit and
the two instructions following the branch instruction are
called delay slots. Sometimes clever programming enables
useful work during the delay slots, but this is not always
possible. Loop logic 720 operates during the fetch pipeline
stage and, once Some set up is accomplished, enables loops
and branches without pipeline hits. Note that once the
appropriate registers are loaded loop logic 720 does not
require a branch instruction during looping and does not
produce any delay slots. This loop logic 720 may be
especially useful in algorithms with nested loops with
numerous repetitions.
0486 A simple example of loop logic 720 operation
follows. Set up of loop logic 720 includes loading a par
ticular loop end register, and the corresponding loop start
register, loop count register and loop reload register. For
example the loop end address is loaded into loop end register
LE0713, the loop start address is loaded into loop start
register LS0723 and the number of loop repetitions desired
is loaded into loop count register LC0733 and loop reload
register LR0743. During each fetch pipeline stage loop logic
compares the address stored in program counter PC 701 with
the loop end address stored in loop end register LE0713. If
the current program address equals the loop end address,

US 2008/0077771 A1

loop logic 720 determines if the loop count stored in the
corresponding loop count register, in this case loop count
register LC0733, is “0”. If the loop count is not “0”, then
loop logic 720 loads the loop start address stored in loop
start register LS0723 into program counter PC 701. This
repeats the loop starting from the loop start address. In
addition, loop logic 720 decrements the loop count stored in
the corresponding loop count register, in this case loop count
register LC0733. If the loop count in the corresponding loop
count register is “0”, then no branch is taken. Program flow
control unit 130 increments program counter PC 701 nor
mally to the next sequential instruction. In addition, loop
logic 720 loads the loop count stored in the loop reload
register LR0 into the loop count register LC0. This prepares
loop logic 720 for another set of repetitions and is useful for
inner loops of nested loops. Because all these processes
occur during the fetch pipeline state no pipeline hit takes
place.

0487 FIG. 36 illustrates loop logic control register 705.
Loop logic control register 705 controls operation of loop
logic 720 based upon data stored in three sets of bits
corresponding to the three loop end registers LE2-LE0711
713. Loop logic control register 705 bits 3-0 control the loop
associated with loop end register LE0713, bits 7-4 control
the loop associated with loop end register LE1712, and bits
11-8 control the loop associated with loop end register
LE2711. The “E” bits (bits 11, 7 and 3) are enable bits. A “1”
in the “E” bit enables the loop corresponding the associated
loop end register. A “0” disables the associated loop. Thus
setting bits 11, 7 and 3 to “0” completely disables loop logic
720. Each loop end register LE2-LEO has an associated
“LCn” field that assigns a loop count register LC2-LC0 for
that loop end register. The coding of the “LCn” field is given
in Table 33.

TABLE 33

LCn Loop Count
field Register

O O O Ole
O O 1 LCO
O 1 O LC1
O 1 1 LC2
1 X X reserved

The assigned loop count register stores the corresponding
loop count and is decremented each time the program
address reaches the associated loop end address. Although
the “LCn” field is coded to allow every loop end register to
use any loop count register, not all combinations are Sup
ported in the preferred embodiment. In the preferred
embodiment the “LCn” field may assign: loop count register
LC2 or LC0 to loop end register LE2711; register LC1 or
LC0 to loop end register LE1712; and only loop count
register LC0 to loop end register LE0713. In the case of a
“LCn” field of "000, no loop count register is used and the
program always branches to the loop start address stored in
the corresponding loop start register. Also note that if bit 0
of program counter PC 701 is “0”, then loop logic 720 is
inhibited regardless of the status of loop control register
LCTL 705. This permits loop logic inhibition without losing
the assignment of loop count registers to loop end registers.
When the count in the assigned loop count register reaches
“0”, encountering the loop end address does not load pro

52
Mar. 27, 2008

gram counter PC 701 with the address in the corresponding
loop start register. Instead the loop count register is reloaded
with the contents of the corresponding loop reload register
LR2-LR0. By assigning loop counter register LC0733 to
two or three loop end registers LE2-LE0, multiple end points
to a loop are Supported. Note that the most significant bits of
loop control register LCTL 705 and the “1XX” codings of
the respective “LCn” fields are reserved for a possible
extension of the loop logic to include more loops.

0488 FIG. 37 illustrates loop logic 720. Loop logic 720
includes previously mentioned: program counter PC 701;
loop logic control register LCTL 705; the three loop end
registers LE2-LE0711, 712 and 713; the three loop start
registers LS2-LS0721, 722 and 723; the three loop counter
registers LC2-LC0731, 732 and 733; the three loop reload
registers LR2-LR0741, 742 and 743; comparitors 715, 716
and 717; priority logic 725; loop logic control register
“LCn' field decoders 735, 736 and 737; and Zero detectors
745, 746 and 747. The respective “E” fields of loop logic
control register LCTL 705 selectively enable comparitors
715, 716 and 717 and loop logic control register “LCn” field
decoders 735, 736 and 737. Comparitors 715, 716 and 717
compare the address stored in program counter PC 701 with
respective loop end registers LE2711, LE1712 and LE0713.
Loop logic control register “LCn” field decoders 735, 736
and 737 decode respective “LCn” fields of loop logic control
register LCTL 705, ensuring that the assigned loop count
register LC2-LC0 is decremented upon reaching a loop end.
Zero detectors 745, 746 and 747 enable reload of respective
loop count registers 731, 732 and 733 from the correspond
ing loop reload registers 741, 742 and 743 when the loop
count reaches “0”.

0489 Priority logic 725 decrements the assigned loop
count register LC2-LC0 or loads program counter PC with
the loop start address in loop start register LS2-LS0 depend
ing upon the corresponding Zero detection. If two or three
loops end at the same address then priority logic 725 set
priorities for the loop end registers in the order from loop
end register LE2 (highest) to loop end register LE0 (lowest).
If no zero detector 745,756 or 747 detects “0”, then the loop
start register LS2-LS0 associated with the highest priority
loop end register LE2-LEO matching the program counter
PC 701 is loaded into program counter PC 701 and the loop
count register LC2-LC0 assigned to that highest priority
loop end register LE2-LEO is decremented. If at least one
Zero detector 745, 756 or 747 detects Zero, then the Zero
value loop count register LC2-LC0 corresponding to each
Zero value loop end register LE2-LEO matched is reloaded
from the corresponding loop reload register LR2-LR0 and
the non-Zero loop count register LC2-LCO assigned to the
highest priority non-zero loop end register LE2-LEO
matched is decremented. Program counter PC 701 is leaded
with the loop start address associated with the highest
priority loop end register that has a corresponding non-zero
loop count register. Zero detector 747 has a disable line to
Zero detector 746 to disable Zero detector 746 from causing
reload if Zero detector 747 detects a Zero. Both Zero detec
tors 747 and 74.6 may disable Zero detector 745 from causing
reload if either Zero detector 747 or 746 detect Zero. Thus
three nested loops may end at the same instruction with the
loop associated with loop end register LS2711 the inner
loop, and the loop associated with loop end register LS0 the
outer loop.

