

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

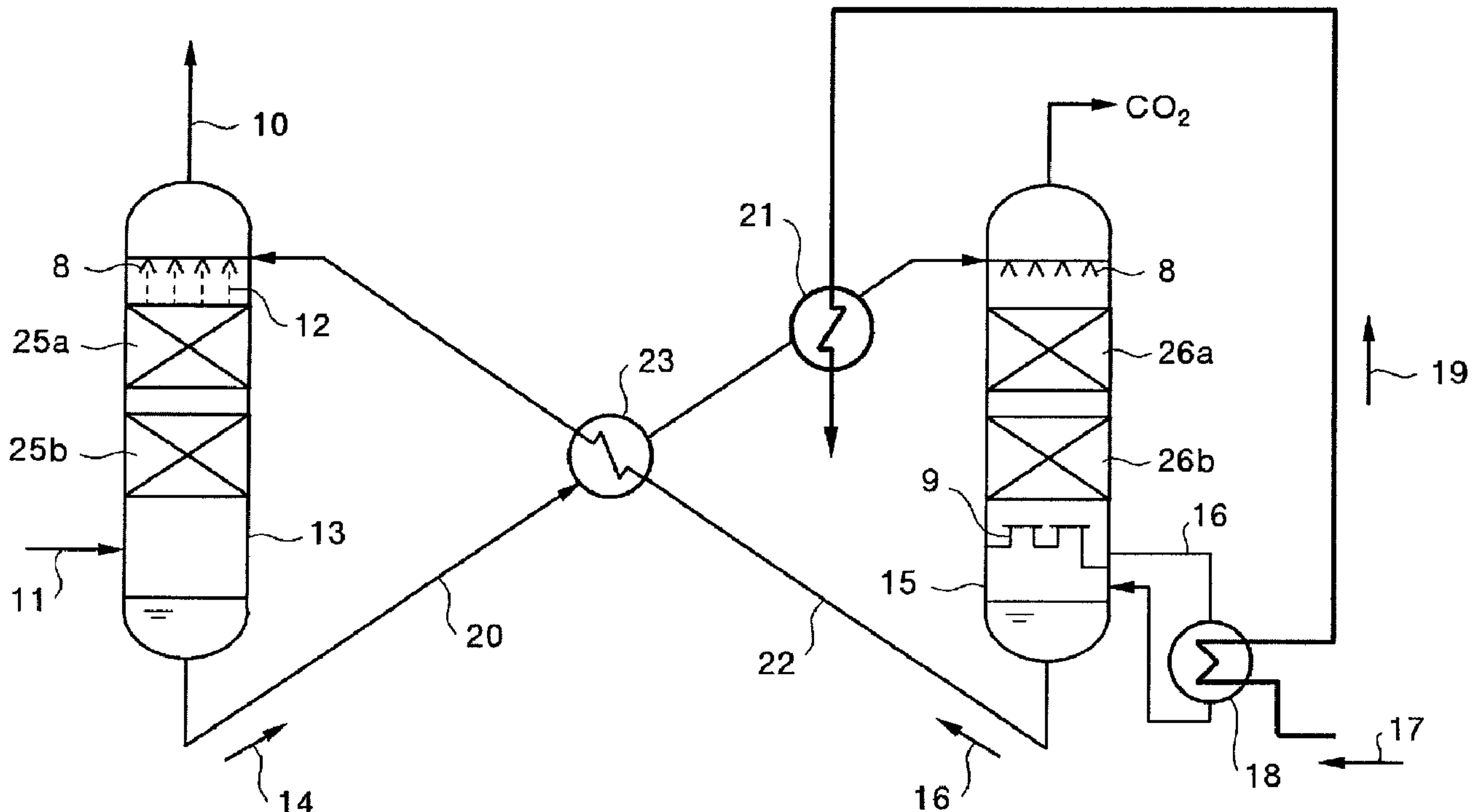
CA 2559744 C 2010/05/25

(11)(21) **2 559 744**

(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2005/03/14
(87) Date publication PCT/PCT Publication Date: 2005/10/20
(45) Date de délivrance/Issue Date: 2010/05/25
(85) Entrée phase nationale/National Entry: 2006/09/13
(86) N° demande PCT/PCT Application No.: JP 2005/004473
(87) N° publication PCT/PCT Publication No.: 2005/097299
(30) Priorité/Priority: 2004/03/15 (JP2004-073388)


(51) Cl.Int./Int.Cl. *B01D 53/14* (2006.01),
B01D 53/62 (2006.01), *C01B 31/20* (2006.01)

(72) Inventeurs/Inventors:
IIJIMA, MASAKI, JP;
KAMIO, TAKASHI, JP;
YONEKAWA, TAKAHITO, JP;
MIMURA, TOMIO, JP;
YAGI, YASUYUKI, JP

(73) Propriétaires/Owners:
MITSUBISHI HEAVY INDUSTRIES, LTD., JP;
THE KANSAI ELECTRIC POWER CO., INC., JP

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : INSTALLATION ET METHODE DE RECUPERATION DU DIOXYDE DE CARBONE
(54) Title: CO₂ RECOVERY SYSTEM AND METHOD

(57) Abrégé/Abstract:

A CO₂ recovery system includes an absorption tower and a regeneration tower. A CO₂ rich solution is produced in the absorption tower by absorbing CO₂ from a CO₂-containing gas. The CO₂ rich solution is conveyed to the regeneration tower where a lean solution is produced from the rich solution by removing CO₂. A regeneration heater heats the lean solution that accumulates near a bottom portion of the regeneration tower with saturated steam thereby producing steam condensate from the saturated steam. A steam-condensate heat exchanger heats the rich solution conveyed from the absorption tower to the regeneration tower with the steam condensate.

28964-130

ABSTRACT

A CO₂ recovery system includes an absorption tower and a regeneration tower. A CO₂ rich solution is produced in the absorption tower by absorbing CO₂ from a CO₂-containing gas. The CO₂ rich solution is conveyed to the regeneration tower where a lean solution is produced from the rich solution by removing CO₂. A regeneration heater heats the lean solution that accumulates near a bottom portion of the regeneration tower with saturated steam thereby producing steam condensate from the saturated steam. A steam-
condensate heat exchanger heats the rich solution conveyed from the absorption tower to the regeneration tower with the steam condensate.

28964-130

DESCRIPTION

CO₂ RECOVERY SYSTEM AND METHOD

TECHNICAL FIELD

[0001] This specification describes a CO₂ recovery system and a method for achieving energy saving. In fact, a plurality of inventions are disclosed in this specification. Claimed, however, in this application is such CO₂ recovery system and method described hereinunder in which a steam-condensate heat exchanger is employed which heats, with steam condensate, a rich solution that is supplied from an absorption tower to a regeneration tower. Other inventions may be claimed in one or more divisional applications. However, it should be understood that the expression "the present invention" encompasses subject matter of not only this application but also of divisional applications.

BACKGROUND ART

[0002] In recent years the greenhouse effect due to CO₂ has been pointed out as one of causes of the global warming, and a countermeasure against it is urgently required internationally to protect global environment. CO₂ sources range various fields of human activities, including burning of fossil fuels, and demands to suppress their CO₂ emission from these sources are on constant increase. In association with this, people have energetically studied means and methods for suppressing emission of CO₂ from power generation facilities such as power plants which use an enormous amount of fossil fuels. One of the methods includes bringing combustion exhaust gas of boilers into contact with an amine-based CO₂-absorbing solution. This method allows removal and recovery of CO₂ from the combustion exhaust gas.

28964-130

1a

Another method includes storing recovered CO₂, i.e., not returning the recovered CO₂ to the atmosphere.

[0003] Various methods are known to remove and recover CO₂ from combustion exhaust gas using the CO₂-absorbing solution.

- 5 One of the methods includes contacting the combustion exhaust gas with the CO₂-absorbing solution in an absorption tower, heating an absorbing solution having absorbed CO₂ in a regeneration tower, and releasing CO₂, regenerating the absorbing solution, and circulating the

28964-130

2

regenerated absorbing solution to the absorption tower again to be reused (Patent document 1).

[0004] Patent document 1: Japanese Patent Application
Laid-Open No. H7-51537

5 DISCLOSURE OF INVENTION

PROBLEM TO BE SOLVED BY THE INVENTION

[0005] In the conventional method, however, the steps of removing, and recovering CO₂ from CO₂-containing gas are provided additionally in combustion facilities, and hence, 10 the operation costs should be reduced as much as possible. Particularly, among the processes, a regenerating process consumes a large amount of heat energy, and therefore, the regenerating process needs to be provided as an energy saving process as much as possible.

15 [0006] The present invention has been achieved to solve the problems, and it is an object of the present invention to provide a CO₂ recovery system and method in which an energy efficiency is further improved.

MEANS FOR SOLVING PROBLEM

20 [0007] To solve the above problems, a first aspect of the present invention relates to a CO₂ recovery system which comprises: an absorption tower that receives a CO₂-containing gas and a CO₂-absorbing solution, and causes the CO₂-containing gas to come in contact with the CO₂-absorbing 25 solution to produce a CO₂ rich solution; a regeneration tower that receives the rich solution and produces a lean solution from the rich solution by removing CO₂ from the rich solution; a bottom lean-solution extraction path that extracts the lean solution that accumulates near a bottom 30 portion of the regeneration tower from a first point of the

28964-130

regeneration tower and returns the extracted lean solution to a second point of the regeneration tower that is downstream of the first point; a regeneration heater arranged in the bottom lean-solution extraction path that

5 heats the lean solution in the bottom lean-solution extraction path with a saturated steam thereby producing a steam condensate from the saturated steam; and a steam-condensate heat exchanger that heats, with the steam condensate, any one of: the rich solution that is supplied

10 from the absorption tower to the regeneration tower; and a semi-lean solution that is extracted outside from a middle portion of the regeneration tower and returned to the middle portion of the regeneration tower.

[0008] According to a second aspect of the present

15 invention, the CO₂ recovery system further comprises: a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower, wherein the steam-condensate heat exchanger is provided in the rich-solution supply member and heats the rich solution in the

20 rich-solution supply member with the steam condensate; and a flash drum provided upstream or downstream of the steam-condensate heat exchanger in the rich-solution supply member.

[0009] According to a third aspect of the present

25 invention, in the invention according to the second aspect, the CO₂ recovery system further comprises: a branching node provided in the rich-solution supply member that divides the rich-solution supply member into a first rich-solution supply member and a second rich-solution supply member,

30 wherein the steam-condensate heat exchanger is provided in the first rich-solution supply member and heats the rich solution in the first rich-solution supply member with the steam condensate, and the flash drum is provided downstream

28964-130

of the steam-condensate heat exchanger in the first rich-solution supply member, and produces the semi-lean solution; and a semi-lean-solution heat exchanger that is provided in the second rich-solution supply member, and heats the rich 5 solution in the second rich-solution supply member with the semi-lean solution produced in the flash drum.

[0010] According to a fourth aspect of the present invention, in the invention according to the first aspect, the CO₂ recovery system further comprises: a rich-solution 10 supply member that conveys the rich solution from the absorption tower to the regeneration tower; a branching node provided in the rich-solution supply member that divides the rich-solution supply member into a first rich-solution supply member and a second rich-solution supply member, 15 wherein the steam-condensate heat exchanger is provided in the first rich-solution supply member and flashes the rich solution in the first rich-solution supply member to produce the semi-lean solution; a semi-lean-solution heat exchanger that is provided in the second rich-solution supply member, 20 and heats the rich solution in the second rich-solution supply member with the semi-lean solution produced in the steam-condensate heat exchanger; and a semi-lean-solution supply member that conveys the semi-lean solution from the semi-lean-solution heat exchanger to a middle stage portion 25 of the absorption tower.

[0011] According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the steam-condensate heat exchanger comprises: a flash drum including a flash portion in an upper portion for flashing 30 the rich solution; a filling layer in the flash drum; and a steam supply unit provided in a lower portion of the flash drum and to which steam obtained from the steam condensate is supplied.

28964-130

[0012] According to a sixth aspect of the present invention, in the invention according to the first aspect, the regeneration tower of the CO₂ recovery system comprises an upper-portion regeneration tower and a lower-portion 5 regeneration tower, and the CO₂ recovery system further comprises: a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower; a branching node provided in the rich-solution supply member that divides the rich-solution supply member into a 10 first rich-solution supply member and a second rich-solution supply member, wherein the steam-condensate heat exchanger is provided in the first rich-solution supply member and heats the rich solution in the first rich-solution supply member with the steam condensate; a semi-lean-solution 15 supply member that extracts the semi-lean solution from the upper-portion regeneration tower and conveys the extracted semi-lean solution to a middle stage portion of the absorption tower; a semi-lean-solution heat exchanger that is provided in the second rich-solution supply member and 20 the semi-lean-solution supply member, and heats the rich solution in the second rich-solution supply member with the semi-lean solution in the semi-lean-solution supply member, wherein one end of the first rich-solution supply member is connected to the lower-portion regeneration tower, and one 25 end of the second rich-solution supply member is connected to the upper-portion regeneration tower.

[0013] According to a seventh aspect of the present invention, the CO₂ recovery system further comprises: a rich-solution supply member that conveys the rich solution from 30 the absorption tower to the regeneration tower; a lean-solution supply member that extracts the lean solution from the regeneration tower and conveys the extracted lean solution to the absorption tower; and a lean-solution heat

28964-130

exchanger that is provided in the rich-solution supply member and the lean-solution supply member, and heats the rich solution in the rich-solution supply member with the lean solution in the lean-solution supply member.

5 [0014] According to an eighth aspect of the present invention, the regeneration tower of the CO₂ recovery system comprises an upper-portion regeneration tower, a middle-portion regeneration tower, and a lower-portion regeneration tower, and the CO₂ recovery system further comprises: a rich-10 solution supply member that conveys the rich solution from the absorption tower to the regeneration tower; a branching node provided in the rich-solution supply member that divides the rich-solution supply member into a first rich-solution supply member and a second rich-solution supply member; a lean-solution heat exchanger that is provided in the first rich-solution supply member, and heats the rich solution with the lean solution produced in the regeneration tower; a semi-lean-solution supply member that extracts the semi-lean solution from the upper-portion regeneration tower 15 and conveys the extracted semi-lean solution to a middle stage portion of the absorption tower; a semi-lean-solution heat exchanger that is provided in the second rich-solution supply member and the semi-lean-solution supply member, and heats the rich solution in the second rich-solution supply member with the semi-lean solution in the semi-lean-solution supply member; a middle semi-lean-solution extraction path 20 that extracts the semi-lean solution from a third point of the middle-portion regeneration tower and returns the extracted semi-lean solution to a fourth point of the middle-portion regeneration tower that is downstream of the third point, wherein the steam-condensate heat exchanger is arranged in the middle semi-lean-solution extraction path 25 and heats the semi-lean solution in the middle semi-lean- 30

28964-130

solution extraction path with the steam condensate, one end of the first rich-solution supply member is connected to the middle-portion regeneration tower, and one end of the semi-lean-solution supply member is connected to a middle stage 5 portion of the absorption tower.

[0015] According to a ninth aspect of the present invention, the regeneration tower comprises an upper-portion regeneration tower and a lower-portion regeneration tower, and the CO₂ recovery system further comprises an upper semi-10 lean-solution extraction path that extracts the semi-lean solution from a fifth point of the upper-portion regeneration tower and returns the extracted semi-lean solution to a sixth point of the upper-portion regeneration tower that is downstream of the fifth point, wherein the 15 steam-condensate heat exchanger is arranged in the upper semi-lean-solution extraction path and heats the semi-lean solution in the upper semi-lean-solution extraction path with the steam condensate.

[0016] According to a tenth aspect of the present 20 invention, the regeneration tower comprises an upper-portion regeneration tower and a lower-portion regeneration tower, and the CO₂ recovery system further comprises: an upper semi-lean-solution extraction path that extracts the semi-lean solution from a seventh point of the upper-portion 25 regeneration tower and returns the extracted semi-lean solution to an eighth point of the upper-portion regeneration tower that is downstream of the seventh point, wherein the steam-condensate heat exchanger is arranged in the upper semi-lean-solution extraction path and heats the 30 semi-lean solution in the upper semi-lean-solution extraction path with the steam condensate; a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower; a lean-solution

28964-130

supply member that extracts the lean solution from the regeneration tower and conveys the extracted lean solution to the absorption tower; and a lean-solution heat exchanger that is provided in the rich-solution supply member and the 5 lean-solution supply member, and heats the rich solution in the rich-solution supply member with the lean solution in the lean-solution supply member.

[0017] According to an eleventh aspect of the present invention, the regeneration tower comprises an upper-portion 10 regeneration tower and a lower-portion regeneration tower, and the CO₂ recovery system further comprises: a semi-lean-solution supply member that extracts the semi-lean solution from a ninth point of the upper-portion regeneration tower and returns the extracted semi-lean solution to a tenth 15 point of the upper-portion regeneration tower that is downstream of the ninth point; a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower; a first branching node provided in the rich-solution supply member that divides the rich- 20 solution supply member into a first rich-solution supply member and a second rich-solution supply member; a lean-solution supply member that extracts the lean solution from the regeneration tower and conveys the extracted lean solution to the absorption tower; a lean-solution heat 25 exchanger that is provided in the first rich-solution supply member and the lean-solution supply member, and heats the rich solution in the first rich-solution supply member with the lean solution in the lean-solution supply member; a semi-lean-solution heat exchanger that is provided in the 30 second rich-solution supply member and the semi-lean-solution supply member, and heats the rich solution in the second rich-solution supply member with the semi-lean solution in the semi-lean-solution supply member; a solution

28964-130

supply path that supplies the rich solution heated in the semi-lean-solution heat exchanger to downstream of the lean-solution heat exchanger in the first rich-solution supply member; a second lean-solution heat exchanger arranged in 5 the first rich-solution supply member and the lean-solution supply member downstream of where the solution supply path conveys the rich solution in the first rich-solution supply member; and a second branching node provided in the semi-lean-solution extraction path downstream of the semi-lean-10 solution heat exchanger that divides the semi-lean-solution extraction path into a first semi-lean-solution extraction path and a second semi-lean-solution extraction path, wherein the steam-condensate heat exchanger is arranged in the first semi-lean-solution extraction path and heats the 15 semi-lean solution in the first semi-lean-solution extraction path with the steam condensate, and one end of the second semi-lean-solution extraction path is connected to a middle stage portion of the absorption tower.

[0018] According to a twelfth aspect of the present 20 invention, the regeneration tower comprises an upper-portion regeneration tower and a lower-portion regeneration tower, the CO₂ recovery system further comprises: an upper semi-lean-solution extraction path that extracts the semi-lean solution from an eleventh point of the upper-portion 25 regeneration tower and returns the extracted semi-lean solution to a twelfth point of the upper-portion regeneration tower that is downstream of the eleventh point; a lean-solution supply member that extracts the lean solution from the regeneration tower and conveys the 30 extracted lean solution to the absorption tower; a lean-solution heat exchanger that is arranged in the upper semi-lean-solution extraction path and the lean-solution supply member and heats the semi-lean solution in the upper semi-

28964-130

10

lean-solution extraction path with the lean solution in the lean-solution supply member.

[0019] According to a thirteenth aspect of the present invention, the regeneration tower of the CO₂ recovery system 5 comprises an upper-portion regeneration tower and a lower-portion regeneration tower, the CO₂ recovery system further comprises: an upper semi-lean-solution extraction path that extracts the semi-lean solution from a thirteenth point of the upper-portion regeneration tower and returns the 10 extracted semi-lean solution to a fourteenth point of the upper-portion regeneration tower that is downstream of the thirteenth point; a lean-solution supply member that extracts the lean solution from the regeneration tower and conveys the extracted lean solution to the absorption tower; 15 a first lean-solution heat exchanger that is arranged in the upper semi-lean-solution extraction path and the lean-solution supply member and heats the semi-lean solution in the upper semi-lean-solution extraction path with the lean solution in the lean-solution supply member, wherein the 20 steam-condensate heat exchanger is arranged in the upper semi-lean-solution extraction path downstream of the first lean-solution heat exchanger and heats the semi-lean solution in the upper semi-lean-solution extraction path with the steam condensate; a rich-solution supply member 25 that conveys the rich solution from the absorption tower to the regeneration tower; and a second lean-solution heat exchanger that is provided in the rich-solution supply member and the lean-solution supply member and heats the rich solution in the rich-solution supply member with the 30 lean solution in the lean-solution supply member.

