WO 2004/064036 A1 || 0000000 000 A 0 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
29 July 2004 (29.07.2004)

(10) International Publication Number

WO 2004/064036 A1l

(51) International Patent Classification’: G10H 7/00
(21) International Application Number:
PCT/US2003/025813

(22) International Filing Date: 8 August 2003 (08.08.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/337,753 7 January 2003 (07.01.2003) US
(71) Applicant (for all designated States except US): MAD-
WAVES LTD. [GB/GB]; Vicarage House, 58-60 Kensing-

ton Church Street, London W840B (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): GEORGES, Alain
[FR/FR]; 523 Chemin Du Malvan, F-06570 Saint Paul de

Vence (FR). DAMEVSKI, Voit [US/GB]; Vicarage House,
58-60 Kensington Church Street, London W840B (GB).
BLAIR, Peter, M. [US/US]; 2864-A Folsom Street, San
Francisco, CA 94110 (US).

(74) Agent: LOUDERMILK, Alan, R.; Loudermilk + Asso-
ciates, P.O. Box 3607, Los Altos, CA 94024-0607 (US).

(81) Designated States (national): AU, BR, CA, CH, CN, IL,
IN, JP, KR, MX, NO, NZ, PL, RU, SE, SG, US.

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:
—  with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEMS AND METHODS FOR CREATING, MODIFYING, INTERACTING WITH AND PLAYING MUSICAL

COMPOSITIONS
Antenna
800
Transmission
Reception [« Telephone/PDA
Circuit I{;Iﬁl)t ]
805 - Audio
[nput
840
Communication i Microphone
Interface Display 845
813 820 ;
Audio
Output
850
Speaker
\ 855
Music Generator §25
Music
Algorithm 13851( Memory
Block 82 ¢ 840
$30 835 04y
Node Subscriber Unit 860

Node/Subscriber Unit Functional Blocks

(57) Abstract:  Systems and methods for creating,
modifying, interacting with and playing music are
provided, particularly systems and methods employing
a top-down process, where the user is provided with a
musical composition that may be modified and interacted
with and played and/or stored (for later play). The
system preferably is provided in a handheld form factor
(860), and a graphical display is provided to display
status information, graphical representations of musical
lanes or components which preferably vary in shape as
musical parameters and the like are changed for particular
instruments or musical components such as a microphone
input (845) or audio samples. In addition, the present
invention makes use of node-based music generation as
part of a system and method to broadcast and receive
music data files, which are then used to generate and
play music. The present invention is characterized by
the broadcast of relatively small data files that contain
various parameters sufficient to describe the music to the
node/subscriber music generator.



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

. SYSTEMS AND METHODS FOR CREATING, MODIFYING,
INTERACTING WITH AND PLAYING MUSICAL COMPOSITIONS

This application is a continuation-in-part of U.S. App. Ser. No. 10/337,753 filed on
January 7, 2003.

Field of the Invention

The present invention relates to systems and methods for creating, modifying,
interacting with and playing music, and more particularly to systems and methods employing a
top-down and interactive auto-composition process, where the systems/methods provide the
user with a musical composition that may be modified and interacted with and played and/or
stored (for later play) in order to create music that is desired by the particular user.
Furthermore, the present invention relates to systems and methods for auto-generated music,
and more particularly to systems and methods for generating a vocal track as part of an
algorithmically-generated musical composition. Furthermore, the present invention relates to
a file format suitable for storing information in a manner which preferably provides forward
and/or backwards compatibility. Furthermore, the present invention relates to systems and
methods for algorithmic music generation, and more particularly to improved sample format
and control functions, which preferably enable the general conformance of a sound sample to
the current pitch and/or rhythmic characteristics of a musical composition. Furthermore, the
present invention relates to systems and methods for broadcasting music, and more
particularly to systems and methods employing a data-file-based distribution system, where at
least portions of the music can be generated by a node/subscriber unit upon reception of a data
file, which is processed using a music generation system that preferably composes music based
on the data file. Additionally, the present invention relates to such systems and methods
wherein music data files can be authored or modified by a node/subscriber unit and shared
with others, preferably over a cellular or other wireless network.

Background of the Invention

A large number of distinct musical styles have emerged over the years, as have systems

and technologies for creating, storing, and playing back music in accordance with such styles.



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Music creation, particularly of any quality, typically has been limited to persons who have
musical training or who have expended the time and energy required to learn and play one or
more instruments. Systems for creating and storing quality musical compositions have tended
towards technologies that utilize significant computer processing and/or data storage. More
recent examples of such technologies include compact disc (CD) audio players and players of
compressed files (for instance as per the MPEG-level 3 standard), etc. Finally, there exist
devices incorporating a tuner, which permit reception of radio broadcasts via electromagnetic
waves, such as FM or AM radio receivers.

Electronics and computer-related technologies have been increasingly applied to
musical instruments over the years. Musical synthesizers and other instruments of increasing
complexity and musical sophistication and quality have been developed, a “language” for
conversation between such instruments has been created, which is known as the MIDI
(Musical Instrument Digital Interface) standard. While MIDI-compatible instruments and
computer technologies have had a great impact on the ability to create and playback or store
music, such systems still tend to require substantial musical training or experience, and tend to
be complex and expensive.

A sound generator system can incorporate samples of existing sounds that are played
in combination with interactively generated sounds. As an example, a portable music
generation product can preferably be used to interactively generate music according to certain
musical rules. It is preferable to also enable the use of prezrecorded sound samples to
facilitate a more compelling musical experience for the user.

One problematic aspect of supporting the use of pre-recorded sound samples is that
the playback of the sample during a section of music can sometimes sound out of sync with the
music in terms of pitch or rhythm. This is a result of the lack of a default synchronization
between the sample and the music at a particular point in time. One way around this is to use
samples that do not have a clear pitch or melody, e.g., a talking voice, or a sound effect.
However, as the use of melodic samples, especially at higher registers, is desirable in many
styles of music, it is desirable in certain cases to have a means for associating pitch and/or
periodicity information (embedded or otherwise) into a sample.