US 2008/0077771 A1

0490 Loops can have any number of instructions within
the address limit of the loop end registers LE2-LE0. Loop
end registers LE2-LE0 and loop start registers LS2-LS0
preferably include 29 address bits in the same fashion as
program counter PC 701. The number of repetitions possible
is limited by the capacity of the loop count registers and the
loop reload registers. In the preferred embodiment the loop
count registers LC2-LC0 and the loop reload registers
LR2-LR0 each have 32 bits as most registers on digital
image/graphics processor 71. For the sake of size, the
capacity of the loop count and loop reload registers may be
limited to 16 bits rather than 32 bits. In this case, the most
significant 16 bits of these registers are not implemented.
With 16 bit loop count and loop reload registers loops larger
than 216=65536 can be implemented using outside software
loops to restart the hardware loops. The addresses for loop
starts and loop ends can be coincident, resulting in a single
instruction loop.

0491 FIG.38 illustrates an example of a program having
three ends to one loop. This is achieved by assigning loop
count register LC0733 to each of the loop end registers
LE2-LE0. In the example illustrated in FIG. 38 loop start
register LC0723 and loop start register LC2721 store the
same address. Loop start register LC1722 stores a different
start address. The program begins at block 801. Processing
block 802 initializes the loops including storing the respec
tive loop end addresses in loop end registers LE2-LE0.
storing the respective loop start addresses in loop start
registers LS2-LS0, loading loop control register LCTL 705
to enable all three loops and assign loop count register
LC0733 to all loop end registers LE2-LE0. Processing block
803 is an instruction block 0 starting at loop start address 1.
Processing block 804 is an instruction block 1 starting at
start address 0 and 2. Decision block 805 is a conditional
branch instruction 1. Decision block 806 is a conditional
branch instruction 2. Assuming neither condition 1 nor
condition 2 is satisfied, then the program executes process
ing block 807 consisting of instruction block 3. Decision
block 808 is the hardware loop decision corresponding to the
loop end address stored in loop end register LE0713. If the
count stored in loop count register LC0 is non-zero, the
program flow returns to loop start address 0 that repeats the
loop starting with instruction block 1. If the count stored in
loop count register LC0 is “0”, the program ends at end
block 813. In the case that condition 1 is not satisfied and
condition 2 is satisfied, then the program executes process
ing block 809 consisting of instruction block 4. Decision
block 810 is the hardware loop decision corresponding to the
loop end address stored in loop end register LE2711. If the
count stored in loop count register LC0 is non-zero, the
program flow returns to loop start address 2 that is the same
as loop start address 0 which repeats the loop starting with
instruction block 1. If the count stored in loop count register
LC0 is “0”, the program ends at end block 813. In the case
that condition 1 is satisfied, then the program executes
processing block 811 consisting of instruction block 5.
Decision block 812 is the hardware loop decision corre
sponding to the loop end address stored in loop end register
LE1712. If the count stored in loop count register LC0 is
non-Zero, the program flow returns to loop start address 1
and repeats the loop starting with instruction block 0. If the
count stored in loop count register LC0 is “0”, the program
ends at end block 813. The loop could finally terminate at

Mar. 27, 2008

any of the loop end addresses according to the condition
encountered by the conditional branches on the final time
through the loop.
0492 To save instructions during loop initialization, any
write to a loop reload register LR2-LR0 writes the same data
to the corresponding loop count register LC2-LC0. In the
preferred embodiment, writing to a loop count register
LC2-LC0 does not affect the corresponding loop reload
register LR2-LR0. The reason for this difference will be
explained below. When restoring loop values after task
switches, the loop reload registers LR2-LR0 should be
restored before restoring the loop count registers LC2-LC0.
Thus the form for initializing a single loop is:
0493 LSn=loop start address
0494 LEn=loop end address
0495 LRn=loop count
0496 this also sets LCn=loop count

0497 Load LCTL with bits
0498)
0499 assign LCn to LEn

0500 Begin loop

to enable loop n, and

This procedure is suitable for loading a number of loops,
which execute for a long time. This initialization pro
cedure is repeated to implement additional loops. Note
that since the loop registers are loaded by Software in
the execute pipeline stage and used by the hardware in
the fetch pipeline stage, there should be at least two
instructions between loading any loop register and the
loop end address where that loop register will be used.

0501) The loop start address and the loop end address can
be made independent of the position of the loop within the
program by loading the loop start register LS2-LS0 and the
loop end register LE2-LE0 as offsets to instruction pointer
execute stage register IPE 703. Recall that instruction
pointer-execute stage register IPE 703 stores the address of
the instruction currently in the execute pipeline stage. For
example, the instruction:

loads loop start register LS0723 with a value 11 instructions
(88 bytes) ahead of the current instruction. A similar instruc
tion can load a loop end register LE2-LE0.
0502. The preferred embodiment of this invention
includes additional register addresses to Support even faster
loop initialization for short loops. There are two sets of such
register addresses, one set for multi-instruction loops and
one set for single instruction loops. Writing to one of the
register addresses LRS2-LRS0 used for multi-instruction
loops loads the corresponding loop reload register LR2-LR0
and its corresponding loop counter LC2-LC0. This write
operation also loads the corresponding loop start LS2-LS0
register with the address following the current address stored
in program counter PC 701. This write operation also sets
corresponding bits in loop control register LCTL 708 to
enable the relevant loop. Thus, if n is a register set number
from 2-0, writing to LRSn: loads LRn and LCn with the
specified count; loads LSn with PC+1; loads LCTL to enable
LEn and assign LCn. These operations all occur in a single

US 2008/0077771 A1

cycle, during the execute pipeline stage. There thus must be
two delay slots between this instruction and the start of the
loop. The instruction sequence for this multi-instruction
loop short form initialization is:

LEn = loop end address
LRSn = count
delay slot 1
delay slot 2
1st instruction in loop
loop instruction
loop instruction
last instruction in loop

loop start address:

loop end address:

Note that the loop could be as long as desired within the
register space of the corresponding loop end register and
loop start register. Also note that writing to LREn automati
cally sets the loop start address as the instruction following
the second delay slot.
0503 Another set of register addresses is used for short
form initialization of a single instruction loop. Writing to
one of the register addresses LRSE2-LRSE0 initializes a
single instruction loop. If n is a register set number from 2-0.
writing to LRSEn: loads loop reload register LRn and loop
count register LCn with the count; loads loop start register
LSn with the address following the address currently in
program counter PC 701; loads loop end register LEn with
the address following the address currently in program
counter PC 701; and sets loop control register LCTL 705 to
enable loop end register LEn and assign loop count register
LCn. As with writing to LRSn, these operations all occur in
a single cycle during the execute pipeline stage and two
delay slots are required between this instruction and the start
of the loop. The instruction sequence for this single instruc
tion loop short form initialization is:

LRSEn = count
delay slot 1
delay slot 2

loopn: one instruction loop

This instruction sequence sets the loop start and loop end to
the same address. This thus allows a single-instruction to be
repeated count--1 times.
0504 These short form loop initializations calculate the
loop start address and the loop end address values from the
address stored in program counter PC 701. They should
therefore be used with care within the delay slots of a
branch. If the branch is taken, the loop start address, and the
loop end address for the case of LRSE2-LRSE0, is calcu
lated after program counter PC 701 is loaded with the branch
address. This effect can be annulled if the branch is condi
tional, by setting the loop initialization to be conditional
upon the inverse condition.
0505) These short form loop initializations and the stan
dard loop initialization, do involve delay slots in much the
same manner as Software branches. However, the delay slots
necessary for loop initialization occur once each loop ini
tialization. The delay slots for branches formed with soft
ware loops occur once each branch instruction. In addition,

54
Mar. 27, 2008

there is a greater likelihood that useful instructions can
occupy the delay slots during loop initialization than during
loop branches. Thus the overhead needed for loop initial
ization can be much less than the overhead involved in
Software branches, particularly in short loops.
0506 Software branches have priority over loop logic
720. That is if a loop end register LE2-LEO stores the
address of the second delay slot instruction following a
program counter load operation, then loop logic 720 is
inhibited for that cycle. Thus the loop counter is not decre
mented, nor will any loop logic 720 program counter load
take place. This enables a conditional software exit from a
loop. If the loop logic 720 hardware loop has a single
conditional branch instruction, then this instruction may be
executed three times if the condition remains true. This is
illustrated in FIG. 39. In instruction slot 901 the branch
condition is not true So the branch is unsuccessful. Loop
logic 720 has already reloaded the same instruction during
the fetch pipeline stage of instruction slot 902. In instruction
slot 902 the branch condition is true and the branch is taken,
thereby loading the address of a target instruction into
program counter PC 701. This change in program counter
PC 701 does not change the two already loaded examples of
the branch instruction in the pipeline in instruction slots 903
and 904. Assuming the branch condition is still true, the
execute pipeline stage of these instruction slots loads the
address of the target instruction into program counter PC
701. Thus the branch is taken three times in instruction slots
902, 903 and 904 and the target instruction executes three
times in instruction slots 905, 906 and 906. Finally in
instruction slot 908 the instruction following the target
instruction is reached. As further explained below, the single
branch instruction may be coded with parallel operations
that would also be executed multiple times and that may
change the branch condition.
0507 Loop control logic 720 permits zero delay branches
and Zero delay conditional branches. In these cases the
address of the point from which the branch is to be taken is
loaded into a loop end register LE2-LE0. The destination
address of the branch is loaded into the assigned loop start
register LS2-LS0. Zero-delay branches may be implemented
in two ways. Following loop initialization, the assigned loop
count register LC2-LC0 is set to a non-zero number. Alter
natively, the corresponding “LCn” field in loop control
register LCTL 705 may be set to “000. In either case the
branch will always be taken during the fetch pipeline stage
with no pipeline hit or delay slots. Conditional Zero-delay
branches (flow chart diamonds) are implemented similarly.
During initialization the corresponding loop count register
LC2-LC0 is assigned to the loop end register LE2-LEO by
setting the corresponding “LCn” field in loop control reg
ister LCTL. Before the conditional branch, a conditional
value is loaded into the assigned loop count register LC2
LC0. Upon encountering the loop end address, either the
branch is taken to the loop start address stored in the
corresponding loop start register LS2-LS0 if the conditional
value is non-Zero, or the branch is not taken if the condi
tional value is zero. Since the loop registers are loaded by
Software in the execute pipeline stage and used by the
hardware in the fetch pipeline stage, there should be at least
two instructions between loading any loop register and the
branch or conditional branch instruction at the loop end
address. Otherwise, the previous value for that loop register
is used by loop logic 720.

US 2008/0077771 A1

0508 Referring back to FIG. 31, program flow control
unit 130 handles interrupts employing interrupt enable reg
ister INTEN 706 and interrupt flag register INTFLG 707.
Program flow control unit 130 may support up to 32 inter
rupt sources represented by selectively setting bits of inter
rupt flag register INTFLG 707. Each source can be indi
vidually enabled via interrupt enable register INTEN 706.
Pending interrupts are recorded in interrupt flag register
INTFLG 707, which latches interrupt requests until they are
specifically cleared by Software, normally during the inter
rupt routine. The individual interrupt flag can alternatively
be polled and cleared by a software loop.

0509 FIG. 40 illustrates the field definitions for interrupt
enable register INTEN 706 and interrupt flag register
INTFLG 707. The bits labeled “r” are reserved for future use
and bits labeled '-' are not implemented in the preferred
embodiment but may be used in other embodiments. Inter
rupts are prioritized from left to right. Each interrupt source
can be individually enabled by setting a “1” in the corre
sponding Enable (E) bit of interrupt enable register INTEN
706. The interrupt source bits of interrupt flag register
INTFLG 707 are in descending order of priority from right
to left: Emulation interrupt ETRAP which is always
enabled; XY patch interrupt, task interrupt; packet request
busy interrupt PRB, packet request error interrupt PRERR:
packet request successful interrupt PREND: master proces
sor 60 message interrupt MPMSG; digital image/graphics
processor 71 message interrupt DIGPOMSG; digital image/
graphics processor 72 message interrupt DIGP1MSG; digi
tal image/graphics processor 73 message interrupt
DIGP2MSG; digital image/graphics processor 74 message
interrupt DIGP3MSG. Bits 31-28 are reserved for message
interrupts from four additional digital image/graphics pro
cessors in an implementation of multiprocessor integrated
circuit 100 including eight digital image/graphics proces
SOS.

0510) The “W bit (bit 0) of interrupt enable register
INTEN 706 controls writes to interrupt flag register
INTFLG 707. This bit would ordinarily control whether the
emulation interrupt is enabled. Since in the preferred
embodiment the emulation interrupt cannot be disabled there
is no need for an enable bit for this interrupt in interrupt
enable register INTEN 706. Bit 0 of interrupt enable register
INTEN 706 modifies the behavior of the interrupt flag
register INTFLG 707. When the “W' bit of interrupt enable
register INTEN 706 is “1”, software writes to interrupt flag
register INTFLG 707 can only set bits to “1”. Under these
conditions, an attempt to write a “0” to any bit of interrupt
flag register INTFLG 707 has no effect. When this “W' bit
“0”, writing a “1” to any bit of interrupt flag register
INTFLG 707 clears that bit to “0”. An attempt to write a “0”
to any bit of interrupt flag register INTFLG 707 has no
effect. This allows individual interrupt flags within interrupt
flag register INTFLG 707 to be cleared without disturbing
the state of others. Each interrupt service routine should
clear its corresponding interrupt flag before returning
because these flags are not cleared by hardware in the
preferred embodiment. The emulation interrupt ETRAP, the
only exception to this, is cleared by hardware because this
interrupt is always enabled. If a particular interrupt source is
trying to set a bit within interrupt flag register INTFLG 707
simultaneously as a software write operation attempts to
clear it, logic causes the bit to be set.