[0020] According to a fourteenth aspect of the present invention, the regeneration tower of the CO₂ recovery system comprises an upper-portion regeneration tower, a middle-

28964-130

11

portion regeneration tower, and a lower-portion regeneration tower, the CO₂ recovery system further comprises: an upper semi-lean-solution extraction path that extracts the semi-lean solution from a fifteenth point of the upper-portion 5 regeneration tower and returns the extracted semi-lean solution to a sixteenth point of the upper-portion regeneration tower that is downstream of the fifteenth point; a lean-solution supply member that extracts the lean solution from the regeneration tower and conveys the 10 extracted lean solution to an upper stage portion of the absorption tower; a first lean-solution heat exchanger that is arranged in the upper semi-lean-solution extraction path and the lean-solution supply member and heats the semi-lean solution in the upper semi-lean-solution extraction path 15 with the lean solution in the lean-solution supply member; a semi-lean-solution extraction path that extracts the semi-lean solution from a seventeenth point of the middle-portion regeneration tower and returns the extracted semi-lean solution to an eighteenth point of the middle-portion 20 regeneration tower that is downstream of the seventeenth point and also conveys the extracted semi-lean solution to a middle stage portion of the absorption tower; a first steam-condensate heat exchanger that is arranged in the semi-lean-solution extraction path between the seventeenth point and 25 the eighteenth point and heats the semi-lean solution in the semi-lean-solution extraction path with the steam condensate; a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower; a semi-lean-solution heat exchanger that is provided 30 in the rich-solution supply member and the semi-lean-solution extraction path and heats the rich solution in the rich-solution supply member with the semi-lean solution in the semi-lean-solution extraction path; and a second lean-solution heat exchanger that is provided downstream of the

28964-130

11a

semi-lean-solution heat exchanger in the rich-solution supply member and downstream of the first lean-solution heat exchanger in lean-solution supply member, and heats the rich solution in the rich-solution supply member with the lean solution in the lean-solution supply member.

[0021] According to a fifteenth aspect of the present invention, in the invention according to any one of the fourth, fifth, eighth, eleventh, and fourteenth aspects, the absorption tower is divided into an upper stage and a lower stage, and the semi-lean solution to be supplied to a portion between the upper stage and the lower stage of the absorption tower is joined with a semi-lean solution extracted from the upper-stage absorption tower, to be supplied to the lower-stage absorption tower.

[0022] A sixteenth aspect of the present invention relates to a CO₂ recovery system which comprises: an absorption tower that receives a CO₂-containing gas and a CO₂-absorbing solution, and causes the CO₂-containing gas to come in contact with the CO₂-absorbing solution to produce a CO₂ rich solution; a regeneration tower that receives the rich solution and produces a lean solution from the rich solution by removing CO₂ from the rich solution; a bottom lean-solution extraction path that extracts the lean solution that accumulates near a bottom portion of the regeneration tower and returns the extracted lean solution to the regeneration tower; a regeneration heater arranged in the bottom lean-solution extraction path and heats the lean solution in the bottom lean-solution extraction path with a saturated steam thereby producing a steam condensate from the saturated steam; a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower; and a steam-condensate heat exchanger that is provided in the rich-solution supply member and

28964-130

11b

heats the rich solution in the rich-solution supply member with the steam condensate.

[0023] A seventeenth aspect of the present invention relates to a CO₂ recovery system which comprises: an absorption tower that receives a CO₂-containing gas and a CO₂-absorbing solution, and causes the CO₂-containing gas to come in contact with the CO₂-absorbing solution to produce a CO₂ rich solution; a regeneration tower that receives the rich solution and produces a lean solution from the rich solution by removing CO₂ from the rich solution; a bottom lean-solution extraction path that extracts the lean solution that accumulates near a bottom portion of the regeneration tower and returns the extracted lean solution to the regeneration tower; a regeneration heater arranged in the bottom lean-solution extraction path and heats the lean solution in the bottom lean-solution extraction path with a saturated steam thereby producing a steam condensate from the saturated steam; a semi-lean-solution extraction path that extracts a semi-lean solution from a middle portion of the regeneration tower and returns the extracted semi-lean solution to the middle portion of the regeneration tower; and a steam-condensate heat exchanger that is arranged in the semi-lean-solution extraction path and heats the semi-lean solution in the semi-lean-solution extraction path with the steam condensate.

[0024] An eighteenth aspect of the present invention relates to a CO₂ recovery system which comprises: an absorption tower that receives a CO₂-containing gas and a CO₂-absorbing solution, and causes the CO₂-containing gas to come in contact with the CO₂-absorbing solution to produce a CO₂ rich solution; a regeneration tower that receives the rich solution and produces a lean solution from the rich solution by removing CO₂ from the rich solution; a semi-lean-

28964-130

11c

solution extraction path that extracts a semi-lean solution from a middle portion of the regeneration tower and returns the extracted semi-lean solution to the middle portion of the regeneration tower; a lean-solution supply member that 5 extracts the lean solution from the regeneration tower and conveys the extracted lean solution to the absorption tower; and a lean-solution heat exchanger that is provided in the semi-lean-solution extraction path and the lean-solution supply member, and heats the semi-lean solution in the semi-10 lean-solution extraction path with the lean solution in the lean-solution supply member.

[0025] A nineteenth aspect of the present invention relates to a CO₂ recovery method which comprises: causing a CO₂-containing gas to come in contact with a CO₂-absorbing 15 solution to produce a CO₂ rich solution in an absorption tower; conveying the rich solution to a regeneration tower, and producing a lean solution from the rich solution by removing CO₂ from the rich solution in the regeneration tower; extracting the lean solution that accumulates near a 20 bottom portion of the regeneration tower; heating the extracted lean solution with a saturated steam to produce a steam condensate from the saturated steam, and returning the extracted lean solution after heating the saturated steam to the regeneration tower; and heating the rich solution that 25 is conveyed from the absorption tower to the regeneration tower with the steam condensate.

[0026] A twentieth aspect of the present invention relates to a CO₂ recovery method which comprises: causing a CO₂-containing gas to come in contact with a CO₂-absorbing 30 solution to produce a CO₂ rich solution in an absorption tower; conveying the rich solution to a regeneration tower, and producing a lean solution from the rich solution by removing CO₂ from the rich solution in the regeneration

28964-130

11d

tower; extracting the lean solution that accumulates near a bottom portion of the regeneration tower; heating the extracted lean solution with a saturated steam to produce a steam condensate from the saturated steam, and returning the 5 extracted lean solution after heating the saturated steam to the regeneration tower; and extracting the semi-lean solution from a middle portion of the regeneration tower; heating the extracted semi-lean solution with the steam condensate; and returning the extracted semi-lean solution 10 that has been heated by the saturated steam to the regeneration tower.

[0027] A twenty-first aspect of the present invention relates to a CO₂ recovery method which comprises: causing a CO₂-containing gas to come in contact with a CO₂-absorbing 15 solution to produce a CO₂ rich solution in an absorption tower; conveying the rich solution to a regeneration tower, and producing a lean solution from the rich solution by removing CO₂ from the rich solution in the regeneration tower; performing a transfer of heat from the lean solution 20 to a semi-lean solution obtained by removing part of CO₂ from the rich solution, the semi-lean solution having been extracted from a middle portion of the regeneration tower; extracting the semi-lean solution from a middle portion of the regeneration tower; heating the extracted semi-lean 25 solution with the lean solution extracted from the regeneration tower; returning the extracted semi-lean solution that has been heated by the lean solution to the regeneration tower; and conveying the lean solution after heating the semi-lean solution to the absorption tower.

30 EFFECT OF THE INVENTION

[0028] According to the present invention, it is

possible to provide a CO₂ recovery system and method in which energy saving is achieved by using residual heat of steam condensate.

Furthermore, it is possible to provide a CO₂ recovery system and method with improved energy efficiency by heating a semi-lean solution with residual heat of a lean solution, the semi-lean solution obtained by removing part of CO₂ from a rich solution and extracted from the middle of the regeneration tower when the rich solution having absorbed CO₂ is regenerated in the regeneration tower.

BRIEF DESCRIPTION OF DRAWINGS

[0029] Fig. 1 is a schematic of a CO₂ recovery system according to a first embodiment;

15 Fig. 2 is a schematic of a CO₂ recovery system according to a second embodiment;

Fig. 3 is a schematic of a CO₂ recovery system according to a third embodiment;

20 Fig. 4 is a schematic of a CO₂ recovery system according to a fourth embodiment;

Fig. 5 is a schematic of a CO₂ recovery system according to a fifth embodiment;

Fig. 6 is a schematic of a CO₂ recovery system according to a sixth embodiment;

25 Fig. 7 is a schematic of a CO₂ recovery system according to a seventh embodiment;

Fig. 8 is a schematic of a CO₂ recovery system according to a eighth embodiment;

30 Fig. 9 is a schematic of a CO₂ recovery system according to a ninth embodiment;

Fig. 10 is a schematic of a CO₂ recovery system according to example 1;

Fig. 11 is a schematic of a CO₂ recovery system

according to example 2;

Fig. 12 is a schematic of a CO₂ recovery system according to example 3;

Fig. 13 is a schematic of a CO₂ recovery system 5 according to example 4;

Fig. 14 is a schematic of a CO₂ recovery system according to example 5;

Fig. 15 is a schematic of a CO₂ recovery system according to example 6;

10 Fig. 16 is a schematic of a CO₂ recovery system according to example 7;

Fig. 17 is a schematic of a CO₂ recovery system according to example 8;

15 Fig. 18 is a schematic of a CO₂ recovery system according to example 9;

Fig. 19 is a schematic of a CO₂ recovery system according to example 10;

Fig. 20 is a schematic of a CO₂ recovery system according to example 11;

20 Fig. 21 is a schematic of a CO₂ recovery system according to example 12; and

Fig. 22 is a schematic of a CO₂ recovery system according to a conventional example.

25 EXPLANATIONS OF LETTERS OR NUMERALS

[0030] 11 CO₂-containing gas

12 CO₂-absorbing solution

13 Absorption tower

14 Rich solution

30 15 Regeneration tower

16 Lean solution

17 Steam

18 Regeneration heater

- 19 Steam condensate
- 21 Steam-condensate heat exchanger
- 22 Lean-solution supply pipe
- 23 Lean-solution heat exchanger
- 5 8 Nozzle
- 9 Chimney tray
- 10 CO₂-removed exhaust gas

BEST MODE(S) FOR CARRYING OUT THE INVENTION

10 [0031] The present invention is explained in detail below with reference to the attached drawings. It is noted that the present invention is not limited by its exemplary embodiments and examples. It is also noted that components in the following embodiments and examples contain those 15 persons skilled in the art can easily think of or those substantially equivalent thereto.

The embodiments of the present invention are explained first, and the exemplary examples are explained in detail next.

20 [0032] [First Embodiment]

Fig. 1 is a schematic of a CO₂ recovery system according to a first embodiment.

As shown in Fig. 1, the CO₂ recovery system according to the first embodiment of the present invention includes 25 an absorption tower 13 that makes CO₂-containing gas 11 containing CO₂ to contact with a CO₂-absorbing solution 12 to produce a CO₂-rich solution 14; and a regeneration tower 15 that regenerates a rich solution 14 to produce a lean solution (regenerated solution) 16. The regenerated 30 solution 16 is reused in the absorption tower 13. The CO₂ recovery system includes a regeneration heater 18 that implements heat exchange between the lean solution 16, which accumulates near the bottom of the regeneration tower

15, and high temperature steam 17; a rich-solution supply pipe 20 which supplies the rich solution 14 from the absorption tower 13 to the regeneration tower 15; a steam-condensate heat exchanger 21 that is provided in rich-solution supply pipe 20 and heats the rich solution 14 with the residual heat of steam condensate 19 fed from the regeneration heater 18.

[0033] In the first embodiment, the lean solution 16 being the regenerated solution is supplied from the regeneration tower 15 to the absorption tower 13 through a lean-solution supply pipe 22. A lean-solution heat exchanger 23, which heats the rich solution 14 with residual heat of the lean solution 16, is provided in the rich-solution supply pipe 20.

15 In Fig. 1, reference numeral 8 represents a nozzle, 9 a chimney tray, 10 CO₂-removed exhaust gas, 25a and 25b filling layers provided in the absorption tower 13, and 26a and 26b filling layers provided in the regeneration tower 15.

20 [0034] The heat exchanger used in the first embodiment is not particularly limited. In other words, a known heat exchanger such as a plate heat exchanger and a shell and tube heat exchanger can be used.

[0035] The CO₂-absorbing solution used in the present invention is not particularly limited. For example, an alkanolamine and a hindered amine group having alkanolamine and alcoholic hydroxyl can be exemplified. The alkanolamine can be exemplified by monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, 30 diisopropanolamine, diglycolamine, and the like, but generally, monoethanolamine (MEA) is preferably used. The hindered amine having alcoholic hydroxyl can be exemplified by 2-amino-2-methyl-1-propanol (AMP), 2-(ethylamino)-

28964-130

16

ethanol (EAE), 2-(methylamino)-ethanol (MAE), and 2-(diethylamino)-ethanol (DEAE).

[0036] Thus, there is provided the steam-condensate heat exchanger 21 that heats the rich solution 14 with the residual heat of the steam condensate 19 fed from the regeneration heater 18. Thus, the residual heat of the steam condensate 19 can be effectively used to raise the supply temperature of the rich solution 14 to be supplied to the regeneration tower 15, so that reduction in the supply amount of steam used in the regeneration tower 15 can be achieved.

[0037] The CO₂-containing gas 11 to be supplied to the CO₂ recovery device is first cooled by a cooling device (not shown) to about 40°C to 50°C and supplied to the CO₂ recovery device. On the other hand, the lean solution 16 which is the absorbing solution 12 regenerated is cooled to about 40°C by a cooling device (not shown).

The rich solution 14 output from the absorption tower 13 of the CO₂ removal device is sent toward the regeneration tower 15 at about 50°C due to heat reaction. The rich solution 14 is then heated up to about 110°C in the lean-solution heat exchanger 23 and supplied to the regeneration tower 15. However, by providing the steam-condensate heat exchanger 21 in which the rich solution 14 is heat-exchanged with the heat (e.g., 137°C) of the steam condensate 19, the temperature of the rich solution 14 can be increased by several degrees.

[0038] In the configuration of Fig. 1, a flash drum for causing the rich solution to flash can be provided in either one of an upstream side and a downstream side of the steam-condensate heat exchanger 21, and the flash drum can be made to discharge CO₂ contained in the rich solution in

the outside of the regeneration tower. According to such configuration, part of CO₂ in the rich solution 14 to be regenerated in the regeneration tower 15 is previously removed by the flash drum, and it becomes possible to 5 reduce the supply amount of steam to be used for CO₂ removal in the regeneration tower 15.

[0039] [Second Embodiment]

Fig. 2 is a schematic of a CO₂ recovery system according to a second embodiment.

10 Components the same as those of the CO₂ recovery system according to the first embodiment are assigned with the same reference numerals, and explanation thereof is omitted.

As shown in Fig. 2, the CO₂ recovery system according 15 to the second embodiment of the present invention further includes, in addition to the configuration of the first embodiment, a branching node 24 provided in the rich-solution supply pipe 20 that branches the rich solution 14 into the first rich-solution supply pipe 20-1 and the 20 second rich-solution supply pipe 20-2; the steam-condensate heat exchanger 21 that is provided in the first rich-solution supply pipe 20-1 and heats the rich solution 14; a flash drum 27 provided in the downstream side of the steam-condensate heat exchanger 21; and a semi-lean-solution heat 25 exchanger 29 that is provided in the second rich-solution supply pipe 20-2 and heats the rich solution 14 with the residual heat of a semi-lean solution 28 obtained by removing part of CO₂ from the rich solution in the flash drum 27. An end of a semi-lean-solution supply pipe 30 for 30 supplying the semi-lean solution 28 is connected to a middle stage portion of the absorption tower 13. The second rich-solution supply pipe 20-2 is connected near the upper stage of the regeneration tower 15, and CO₂ is

removed and recovered in the regeneration tower 15.

[0040] Thus, the steam-condensate heat exchanger 21 heats the rich solution 14 with the residual heat of the steam condensate 19 fed from the regeneration heater 18, in 5 which the rich solution is heated with the residual heat of the steam condensate. therefore, the residual heat of the steam condensate 19 having been used in the regeneration heater 18 is effectively used. The rich solution 14 heated with the residual heat is introduced into the flash drum 27. 10 Then, the rich solution 14 is caused to flash in the flash drum 27 to enable improvement of CO₂ removal efficiency. Moreover, the rich solution 14 is heat-exchanged with the residual heat of the semi-lean solution 28 obtained by removing part of CO₂ from the rich solution and fed from 15 the flash drum 27, in the semi-lean-solution heat exchanger 29 interposed in the second rich-solution supply pipe 20-2 branched. Therefore, it is possible to increase the temperature of the rich solution 14 to be introduced into the regeneration tower 15, and as a result, the supply 20 amount of steam to be used in the regeneration tower 15 can be reduced. Most of CO₂ is removed from the semi-lean solution 28, obtained by removing part of CO₂ from the rich solution, in the flash drum 27. Therefore, by supplying this semi-lean solution 28 to the middle stage portion of 25 the absorption tower 13, CO₂ is absorbed without being regenerated in the regeneration tower 15.

Furthermore, CO₂ removed in the flash drum 27 joins CO₂ fed from the regeneration tower 15, to be recovered separately.

30 [0041] The ratio of division of the rich solution 14 into the first rich-solution supply pipe 20-1 and the second rich-solution supply pipe 20-2 at the branching node 24 is simply set to a range from 30:70 to 70:30, preferably

28964-130

19

50:50.

[0042] The second embodiment is configured to further divide the inner side of the absorption tower 13 into two stages: an upper-stage filling layer 13-U and a lower-stage 5 filling layer 13-L; to extract the absorbing solution 12 having absorbed CO₂, from the upper-stage filling layer 13-U to the outside; and to mix the absorbing solution 12 with the semi-lean solution 28 to be cooled. This is because it is preferable to decrease the temperature of a solution to 10 be supplied because the absorption reaction is an exothermic reaction. In this embodiment, the temperature is decreased to about 40°C to 50°C.

[0043] [Third Embodiment]

Fig. 3 is a schematic of a CO₂ recovery system 15 according to a third embodiment.

Components the same as those in each of the CO₂ recovery systems according to the first and the second embodiments are assigned with the same reference numerals, and explanation thereof is omitted.

20 As shown in Fig. 3, the CO₂ recovery system according to the third embodiment of the present invention further includes, in addition to the configuration of the first embodiment, the branching node 24 provided in the rich-solution supply pipe 20 and divides the rich solution 14 into the first rich-solution supply pipe 20-1 and the 25 second rich-solution supply pipe 20-2; a steam-condensate heat exchanger 31 that is provided in an end of the first rich-solution supply pipe 20-1 and causes the rich solution 14 to flash; and the semi-lean-solution heat exchanger 29 that is provided in the second rich-solution supply pipe 20-2 and heats the rich solution 14 with the residual heat 30 of the semi-lean solution 28 obtained by removing part of CO₂ from the rich solution in the steam-condensate heat

28964-130

20

exchanger 31. And the end of the semi-lean-solution supply pipe 30 for supplying the semi-lean solution 28 is connected to the middle stage portion of the absorption tower 13.

5 [0044] In the third embodiment, the steam-condensate heat exchanger 31 is not an exchanger such as the plate heat exchanger, but includes, as shown in Fig. 3, a first flash drum 33 in which a flash portion 32, for causing the rich solution 14 to flash, is provided in its upper side; a 10 filling layer 34 provided in the first flash drum 33; and a steam supply portion 36 that is provided in the lower-portion of the flash drum and supplies steam 35 from the steam condensate 19.

If the steam condensate 19 is pressurized saturated steam, a second flash drum 37 is provided to make it as atmospheric pressure steam 35, and the steam 35 is supplied to the first flash drum 33, where CO₂ is removed from the rich solution 14 using the heat of the steam 35.