Broadcast music distribution historically has involved the real-time streaming of music
over the airwaves using an FM or AM broadcasting channel, Similarly, the Internet has been
used for audio streaming of music data in an approximately real time manner. Both of these

examples involve steadily sending relatively large amounts of data, and consume relatively



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

large amounts of the available bandwidth. The number of music styles and the amount of
bandwidth required to make effective use of these systems have limited the usefulness of these
approaches to a broad range of new products incorporating wireless computing resources
(e.g., cellular telephones and/or personal data assistants (PDAs)). In addition, the limitations
of these approaches to music distribution make it inordinately difficult to enable a
node/subscriber unit to share music, either as part of the radio-ty'pe distribution of music, or
with other node/subscriber units directly, and in particular music that has been authored or
modified by a user of the node/subscriber unit.

In the field of the present invention it is often the case that a file format suitable for
storing information associated with the presently discussed inventions does not provide an
optimized set of features. As one example, forward and/or backward compatibility is often
not achievable, resulting in a music file that cannot be effectively used by a system with a
different version than the system that created it. File formats that do provide some level of
forwards and/or backwards compatibility often incorporate overhead (e.g., multiple versions
of ‘same’ data) that may be undesirable, e.g., in certain preferred embodiments that are
portable and that therefore have relatively limited resources.

Accordingly, it is an object of the present invention to provide systems and methods
for creating, modifying, interacting with and/or playing music employing a top-down process,
where the systems/methods provide the user with a musical composition that may be modified
and interacted with and played and/or stored (for later play) in order to create music that is
desired by the particular user.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music that enables a user to quickly begin
creating desirable music in accordance with one or a variety of musical styles, with the user
modifying an auto-composed or previously created musical composition, either for a real time
performance and/or for storing and subsequent playback.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music in which a graphical interface is
provided to facilitate use of the system and increase user enjoyment of the system by having
graphic information presented in a manner that corresponds with the music being heard or
aspects of the music that are being modified or the like; it also is an object of the present

invention to make such graphic information customizable by a user.



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music in which a graphical interface is
provided that presents a representation of a plurality of musical lanes, below each of which is
represented a tunnel, in which a user may modify musical parameters, samples or other
attributes of the musical composition, with such modifications preferably being accompanied
by a change in a visual effect.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music in which music may be represented
in a form to bé readily modified or used in an auto-composition algorithm or the like, and
which presents reduced processing and/or storage requirements as compared to certain
conventional audio storage techniques.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music in which music may be
automatically composed in a variety of distinct musical styles, where a user may interact with
auto-composed music to create new music of the particular musical style, where the system
controls which parameters may be modified by the user, and the range in which such
parameters may be changed by the user, consistent with the particular musical style.

It is another object of the present invention to provide systems and methods for using
pre-existing music as input(s) to an algorithm to derive music rules that may then be used as
part of a music style in a subsequent auto-composition process.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music based on efficient song structures
and ways to represent songs, which may incorporate or utilize pseudo-random/random events
in the creation of musical compositions based on such song structures and ways to represent
songs.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music in which songs may be efficiently
created, stored and/processed; preferably songs are represented in a form such that a relatively
small amount of data storage is required to store the song, and thus songs may be stored using
relatively little data storage capacity or a large number of songs may be stored in a given data
storage capacity, and songs may be transmitted such as via the Internet using relatively little

data transmission bandwidth.



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music in which a modified MIDI
representation of music is employed, preferably, for example, in which musical rule
information is embedded in MIDI pitch data, musical rules are applied in a manner that utilize
relative rhythmic density and relative mobility of note pitch, and in which sound samples may
be synchronized with MIDI events in a desirable and more optimum manner.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music in which a hardware/software
system preferably includes a radio tuner so that output from the radio tuner may be mixed, for
example, with auto-composed songs created by the system, which preferably includes a virtual
radio mode of operation; it also is an object of the present invention to provide hardware that
utilizes non-volatile storage media to store songs, song lists and configuration information,
and hardware that facilitates the storing and sharing of songs and song lists and the updating
of sound banks and the like that are used to create musical compositions.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music that works in conjunction with a
companion PC software program that enables users to utilize the resources of a companion PC
and/or to easily update and/or share Play lists, components of songs, songs, samples, etc.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music in which songs may be generated,
exchanged and disseminated, preferably or potentially on a royalty free basis.

It is another object of the present invention to provide systems and methods for
creating, modifying, interacting with and/or playing music that may be adapted to a variety of
applications, systems and processes in which such music creation may be utilized.

It is another object of the present invention to provide systems and methods for
automatically generating a human vocal track as part of a musical piece that is being
algorithmically generated.

It is another object of the present invention to provide systems and methods for

improved sample format and control functions, preferably to enable the general conformance

. of a sound sample to the current pitch and/or thythmic characteristics of a musical piece.

It is an object of the present invention to provide systems and methods for distributing,

broadcasting, and/or sharing music employing a node-based music generation process, where



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

the systems/methods enable the user to receive (via the node/subscriber unit) and/or author or
modify a data file from which the music may be composed.

It is an object of the present invention to enable music data to be broadcast or
transmitted over a cellular or other wireless network.