Mar. 27, 2008

0511. The ETRAP interrupt flag (bit 0 of interrupt flag
register INTFLG 707) is set from either analysis logic or an
ETRAP instruction. This interrupt is normally serviced
immediately because it cannot be disabled, however inter
rupt servicing does wait until pipeline stall conditions such
as memory contention via crossbar 50 are resolved. The
ENTRAP interrupt flag is the only interrupt bit in interrupt
flag register INTFLG 707 cleared by hardware when the
interrupt is serviced.
0512. The XY PATCH interrupt flag (bit 11 of interrupt
flag register INTFLG 707) is set under certain conditions
when employing the global address unit 610 and local
Address unit 620 combine to perform XY addressing. As
previously described in conjunction with FIG. 27 and the
description of address unit 120, XY patched addressing may
generate interrupts on certain conditions. The instruction
word calling for XY patched addressing indicates whether
Such an interrupt may be generated and whether a permitted
interrupt is made on an address inside or outside a desig
nated patch.
0513. The TASK interrupt flag (bit 14 in interrupt flag
register INTFLG 707) is set upon receipt of a command
word from master processor 60. This interrupt causes digital
image/graphics processor 71 to load its TASK interrupt
vector. This interrupt may cause a selected digital image/
graphics processor 71, 72, 73 or 74 to switch tasks under
control of master processor 70, for instance.
0514) The packet request busy interrupt flag PRB (bit 17
of interrupt flag register INTFLG 707) is set if software
writes a “1” to the packet request bit of communications
register COMM 781 when the queue active bit is a “1”. This
allows packet requests to be Submitted without checking that
the previous one has finished. If the previous packet request
is still queued then this interrupt flag becomes set. This will
be further explained below in conjunction with a description
of communications register COMM 781.
0515) The packet request error interrupt flag PRERR (bit
18 of interrupt flag register INTFLG 707) is set if transfer
controller 80 encounters an error condition while executing
a packet request Submitted by the digital image/graphics
processor.

0516) The packet request end interrupt flag PREND (bit
19 of interrupt flag register INTFLG 707) is set by transfer
controller 80 when it encounters the end of the digital
image/graphics processor's linked-list, or when it completes
a packet request that instructs transfer controller 80 to
interrupt the requesting digital image/graphics processor
upon completion.
0517. The master processor message interrupt flag
MPMSG (bit 20 of interrupt flag register INTFLG 707) is
becomes set when master processor 60 sends a message
interrupt to that digital image/graphics processor.

0518) Bits 27-24 of interrupt flag register INTFLG 707
log message interrupts from digital image/graphics proces
sors 71, 72, 73 and 74. Note that a digital image/graphics
processor 71, 72, 73 or 74 can send a message to itself and
interrupt itself via the corresponding bit of interrupt flag
register INTFLG 707. The digital image/graphics processor
0 message interrupt flag DIGPOMSG (bit 24 of interrupt
flag register INTFLG 707) is set when digital image/graph
ics processor 71 sends a message interrupt to the digital

US 2008/0077771 A1

image/graphics processor. In a similar fashion, digital
image/graphics processor 1 message interrupt flag
DIGP1MSG (bit 25 of interrupt flag register INTFLG 707)
is set when digital image/graphics processor 72 sends a
message interrupt, digital image/graphics processor 2 mes
sage interrupt flag DIGP2MSG (bit 26 of interrupt flag
register INTFLG 707) is set when digital image/graphics
processor 73 sends a message interrupt, and digital image/
graphics processor 3 message interrupt flag DIGP3MSG (bit
27 of interrupt flag register INTFLG 707) is set when digital
image/graphics processor 74 sends a message interrupt. As
previously stated, bits 31-28 of interrupt flag register
INTFLG 707 are reserved for message interrupts from four
additional digital image/graphics processors in an imple
mentation of multiprocessor integrated circuit 100 including
eight digital image/graphics processors.

0519. When an enabled interrupt occurs, an interrupt
pseudo-instruction unit 770, which may be a small state
machine, injects the following a set of pseudo-instructions
into the pipeline at instruction register-address stage 751:

0520) *(A14-=16)=SR
0521 *(A14+12)=PC
0522 BR=*vectadd;Two LS bits of vectadd=“11”,
0523 to load S. G and L

0524) *(A14+8)=IPA
0525) *(A14+4)-IPE

0526. These pseudo-instructions are referred to as PS1,
PS2, PS3, PS4 and PS5, respectively. Instruction pointer
return from subroutine IPRS 704 is not saved by this
sequence. If an interrupt service routine performs any
branches then instruction pointer-return from subroutine
IPRS 704 should first be pushed by the interrupt service
routine, and then restored before returning. Note that the
vector fetch is a load of the entire program counter PC 701,
with instruction pointer-return from subroutine IPRS 704
protected. Since this causes the S, G and L. bits of program
counter PC 701 to be loaded, the three least significant bits
of all interrupt vectors are made “0”. One exception to this
statement is that the task vector fetched after a reset should
have the “L” bit (bit 0 of program counter PC 701) set, in
order to disable looping.
0527 The respective addresses of starting points of inter
rupt service routines for any interrupt represented in the
interrupt flag register INTFLG 707 are called the digital
image/graphics processor interrupt vectors. These addresses
are generated by Software and loaded as data to the param
eter memory 25, 30, 35 and 40 corresponding to the respec
tive interrupted digital image/graphics processor 71, 72, 73
and 74 at the fixed addresses shown in Table 34. Interrupt
pseudo-instruction PS3 takes the 32 bit address stored in the
indicated address in the corresponding parameter memory
25, 30, 35 or 40 and stored this in program counter PC 701.
Interrupt pseudo-instruction unit 770 computes the
addresses for the corresponding parameter memory based
upon the highest priority interrupt enabled via interrupt
enable register 706. Interrupt pseudo-instruction unit 770
operates to include the digital image/graphics processor
number from communications register COMM 781 in order
to generate unique addresses for each digital image/graphics
processor. Note interrupt pseudo-instruction PS4 and PS5

56
Mar. 27, 2008

are in the delay slots following this branch to the interrupt
service routine.