The semi-lean-solution heat exchanger 29 heats the rich solution 14 using the residual heat of the semi-lean solution 28 obtained by removing part of CO₂ from the rich solution in the first flash drum 33, and then, the rich solution is supplied to the middle stage portion of the absorption tower 13.

25 [0045] Thus, the steam-condensate heat exchanger 31 heats the rich solution 14 in the first rich-solution supply pipe 20-1, with the residual heat of the steam condensate 19 fed from the regeneration heater 18, in which the rich solution is heated with the steam 35. Therefore, 30 the residual heat of the steam condensate 19 having been used in the regeneration heater 18 is effectively used. The rich solution 14 is heat-exchanged using the residual heat of the semi-lean solution 28 obtained by removing CO₂

28964-130

21

by flash in the steam-condensate heat exchanger 31, in the semi-lean-solution heat exchanger 29 interposed in the second rich-solution supply pipe 20-2 branched. Therefore, it is possible to increase the temperature of the rich 5 solution 14 to be introduced into the regeneration tower 15, and as a result, the supply amount of steam to be used in the regeneration tower 15 can be reduced.

Furthermore, CO₂ removed in the first flash drum 33 joins CO₂ fed from the regeneration tower 15, to be 10 recovered separately.

The first flash drum 33 functions as an auxiliary regeneration tower for the regeneration tower 15.

[0046] [Fourth Embodiment]

Fig. 4 is a schematic of a CO₂ recovery system 15 according to a fourth embodiment.

Components the same as those in each of the CO₂ recovery systems according to the first to the third embodiments are assigned with the same reference numerals, and explanation thereof is omitted.

As shown in Fig. 4, the CO₂ recovery system according to the fourth embodiment of the present invention further includes, in addition to the configuration of the first embodiment, an upper-portion regeneration tower 15-U and a lower-portion regeneration tower 15-L into which the inner 25 side of the regeneration tower 15 is vertically divided; the branching node 24 provided in the rich-solution supply pipe 20 and dividing the rich solution 14; the steam-condensate heat exchanger 21 interposed in the first rich-solution supply pipe 20-1 branched; and the semi-lean-solution heat exchanger 29 that is provided in the second rich-solution supply pipe 20-2, and heats the rich solution 30 14 with the residual heat of the semi-lean solution 28 obtained by removing part of CO₂ from the rich solution in

28964-130

22

the upper-portion regeneration tower 15-U. And, the end of the first rich-solution supply pipe 20-1 is connected to the lower-portion regeneration tower 15-L, the end of the second rich-solution supply pipe 20-2 is connected to the 5 upper-portion regeneration tower 15-U, and the end of the semi-lean-solution supply pipe 30 for supplying the semi-lean solution 28 is connected to the middle stage portion of the absorption tower 13.

[0047] The fourth embodiment is configured to provide 10 the steam-condensate heat exchanger 21 that heats the rich solution 14 with the residual heat of the steam condensate 19 fed from the regeneration heater 18, in which the rich solution is heated with the residual heat of the steam condensate. Therefore, the residual heat of the steam 15 condensate 19 having been used in the regeneration heater 18 is effectively used. Furthermore, the rich solution 14 heated with the residual heat is introduced into the lower-portion regeneration tower 15-L, where it is regenerated.

The semi-lean solution 28, obtained by removing part 20 of CO₂ from the rich solution 14 in the upper-portion regeneration tower 15-U, is extracted to the outside through the semi-lean-solution supply pipe 30, and the rich solution 14 is heat-exchanged with the residual heat of the semi-lean solution in the semi-lean-solution heat exchanger 29 25 interposed in the second rich-solution supply pipe 20-2 branched. Therefore, it is possible to increase the temperature of the rich solution 14 to be introduced into the regeneration tower 15, and as a result, the supply amount of steam to be used in the regeneration tower 15 can 30 be reduced.

[0048] The ratio of division of the rich solution 14 into the first rich-solution supply pipe 20-1 and the second rich-solution supply pipe 20-2 at the branching node

24 is simply set to a range from 25:75 to 75:25.

[0049] [Fifth Embodiment]

Fig. 5 is a schematic of a CO₂ recovery system according to a fifth embodiment.

5 Components the same as those in each of the CO₂ recovery systems according to the first to the fourth embodiments are assigned with the same reference numerals, and explanation thereof is omitted.

As shown in Fig. 5, the CO₂ recovery system according 10 to the fifth embodiment of the present invention includes the upper-portion regeneration tower 15-U, a middle-portion regeneration tower 15-M, and the lower-portion regeneration tower 15-L, which are obtained by dividing the regeneration tower 15 into three: upper, middle, and lower portions; the 15 branching node 24 provided in the rich-solution supply pipe 20 and dividing the rich solution 14; the lean-solution heat exchanger 23 interposed in the first rich-solution supply pipe 20-1 branched; the semi-lean-solution heat exchanger 29 that is provided in the second rich-solution 20 supply pipe 20-2, and heats the rich solution with the residual heat of the semi-lean solution 28 obtained by removing part of CO₂ from the rich solution in the upper-portion regeneration tower 15-U; and the steam-condensate heat exchanger 21 that extracts the semi-lean solution 28 25 obtained by removing part of CO₂ from the rich solution in the middle-portion regeneration tower 15-M, to the outside of the regeneration tower through an extraction pipe 41, and that heats the semi-lean solution 28 with the residual heat of the steam condensate 19. And, the end of the first 30 rich-solution supply pipe 20-1 is connected to the middle-portion regeneration tower 15-M, the end of the second rich-solution supply pipe 20-2 is connected to the upper-portion regeneration tower 15-U, the extraction pipe 41 is

28964-130

24

connected to the lower-portion regeneration tower 15-L, and the end of the supply pipe 30 for supplying the semi-lean solution 28 is connected to the middle stage portion of the absorption tower 13.

5 [0050] The fifth embodiment is configured to provide the steam-condensate heat exchanger 21 that heats the semi-lean solution 28 extracted through the extraction pipe 41, in which the semi-lean solution 28 is heated with the residual heat of the steam condensate 19. Therefore, the residual
10 heat of the steam condensate 19 having been used in the regeneration heater 18 is effectively used, and as a result, the supply amount of steam to be used in the regeneration tower 15 can be reduced.

Furthermore, the rich solution 14 is heat-exchanged, 15 using the lean solution 16 regenerated in the regeneration tower 15, in the lean-solution heat exchanger 23 interposed in the first rich-solution supply pipe 20-1, and the rich solution 14 heated with the residual heat is introduced into the middle-portion regeneration tower 15-M, which 20 allows reduction in the supply amount of steam to be used in the regeneration tower.

The semi-lean solution 28, obtained by removing part of CO₂ from the rich solution in the upper-portion regeneration tower 15-U, is extracted to the outside 25 through the semi-lean-solution supply pipe 30, and the rich solution 14 is heat-exchanged with the residual heat of the semi-lean solution 28 in the semi-lean-solution heat exchanger 29 interposed in the second rich-solution supply pipe 20-2 branched. Therefore, it is possible to increase the 30 temperature of the rich solution 14 to be introduced into the upper-portion regeneration tower 15-U, and as a result, the supply amount of steam to be used in the regeneration tower 15 can be reduced.

[0051] The ratio of division of the rich solution 14 into the first rich-solution supply pipe 20-1 and the second rich-solution supply pipe 20-2 at the branching node 24 is simply set to a range from 25:75 to 75:25.

5 [0052] [Sixth Embodiment]

Fig. 6 is a schematic of a CO₂ recovery system according to a sixth embodiment.

Components the same as those in each of the CO₂ recovery systems according to the first to the fifth 10 embodiments are assigned with the same reference numerals, and explanation thereof is omitted.

As shown in Fig. 6, the CO₂ recovery system according to the sixth embodiment of the present invention includes the upper-portion regeneration tower 15-U and the lower-portion regeneration tower 15-L, which are obtained by 15 dividing the regeneration tower at least into two portions; and the steam-condensate heat exchanger 21 that heats the semi-lean solution 28, obtained by removing part of CO₂ from the rich solution, with the residual heat of the steam 20 condensate, the semi-lean solution 28 having been extracted from the upper-portion regeneration tower 15-U through the extraction pipe 41. And the semi-lean solution 28 heated is supplied to the lower-portion regeneration tower 15-L.

[0053] The sixth embodiment is configured to provide the 25 steam-condensate heat exchanger 21 that heats the semi-lean solution 28 extracted through the extraction pipe 41, with the residual heat of the steam condensate 19 fed from the regeneration heater 18, in which the semi-lean solution 28 is heated with the residual heat of the steam condensate. 30 Therefore, the residual heat of the steam condensate 19 having been used in the regeneration heater 18 is effectively used, and as a result, the supply amount of steam to be used in the regeneration tower 15 can be

reduced.

[0054] [Seventh Embodiment]

Fig. 7 is a schematic of a CO₂ recovery system according to a seventh embodiment.

5 Components the same as those in each of the CO₂ recovery systems according to the first to the sixth embodiments are assigned with the same reference numerals, and explanation thereof is omitted.

As shown in Fig. 7, the CO₂ recovery system according 10 to the seventh embodiment of the present invention includes, in addition to the system of the sixth embodiment, a first branching node 24-1 provided in the rich-solution supply pipe 20 and dividing the rich solution 14; a first lean-solution heat exchanger 23-1 interposed in the first rich-solution supply pipe 20-1 branched at the first branching 15 node 24-1; the semi-lean-solution heat exchanger 29 that is provided in the second rich-solution supply pipe 20-2 branched at the first branching node 24-1, and heats the rich solution 14 with the residual heat of the semi-lean 20 solution 28 obtained by removing part of CO₂ from the rich solution in the upper-portion regeneration tower 15-U; a second lean-solution heat exchanger 23-2 in which the rich solution 14 joined at a joint 42 between the first rich-solution supply pipe 20-1 and the second rich-solution 25 supply pipe 20-2, is heat-exchanged after the heat exchange in the semi-lean-solution heat exchanger 29; a second branching node 24-2 provided in the downstream side of the semi-lean-solution heat exchanger 29 provided in the supply pipe 30 for supplying the semi-lean solution 28; and the 30 steam-condensate heat exchanger 21 interposed in a first semi-lean-solution supply pipe 30-1 branched at the second branching node 24-2. And the end of the first semi-lean-solution supply pipe 30-1 is connected to the lower-portion

28964-130

27

regeneration tower 15-L, and the end of a second semi-lean-solution supply pipe 30-2 branched at the second branching node 24-2 is connected to the middle stage portion of the absorption tower 13.

5 [0055] In the seventh embodiment, the semi-lean-solution heat exchanger 29 uses the residual heat of the semi-lean solution 28 extracted from the upper-portion regeneration tower 15-U to heat the rich solution 14, and the residual heat of the semi-lean solution 28 is thereby effectively used. Moreover, because the steam-condensate heat 10 exchanger 21 is provided in the way in which part of the semi-lean solution 28 is returned again to the lower-portion regeneration tower 15-L through the first semi-lean-solution supply pipe 30-1, the semi-lean solution 28 15 can be heated with the residual heat of the steam condensate 19. The residual heat of the steam condensate 19 having been used in the regeneration heater 18 is thereby effectively used, and as a result, the supply amount of steam to be used in the regeneration tower 15 can 20 be reduced.

[0056] One part of the rich solution 14 once divided is heat-exchanged in the semi-lean-solution heat exchanger 29, and the other part of the rich solution 14 divided is also heat-exchanged in the first lean-solution heat exchanger 23-1, and these parts of the rich solution 14 are jointed at the joint 42, and are further heat-exchanged in the second lean-solution heat exchanger 23-2, to be supplied to the upper-portion regeneration tower 15-U. The temperature of the rich solution 14 to be introduced into the regeneration tower thereby increases, and as a result, the supply amount of steam to be used in the regeneration tower 15 can be reduced.

[0057] [Eighth Embodiment]

Fig. 8 is a schematic of a CO₂ recovery system according to an eighth embodiment.

Components the same as those in each of the CO₂ recovery systems according to the first to the seventh 5 embodiments are assigned with the same reference numerals, and explanation thereof is omitted.

As shown in Fig. 8, the CO₂ recovery system according to the eighth embodiment of the present invention includes the upper-portion regeneration tower 15-U and the lower-portion regeneration tower 15-L, which are obtained by dividing the regeneration tower at least into two portions; the first lean-solution heat exchanger 23-1 that is interposed in the extraction pipe 41 for extracting the semi-lean solution 28, obtained by removing part of CO₂ 10 from the rich solution, from the upper-portion regeneration tower 15-U divided, and heats the semi-lean solution 28 with the residual heat of the lean solution 16 that flows through the lean-solution supply pipe 22; and the steam-condensate heat exchanger 21 that is provided in the downstream side of and adjacent to the first lean-solution 15 heat exchanger 23-1 in the extraction pipe 41, and reheats the semi-lean solution 28 having been heated once, with the steam condensate 19. And the second lean-solution heat exchanger 23-2, which heats the rich solution 14 with the 20 residual heat of the lean solution after the semi-lean solution 28 is heated, is provided in the rich-solution supply pipe 20.

[0058] In the eighth embodiment, the semi-lean solution 28 extracted from the upper-portion regeneration tower 15-U 30 is heated in the first lean-solution heat exchanger 23-1, and further heated in the steam-condensate heat exchanger 21, and the residual heat of the steam condensate 19 having been used in the regeneration heater 18 is thereby

effectively used. As a result, the supply amount of steam to be used in the regeneration tower 15 can be reduced.

[0059] Furthermore, when the inside of the regeneration tower is divided into a plurality of stages and the semi-
5 lean solution 28, extracted from each stage of the regeneration tower divided, is returned to the regeneration tower on the lower stage side, the semi-lean solution 28 is heat-exchanged in the lean-solution heat exchanger and the steam-condensate heat exchanger respectively. This causes
10 the temperature of the semi-lean solution 28, which is regenerated in the regeneration tower 15, to be increased, and consequently, the supply amount of steam to be used in the regeneration tower 15 can be reduced.

[0060] [Ninth Embodiment]

15 Fig. 9 is a schematic of a CO₂ recovery system according to a ninth embodiment.

Components the same as those in each of the CO₂ recovery systems according to the first to the eighth embodiments are assigned with the same reference numerals,
20 and explanation thereof is omitted.

As shown in Fig. 9, the CO₂ recovery system according to the ninth embodiment of the present invention includes the upper-portion regeneration tower 15-U, the middle-portion regeneration tower 15-M, and the lower-portion regeneration tower 15-L, which are obtained by dividing the regeneration tower 15 into three: upper, middle, and lower portions; the first lean-solution heat exchanger 23-1 that heats the semi-lean solution 28, obtained by removing part of CO₂ from the rich solution and extracted from the upper-
25 portion regeneration tower 15-U through a first extraction pipe 41-1, with the lean solution fed from the regeneration tower; the steam-condensate heat exchanger 21 that heats the semi-lean solution 28, obtained by removing part of CO₂
30 from the rich solution and extracted from the upper portion regeneration tower 15-U through a second extraction pipe 41-2, with the lean solution fed from the regeneration tower; and the steam condensate heat exchanger 22 that heats the semi-lean solution 28, obtained by removing part of CO₂ from the rich solution and extracted from the middle portion regeneration tower 15-M through a third extraction pipe 41-3, with the lean solution fed from the regeneration tower.

from the rich solution and extracted from the middle-portion regeneration tower 15-M through a second extraction pipe 41-2, with the steam condensate; the semi-lean-solution heat exchanger 29 that is provided in the rich-solution supply pipe 20, and heats the rich solution 14 with the part of the semi-lean solution 28 extracted from the middle-portion regeneration tower 15-M; and the second lean-solution heat exchanger 23-2 that is provided in the downstream side of the semi-lean-solution heat exchanger 29 in the rich-solution supply pipe 20, and heats the rich solution 14 with the residual heat of the lean solution 16 after the semi-lean solution 28 is heated. And the semi-lean solution heated is supplied to the lower stage side of the regeneration tower, and the semi-lean solution 28 after heat exchange is performed in the semi-lean-solution heat exchanger 29 is supplied to the middle stage portion of the absorption tower 13 through the semi-lean-solution supply pipe 30.

[0061] In the ninth embodiment, the semi-lean solution 28 respectively extracted from the upper-portion regeneration tower 15-U and the middle-portion regeneration tower 15-M is heated in the first lean-solution heat exchanger 23-1 or in the steam-condensate heat exchanger 21, and the residual heat of the lean solution 16 and of the steam condensate 19 is thereby effectively used. As a result, the supply amount of steam to be used in the regeneration tower 15 can be reduced.

The residual heat of the semi-lean solution 28 after heat exchange is performed in the steam-condensate heat exchanger 21 is used for heating the rich solution, and the residual heat of the lean solution heat-exchanged in the first lean-solution heat exchanger 23-1 is used for heating the rich solution in the second lean-solution heat

exchanger 23-2. It is thereby possible to increase the temperature of the rich solution 14 to be supplied to the regeneration tower 15, and as a result, the supply amount of steam to be used in the regeneration tower 15 can be
5 reduced.

[0062] The exemplary examples indicating the effect of the present invention are explained below, but the present invention is not limited by the examples.

Example 1

10 [0063] A CO₂ recovery system according to example 1 of the present invention is explained below with reference to the following drawing.

Fig. 10 is a schematic of the CO₂ recovery system according to example 1.

15 As shown in Fig. 10, the CO₂-containing exhaust gas 11 supplied to the CO₂ absorption tower 13 is brought into countercurrent contact with the absorbing solution 12 in a filling portion, the absorbing solution 12 having predetermined concentration and being supplied from the
20 nozzle 8. CO₂ in the combustion exhaust gas is absorbed and removed by the CO₂-absorbing solution 12, and the remaining CO₂-removed exhaust gas 10, from which CO₂ has been absorbed and removed, is fed to the outside. The absorbing solution 12 supplied to the CO₂ absorption tower
25 13 absorbs CO₂, and reaction heat due to the absorption causes the temperature of the absorbing solution 12 to become higher than normal temperature in a tower head. The absorbing solution having absorbed CO₂ is sent by a
30 discharge pump 51 for the absorbing solution, as the rich solution 14, to the lean-solution heat exchanger 23 and the steam-condensate heat exchanger 21, where it is heated, to be introduced into the regeneration tower 15.

[0064] In the regeneration tower 15, the absorbing

28964-130

32

solution is regenerated by being heated with the steam 17 by the regeneration heater 18, cooled as the lean solution 16 by the lean-solution heat exchanger 23 and a cooler 52 provided as necessary, and is returned to the CO₂ 5 absorption tower 13. In the upper portion of the regeneration tower 15, CO₂ separated from the absorbing solution is cooled by a regeneration-tower reflux condenser 53, the steam associated with CO₂ is separated from 10 condensed reflux water in a CO₂ separator 54, and output to the outside of the system through a recovered-CO₂ discharge line 55. Reflux water 56 is flowed back to the regeneration tower 15 by a reflux pump 57.

[0065] In the example 1, the steam used in the regeneration heater 18 is introduced into a separator 15 to be flashed, and the residual heat of the steam flashed as the steam condensate 19 is used for heating the rich solution 14 in the steam-condensate heat exchanger 21.

[0066] As a comparison, the case where the steam-condensate heat exchanger 21 is not provided is shown in 20 Fig. 22.

[0067] If the temperature of the rich solution 14 to be discharged from the absorption tower 13 was 50.5°C, the temperature was 114.2°C when only the lean-solution heat exchanger 23 was provided, while in the example 1, the 25 steam-condensate heat exchanger 21 was provided, and the temperature thereby increased to 116.7°C, consequently, the amount of steam consumed in the regeneration tower 15 became 97.96 MMkcal/h.

In Fig. 10, temperature (°C) is surrounded by a 30 rectangle, flow rate (t/h) is surrounded by a parallelogram, and the amount of heat (MMkcal/h) is represented with angled brackets. The same goes for Fig. 11 to Fig. 21.

28964-130

33

[0068] The amount of steam consumed in the comparative example of Fig. 22 was 98.77 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 99.2%. Therefore, the reduction rate 5 of specific steam consumption (improvement effect) was 0.8%.