Finally, it is an object of the present invention to provide an efficient backward and/or
forward compatible file format. The advantages of such a file format may be of particular
benefit when used in association with certain of the preferred embodiments disclosed herein.
Summary of the Invention

The present invention addresses such problems and limitations and provides systems
and methods that may achieve such objects by providing hardware, software, musical
composition algorithms and a user interface and the like (as hereinafter described in detail) in
which users may readily create, modify, interact with and play music. In a preferred
embodiment, the system is provided in a handheld form factor, much like a video or electronic
game. A graphical display is provided to display status information, graphical representations
of musical lanes or components, which preferably vary in shape, color or other visual attribute
as musical parameters and the like are changed for particular instruments or musical
components such as a microphone input, samples, etc. The system preferably operates in a
variety of modes such that users may create, modify, interact with and play music of a desired
style, including an electronic DJ (“e-DJ”) mode, a virtual radio mode, a song/song list
playback mode, sample create/playback mode and a system mode, all of which will be
described in greater detail hereinafter.

Preferred embodiments employ a top-down process, where the system provides the
user with in effect a complete musical composition, basically a song, that may be modified and
interacted with and played and/or stored (for later play) in order to create music that is desired
by the particular user. Utilizing an auto-composition process employing musical rules and
preferably a pseudo random number generator, which may also incorporate randomness
introduced by timing of user input or the like, the user may then quickly begin creating
desirable music in accordance with one or a variety of musical styles, with the user modifying
the auto-composed (or previously created) musical composition, either for a real time
performance and/or for storing and subsequent playback.

A graphical interface preferably is provided to facilitate use of the system and increase
user enjoyment of the system by having graphic information presented in a manner that

corresponds with the music being heard or aspects of the music that are being modified or the



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

like. AnLCD display preferably is used to provide the graphical user interface, although an
external video monitor or other display may be used as an addition or an alternative. In
preferred embodiments, such graphic information is customizable by a user, such as by way of
a companion software program, which preferably runs on a PC and is coupled to the system
via an interface such as a USB port. For example, the companion software program may
provide templates or sample graphics that the user may select and/or modify to customize the
gréphics displayed on the display, which may be selected and/or modified to suit the particular
user’s preferences or may be selected to correspond in some manner to the style of music
being played. In one embodiment, the companion software program provides one or more
templates or sample graphics sets, wherein the particular template(s) or sample graphic set(s)
correspond to a particular style of music. With such embodiments, the graphics may be
customized to more closely correspond to the particular style of music being created or played
and/or to the personal preferences of the user.

The graphical interface preferably presents, in at least one mode of operation, a visual
representation of a plurality of musical lanes or paths corresponding to components (such as
particular instruments, samples or microphone input, etc.). In addition to allowing the user to
visualize the various components of the musical composition, through user input (such as
through a joystick movement) the user may go into a particular lane, which preferably is
represented visually by a representation of a tunnel. When inside of a particular tunnel, a user
may modify musical parameters, samples or other attributes of the musical composition, with
such modifications preferably being accompanied by a change in a visual effect that accompany
the tunnel,

In accordance with preferred embodiments, music may be automatically composed in a
variety of distinct musical styles. The user preferably is presented with a variety of pre-set
musical styles, which the user may select. As a particular example, in e-DJ mode, the user
may select a particular style from a collection of styles (as will be explained hereinafter, styles
may be arranged as “style mixes” and within a particular style mix one or more particular
styles, and optionally substyles or “microstyles”). After selection of a particular style or
substyle, with a preferably single button push (e. g., play) the system begins automatically
composing music in accordance with the particular selected style or substyle. Thereafier, the
user may interact with the auto-composed music of the selected style/substyle to modify
parameters of the particular music (such as via entering a tunnel for a particular component of

the music), and via such modifications create new music of the particular musical



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

style/substyle. In order to facilitate the creation of music of a desirable quality consistent with
the selected style/substyle, the system preferably controls which parameters may be modified
by the user, and the range over which such parameters may be changed by the user, consistent
with the particular musical style/substyle. The system preferably accomplishes this via music
that may be represented in a form to be readily modified or used in an auto-composition
algorithm or the like. The musical data representation, and accompanying rules for processing
the musical data, enable music to be auto-composed and interacted with in a manner that
presents reduced processing and/or storage requirements as compared to certain conventional
audio storagé techniques (such as CD audio, MP3 files, WAV files, etc.).

In accordance with certain embodiments, pre-existing music may be used as input(s) to
an algorithm to derive music rules that may then be used as part of a music style in a
subsequent auto-composition process. In accordance with such embodiments, a style of music
may be generated based on the work of an artist, genre, time period, music label, etc. Such a
style may then be used as part of an auto-composition process to compose derivative music.

In accordance with certain embodiments, the system operates based on efficient song
structures and ways to represent songs, which may incorporate or utilize pseudo-
random/random events in the creation of musical compositions based on such song structures
and ways to represent songs. Songs may be efficiently created, stored and/processed, and
preferably songs are represented in a form such that a relatively small amount of data storage
is required to store the song. Songs may be stored using relatively little data storage capacity
or a large number of songs may be stored in a given data storage capacity, and songs may be
transmitted such as via the Internet using relatively little data transmission bandwidth. In
preferred embodiments, a modified MIDI representation of music is employed, preferably, for
example, in which musical rule information is embedded in MIDI pitch data, and in which
sound samples may be synchronized with MIDI events in a desirable and more optimum
manner.

The system architecture of preferred embodiments includes a microprocessor or
microcontroller for controlling the overall system operation, A synthesizer/DSP is provided in
certain embodiments in order to generate audio streams (music and audio samples, etc.). Non-
volatile memory preferably is provided for storing sound banks. Preferably removable non-
volatile storage/memory preferably is provided to store configuration files, song lists and
samples, and in certain embodiments sound bank optimization or sound bank data. A codec

preferably is provided for receiving microphone input and for providing audio output. A radio



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

tuner preferably is provided so that output from the radio tuner may be mixed, for example,
with auto-composed songs created by the system, which preferably includes a virtual radio
mode of operation. The system also preferably includes hardware and associated software that
facilitates the storing and sharing of songs and song lists and the updating of sound banks and
the like that are used to create musical compositions.