TABLE 34

INTFLG
bit Interrupt Name Address

31 Reserved for DIGP7 Message O1 OOii1FC
30 Reserved for DIGP6 Message O10(OH1F8
29 Reserved for DIGP5 Message O10(OH1F4
28 Reserved for DIGP4 Message O10(OH1FO
27 DIGP3 Message O1 OOH1EC
26 DIGP2 Message O1OOii1E8
25 DIGP1 Message O1OOii1E4
24 DIGPO Message O1OOii1EO
23 Spare O10(OH1DC
22 Spare O1 OOii1D8
21 Spare O1 OOii1D4
2O Master Processor Message O1 OOii1DO
19 Packet Request Successful O10(OH1CC
18 Packet Request Error O1 OOii1 C8
17 Packet Request Busy O1 OOii1C4
16 Spare O1 OOii1CO
15 Spare O10(OH1BC
14 TASK interrupt O1 OOii1B8
13 Spare O1 OOii1B4
12 Spare O1 OOii1BO
11 XY Patching O1OOhi1 AC
10 Reserved O1OOii1A8
9 Reserved O1OOii1A4
8 Reserved O1OOii1 AO
7 Reserved O1 OOii19C
6 Reserved O10(OH198
5 Reserved O1OOH.194
4. Reserved O10(OH190
3 Reserved O1 OOii18C
2 Spare O1OOH.188
1 Spare O1OOhi184
O Emulation O10(OH18O

In each address the “if” is replaced by the digital image/
graphics processor number obtained from communications
register COMM 781.
0528. The final 4 instructions of an interrupt service
routine should contain the following (32 bit data, unshifted
index) operations:

These instructions are referred to as RETI1, RETI2,
RETI3 and RETI4, respectively. Other operations can
be coded in parallel with these if desired, but none of
these operations should modify status register 211.

0533. The interrupt state can be saved if a new task is to
be executed on the digital image/graphics processor, and
then restored to the original state after finishing the new task.
The write mode controlled by the “W' bit on interrupt
enable register INTEN 706 allows this to be done without
missing any interrupts during the saving or restoring opera
tions. This may be achieved by the following instruction
sequence. First, disable interrupts via a DINT instruction.
Next save both interrupt enable register INTEN 706 and
interrupt flag register INTFLG 707. Set the “W' bit (bit 0)
of interrupt enable register INTEN 706 to “0” and then write
Hex “FFFFFFFF to interrupt flag register INTFLG 707.

US 2008/0077771 A1

Run the new task, which may include enabling interrupts.
Following completion of the new task, recover the original
task. First, disable interrupts via the DINT instruction. Set
the “W' bit of interrupt enable register INTEN 706 to “1”.
Restore the status of interrupt flag register INTFLG 707
from memory. Next, restore the status of interrupt enable
register INTEN from memory. Last, enable interrupts via the
EINT instruction.

0534 Each digital image/graphics processor 71, 72, 73
and 74 may transmit command words to other digital
image/graphics processors and to master processor 60. A
register to register move with a destination of register A15.
the Zero value address register of the global address unit,
initiates a command word transfer to a designated processor.
Note that this register to register transfer can be combined in
a single instruction with operations of data unit 110 and an
access via local data port 144, as will be described below.
This command word is transmitted to crossbar 50 via global
data port 148 accompanied by a special command word
signal. This allows master processor 60 and digital image/
graphics processors 71, 72, 73 and 74 to communicate with
the other processors of multiprocessor integrated circuit 100.
0535 FIG. 41 illustrates schematically the field defini
tions of these command words. In the preferred embodiment
command words have the same 32 bit length as data trans
mitted via global data port 148. The least significant bits of
each command word define the one or more processors and
other circuits to which the command word is addressed.
Each recipient circuit responds to a received command word
only if these bits indicate the command word is directed to
that circuit. Bits 3-0 of each command word designate
digital image/graphics processors 74,73, 72 and 71, respec
tively. Bits 7-4 are not used in the preferred embodiment, but
are reserved for use in a multiprocessor integrated circuit
100 having eight digital image/graphics processors. Bit 8
indicates the command word is addressed to master proces
sor 60. Bit 9 indicates the command word is directed to
transfer controller 80. Bit 10 indicates the command word is
directed to frame controller 90. Note that not all circuits are
permitted to send all command words to all other circuits.
For example, system level command words cannot be sent
from a digital image/graphics processor to another digital
image/graphics processor or to master processor 60. Only
master processor 60 can send command words to transfer
controller 80 or to frame controller 90. The limitations on
which circuit can send which command words to which
other circuits will be explained below in conjunction with
the description of each command word field.
0536 The “R” bit (bit 31) of the command word is a reset

bit. Master processor 60 may issue this command word to
any digital image/graphics processor, or a digital image/
graphics processor may issue this command word to itself.
No digital image/graphics processor may reset another digi
tal image/graphics processor. Note throughout the following
description of the reset sequence each digit “if” within an
address should be replaced with the digital image/graphics
processor number, which is stored in bits 1-0 of command
register COMM 781. When a designated digital image/
graphics processor receives a reset command word, it first
sets its halt latch and sends a reset request signal to transfer
controller 80. Transfer controller 80 sends a reset acknowl
edge signal to the digital image/graphics processor. The
resetting digital image/graphics processor performs no fur

57
Mar. 27, 2008

ther action until receipt of this reset acknowledge signal
from transfer processor 80. Upon receipt of the reset
acknowledge signal, the digital image/graphics processor
initiates the following sequence of operations: sets the halt
latch if not already set; clears to “0” the “F”, “P”, “Q and
“S” bits of communications register COMM 781 (the use of
these bits will be described below; clears any pending
memory accesses by address unit 120; resets any instruction
cache service requests; loads into instruction register-ex
ecute stage IRE 752 the instruction

which unconditionally loads the contents of the Stack pointer
A14 left shifted one bit to program counter PC 701 with the
negative, carry, overflow and Zero status bits protected from
change and with the “R” bit set to reset stack pointer A14 in
parallel with a load of the stack pointer A14; loads into
instruction register-address stage IRA 751 the instruction

which instruction stores the contents of program counter PC
701 at the address indicated by the sum of the address PBA
and Hex “FC; sets interrupt pseudo-instruction unit 770 to
next load interrupt pseudo-instruction PS3; sets bit 14 of
interrupt flag register INTFLG 707 indicating a task inter
rupt; clears bit 0 of interrupt flag register INTFLG 707 thus
clearing the emulator trap interrupt ETRAP; and clears bits
11, 7 and 3 of loop control register LCTL thus disabling all
three loops.
0537 Execution by the digital image/graphics processor
begins when master processor 60 transmits an unhalt com
mand word. Once execution begins the digital image/graph
ics processor: save address stored in program counter PC
701 to address Hex “0100+7FC, this saves the prior con
tents of stack pointer A14 left-shifted by one place and the
current value of the control bits (bits 2-0) of program counter
PC 701; loads the address Hex “0100H7FO into stack
pointer A14; loads program counter PC 701 with the task
interrupt vector, where control bits 2-0 are "000; stores the
contents of instruction register-address stage IPA 751 includ
ing control bits 2-0 at address Hex “0100+7F8'; stores the
contents of instruction register-execute stage IPE including
control bits 2-0 at address Hex “0100if7F4'; and begins
program execution at the address given by the Task inter
rupt. The stack-state following reset is shown in Table 35.