Example 2

[0069] A CO₂ recovery system according to example 2 of the present invention is explained below with reference to the following drawing.

10 Fig. 11 is a schematic of the CO₂ recovery system according to example 2. Components the same as those of example 1 are assigned with the same reference numerals and explanation thereof is omitted.

15 In example 2, a flash drum 61 is provided in the downstream side of the steam-condensate heat exchanger 21 that heats the rich solution 14. In the upstream side of the flash drum 61, the rich solution 14 is heated in the steam-condensate heat exchanger 21, and therefore, CO₂ in the rich solution 14 can be removed in the flash drum 61.

20 The temperature of the rich solution fed from the flash drum 61 is 103.9°C, but because part of CO₂ has been removed, decreasing inlet temperature of the regeneration tower 15 causes the steam discharged from the tower head to be reduced, which is preferable.

25 In example 2, as the result, the amount of steam consumed in the regeneration tower 15 became 97.64 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 98.9%. Therefore, the reduction rate of specific steam consumption 30 (improvement effect) was 1.1%.

Example 3

[0070] A CO₂ recovery system according to example 3 of the present invention is explained below with reference to

28964-130

34

the following drawing.

Fig. 12 is a schematic of the CO₂ recovery system according to example 3. Components the same as those of example 1 are assigned with the same reference numerals and 5 explanation thereof is omitted.

In example 3, the flash drum 61 is provided in the upstream side of the steam-condensate heat exchanger 21 that heats the rich solution 14. In the downstream side of the flash drum 61, the rich solution 14 was heated in the 10 steam-condensate heat exchanger 21, to thereby increase the temperature of the rich solution 14 to be supplied to the regeneration tower 15.

In example 3, as the result, the amount of steam consumed in the regeneration tower 15 became 97.27 MMkcal/h. 15 Assuming the comparative example is 100, the amount of steam consumed in this example becomes 98.5%. Therefore, the reduction rate of specific steam consumption (improvement effect) was 1.5%.

Example 4
20 [0071] A CO₂ recovery system according to example 4 of the present invention is explained below with reference to the following drawing.

Fig. 13 is a schematic of the CO₂ recovery system according to example 4. Components the same as those of 25 example 1 are assigned with the same reference numerals and explanation thereof is omitted.

In example 4, the rich solution 14 was divided, part of the rich solution 14 divided was sent to the heat exchanger 31 of flash drum type, where the rich solution 14 was heat-exchanged with the steam from the steam condensate 30 and CO₂ was removed from the rich solution 14. Using the residual heat of the semi-lean solution 28 after the heat exchange, the other part of the rich solution 14 divided

28964-130

35

was heat-exchanged in the semi-lean-solution heat exchanger 29, to increase the temperature of the rich solution 14 to be supplied to the regeneration tower 15.

In example 4, as the result, the amount of steam consumed in the regeneration tower 15 became 97.56 MMkcal/h.

Assuming the comparative example is 100, the amount of steam consumed in this example becomes 98.8%. Therefore, the reduction rate of specific steam consumption (improvement effect) was 1.2%.

10 Example 5

[0072] A CO₂ recovery system according to example 5 of the present invention is explained below with reference to the following drawing.

Fig. 14 is a schematic of the CO₂ recovery system according to example 5. Components the same as those of example 1 are assigned with the same reference numerals and explanation thereof is omitted.

In example 5, the rich solution 14 was divided, and part of the rich solution 14 divided was sent to the heat exchanger 31 of flash drum type, but on the way to the heat exchanger 31, the rich solution 14 was heat-exchanged with the residual heat of the steam condensate in the steam-condensate heat exchanger 21, to improve the removal rate of CO₂ from the rich solution 14 in the flash drum 31.

Using the residual heat of the semi-lean solution 28 after the heat exchange, the other part of the rich solution 14 divided was heat-exchanged in the semi-lean-solution heat exchanger 29, to thereby increase the temperature of the rich solution 14 to be supplied to the regeneration tower 15.

In example 5, as the result, the amount of steam consumed in the regeneration tower 15 became 95.52 MMkcal/h. Assuming the comparative example is 100, the amount of

28964-130

36

steam consumed in this example becomes 96.7%. Therefore, the reduction rate of specific steam consumption (improvement effect) was 3.3%.

Example 6

5 [0073] A CO₂ recovery system according to example 6 of the present invention is explained below with reference to the following drawing.

Fig. 15 is a schematic of the CO₂ recovery system according to example 6. Components the same as those of 10 example 1 are assigned with the same reference numerals and explanation thereof is omitted.

In example 6, the regeneration tower 15 was divided into two portions, the semi-lean solution 28 extracted from the upper-portion regeneration tower 15-U was heat-15 exchanged with the residual heat of the steam condensate 19 in the steam-condensate heat exchanger 21, and the semi-lean solution 28 heat-exchanged was returned to the lower-portion regeneration tower 15-L. This caused an increase in the temperature of the semi-lean solution to be supplied 20 to the lower portion side of the regeneration tower 15.

In example 6, as the result, the amount of steam consumed in the regeneration tower 15 became 93.65 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 94.8%. Therefore, 25 the reduction rate of specific steam consumption (improvement effect) was 5.2%.

Example 7

[0074] A CO₂ recovery system according to example 7 of the present invention is explained below with reference to 30 the following drawing.

Fig. 16 is a schematic of the CO₂ recovery system according to example 7. Components the same as those of example 1 are assigned with the same reference numerals and

28964-130

37

explanation thereof is omitted.

In example 7, the regeneration tower 15 was divided into two portions, and the rich solution 14 was divided. The lean-solution heat exchanger 23 was provided in the 5 first rich-solution supply pipe 20-1, and in the downstream side thereof, the steam-condensate heat exchanger 21 was provided, to thereby increase the temperature of the rich solution 14 to be supplied to the lower-portion regeneration tower 15-L. Furthermore, the semi-lean- 10 solution heat exchanger 29, which uses the residual heat of the semi-lean solution 28 fed from the upper-portion regeneration tower 15-U, was provided in the second rich-solution supply pipe 20-2, to thereby increase the temperature of the rich solution to be supplied to the 15 upper-portion regeneration tower 15-U.

[0075] The ratio of division of the rich solution 14 is such that the first rich solution was set to 70% and the second rich solution was set to 30%.

In example 7, as the result, the amount of steam 20 consumed in the regeneration tower 15 became 93.58 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 94.8%. Therefore, the reduction rate of specific steam consumption (improvement effect) was 5.2%.

25 Example 8

[0076] A CO₂ recovery system according to example 8 of the present invention is explained below with reference to the following drawing.

Fig. 17 is a schematic of the CO₂ recovery system 30 according to example 8. Components the same as those of example 1 are assigned with the same reference numerals and explanation thereof is omitted.

In example 8, the regeneration tower 15 was divided

28964-130

into two portions, and the semi-lean solution 28 extracted from the upper-portion regeneration tower 15-U was first heat-exchanged in the first lean-solution heat exchanger 23-1, and then, was heat-exchanged with the residual heat 5 of the steam condensate 19 in the steam-condensate heat exchanger 21, and the semi-lean solution 28 heat-exchanged was returned to the lower-portion regeneration tower 15-L. This caused an increase in the temperature of the semi-lean 10 solution to be supplied to the lower portion side of the regeneration tower 15.

In example 8, as the result, the amount of steam consumed in the regeneration tower 15 became 91.1 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 92.3%. Therefore, 15 the reduction rate of specific steam consumption (improvement effect) was 7.7%.

Example 9

[0077] A CO₂ recovery system according to example 9 of the present invention is explained below with reference to 20 the following drawing.

Fig. 18 is a schematic of the CO₂ recovery system according to example 9. Components the same as those of example 1 are assigned with the same reference numerals and explanation thereof is omitted.

25 In example 9, the regeneration tower 15 was divided into four portions such as a first regeneration tower 15-1, a second regeneration tower 15-2, a third regeneration tower 15-3, and a fourth regeneration tower 15-4. The semi-lean solution 28 respectively extracted from the first 30 regeneration tower 15-1 and the third regeneration tower 15-3 was heat-exchanged with the respective residual heat of the steam condensate in a first steam-condensate heat exchanger 21-1 and a second steam-condensate heat exchanger

28964-130

39

21-2, respectively. Because the temperature in the lower portion side of the regeneration tower was high, the residual heat of the steam condensate 19 was effectively used.

5 [0078] Furthermore, the semi-lean solution extracted from the second regeneration tower 15-2 was heat-exchanged with the residual heat of the lean solution 16 in the first lean-solution heat exchanger 23-1. The semi-lean solution 28 extracted from the first regeneration tower 15-1, before 10 being returned to the second regeneration tower 15-2 in the lower stage side, was heat-exchanged in the second lean-solution heat exchanger 23-2 in which the semi-lean solution 28 was heat-exchanged with the residual heat of the lean solution 16 that had been heat-exchanged in the 15 first lean-solution heat exchanger 23-1. In example 9, after the heat exchange, the rich solution 14 fed from the absorption tower 13 was heat-exchanged in a third lean-solution heat exchanger 23-3.

In example 9, as the result, the amount of steam 20 consumed in the regeneration tower 15 became 85.49 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 86.6%. Therefore, the reduction rate of specific steam consumption (improvement effect) was 13.4%.

25 Example 10

[0079] A CO₂ recovery system according to example 10 of the present invention is explained below with reference to the following drawing.

30 Fig. 19 is a schematic of the CO₂ recovery system according to example 10. Components the same as those of example 1 are assigned with the same reference numerals and explanation thereof is omitted.

In example 10, the regeneration tower 15 was divided

28964-130

40

into three portions such as the upper-portion regeneration tower 15-U, the middle-portion regeneration tower 15-M, and the lower-portion regeneration tower 15-L. The semi-lean solution 28 extracted from the middle-portion regeneration 5 tower 15-M was heat-exchanged with the residual heat of the steam condensate in the steam-condensate heat exchanger 21. Part of the semi-lean solution 28 extracted was supplied to the semi-lean-solution heat exchanger 29 that heats the rich solution 14, where the residual heat of the semi-lean 10 solution was effectively used.

Furthermore, the semi-lean solution 28 extracted from the upper-portion regeneration tower 15-U was heat-exchanged with the residual heat of the lean solution 16 in the first lean-solution heat exchanger 23-1.

15 The rich solution 14 heat-exchanged in the semi-lean-solution heat exchanger 29 was heat-exchanged in the second lean-solution heat exchanger 23-2 in which the rich solution 14 was heat-exchanged with the residual heat of the lean solution 16 that had been heat-exchanged in the 20 first lean-solution heat exchanger 23-1.

In example 10, as the result, the amount of steam consumed in the regeneration tower 15 became 91.9 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 93.0%. Therefore, 25 the reduction rate of specific steam consumption (improvement effect) was 7%.

Example 11

[0080] A CO₂ recovery system according to example 11 of the present invention is explained below with reference to 30 the following drawing.

Fig. 20 is a schematic of the CO₂ recovery system according to example 11. Components the same as those of example 1 are assigned with the same reference numerals and

28964-130

41

explanation thereof is omitted.

In example 11, the regeneration tower 15 was divided into two portions such as the upper-portion regeneration tower 15-U and the lower-portion regeneration tower 15-L.

5 The semi-lean solution 28, extracted from the upper-portion regeneration tower 15-U, was used to heat the rich solution in the second rich-solution supply pipe 20-2, in the semi-lean-solution heat exchanger 29. Thereafter, the semi-lean solution 28 was divided, to be heat-exchanged with the 10 residual heat of the steam condensate in the steam-condensate heat exchanger 21 before being supplied to the lower-portion regeneration tower 15-L.

The rich solution in the first rich-solution supply pipe 20-1 was heat-exchanged in the first lean-solution 15 heat exchanger 23-1, was jointed with the other one to be heat-exchanged with the residual heat of the lean solution 16 in the second lean-solution heat exchanger 23-2, and was supplied to the regeneration tower 15.

In example 11, as the result, the amount of steam 20 consumed in the regeneration tower 15 became 93.96 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 95.1%. Therefore, the reduction rate of specific steam consumption (improvement effect) was 4.9%.

25 Example 12

[0081] A CO₂ recovery system according to example 12 of the present invention is explained below with reference to the following drawing.

Fig. 21 is a schematic of the CO₂ recovery system 30 according to example 12. Components the same as those of example 1 are assigned with the same reference numerals and explanation thereof is omitted.

In example 12, the regeneration tower 15 was divided

28964-130

42

into three portions such as the upper-portion regeneration tower 15-U, the middle-portion regeneration tower 15-M, and the lower-portion regeneration tower 15-L. The semi-lean solution 28 extracted from the middle-portion regeneration 5 tower 15-M was heat-exchanged with the residual heat of the steam condensate in the steam-condensate heat exchanger 21.

Furthermore, the rich solution 14 was divided, and the lean-solution heat exchanger 23 was provided in the first rich-solution supply pipe 20-1. The semi-lean-solution heat 10 exchanger 29 was provided in the second rich-solution supply pipe 20-2 where heat exchange was performed using the semi-lean solution 28 extracted from the upper-portion regeneration tower 15-U, so that the residual heat of the semi-lean solution was effectively used.

15 In example 12, as the result, the amount of steam consumed in the regeneration tower 15 became 91.14 MMkcal/h. Assuming the comparative example is 100, the amount of steam consumed in this example becomes 92.3%. Therefore, the reduction rate of specific steam consumption 20 (improvement effect) was 7.7%.

INDUSTRIAL APPLICABILITY

[0082] The CO₂ recovery system according to the present invention is suitable for reduction in the supply amount of 25 heated steam used in the regeneration tower by effectively using the residual heat of the steam condensate and the residual heat of the semi-lean solution.

28964-130

43

CLAIMS:

1. A CO₂ recovery system which comprises:

an absorption tower that receives a CO₂-containing gas and a CO₂-absorbing solution, and causes the
5 CO₂-containing gas to come in contact with the CO₂-absorbing solution to produce a CO₂ rich solution;

a regeneration tower that receives the rich solution and produces a lean solution from the rich solution by removing CO₂ from the rich solution;

10 a bottom lean-solution extraction path that extracts the lean solution that accumulates near a bottom portion of the regeneration tower from a first point of the regeneration tower and returns the extracted lean solution to a second point of the regeneration tower that is
15 downstream of the first point;

a regeneration heater arranged in the bottom lean-solution extraction path that heats the lean solution in the bottom lean-solution extraction path with saturated steam thereby producing a steam condensate from the saturated
20 steam; and

a steam-condensate heat exchanger that heats, with the steam condensate, the rich solution that is supplied from the absorption tower to the regeneration tower.

2. The CO₂ recovery system according to claim 1,
25 further comprising:

a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower, wherein the steam-condensate heat exchanger is provided in the rich-solution supply member and heats the

28964-130

44

rich solution in the rich-solution supply member with the steam condensate; and

5 a flash drum provided upstream or downstream of the steam-condensate heat exchanger in the rich-solution supply member.

3. The CO₂ recovery system according to claim 2, further comprising:

10 a branching node provided in the rich-solution supply member that divides the rich-solution supply member into a first rich-solution supply member and a second rich-solution supply member,

15 wherein the steam-condensate heat exchanger is provided in the first rich-solution supply member and heats the rich solution in the first rich-solution supply member with the steam condensate, and the flash drum is provided downstream of the steam-condensate heat exchanger in the first rich-solution supply member, and produces a semi-lean solution; and

20 a semi-lean-solution heat exchanger that is provided in the second rich-solution supply member, and heats the rich solution in the second rich-solution supply member with the semi-lean solution produced in the flash drum.

4. The CO₂ recovery system according to claim 1, 25 further comprising:

a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower;

28964-130

45

a branching node provided in the rich-solution supply member that divides the rich-solution supply member into a first rich-solution supply member and a second rich-solution supply member, wherein the steam-condensate heat

5 exchanger is provided in the first rich-solution supply member and flashes the rich solution in the first rich-solution supply member to produce a semi-lean solution;

a semi-lean-solution heat exchanger that is provided in the second rich-solution supply member, and 10 heats the rich solution in the second rich-solution supply member with the semi-lean solution produced in the steam-condensate heat exchanger; and

a semi-lean-solution supply member that conveys the semi-lean solution from the semi-lean-solution heat 15 exchanger to a middle stage portion of the absorption tower.

5. The CO₂ recovery system according to claim 4, wherein the steam-condensate heat exchanger comprises:

a flash drum including a flash portion in an upper portion for flashing the rich solution;

20 a filling layer in the flash drum; and

a steam supply unit provided in a lower portion of the flash drum and to which steam obtained from the steam condensate is supplied.

6. The CO₂ recovery system according to claim 1, 25 wherein the regeneration tower comprises an upper-portion regeneration tower and a lower-portion regeneration tower, and the CO₂ recovery system further comprises:

28964-130

46

a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower;

a branching node provided in the rich-solution supply member that divides the rich-solution supply member into a first rich-solution supply member and a second rich-solution supply member, wherein the steam-condensate heat exchanger is provided in the first rich-solution supply member and heats the rich solution in the first rich-solution supply member with the steam condensate;

a semi-lean-solution supply member that extracts a semi-lean solution from the upper-portion regeneration tower and conveys the extracted semi-lean solution to a middle stage portion of the absorption tower;

a semi-lean-solution heat exchanger that is provided in the second rich-solution supply member and the semi-lean-solution supply member, and heats the rich solution in the second rich-solution supply member with the semi-lean solution in the semi-lean-solution supply member,

wherein one end of the first rich-solution supply member is connected to the lower-portion regeneration tower, and one end of the second rich-solution supply member is connected to the upper-portion regeneration tower.

7. The CO₂ recovery system according to claim 1, further comprising:

a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower;

28964-130

47

a lean-solution supply member that extracts the lean solution from the regeneration tower and conveys the extracted lean solution to the absorption tower; and

5 a lean-solution heat exchanger that is provided in the rich-solution supply member and the lean-solution supply member, and heats the rich solution in the rich-solution supply member with the lean solution in the lean-solution supply member.

8. The CO₂ recovery system according to claim 1,
10 wherein the regeneration tower comprises an upper-portion regeneration tower and a lower-portion regeneration tower,
the CO₂ recovery system further comprises:

15 an upper semi-lean-solution extraction path that extracts a semi-lean solution from an eleventh point of the upper-portion regeneration tower and returns the extracted semi-lean solution to a twelfth point of the upper-portion regeneration tower that is downstream of the eleventh point;

20 a lean-solution supply member that extracts the lean solution from the regeneration tower and conveys the extracted lean solution to the absorption tower;

25 a lean-solution heat exchanger that is arranged in the upper semi-lean-solution extraction path and the lean-solution supply member and heats the semi-lean solution in the upper semi-lean-solution extraction path with the lean solution in the lean-solution supply member.

9. The CO₂ recovery system according to claim 4,
wherein:

the absorption tower is divided into an upper stage and a lower stage, and

28964-130

48

the semi-lean solution to be supplied to a portion between the upper stage and the lower stage of the absorption tower is joined with a semi-lean solution extracted from the upper-stage absorption tower, to be 5 supplied to the lower-stage absorption tower.

10. A CO₂ recovery system which comprises:

an absorption tower that receives a CO₂-containing gas and a CO₂-absorbing solution, and causes the CO₂-containing gas to come in contact with the CO₂-absorbing 10 solution to produce a CO₂ rich solution;

a regeneration tower that receives the rich solution and produces a lean solution from the rich solution by removing CO₂ from the rich solution;

15 a bottom lean-solution extraction path that extracts the lean solution that accumulates near a bottom portion of the regeneration tower and returns the extracted lean solution to the regeneration tower;

20 a regeneration heater arranged in the bottom lean-solution extraction path and heats the lean solution in the bottom lean-solution extraction path with a saturated steam thereby producing a steam condensate from the saturated steam;

25 a rich-solution supply member that conveys the rich solution from the absorption tower to the regeneration tower; and

a steam-condensate heat exchanger that is provided in the rich-solution supply member and heats the rich solution in the rich-solution supply member with the steam condensate.