In alternative embodiments, the hardware, software, musical data structures and/or
user interface attributes are adapted to, and employed in, a variety of applications, systems and
processes in which such music creation may be utilized.

In certain embodiments, the present invention involves improved systems and methods
for formatting and controlling the playback of pre-recorded samples during the algorithmic
generation of music. At least certain of the benefits of the present invention preferably can be
achieved through the use of pitch and/or rhythmic characteristic information associated with a
given sample. Preferably, such information can optionally be used during the playback of a
sample in music, as part of a process that preferably involves using DSP-functionality to alter
the playback of the sample, preferably to enable the progression of rthythm and/or pitch of the
sample to more desirably conform to the music.

In accordance with certain preferred embodiments of the present invention, the
problem of pre-recorded sound samples sounding out of sync with the music in terms of pitch
or rhythm can be substantially addressed, without liiniting the samples to those that do not
have a clear pitch or melody, e.g., a talking voice, or a sound effect. As the use of melodic
samples, especially at higher registers, is desirable in many styles of music, even algorithmic or
other autocomposed music, it is desirable to have the ability to associate pitch and/or
periodicity information (embedded or otherwise) into a sample. Such information can then be
interpreted by the musical rules and/or algorithm of the music device to enable a
synchronization of the sample to the particular pitch, melody, and/or periodic characteristics of
the musical piece.

In accordance with certain preferred embodiments of the present invention, problems
associated with broadcast music are addressed by providing systems and methods for
broadcasting music, and more particularly systems and methods employing data-file-based
distribution, in which at least portions of the music can be generated by a node/subscriber unit
upon reception of a data file, which is processed using a music generation system, which
preferably composes music based on the data file. The present invention preferably makes use

of node-based music generation. By incorporating the generation of the music into a



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

node/subscriber unit, the bandwidth-intensive techniques of the prior art can be avoided.
Consequently, the bandwidth also can be used for things such as node-to-node and node-to-
base music data transmission features. For example, the node may create or modify a
previously received or generated data file from which music may be generated, and the data
file created or modified data file may be transmitted from the node to another node, or from
the node to a base station, where it may be broadcast or transmitted to one or a plurality of
nodes. The present invention is characterized by a relatively small data file transmission that
contains various parameters sufficient to describe or define the music that subsequently will be
generated. Such a file is then received and used by one or more node/subscriber units to
render the music using various music generation and signal processing functions.

Such aspects of the present invention will be understood based on the detailed
description to follow hereinafter.

Brief Description of the Drawings

The above objects and other advantages of the present invention will become more
apparent by describing in detail the preferred embodiments of the present invention with
reference to the attached drawings in which:

Fig. 1 illustrates an exemplary preferred embodiment of a “Player” in accordance with
the present invention;

Figs. 2-3 illustrate exemplary preferred function and mode keys in accordance with the
present invention;

Figs. 4-13B illustrate exemplary preferred screens of the graphical user interface in
accordance with the present invention;

Fig. 14 is a table illustrating exemplary configuration parameters used in accordance
with certain preferred embodiments of the present invention;

Fig. 15 illustrates the song structure used in certain preferred embodiments of the
present invention;

Fig. 16A illustrates an exemplary preferred musical generation flow utilized in certain
preferred embodiments of the present invention;

Fig. 16B illustrates an exemplary preferred musical generation flow utilized in certain
preferred embodiments of the present invention;

Fig. 16C illustrates an exemplary process flow for the automatic analysis of music to

generate an include file for part of an auto-composition program;

10



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Fig. 17 is a table illustrating exemplary virtual notes/controllers utilized in certain
preferred embodiments of the present invention;

Figs. 18A-B are diagrams illustrating Tessitura principles utilized in accordance with
certain embodiments of the present invention;

Fig. 19 illustrates principles of encoding musical key changes preferably as offsets,
which is utilized in accordance with preferred embodiments of the present invention;

Fig. 20 illustrates a mode application musical rule that preferably is part of the overall
process in accordance with preferred embodiments of the present invention;

Fig. 21 illustrates an exemplary preferred virtual pattern to real pattern flow utilized in
preferred embodiments of the present invention;

Fig. 22 illustrates principles of relative rhythmic density utilized in accordance with
certain embodiments of the present invention;

Fig. 23 illustrates principles of the relative mobility of note pitch utilized in accordance
with certain embodiments of the present invention;

Fig. 24 illustrates a pattern structure creation example in accordance with certain
embodiments of the present invention,

Fig. 25 illustrates a block structure creation example in accordance with certain
embodiments of the present invention;

Figs. 26-27 illustrate Pseudo-Random Number generation examples utilized in certain
preferred embodiments of the present invention;

Fig. 28 illustrates attributes of simple data structures utilized in accordance with
certain preferred embodiments of the present invention;

Fig. 29 illustrates an exemplary simple data structure flow in accordance with certain
preferred embodiments of the present invention;

Fig. 30 illustrates attributes of complex data structures utilized in accordance with
certain preferred embodiments of the present invention;

Fig. 31 illustrates an exemplary complex data structure flow in accordance with certain
preferred embodiments of the present invention;

Figs. 32-34 illustrate exemplary hardware configurations of certain preferred
embodiments of the player and a docking station in accordance with the present invention;

Fig. 35 illustrates an exemplary address map for the microprocessor utilized in

accordance with certain preferred embodiments of the present invention;

11



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Fig. 36 illustrates an exemplary address map for the synthesizer/DSP utilized in
accordance with certain preferred embodiments of the present invention;

Figs. 37-38 illustrate the use of a DSP bootstrap/addressing technique utilized in
accordance with certain preferred embodiments of the present mvention;

Fig. 39 illustrates a simplified logical arrangement of MIDI and audio streams in the
music generation process for purposes of understanding preferred embodiments of the present
invention;

Fig. 40 illustrates a simplified MIDI and audio stream timeline for purposes of
understanding preferred embodiments of the present invention;