TABLE 35

Address Contents

HexO1OOhifFC stack pointer register A14 from
before reset left shifted one place
instruction register-address stage IRA
from before reset
instruction register-execute stage IRE
from before reset

HexO1OOhifF8

HexO1OOhifF4

The prior states of instruction register-address stage IRA 751
and instruction register-execute stage IRE 752 include the
control bits 2-0. Note that stack pointer A14 now contains
the address Hex “O1 OOH7FO’.

US 2008/0077771 A1

high priority by setting the “F” bit (bit 31) to “1” or a low
priority by clearing the “F” bit “0”.

0548 Transfer controller 80 recognizes when the “P” bit
is set and assigns a priority to the packet request based upon
the State of the “F” bit. Transfer controller 80 clears the “P”
bit and sets the "Qbit, indicating that a packet request is in
queue. Transfer controller 80 then accesses the predeter
mined address Hex "0100HOFC within the corresponding
parameter memory and services the packet request based
upon the linked-list. Upon completion of the packet request,
transfer controller 80 clears the “Q bit to “0” indicating that
the queue is no longer active. The digital image/graphics
processor may periodically read this bit for an indication that
the packet request is complete. Alternatively, the packet
request itself may instruct transfer controller 80 to interrupt
the requesting digital image/graphics processor when the
packet request is complete. In this case, transfer controller
80 sends an interrupt to the digital image/graphics processor
by setting bit 19, the packet request end interrupt bit
PREND, in interrupt flag register INTFLG 707. In transfer
controller 80 encounters an error in servicing the packet
request, it sends an interrupt to the digital image/graphics
processor by setting bit 18, the packet request error interrupt
bit PRERROR, in interrupt flag register INTFLG 707. The
digital image/graphics processor has the appropriate inter
rupt vectors stored at the locations noted in Table 34 and the
appropriate interrupt service routines.
0549. The digital image/graphics processor may request
another packet while transfer controller 80 is servicing a
prior request. In this event the digital image/graphics pro
cessor sets the “P” bit to “1” while the “Q' bit is “1”. If this
occurs, transfer controller 80 sends a packet request busy
interrupt PRB to the digital image/graphics processor by
setting bit 17 of interrupt flag register INTFLG 707. Transfer
controller 80 then clears the “P” bit to “0”. The interrupt
service routine of requesting digital image/graphics proces
Sor may suspend the second packet request while the first
packet request is in queue, cancel the packet request or take
some other corrective action. This feature permits the digital
image/graphics processor to Submit packet requests without
first checking the “Q' bit of communications register
COMM 781.

0550 The digital image/graphics processor may suspend
service of the packet request by setting the “S” bit to “1”.
Transfer controller 80 detects when the “S” bit is “1”. If this
occurs while a packet request is in queue, the transfer
controller copies the “Q' bit into the “P” bit and clears the
“Q bit. This will generally set the “P” bit to “1”. Software
within the requesting digital image/graphics processor may
then change the status of the “S” and “P” bits. Transfer
controller 80 retains in memory its location within the
linked-list of the Suspended packet request. If transfer con
troller 80 determines that the “S” bit is “O'” and the “P” bit
is simultaneously '1', then the Suspended packet request is
resumed.

0551) The “Sync bits” field (bits 15-8) of communica
tions register COMM 781 are used in a synchronized
multiple instruction, multiple data mode. This operates for
any instructions bounded by a lock instruction LCK, which
enables the synchronized multiple instruction, multiple data
mode, and an unlock instruction UNLCK, which disables
this mode. Bits 11-8 indicate whether instruction fetching is

59
Mar. 27, 2008

to be synchronized with digital image/graphics processors
74, 73, 72 and 71, respectively. A “1” in any of these bits
indicates the digital image/graphics processor delays
instruction fetch until the corresponding digital image/
graphics processor indicates it has completed execution of
the prior instruction. The other digital image/graphics pro
cessors to which this digital image/graphics processor is to
be synchronized will similarly have set the corresponding
bits in their communication register COMM 781. It is not
necessary that the “Sync bit corresponding to itself be set
when a digital image/graphics processor is in the synchro
nized multiple instruction, multiple data mode, but this does
no harm. Note that bits 15-12 are reserved for a possible
extension to eight digital image/graphics processors.

0552) The “DIGP#” field (bits 2-0) of communications
register COMM 781 are unique to each particular digital
image/graphics processor on multiprocessor integrated cir
cuit 100. These bits are read only, and any attempt to write
to these bits fails. This is the only part of the digital
image/graphics processors 71, 72, 73 and 74 that is not
identical. Bits 1-0 are hardwired to a two bit code that
identifies the particular digital image/graphics processor as
shown in Table 36.

TABLE 36

COMM
field Parallel

1 O Processor

O O DIGPO (71)
O 1 DIGP1 (72)
1 O DIGP2 (73)
1 1 DIGP3 (74)

Note that bit 2 is reserved for future use in a multiprocessor
integrated circuit 100 having eight digital image/graphics
processors. In the current preferred embodiment this bit is
hardwired to “0” for all four digital image/graphics proces
sors 71, 72, 73 and 74.

0553) This part of communications register COMM 781
serves to identify the particular digital image/graphics pro
cessor. The identity number of a digital image/graphics
processor may be extracted by ANDing communications
register COMM 781 with 7 (Hex “0000007). The instruc
tion “D0=COMM&7” does this, for example. This instruc
tion returns only the data in bits 2-0 of communications
register COMM 781. Note that this instruction is suitable for
embodiments having eight digital image/graphics proces
sors. Since the addresses of the data memories and param
eter memories corresponding to each digital image/graphics
processor depend on the identity of that digital image/
graphics processor, the identity number permits software to
compute the addresses for these corresponding memories.
Using this identity number makes it is possible to write
Software that is independent of the particular digital image/
graphics processor executing the program. Note that digital
image/graphics processor independent programs may also
use registers PBA and DBA for the corresponding parameter
memory base address and data memory base address.
0554 Table 37 lists the coding of registers called the
lower 64 registers. Instruction words refer to registers by a
combination of register bank and register number. If no

US 2008/0077771 A1

register bank designation is permitted in that instruction
word format, then the register number refers to one of the
data registers 200 D7-D0. Some instruction words include 3
bit register bank fields. For those instructions words the
register is limited to the lower 64 registers listed in Table 37,
with a leading “0” implied in the designated register bank.
Otherwise, the instruction word refers to a register by a four
bit register bank and a three bit register number.