28964-130

49

11. A CO₂ recovery method which comprises:

causing a CO₂-containing gas to come in contact with a CO₂-absorbing solution to produce a CO₂ rich solution in an absorption tower;

5 conveying the rich solution to a regeneration tower, and producing a lean solution from the rich solution by removing CO₂ from the rich solution in the regeneration tower;

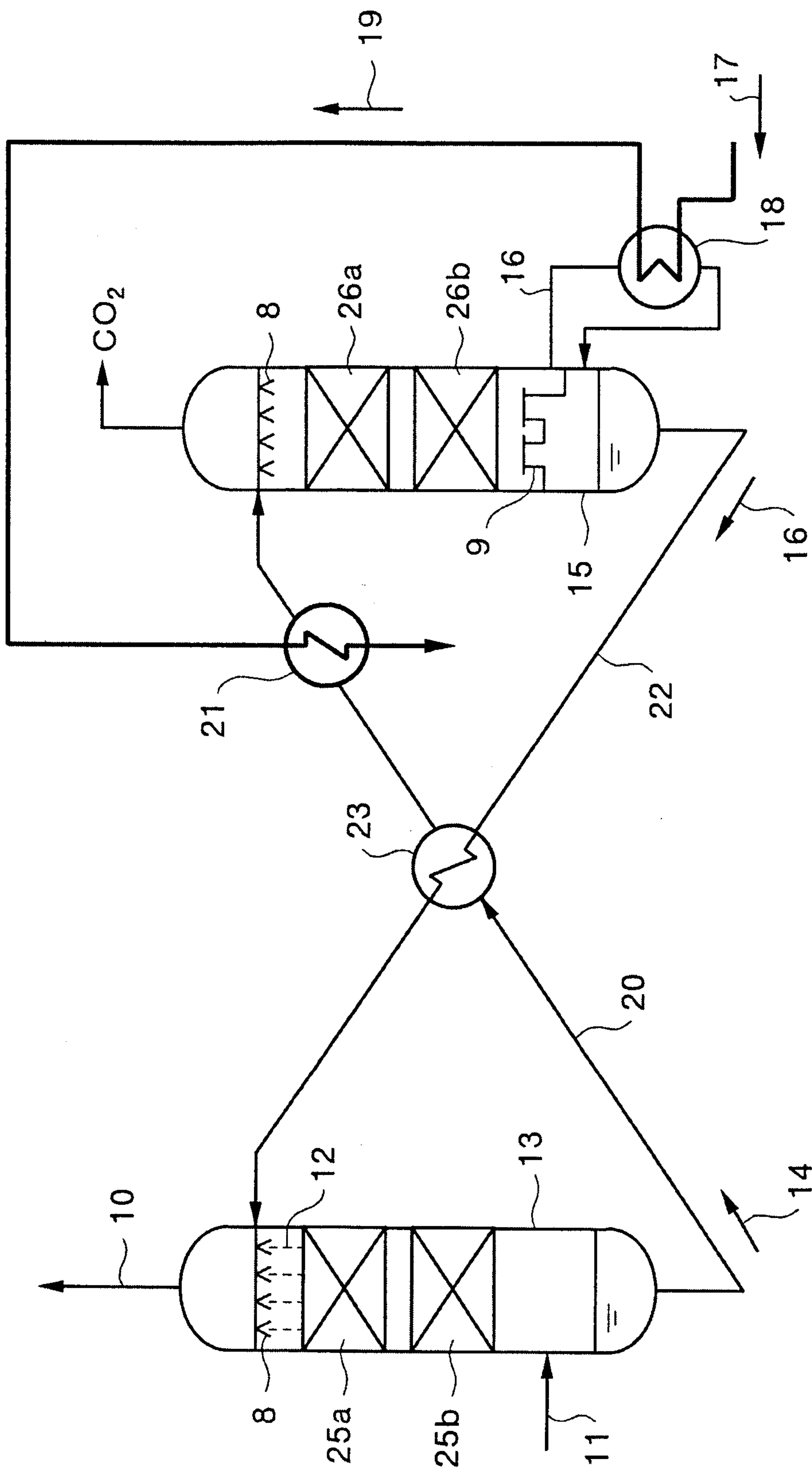
10 extracting the lean solution that accumulates near a bottom portion of the regeneration tower;

heating the extracted lean solution with a saturated steam to produce a steam condensate from the saturated steam, and returning the extracted lean solution after heating the saturated steam to the regeneration tower;

15 and

heating the rich solution that is conveyed from the absorption tower to the regeneration tower with the steam condensate.

12. The CO₂ recovery system according to any one of 20 claims 1 to 6 or claim 8 or 9, which further comprises:


a lean-solution supply member that extracts the lean solution from the regeneration tower and conveys the extracted lean solution to the absorption tower.

FETHERSTONHAUGH & CO.

OTTAWA, CANADA

PATENT AGENTS

FIG.1

2.
G
—
L

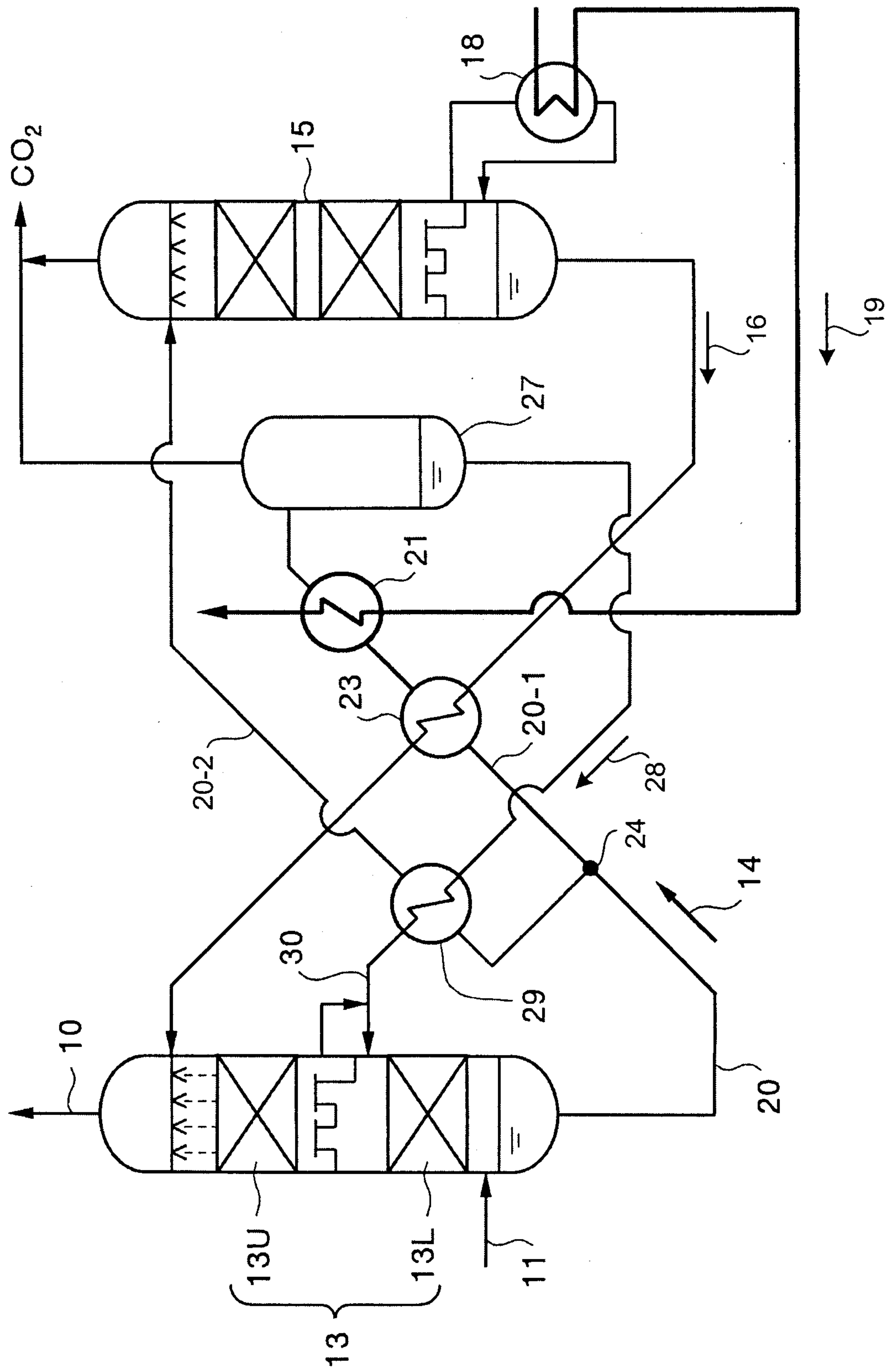


FIG.3

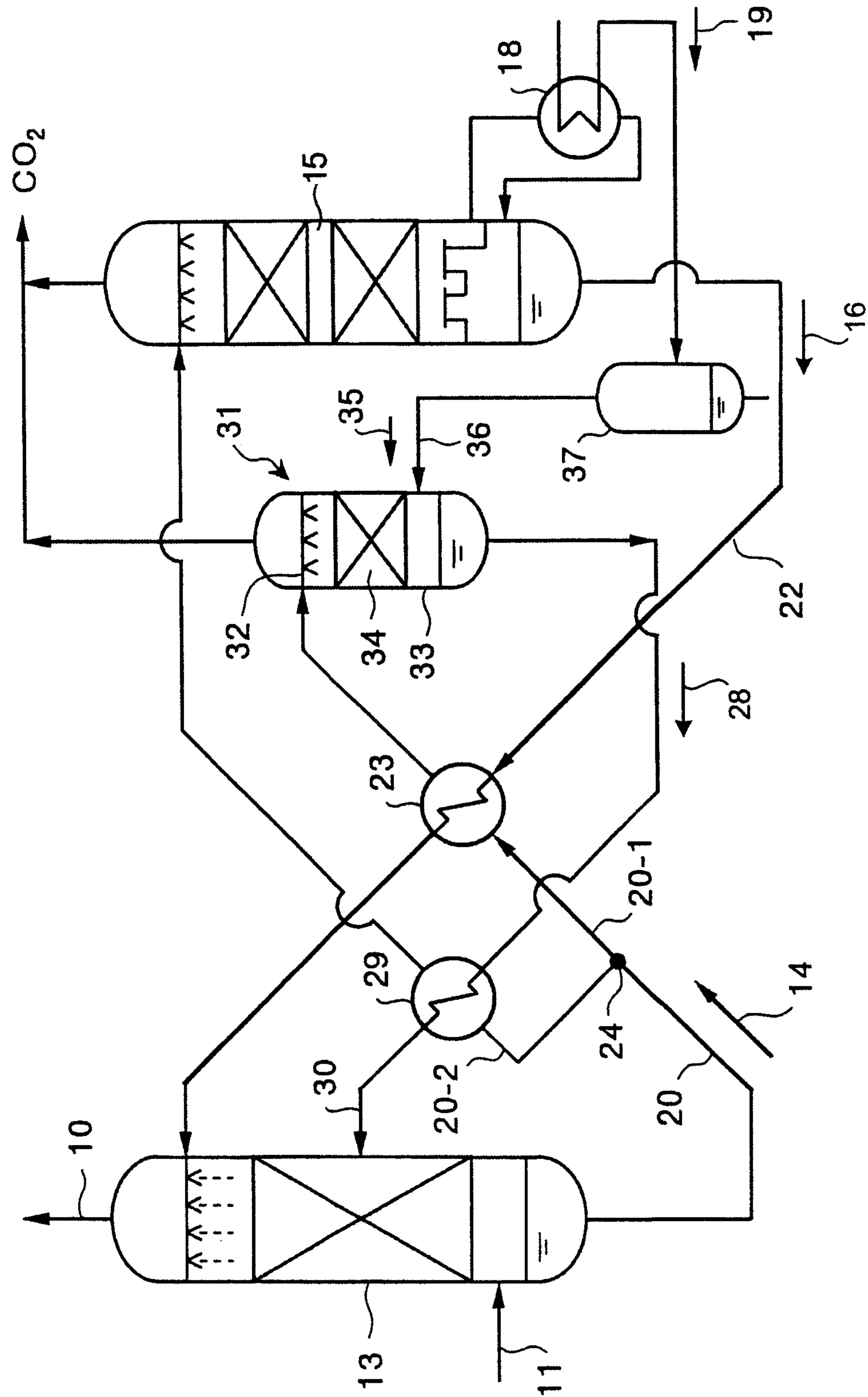


FIG.4

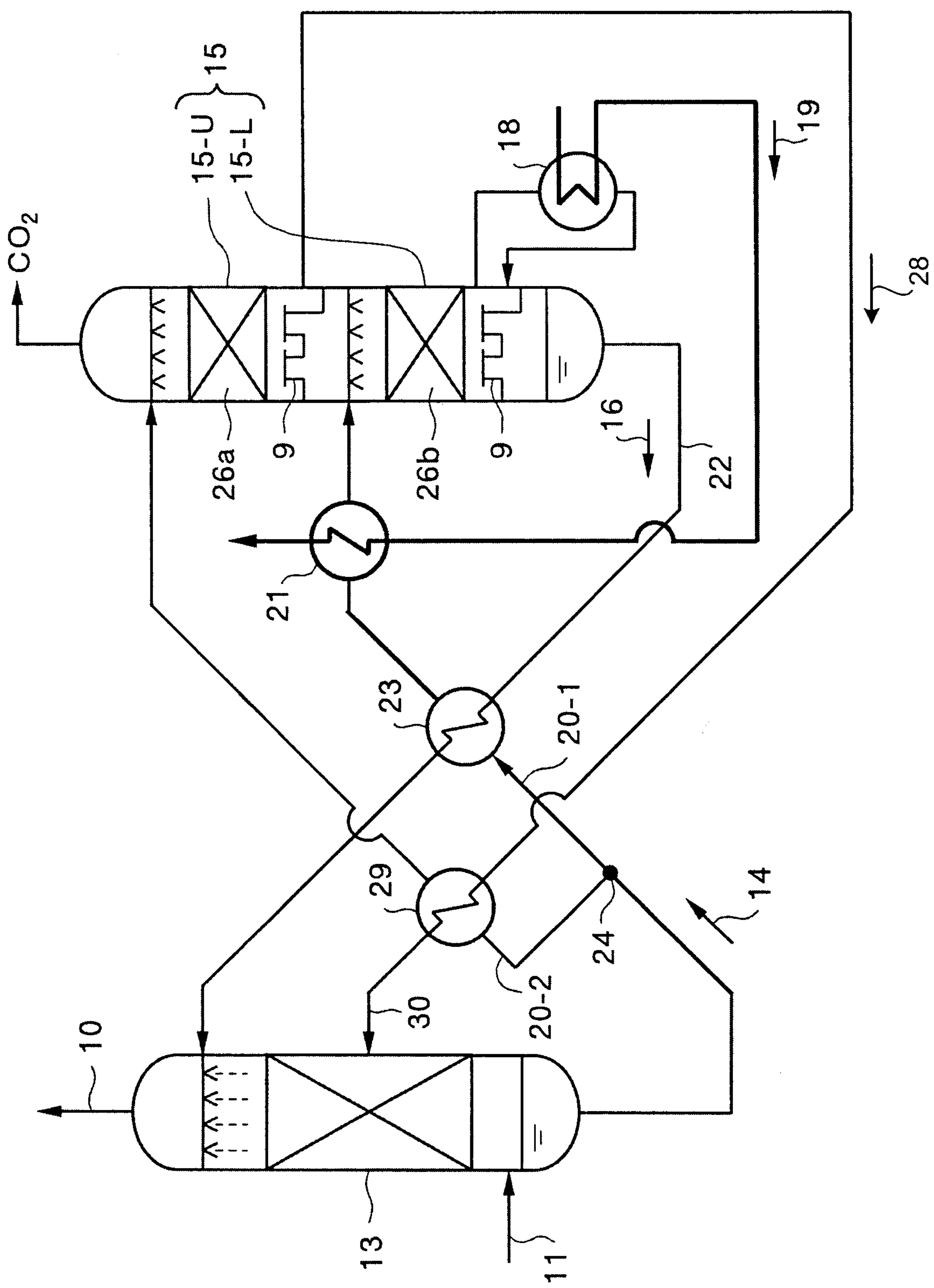


FIG.5

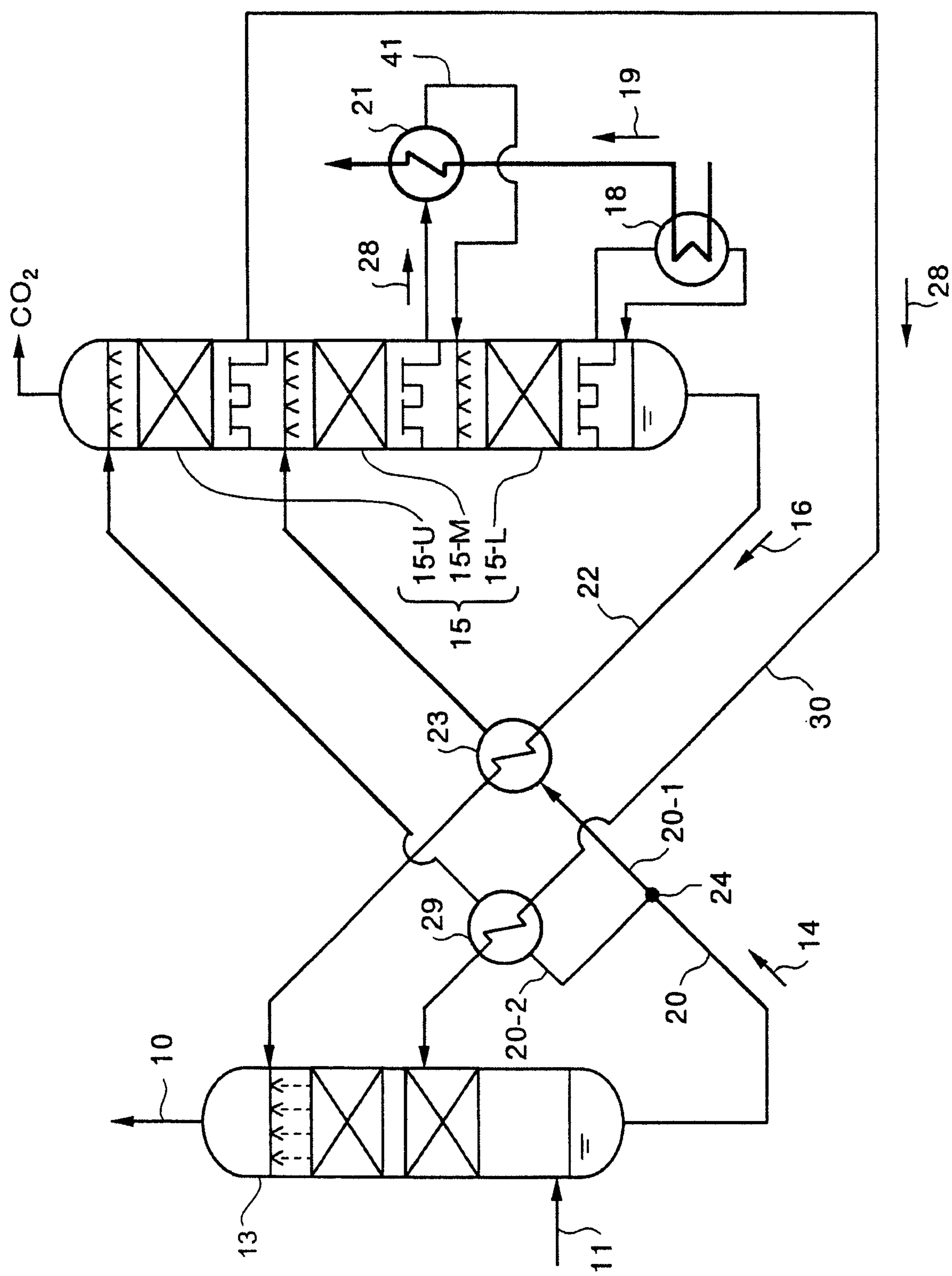
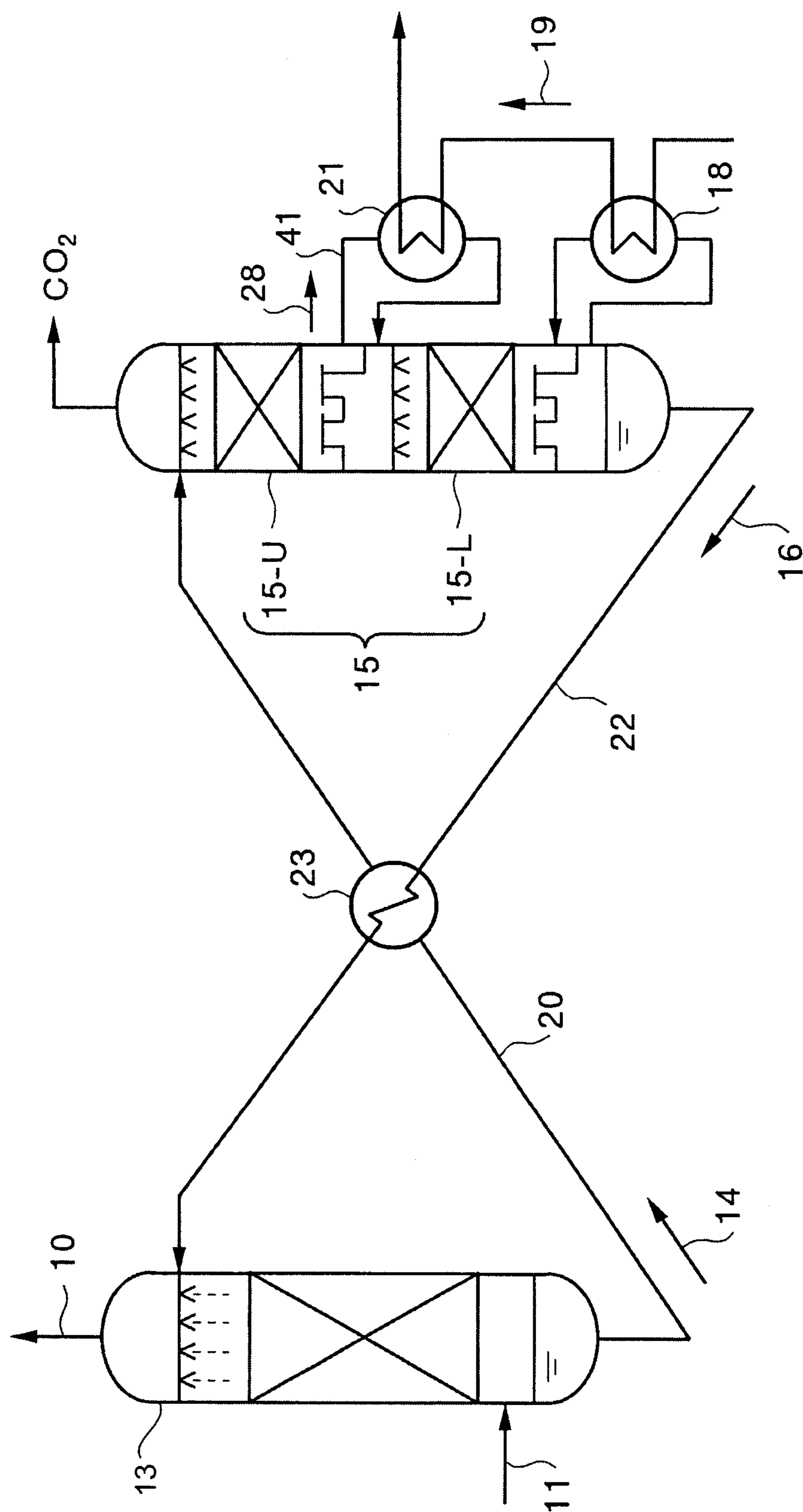