Figs. 41-42 illustrate the use of Non-Registered Parameter Number for purposes of
synchronizing MIDA events and audio samples in accordance with certain preferred
embodiments of the present invention;

Fig. 43 illustrates an exemplary preferred process flow utilized in accordance with
certain embodiments of the present invention involving automatic vocal features;

Fig. 44 illustrates another exemplary preferred process flow utilized in accordance with
certain embodiments of the present invention involving automatic vocal features; and

Fig. 45 illustrates an exemplary preferred portable music generation device, externally
viewed, utilized in accordance with certain embodiments of the present invention involving
automatic vocal features;

Fig. 46 illustrates exemplary preferred embodiments of interconnection arrangements
between a player device and an external system;

Figs. 47-49 illustrate certain exemplary preferred embodiments associated with a file
format;

Fig. 50 illustrates exemplary preferred embodiments of a sound sample data file
incorporating an optional header portion, utilized in accordance with certain embodiments of
the present invention;

Fig. 51 illustrates an exemplary sound sample amplitude graph with preferred
superimposed timing grid, utilized in accordance with certain embodiments of the present
invention;

Fig. 52 illustrates additional exemplary preferred embodiments of a sound sample data
file incorporating an optional header portion, utilized in accordance with certain embodiments

of the present invention;

12



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Fig. 53 illustrates exemplary preferred embodiments of a separate descriptor file
associated with one or more native-format sound sample files, utilized in accordance with
certain embodiments of the present invention;

Fig. 54 illustrates an exemplary preferred process flow for a sound sample analysis
method, utilized in accordance with certain embodiments of the present invention;

Fig. 55 illustrates an exemplary preferred process flow for a sound sample playback
method, utilized in accordance with certain embodiments of the present invention;

Fig. 56 illustrates exemplary preferred broadcast and transmission of data files in
accordance with certain embodiments of the present invention;

Fig. 57 illustrates an exemplary preferred node/subscriber unit, externally viewed, in
accordance with certain embodiments of the present invention;

Fig. 58 illustrates exemplary preferred functional blocks utilized in a hode/subscriber
unit in accordance with certain embodiments of the present invention;

Fig. 59 illustrates exemplary parameter data associated with an exemplary music data
file in accordance with certain embodiments of the present invention;

Fig. 60 illustrates an exemplary preferred process flow of a preferred music generation
process in accordance with certain embodiments of the present invention;

Fig. 61 illustrates certain of the exemplary communications standards associated with
cellular data transmission/reception services utilized in accordance with certain embodiments
of the present invention; and

Fig. 62 illustrates certain exemplary excerpts from IS-637, as preferred examples of
aspects of a broadcast format utilized in accordance with certain embodiments of the present
invention.

Detailed Description of Exemplary Preferred Embodiments

The present invention will be described in greater detail with reference to certain
preferred and certain other embodiments, which may serve to further the understanding of
preferred embodiments of the present invention. As described elsewhere herein, various
refinements and substitutions of the various elements of the various embodiments are possible
based on the principles and teachings herein.

In accordance with the present invention, music may be created (including by auto-
composition), interacted with, played and implemented in a variety of novel ways as \ivﬂl be
hereinafter described via numerous exemplary preferred and alternative embodiments.

Included in such embodiments are what may be considered as top-down approaches to musical

13



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

creation. Top-down as used herein generally means that a complete song structure for quality
music is created for the end user as a starting point. This enables the user to immediately be in
position to create quality music, with the user then having the ability to alter, and thereby
create new music, based on the starting point provided by the system. Where a particular user
takes the music creation process is up to them. More conventional musical creation processes
involve a bottom-up approach, wherein the rudiments of each instrument and musical Style are
learned, and then individual notes are put together, etc. This conventional approach generally
has the side-effect of limiting the musical creation to a small group of trained people, and has,
in effect, barred the wider population from experiencing the creative process with music.

A useful analogy for purposes of understanding embodiments of the present invention
is that of building a house. In the conventional means of house-building, the user is given a
bunch of bricks, nails, wood, and paint. Ifyou want a house, you need to either learn all the
intricacies of how to work with each of these materials, as well as electrical wiring, plumbing,
engineering, etc., or you need to find people who are trained in these areas. Similarly, in
musical creation, if you want a song (that is pleasing), you need to learn all about various
types of musical instruments (and each of their unique specialties or constraints), as well as a
decent amount of music theory, and acquire a familiarity with specific techniques and
characteristics in a given Style of music (such as techno, jazz, hip-hop, etc.).

It wouid, of course, be far more convenient if, when someone wanted a house, they
were given a complete house that they could then easily modify (with the press of a button).
For example, they could walk into the kitchen and instantly change it to be larger, or a
different color, or with additional windows. And they could walk into the bathroom and raise
the ceiling, put in a hot tub, etc. They could walk into the living room and try different paint
schemes, or different furniture Styles, etc. Similarly, in accordance with embodiments of the
present invention, the user desirably is provided with a complete song to begin with, they can
then easily modify, at various levels from general to specific, to create a song that is unique
and in accordance with the user’s desires, tastes and preferences.

In accordance with the present invention, the general population of people readily may
be provided with an easy approach to musical creation. It allows them the immediate
gratification of a complete song, while still allowing them to compose original music. This top
down approach to musical creation opens the world of musical creativity to a larger group of

people by reducing the barriers to creating pleasurable music.

14



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In accordance with the present invention, various systems and methods are provided
that enable users to create music. Such systems and methods desirably utilize intuitive and
easy to learn and to use user interfaces that facilitate the creation of, and interaction with,
music that is being created, or was created previously. Various aspects of one example of a
preferred embodiment for a user interface in accordance with certain preferred embodiments
of the present invention will now be described.