TABLE 37

Reg. Reg. Register
Bank No. Name

OOOO OOO AO
OOOO OO A1
OOOO O10 A2
OOOO O A3
OOOO 100 reserved
OOOO 10 reserved
OOOO 110 A6
OOOO 1 A7
OOO1 OOO A8
OOO1 OO A9
OOO1 O10 A1O
OOO1 O A11
OOO1 100 reserved
OOO1 10 reserved
OOO1 110 A14
OOO1 1 A15
OO10 OOO XO
OO10 OO X1
OO10 O10 X2
OO10 O X3
OO10 100 reserved
OO10 10 reserved
OO10 110 reserved
OO10 1 reserved
OO11 OOO X8
OO11 OO X9
OO11 O10 X10
OO11 O X11
OO11 100 reserved
OO11 10 reserved
OO11 110 reserved
OO11 1 reserved
O1OO OOO DO
O1OO OO D1
O1OO O10 D2
O1OO O D3
O1OO 100 D4
O1OO 10 D5
O1OO 110 D6
O1OO 1 D7
O101 OOO ROT
O101 OO SR
O101 O10 MF
O101 O reserved
O101 100 reserved
O101 10 reserved
O101 110 reserved
O101 1 reserved
O110 OOO GLMUX
O110 OO reserved
O110 O10 reserved
O110 O reserved
O110 100 reserved
O110 10 reserved
O110 110 reserved
O110 1 reserved
O111 OOO PCCALL
O111 OO IPABR
O111 O10 IPE
O111 O IPRS
O111 100 INTEN
O111 10 INTFLG

60
Mar. 27, 2008

TABLE 37-continued

Reg. Reg. Register
Bank No. Name

O111 110 COMM
O111 111 LCTL

Registers A0 through A15 are address unit base address
registers 611. Registers X0 through X15 are address unit
index address registers 612. Registers D0 through D7 are
data unit data registers 200. Register ROT is the rotation data
register 208. Register SR is the data unit status register 210.
Register MF is the data unit multiple flags register 211.
Register GLMUX is the address unit global/local address
multiplex register 630. Register PC is the program flow
control unit 130 program counter PC 701 that points to the
instruction being fetched. Reading from this register address
obtains the address of the next instruction to be fetched.
Writing to this register address causes a software call
(CALL). This changes the next instruction pointed to by
program counter PC 701 and loads the previous contents of
program counter PC 701 into instruction pointer-return from
subroutine IPRS 704. Register IPA is the program flow
control unit instruction pointer-address stage 702, which
holds the address of the instruction currently controlling the
address pipeline stage. Reading from this register address
obtains the address of the instruction currently in the address
pipeline stage. Writing to this register address executes a
software branch (BR). This alters the address stored in
program counter PC 701 without changing the address
stored in either instruction pointer-address stage IPA 702 or
instruction pointer-return from subroutine IPRS 704. Reg
ister IPE is the program flow control unit instruction pointer
execute stage 703, which holds the address of the instruction
currently controlling the execute pipeline stage. Software
would not ordinarily write to either of these two registers.
Register IPRS is the program flow control unit instruction
pointer-return from subroutine 704. Instruction pointer-re
turn from Subroutine IPRS 704 is loaded with the value of
program counter PC 701 incremented in bit 3 upon every
write to program counter PC 701. This provides a return
address for a Subroutine call as the next sequential instruc
tion. Register INTEN is the program flow control unit
interrupt enable register 706 that controls the enabling and
disabling of various interrupt sources. Register INTFLG is
the program flow control unit interrupt flag register 707.
This register contains bits representative of the interrupt
Sources that are set upon receipt of a corresponding inter
rupt. Register COMM is the program flow control unit 130
communications register 781. This register controls packet
requests by the digital image/graphics processor to the
transfer controller 80, synchronization between digital
image/graphics processors during synchronized MIMD
operation and includes hardwired bits identifying the digital
image/graphics processor. Register LCTL is the program
flow control unit loop control register 705, which controls
whether hardware loop operations are enabled and which
loop counter to decrement.

0555 Table 38 lists the coding of registers called the
upper 64 registers. These registers have register banks in the
form 1XXX.

US 2008/0077771 A1

TABLE 38

Reg. Reg. Register
Bank No. Name

OOO OOO reSewe
OOO OO reSewe
OOO O10 reSewe
OOO O reSewe
OOO 100 reSewe
OOO 10 reSewe
OOO 110 reSewe
OOO 1 reSewe
OO1 OOO reSewe
OO1 OO reSewe
OO1 O10 reSewe
OO1 O reSewe
OO1 100 reSewe
OO1 10 reSewe
OO1 110 reSewe
OO1 1 reSewe
O10 OOO ANACNTL
O10 OO ECOMCNTL
O10 O10 ANASTAT
O10 O EVTCNTR
O10 100 CNTCNTL
O10 10 ECOMCMD
O10 110 ECOMIDATA
O10 1 BRK1
O11 OOO BRK2
O11 OO TRACE1
O11 O10 TRACE2
O11 O TRACE3
O11 100 reSewe
O11 10 reSewe
O11 110 reSewe
O11 1 reSewe
OO OOO LCO
OO OO LC1
OO O10 LC2
OO O reSewe
OO 100 LRO
OO 10 LR1
OO 110 LR3
OO 1 reSewe
O1 OOO LRSEO
O1 OO LRSE1
O1 O10 LRSE2
O1 O reSewe
O1 100 LRSO
O1 10 LRS1
O1 110 LRS2
O1 1 reSewe
O OOO LSO
O OO LS1
O O10 LS2
O O reSewe
O 100 LEO
O 10 LE1
O 110 LE2
O 1 reSewe
1 OOO CACHE
1 OO GTA
1 O10 reSewe
1 O reSewe
1 100 TAGO
1 10 TAG1
1 110 TAG2
1 1 TAG3

In Table 38 the registers ANACNTL, ECOMCNTL, ANAS
TAT, EVTCNTR, CNTCNTL, ECOMCMD, ECOMDATA,
BRK1, BRK2, TRACE1, TRACE2 and TRACE3 are used
with an on chip emulation technique. These registers form
no part of the present invention and will not be further
described. The registers LC0, LC1 and LC2 are loop count