FIG.6

—
G.
—
—

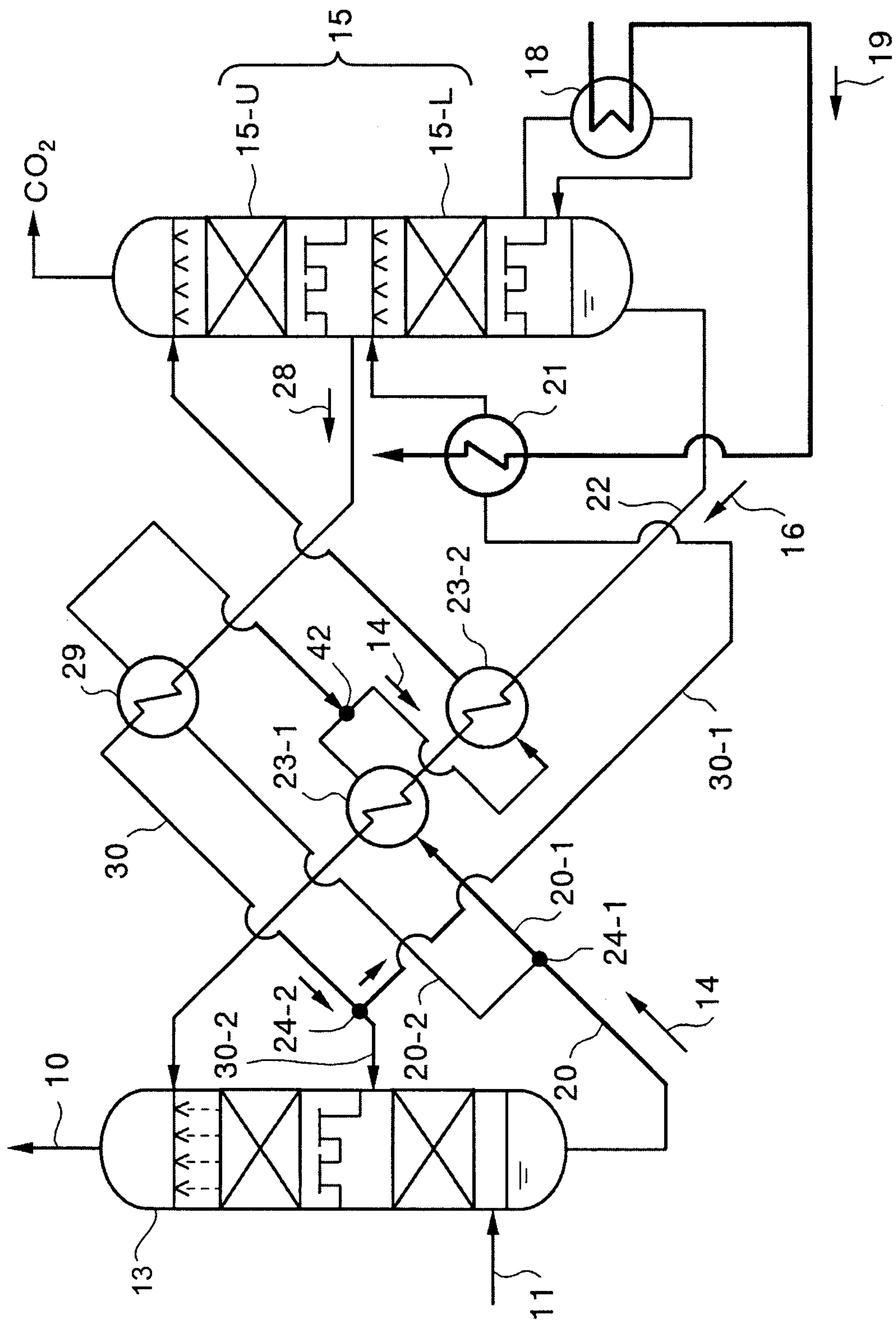
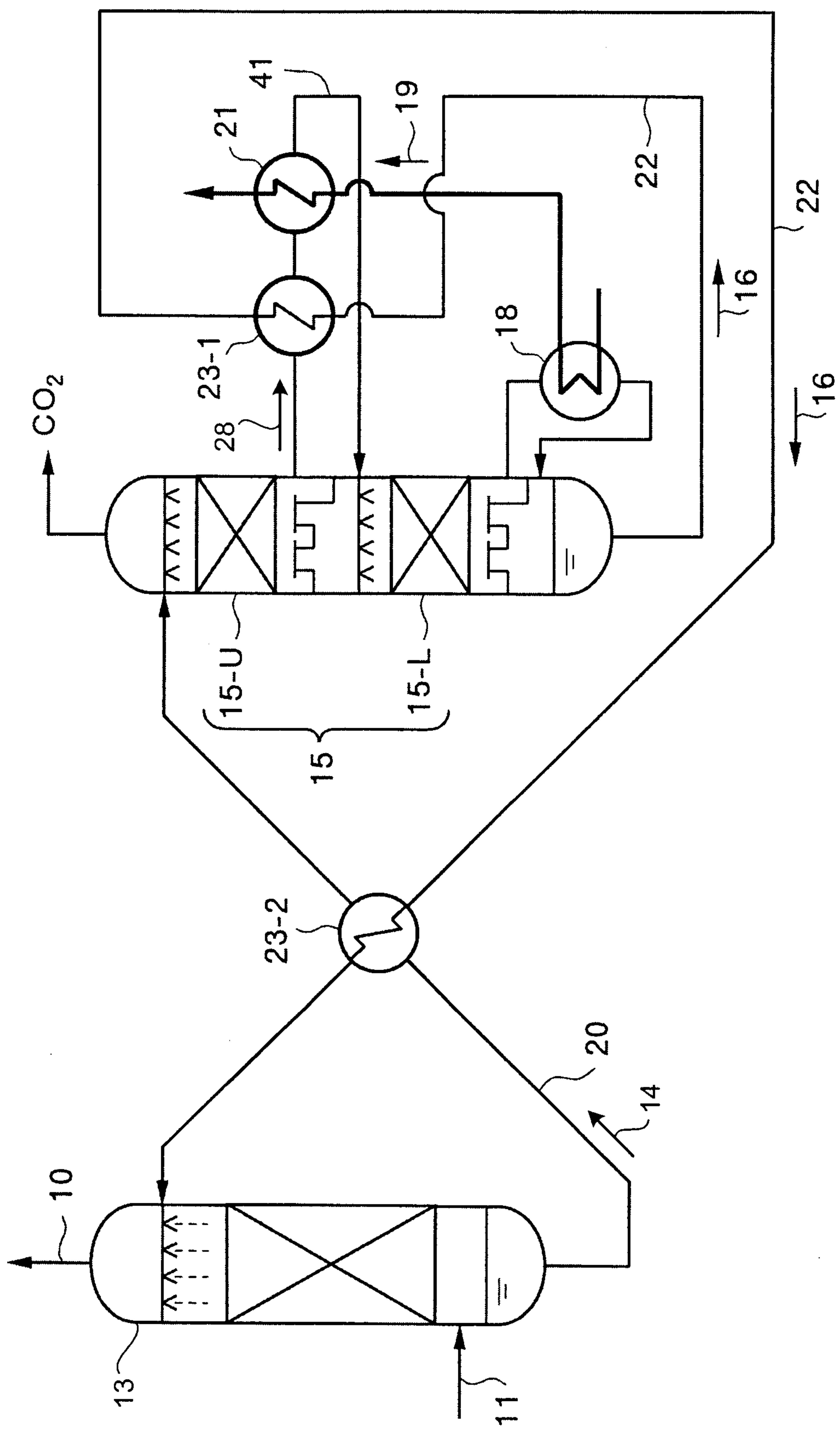



FIG.8

9/22

FIG.9

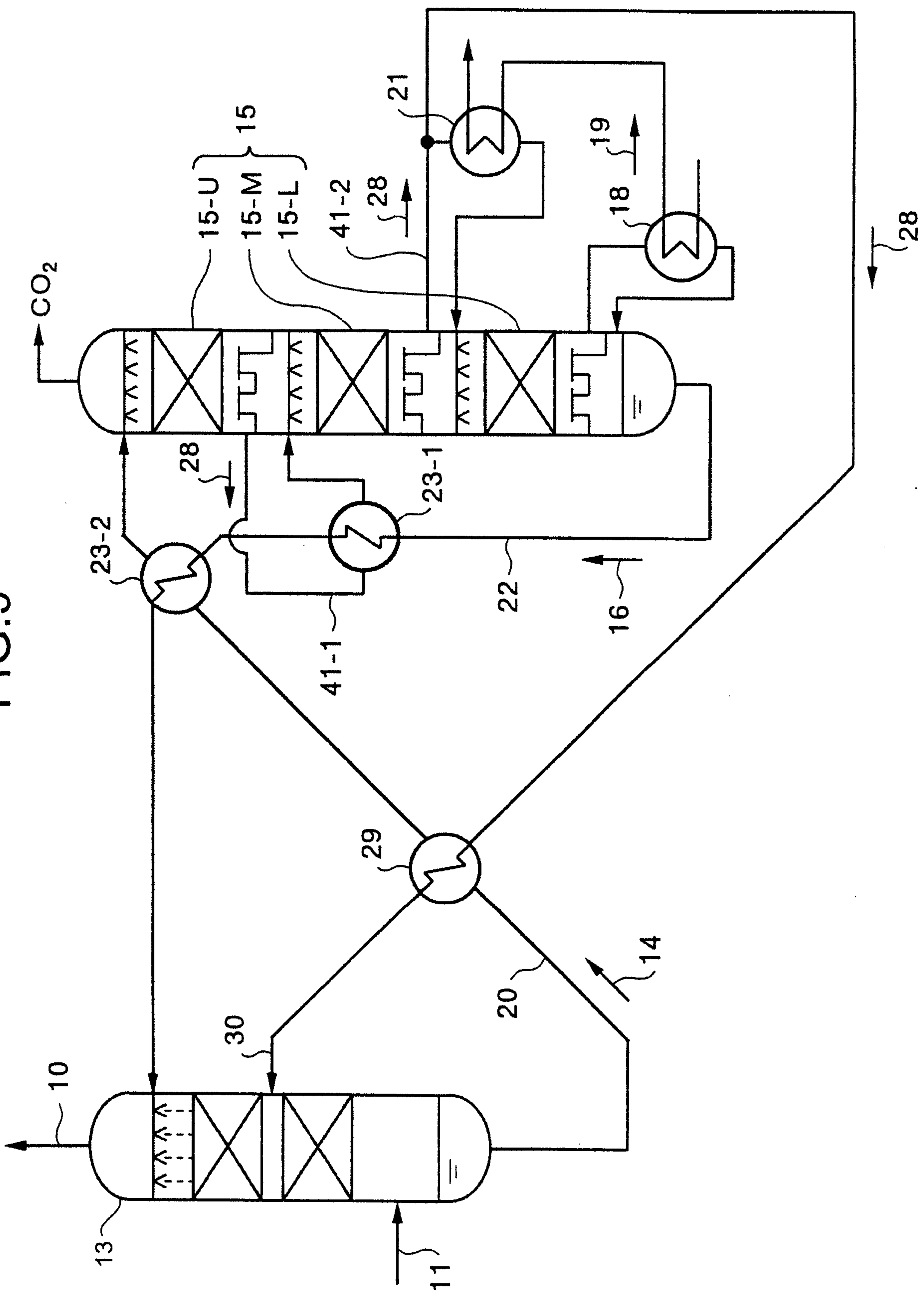
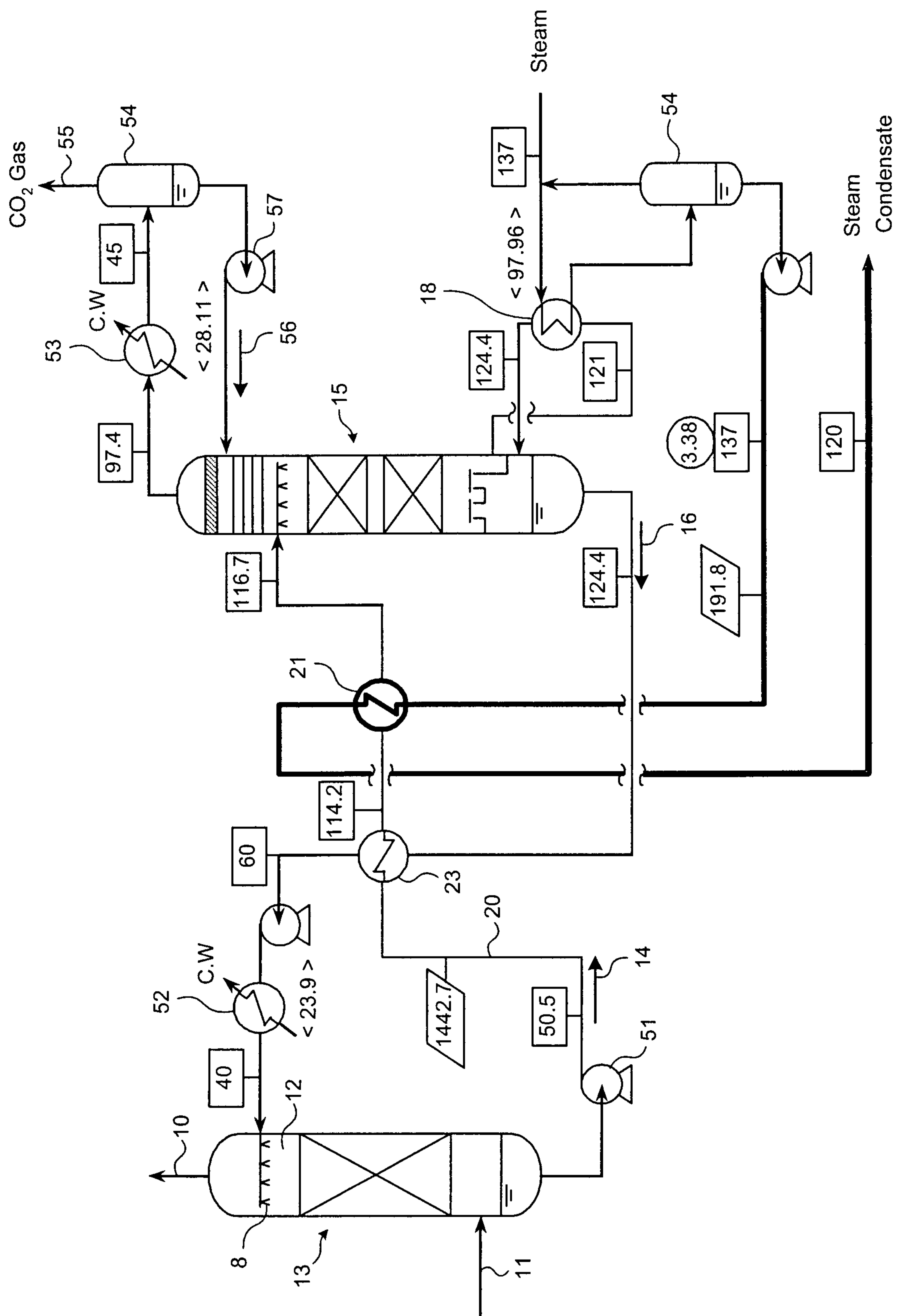