In accordance with such preferred embodiments of the present invention, user interface
features are provided that desirably facilitate the interactive generation of music. The
discussion of such preferred embodiments to be herein after provided are primarily focused on
one example of a handheld, entry-level type of device, herein called ‘Player’. However, many
of the novel and inventive features discussed in connection with such a Player relate to the
visual enhancement of the control and architecture of the music generation process;
accordingly they can apply to other types of devices, such as computing devices, web
server/websites, kiosks, video, or other electronic games and other entertainment devices that
allow music creation and interaction, and thus also may benefit from such aspects of the
present invention. A discussion of certain of the other types of devices is provided hereinafter.
As will be appreciated by one of ordinary skill in the art, various features of the user interface
of the Player can be understood to apply to such a broader range of devices.

Generally, the goal of the user interface is to allow intuitive, simple operation of the
system and interaction with various parameters with a minimum number of buttons, while at
the same time preserving the power of the system. Fig. 1 illustrates an exemplary system
configuration for Player 10. Display 20 provides visual information to the user, as will
hereinafter be described. Various mode keys 16 provide buttons that enable a user to directly
access, or initiation, modes of operation of the system as will be hereinafter described.
Joystick 15 is provided to enable the user to select or interact with various musical or system
parameters or the like, as will be hereinafter described. Save/edit key 17 preferably is
provided to save songs or parameter changes, etc., that a user may have created or made using
the system, and also to initiate editing of parameters, Play lists, samples, etc., such as will be
described hereinafter. Volume key(s) 14 is/are provided, either in dual button up/down form
or a single knob or dial to enable the output volume level to be adjusted. Function keys 11
preferably are provided to enable player functions such as play (0k), stop (cancel), forward
(insert/create), reverse (delete) and record, exemplary uses of which will be described in

greater detail hereinafter. FX key 12 preferably is provided to enable a user to easily and

15



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

intuitively adjust one or more audio effects (e.g., doppler, reverb, wobbler, custom, etc.) of a
part of the music (e.g., a particular sample sound); one preferred way to enable an intuitive
sound effect selection by the user is to enable to FX key 12 to be used in combination with the
Joystick 15 left and right controls, a corresponding preferred way to enable intuitive sound
effect adjustment (e.g., increase or decrease the effect of the selected sound effect) is to enable
to the FX Key 12 to be used in combination with the Joystick 15 up and down controls.
Pitch/tempo key 13 preferably is provided to enable single button activation for pitch/tempo
changes (preferably along with joystick movements), as will be hereinafter described in greater
detail. On/off button 18 preferably is provided to turn on or off the player, and preferably a
brief depression/toggle can be used to turn on/off an LCD backlight, although, for example,
other turn off modes may be used as well (such as a time out turn off, when the player is not
playing and there has been no activity detected for a predetermined time out period, etc.
Exemplary desirable uses of such buttons and keys provided in the illustrative Player 10
embodiment will become more apparent based on the discussion to follow.

In accordance with preferred embodiments, a Home mode is provided. Home mode is
a default mode that can be automatically entered when Player 10 is turned on. As the example
of Fig. 4 shows, Home mode preferably displays an animated screen prompting the user to
select a mode by pressing a direct access mode key 16 or entering help mode by pressing the
joystick (Fig. 4 depicts the moment of the animation that prompts for the Radio direct access
key). In preferred embodiments, a user can define the graphics displayed on the display 20
using, for example, a companion PC software program (discussed in greater detail below) to
select graphics (animated or otherwise) to be autométically substituted (if available) for the
default graphics during the different modes of operation. In certain embodiments in which
there may be multiple sets of such graphics, the system preferably selects a different set each
time the Home mode is invoked. In this example of custom screens, data files corresponding
to the customized screen graphics for each section of a song, and/or each mode of operation,
preferably can be stored as part of the song data structure (discussed below) in a storage
location of a removable memory means such as the Flash memory in a Smart Media Card
(SMC). In preferred embodiments, in Home mode the screen scrolls through various modes
that are available in the system, such as modes associated with mode/direct access keys 16
(see, again, Fig. 1). Additionally, Player 10 preferably is configured to return to Home mode
from the main menu of any other mode (i.e., from the user pressing the Stop key). When the

joystick is pressed in Home mode, preferably a help screen is displayed prompting the user to

16



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

press any key for help. An example help screen is shown in Fig. 5. In accordance with this
example, when a key is pressed while Player 10 is displaying this screen, helpful text relating
to that key is displayed.

Play can be used when in Home mode to enter a particularly important visual interface
mode referred to herein as the I-Way mode (discussed in greater detail below). As shown in
the example of Fig. 6, the preferably LCD screen can display a message regarding other
possible modes, such as “e.DJ Style™, in the status line and propose a selection of music
Styles/SubStyles (e.g.; Techno Mix, House, Garage, etc.). At this type of screen, to select a
desired Style, a user can press Up or Down. In this example, Styles in uppercase preferably
denote a category of SubStyles that are randomly chosen for each song, and SubStyles
preferably are indicated by lowercase Styles proceeding each uppercase Style. Once the user
selects a Style, to enter I-Way mode with the selected Style, the user can press Play. Once the
I-Way mode is entered, preferably Player 10 automatically creates, and starts playing, a song
in the chosen Style. Exemplary Styles/SubStyles that preferably are provided in accordance
with certain preferred embodiments include: Coolmix (SubStyles ballad, bossa, new age); Hip
Hop Mix (SubStyles hip hop, rap, R&B, downbeat, ragga); Kitsch; Techno Mix (SubStyles
house, garage, trance, jungle); etc. What is important to note is that, in accordance with
preferred embodiments, distinct music Styles are determined, at least some of the musical
Styles including distinct SubStyles, wherein characteristics of the particular Style and/or
SubStyle result in different musical rules being applied to the automatic creation of music in
accordance with the particular Style/SubStyle (the use of musical rules and other algorithmic
and other details of the preferred music generation process is discussed in greater detail
elsewhere herein), with an intuitive and easy to use interface provided to enable the ready
creation and user modification of music in accordance with the particular Style/SubStyle, etc.
In additional embodiments the use of an even finer gradation of musical aesthetic is available
to the user in the form of a MicroStyle. For example, a plurality of MicroStyles are provided
that all generally conform to a particular SubStyle, while the SubStyle is accompanied by one
or more other SubStyles that together generally conform to a particular Style. This third tier
of musical granularity preferably gives the discerning user even finer control over the musical
output of the algorithmic music. Such MicroStyles preferably provide more consistent music,
while perhaps losing some of the flexibility of Styles/SubStyles. What is important is that the
user is provided with a plurality of levels of musical style categorizations, where basically at

each descending level the range of musical parameters that may be varied by the user and/or