61
Mar. 27, 2008

registers 733, 732 and 731, respectively, within the program
flow control unit 130 that are assigned to store the current
loop count for hardware loops. The registers LR0, LR1 and
LR2 are program flow control unit 130 loop reload registers
743, 742 and 741, respectively. These registers store reload
values for the corresponding loop count registers LC0, LC1
and LC2 permitting nested loops. The register addresses
corresponding to LRSE0, LRSE1, LRSE2, LRS0, LRS1 and
LRS2 are write only addresses used for fast loop initializa
tion. Any attempt to read from these register addresses
returns null data. Writing a count into one of registers LRS0,
LRS1 or LRS2: writes the same count into corresponding
loop count register and loop reload register, writes the
address stored in program counter PC 701 incremented in bit
3 into the corresponding loop start address register, and
writes to loop control register LCTL 705 to enable the
corresponding hardware loop. These registers enable fast
initialization of a multi-instruction loop. Writing a count into
one of registers LRSE0, LRSE1 or LRSE2: writes the same
count into corresponding loop count register and loop reload
register, writes the address stored in program counter PC
701 incremented in bit 3 into the corresponding loop start
address register and loop end address register, and writes to
loop control register LCTL 705 to enable the corresponding
hardware loop. These registers enable fast initialization of a
loop of a single instruction. The registers LSO, LS1 and LS2
are loop start address registers 723, 722 and 721, respec
tively, for corresponding hardware loops. The registers LE0.
LE1 and LE2 are loop end address registers 713, 712 and
711, respectively, for corresponding hardware loops. Reg
ister CACHE is register 709 that mirrors the digital image/
graphics processor instruction cache coding. Register GTA
is the global temporary register 108 that stores the results of
the global address unit operation for later reuse upon con
tention or pipeline stall. This register is read only and an
attempt to write to this register is ignored. Registers TAG3.
TAG2, TAG1 and TAG0 are cache tag registers designated
collectively as 708, which store the relevant address portions
of data within the data cache memory corresponding to that
digital image/graphics processor.
0556 FIG. 43 illustrates the format of the instruction
word for digital image/graphics processors 71, 72, 73 and
74. The instruction word has 64 bits, which are generally
divided into two parallel sections as illustrated in FIG. 42.
The most significant 25 bits of the instruction word (bits
63-39) specify the type of operation performed by data unit
110. The least significant 39 bits of the instruction word (bits
38-0) specify data transfers performed in parallel with the
operation of data unit 110. There are five formats A, B, C,
D and E for operation of data unit 110. There are ten types
of data transfer formats 1 to 10. The instruction word may
specify a 32 bit immediate value as an alternative to speci
fying data transfers. The instruction word is not divided into
the two sections noted above when specifying a 32 bit
immediate value, this being the exception to the general rule.
Many instructions perform operations that do not use data
unit 110. These instructions may allow parallel data transfer
operations or parallel data transfer operations may be pro
hibited depending on the instruction. In other respects the
operations specified for data unit 110 are independent of the
operations specified for data transfer.
0557. The instruction word alternatives are summarized
as follows. The operation of data unit 110 may be a single
arithmetic logic unit operation or a single multiply opera

US 2008/0077771 A1

tion, or one of each can be performed in parallel. All
operations of data unit 110 may be made conditional based
upon a field in the instruction word. The parallel data
transfers are performed on local port 141 and global port 145
of data port unit 140 to and/or from memory. Two data
transfer operations are independently specified within the
instruction word. Twelve addressing modes are Supported
for each memory access, with a choice of register or offset
index. An internal register to register transfer within data
unit 110 can be specified in the instruction word instead of
a memory access via global port 145. When an operation of
data unit 110 uses a non-data unit register as a source or
destination, then some of the parallel data transfer section of
the instruction word specifies additional register informa
tion, and the global port source data bus Gsrc 105 and global
port destination data bus Gdst 107 transfer the data to and
from data unit 110.

0558) A part of the instruction word that normally speci
fies the local bus data transfer has an alternative use. This
alternative use allows conditional data unit 110 operation
and/or global memory access or a register to register move.
Limited conditional source selection is Supported in the
operation of data unit 110. The result of data unit 110 can be
conditionally saved or discarded, advantageously condition
ally performing an operation without having to branch.
Update of each individual bit of a status register can also be
conditionally selected. Conditional stores to memory choose
between two registers. Conditional loads from memory
either load or discard the data. Conditional register to
register moves either write to the destination, or discard the
data.

0559) Description of the types of instruction words of
FIG. 43 and an explanation or glossary of various bits and
fields of the five data unit operation formats follows. The bits
and fields define not only the instruction words but also the
circuitry that decodes the instruction words according to the
specified logic relationships. This circuitry responds to a
particular bit or field or logical combination of the instruc
tion words to perform the particular operation or operations
represented. Accordingly, in this art the specification of bits,
fields, formats and operations defines important and advan
tageous features of the preferred embodiment and specifies
corresponding logic circuitry to decode or implement the
instruction words. This circuitry is straight forwardly imple
mented from this specification by the skilled worker in a
programmable logic array (PLA) or in other circuit forms
now known or hereafter devised. A description of the legal
operation combinations follows the description of the
instruction word format.

0560 Data unit format A is recognized by bit 63='1' and
bit 44="0. Data unit format A specifies a basic arithmetic

Adstbnk

Mar. 27, 2008
62

logic unit operation with a 5 bit immediate field. The “class'
field (bits 62-60) designates the data routing within data unit
110 with respect to arithmetic logic unit 230. Table 39 shows
the definition of the data routings corresponding to the
“class' field for data unit formats A, B and C.

TABLE 39

Class

field

62 61 60 Input A Input B Input C maskgen rotate

O O O Src2/im Src.1 (a)MF O

O O 1 distic Src.1 Src2/im DO(4-0)

O 1 O distic Src.1 mask Src2/im O

O 1 1 distic Src.1 mask Src2/im Src2/im

1 O O Src2/im Src.1 mask DO(4-0) DO(4-0)

1 O 1 Src2/im Src.1 (a)MF DO(4-0)
1 1 O distic Src.1 Src2/im O

1 1 1 Src.1 Hex 1 Src2/im Src2/im

0561. In Table 39 “Input A’ is the source selected by
Amux 232 for input A bus 241. The source “src2/im” is
either the five bit immediate value of “immed field (bits
43-39) in data unit format A, the data register 200 designated
by the “src2 field (bits 41-39) in data unit format B, or the
32 bit immediate value of the “32-bit immediate” field (bits
31-0) in data unit format C. The source “dstc' is a compan
ion data register 200 to the destination of the arithmetic logic
unit 230 result. This companion data register 200 has a
register designation with the upper four bits equal to “0110.
thereby specifying one of data registers 200, and a lower
three bits specified by the “dst” field (bits 50-48). Compan
ion registers are used with transfer formats 6 and 10 which
use an “Adstbnk” field (bits 21-18) to specify the register
bank of the destination and an “As 1 bank' (bits 9-6) to
specify the register bank of Input B. This is known as a long
distance destination, because the destination is not one of
data registers 200. Thus one source and the destination may
have different register banks with the same register numbers.
Table 40 shows the companion registers to various other
digital image/graphics processor registers based upon the
register bank specified in the “Adstbnk” field. Note that with
any other transfer formats this source register is the data
register 200 having the register number specified by the
“dst field.

TABLE 40

Companion Data Registers

DO D1 D2 D3 D4 D5 D6 D7

AO A1 A2 A3 A4 A6 A7
A8 A9 A10 A11 A12 A14 A15
XO X1 X2
X8 X9 X10