FIG. 10

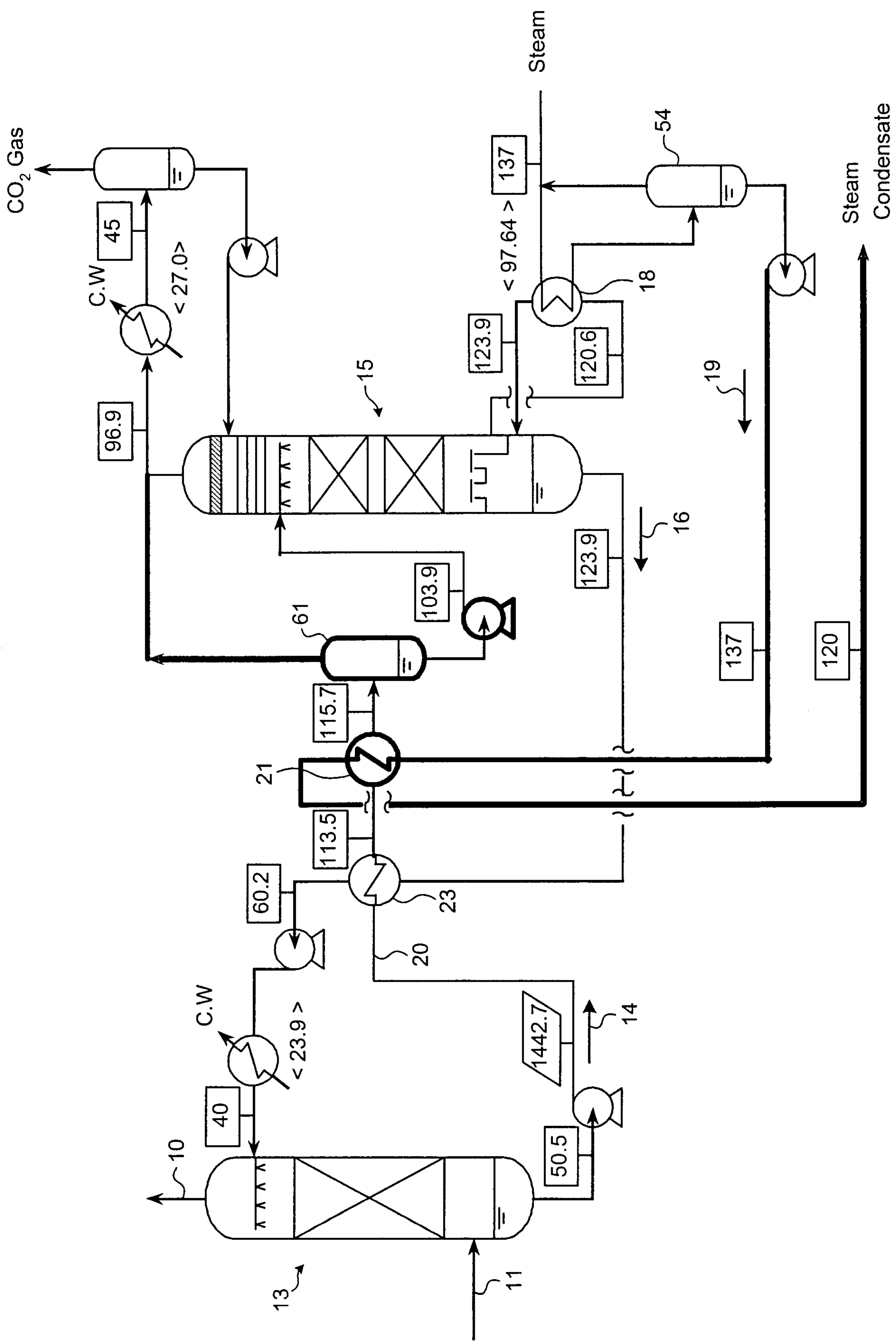


FIG. 12

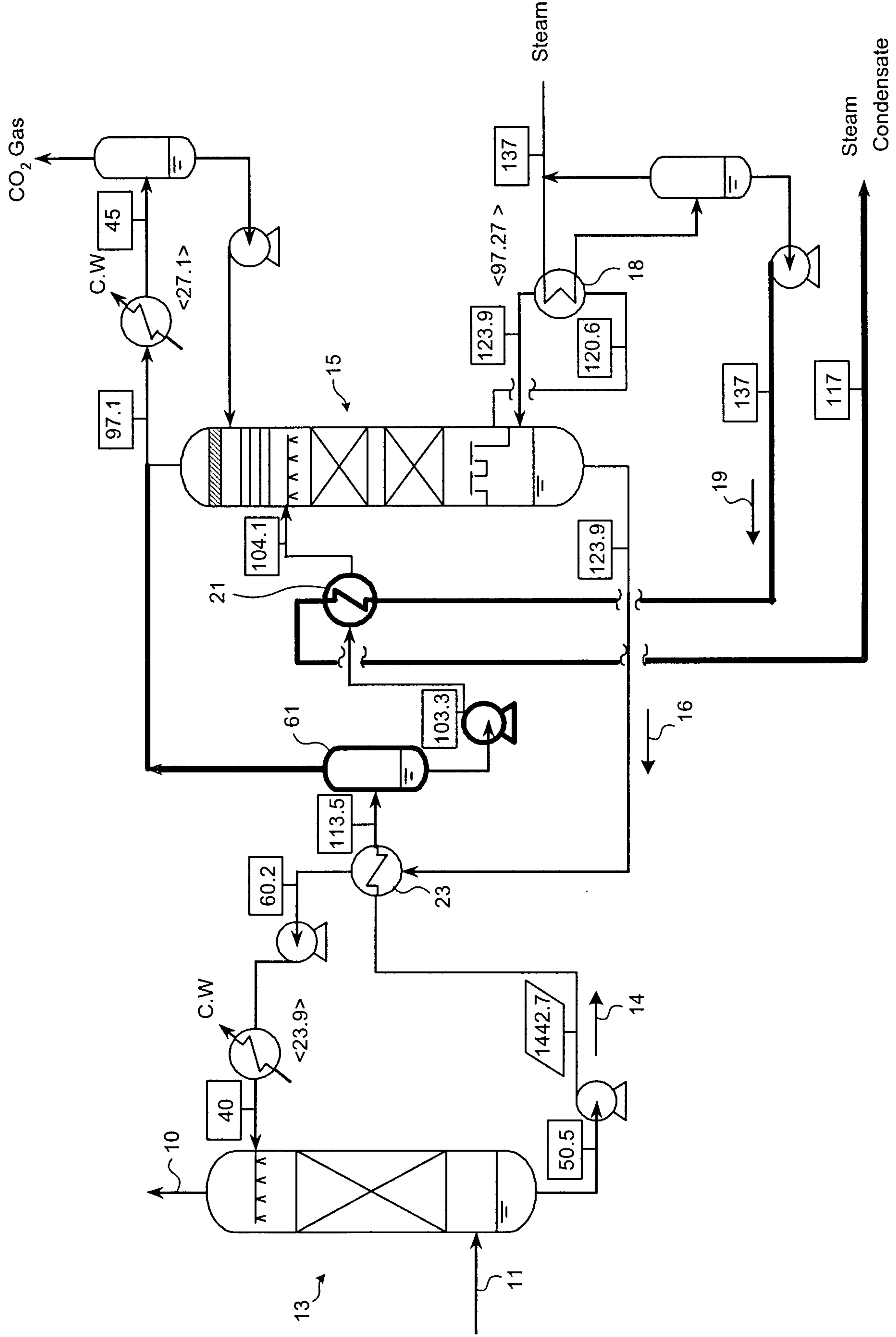


FIG. 13

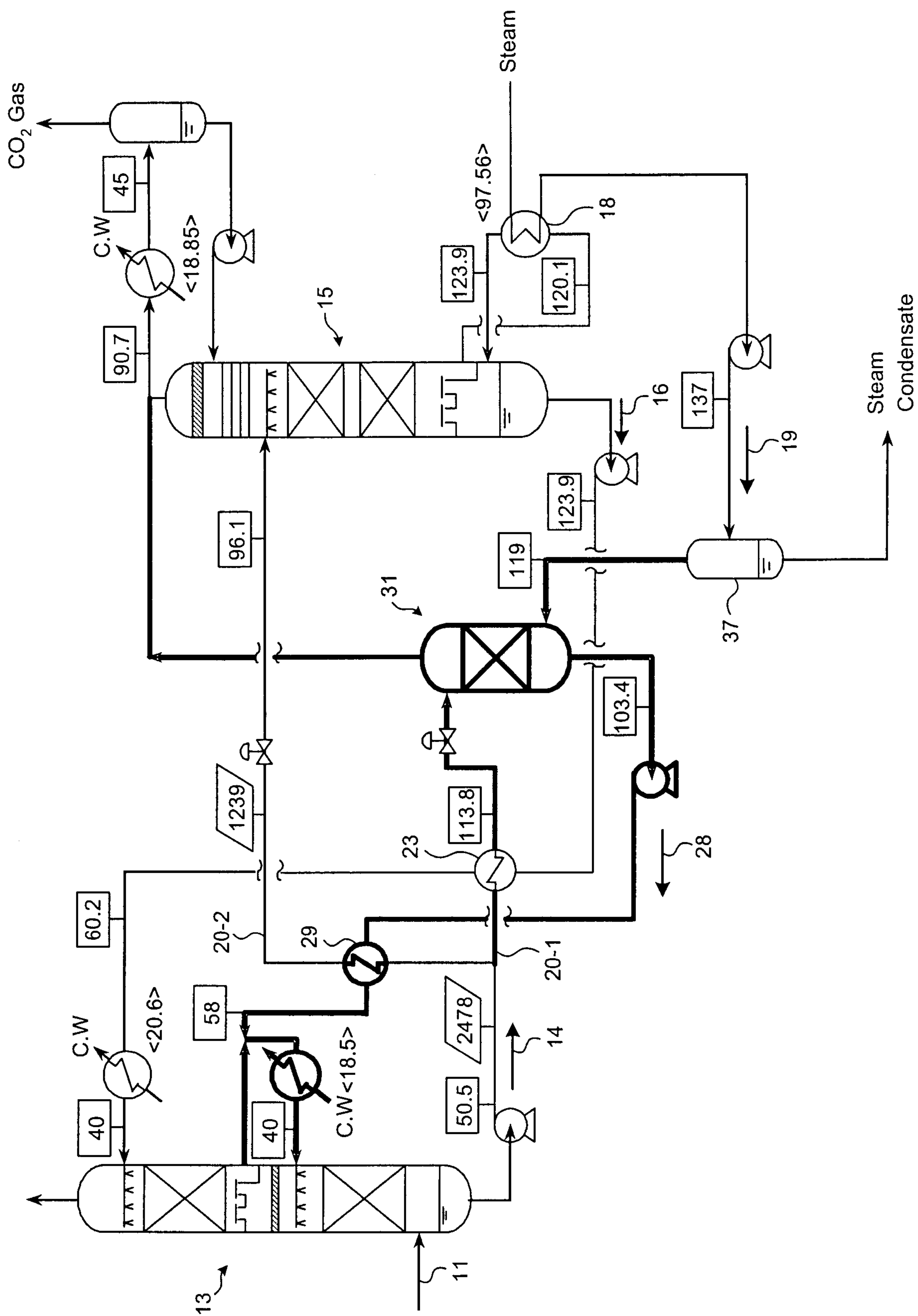


FIG.14

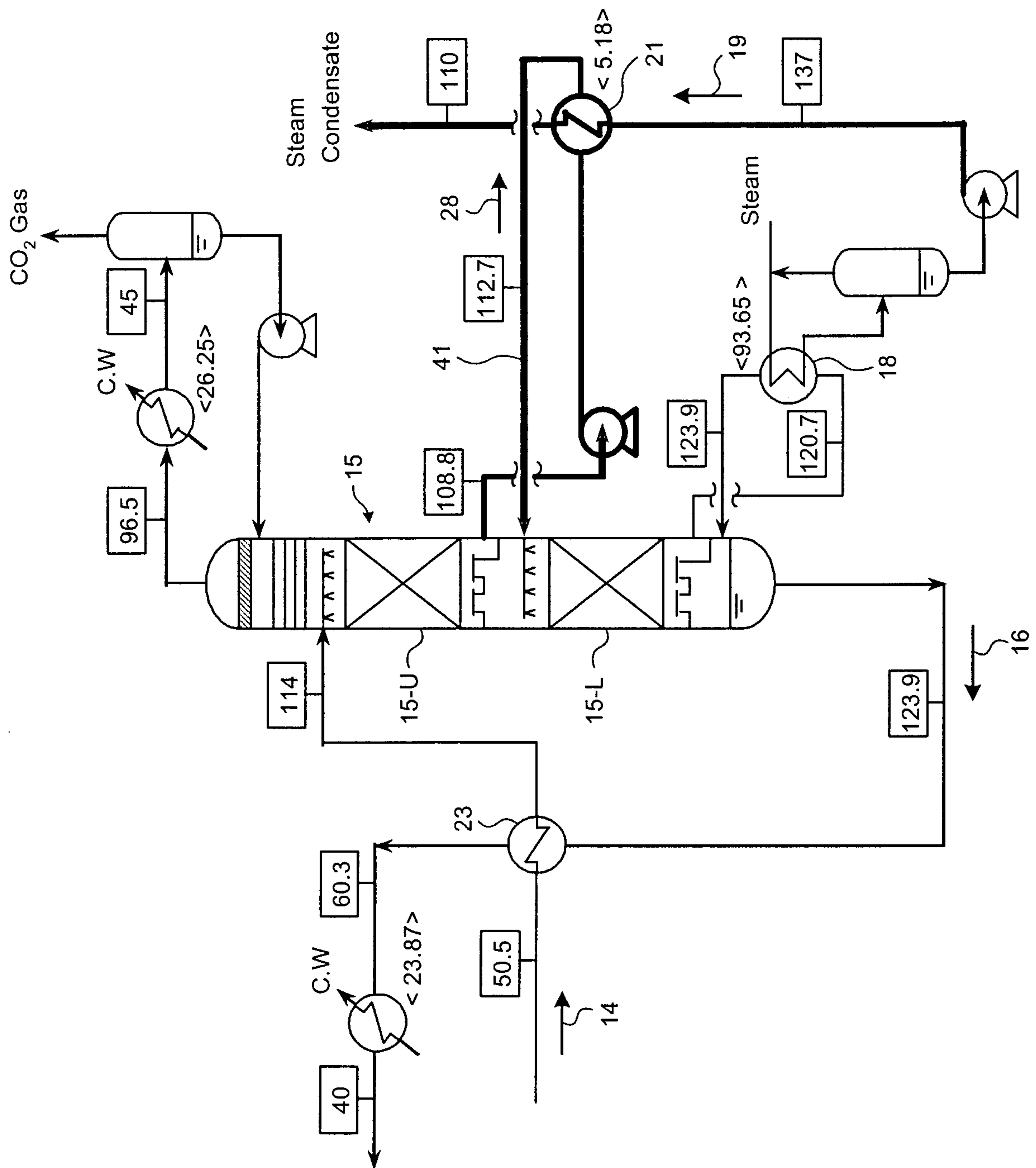



FIG. 15

16
G.
II

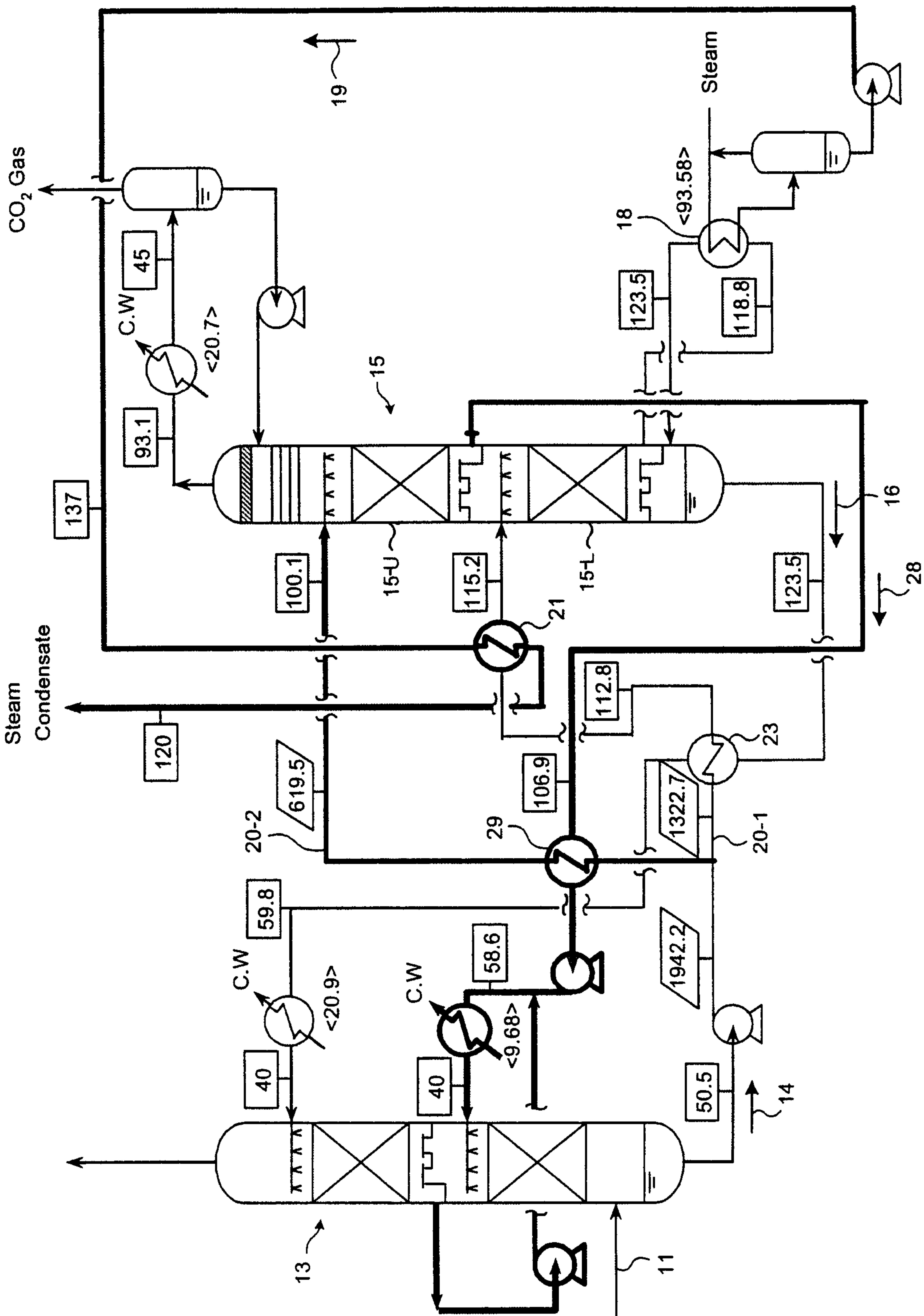


FIG. 17