17



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

the auto-composition algorithm and the like are progressively more constrained, consistent
with the particular Style, SubStyle or MicroStyle that is selected, etc.

An important feature of Home mode is the ability to configure Player 10 to start
playing music quickly and easily. This is because, although Player 10 is configured to be
interactive, and many professional-grade features are available to adjust various aspects of the
Style and sound, it is desirable to have a quick and easy way for users to use the Player in a
‘press-it-and-forget-it” mode. Thus, with only very few button pushes, a user with little or no
musical experience, or little or no experience with Player 10, may easily begin composing
original music with Player 10 of a desired Style or SubStyle. An additional preferred way to
provide an auto-play type of capability is to use a removable storage memory medium (e.g.,
Smart Media Card) to store a Play list, such as a file containing a list of song data structures
that are present on the removable memory. F ollowing this example, when the user inserts the
removable memory, or when the system is powered on with a removable memory already
inserted, preferably the system will scan the removable memory to look for such a file
containing a Play list and begin to play the song data structures that are listed in the system
file. Preferably, this arrangement can be configured such that the Auto-Play mode is selectable
(such as via a configuration setting in the system file), and that the system will wait a short
duration before beginning Auto-Play, to allow the user an opportunity to enter a different
mode on the system if so desired.

As illustrated in Fig. 7A, an exemplary, preferred screen for an I-Way mode depicts the
front view of the user driving or moving down a visual representation of a highway or multi-
lane road or path. Along the very top of the screen preferably is a status message that displays
the current section or status of the ongoing eDJ session (for example: part 1, filtering drums,
chorus, Part 2, <<sample name>>, etc.). Preferably, other ways of displaying messages to the
user to more prominently indicate a status message can be used; for example, the system can
momentarily flash a large visual indicator that takes up almost the entire screen. Preferably,
directly in front of the field of view is a visual representation of a speaker that preferably is
pulsing in time with the music being played. Preferably, each lane of the I-Way represents
various types of elements of a song; such as instrument lanes (drums, bass, riff, lead), one or
more sample lanes (to interact with pre-stored samples of voices, sounds, etc), and one or
more microphone lanes which manage the microphone input in real-time. Other categories for
lanes can be envisioned that are within the spirit and scope of the present invention. What is

important to this aspect of the present invention is that the user be presented with a multi-lane

18



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

visual representation that includes a plurality of lanes, each of which corresponds to a
constituent component or effect, etc., of the music that is being composed or played. The user
preferably uses joystick 15 (for example, a circular button that can depress in 4 areas: top,
bottom, left and right, such as illustrated in Fig. 1) to move the center of view around.
Generally, each directional depression of joystick 15 causes the center of view to shift in the
corresponding direction. For example, when in the left lane and the right joystick button is
pressed, the center of view moves over one lane to the right.

In alternative embodiments, e.g., as shown in Fig. 7B, a meter is provided for each lane
that depicts the relative volume of the musical component associated with that lane, e.g., in
real time. In alternative embodiments, additional layers of interactivity can be presented with
additional horizontal layers of the I-Way. For example, when at the lane of the I-Way for the
drums (an instrument with distinct instrument components, such as snare, bass, floor tom, high
hat, crash cymbal, ping-ride cymbal, roto-toms, etc.; orchestral percussion, such as tympani,
gong, triangle, etc.), the user could press the down key to go down to another I-Way for the
drums or other multiple component instrument, with a lane for each drum or component,
and/or for different aspects of the drum or instrument sound. This concept of multiple I-Way
interfaces can be selectively used for only the instruments that benefit from such an approach,
such as the drums or other multiple component instrument (while other instruments maintain a
single I-Way interface, etc.). The use of additional I-Way lanes is not necessary to enjoy all
the benefits of the present invention, but is a desirable feature for certain uses of the invention,
such as products geared for more professional uses, or for music Styles where additional user
interface and instrument control complexity is desirable, such as classical music, or jazz.

While in I-Way mode, the screen preferably is animated with sound waves or pulses
synchronized with music beats. In the example of Fig. 7A, a visual representation of a round
speaker is graphically represented in the center to symbolize the relative volume of the current
lane. This graphic item preferably is configured to disappear, or be otherwise altered, when the
lane is muted. It also can be configured to become bigger and smaller as the relative volume
of that particular lane/section is adjusted (for example, by using a function key in combination
with the joystick up and down buttons). Other simple variations are within the scope of the
present invention, such as volume indicators visible in each lane at the same time, mute
indications for each lane visible at the same time, graphic items in each lane visually

reminiscent of the instrument represented by that lane, etc.

19



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In an auto composition mode such as the I-Way mode it is Player 10 itself preferably
that decides about a song progression in that it can automatically add/remove instruments, do
music breaks, drums progressions, chord progressions, filtering, modulation, play samples in
sync with the music, select samples to play based on rules, etc., to end up sounding like in a
real song on a CD or from the radio. After a few minutes, if nothing is done by the user, Player
10 preferably is configured to end the song, preferably with an automatic fade out of volume,
and automatically compose and play a new song n the same Style, or alternatively a different
Style. It also should be understood that I-Way mode also is applicable in preferred
embodiments for music that is not auto-composed, such as a song that the user
created/modified using Player 10 (which may have been created in part using auto-
composition) and stored in Player 10 for subsequent playback, etc.