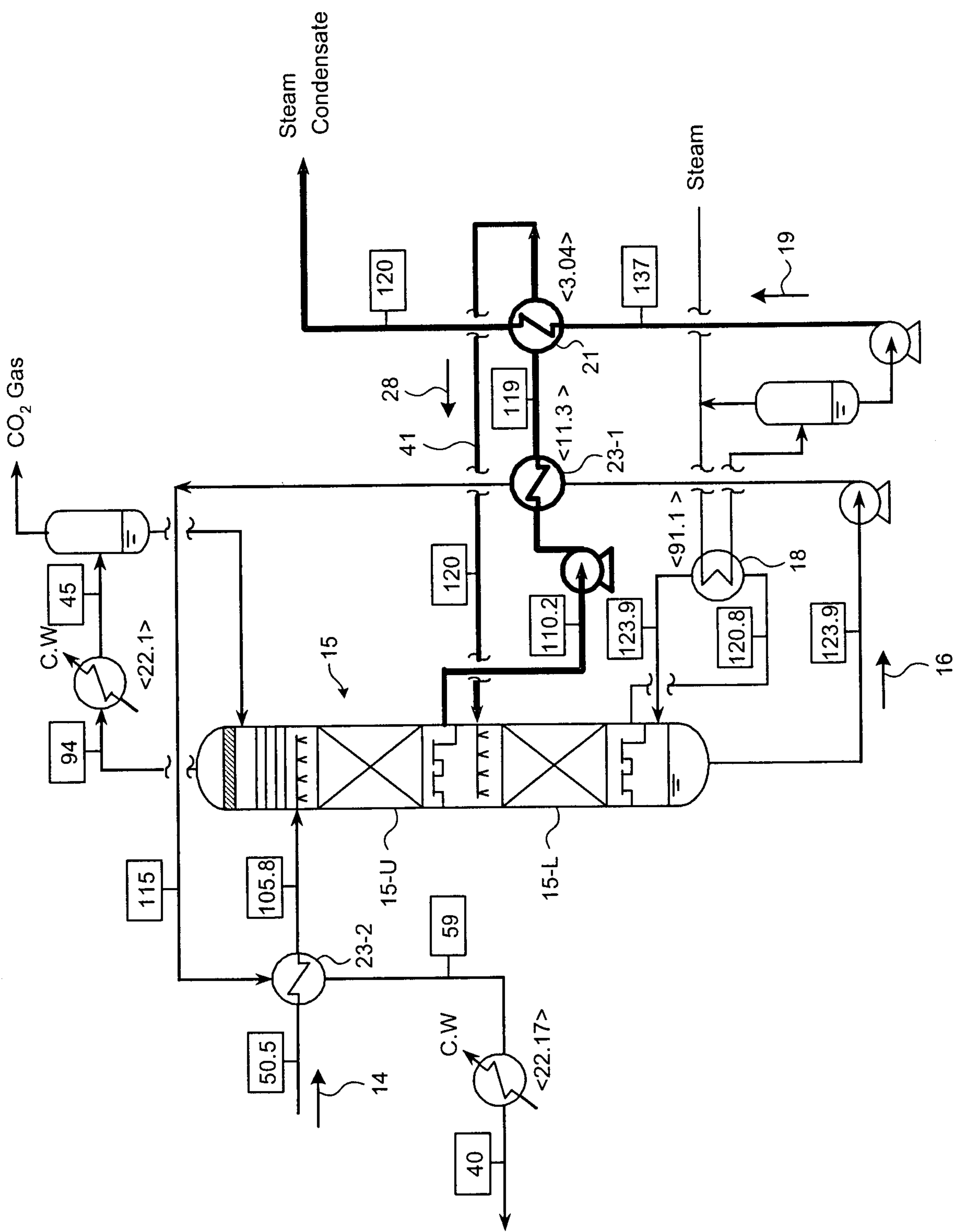
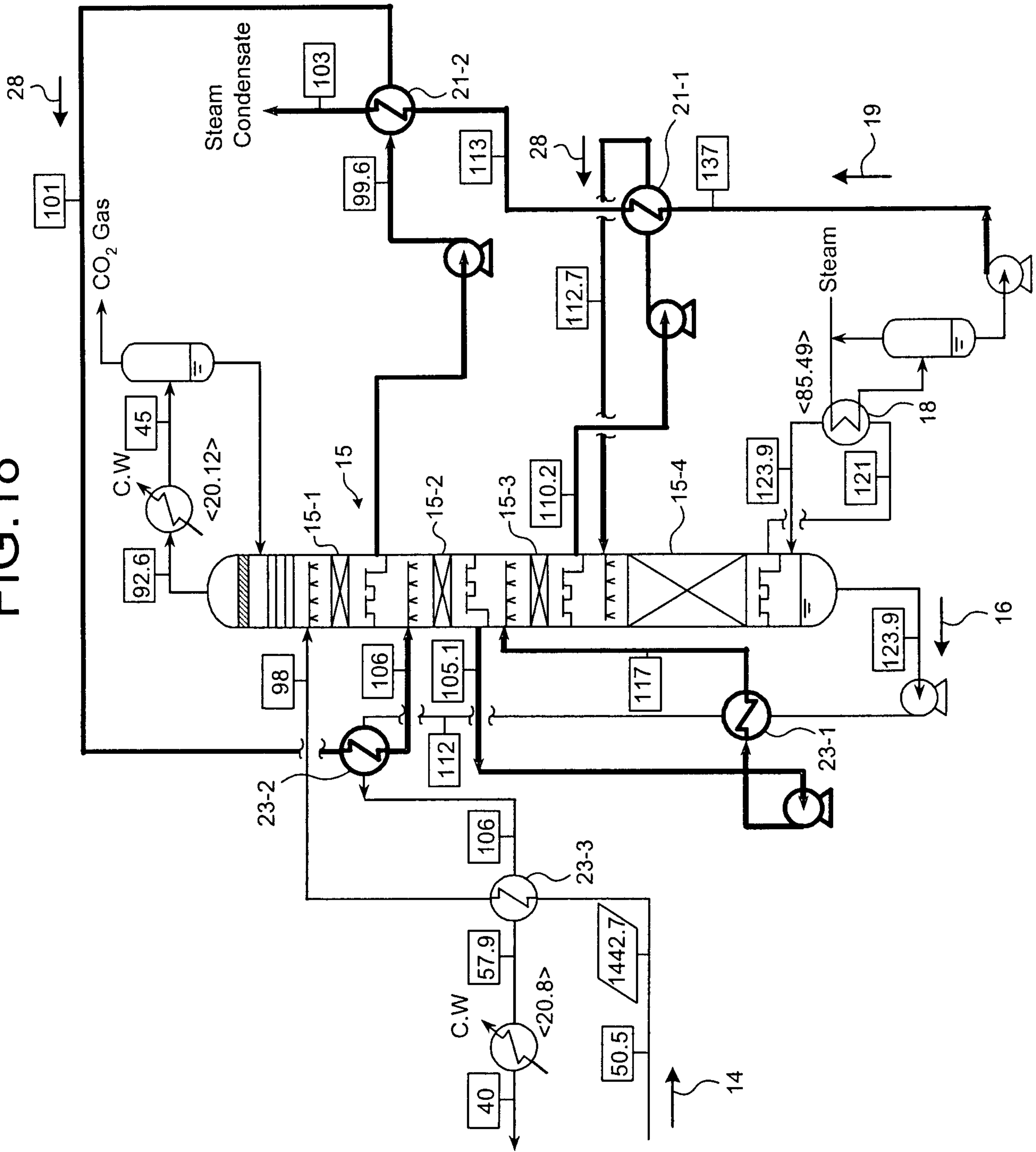



FIG. 18

9
1
G.
H.

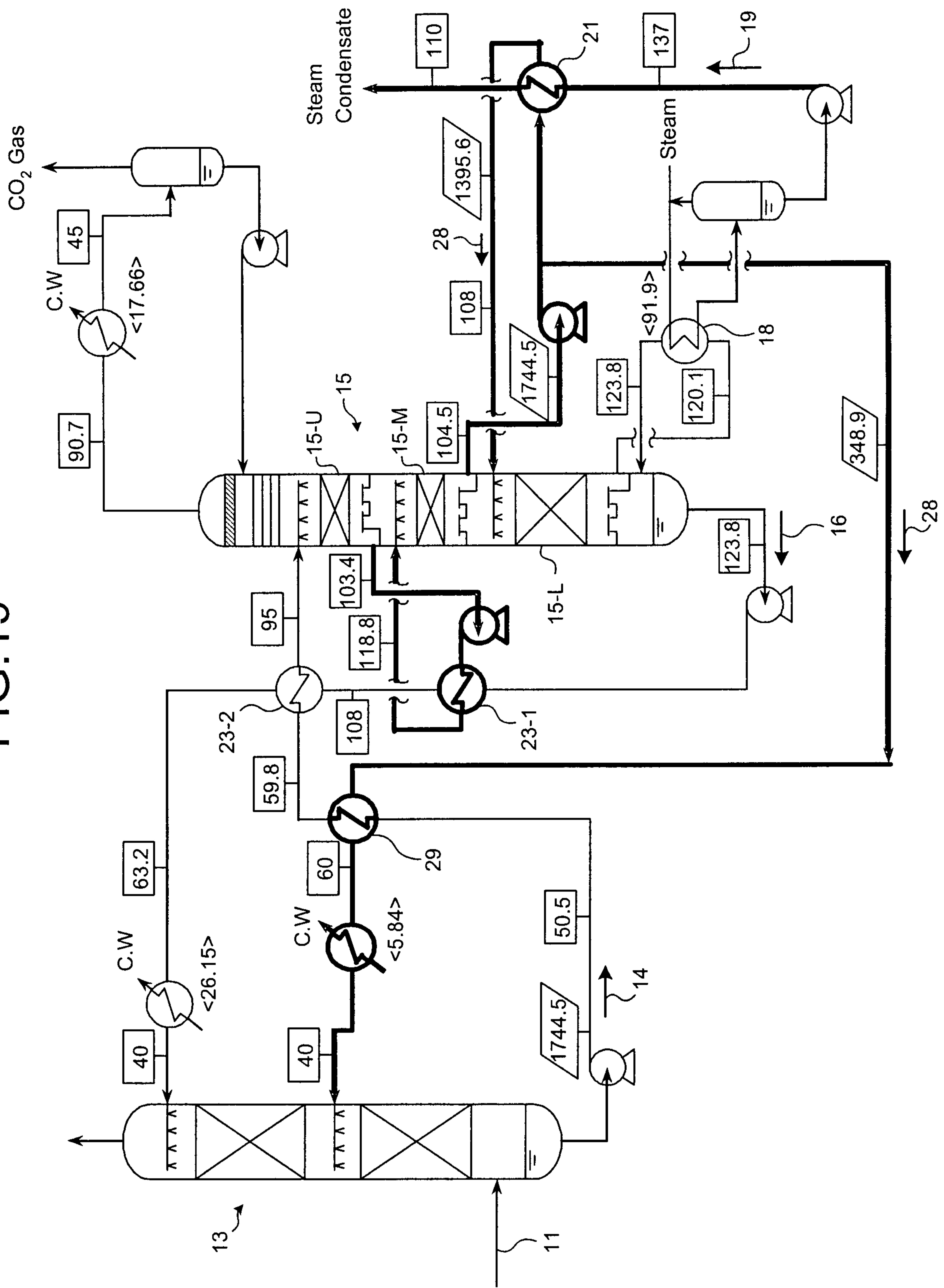
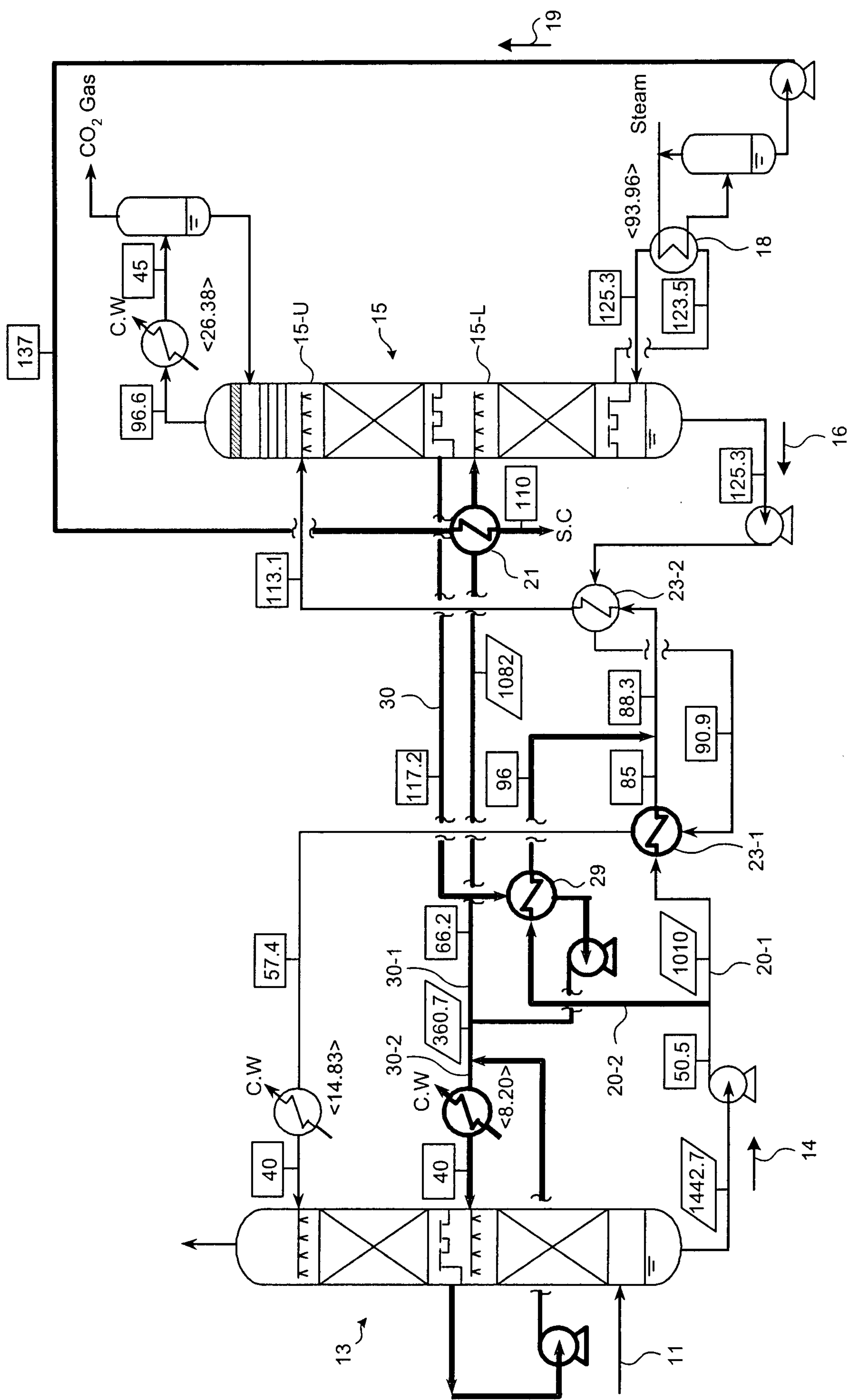
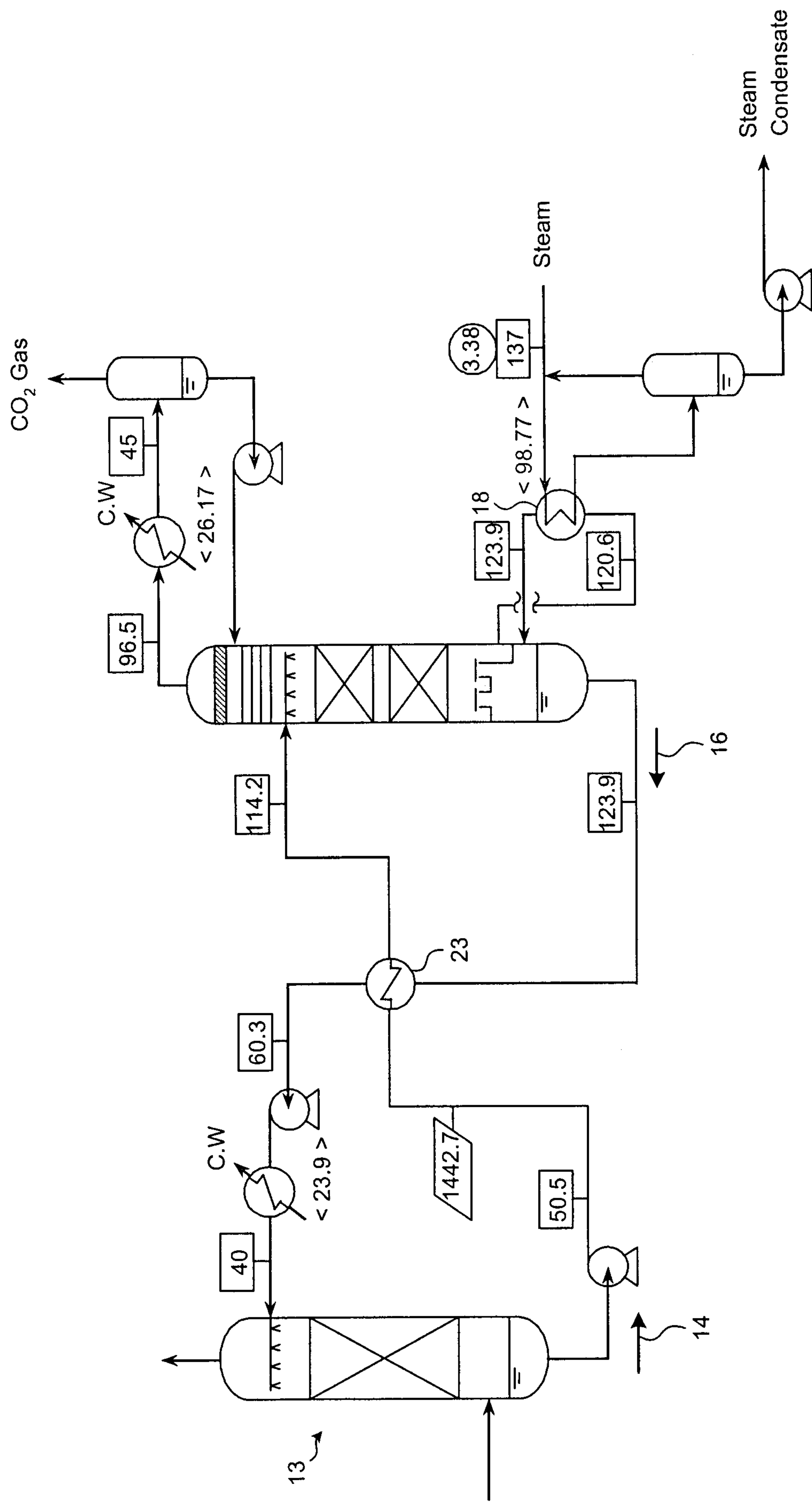




FIG.20



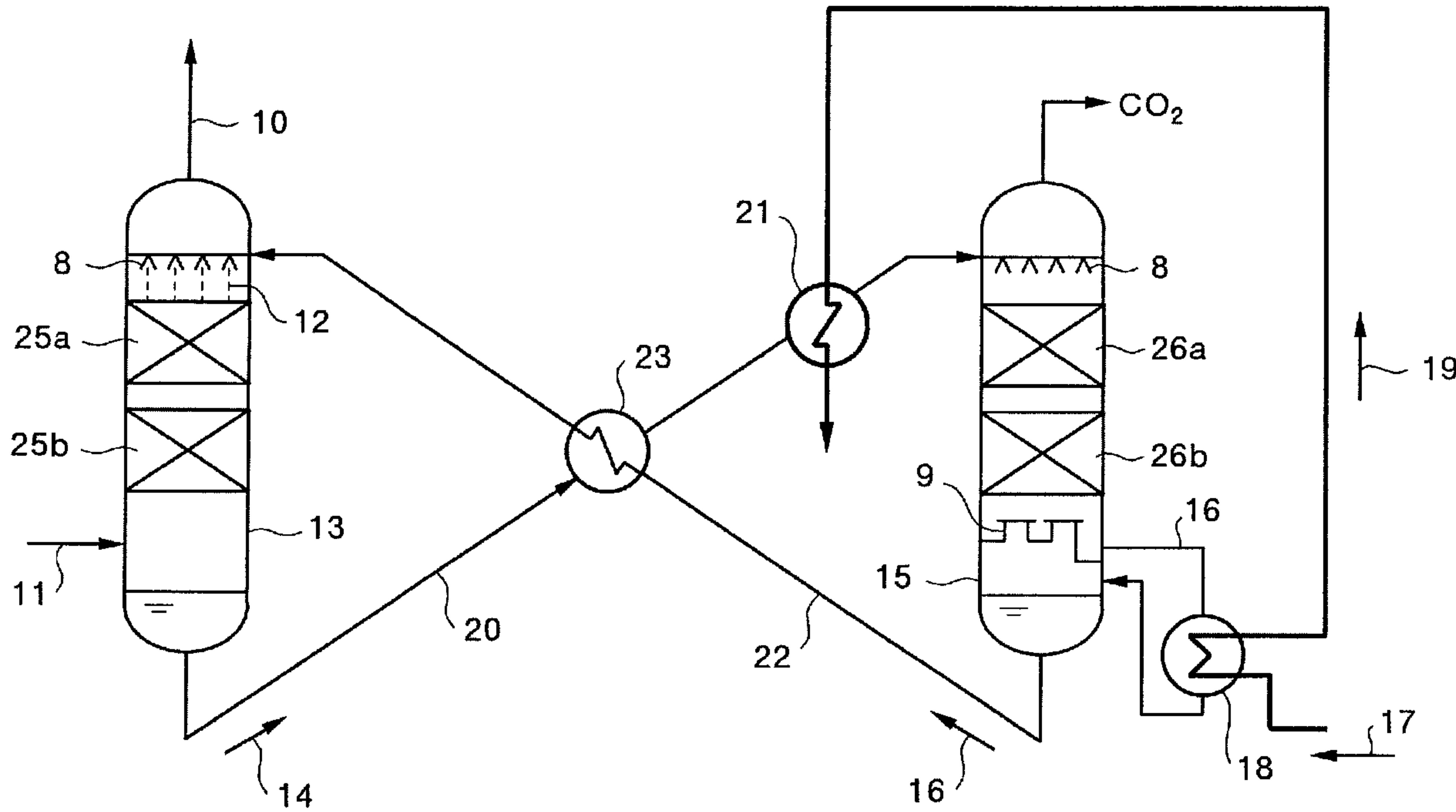

21/22

FIG.21

22
G.
II