In certain embodiments, newly composed patterns are numbered from 1 to n. This
number can be displayed in the status line to help the user remember a music pattern he/she
likes and come back to it after having tried a few other ones. In certain embodiments, this
number might only be valid inside a given song and for the current interactive session. In
other words, for example, the Riff pattern number 5 for the current song being composed
would not sound like the Riff pattern number 5 composed in another song. However, if this
song is saved as a user song, although the Riff music will be the same when replayed later, the
number associated to it could be different.

In one exemplary embodiment, Player 10 “remembers” up to 16 patterns previously
composed during the current interactive session. This means, for example, that if the current
pattern number displayed is 25, the user can listen to patterns from number 10 to 25 by
browsing forward through the previously composed patterns (patterns 1-9, in this
embodiment, having been overwritten or otherwise discarded). Ifthe User wants to skip a
given composed pattern that is currently being played, he/she can, and the pattern number will
not be incremented, meaning that currently played pattern will be lost. This feature can be used
to store only specific pattems in the stack of previously played patterns, as desired by the user.
What is important is that the user can create musical patterns, and selectively store (up to
some predetermined number of musical patterns), with the stored patterns used to compose
music that is determined by the user based on the user’s particular tastes or desires, etc. The
views presented by I-Way mode desirably facilitate this user creation and interaction with, and

modification of, the music that is be created/played by Player 10.

20



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In certain preferred embodiments, if desired by a user, additional music parameters of
an instrument associated with a particular lane in the I-Way mode may be “viewed” and
interacted with by the user. For example, if a Down is pressed (such as by way of joystick 15)
while in I-Way mode, the center of view is taken “underground,” to the “inside” of a particular
lane (e.g., see Fig. 8A). This transition to Underground mode preferably is made visually
appealing by configuring a screen animation depicting the movement of the point of view
down thfough the floor or bottom of the I-Way lane, into what appears to be a visual
representation of a tunnel below a particular lane that corresponds to the musical component
represented by that lane. In certain embodiments such a visual transition preferably is
accompanied by sonic feedback, such as a sound alerting the user that the tunnel mode is being
entered/exited. In certain embodiments it is desirable that such sonic feedback is not recorded
as part of a “saved’ musical piece, e.g., depending upon a user-definable configuration
parameter. In this manner a user interface is enhanced without necessarily effecting the
musical song being created. When inside the tunnel beneath a particular lane, a pulse
indication (similar to the speaker pulse) preferably occurs in time with the tempo of the I-Way
session. Furthermore, the left and right walls of the tunnel can be used to indicate the wave
shape of the left and right sound channel outputs. Alternatively, in lieu of such a waveshape
effect, in certain embodiments it is desirable to provide a bargraph associated with the left and
right sound channel outputs. As an example, Fig. 8B illustrates one such embodiment.
Furthermore, in many of these embodiments, it is desirable to provide such a graphic display,
even if the display does not exactly correspond to the sound output. For example, in certain
embodiments where available processing resources do not afford the ability to have accurate,
detailed graphing/charting of the sound in real time, an approximation of the sound is still
advantageous as it provides a user with a more intuitive user interface experience.

In certain embodiments it is preferable to providé a force-feedback mechanism (as
discussed below in connection with Fig. 29). In certain embodiments, it is preferable to
synchronize a force-feedback event (e.g., a vibration in a handheld device) with a sonic
characteristic of the music (e.g., the bass drum). In certain embodiments it is preferable to
synchronize such force-feedback events with a visual transition, i.e., as part of the graphical
user interface experience of the user. As an example, the transition from I-Way mode to
underground mode may be accompanied by a force-feedback event.

The far end of the tunnel preferably is comprised of a shape (for example, a rectangle

or other geometric) that can change in correlation to the value of one or more of the

21



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

parameters affecting the sound of that particular lane. By way of example, in the case of
drums, a filter parameter can be changed by depressing the function or Fx button (see, again
Fig. 1), plus the joystick up or down button; at this time the shape comprising the end of the
tunnel either changes shape or visually appears to get farther away or nearer. In another
example, the pitch of a guitar can be adjusted by pressing the pitch key along with the left or
right joystick button,; at the same time, the shape can become more or less slanted as the pitch
parameter is incremented or decremented in value, or alternatively a visual representation of
the tunnel going up hill or down hill can be provided to visually represent an increase or
decrease in pitch. In other examples, to change a right/left or stereo balance type of effect, the
function or Fx button could be depressed to put the system in a mode to change the parameter
along with left/right or up/down joystick button; such inputs could, for example, result in the
sound balance going more towards the right channel than the left charmel (and be accompanied
by a visual representation of the tunnel turning to the right, or vice versa for the balance
shifting towards the left channel), or the tunnel opening becoming larger in width or smaller in
width if a wider or narrower stereo effect is desired. These are but several examples of how
the shape or other visual effect can be modulated in correlation to the user input to one or
more parameters effecting the sound. What is important is that, when the user “tunnels” into a
particular instrument lane, various parameters associated with the instrument are changeable
by the user, with at least certain of the changes in parameter being accompanied by a change in
the visual representations provided to the user, such as the shape, size, color (for color display
embodiments) or motions of the displayed visual representations.

While in Underground mode, Player 10 preferably is configured to continue looping
with the same musical sequence while the user is able to interact with and modify the specific
element (e.g., the drums) using the joystick and other buttons of Player 10. Also, while down
in a lane corresponding to a particular component, preferably the left and right buttons of the
joystick can be used to move from one component parameter to another. Alternatively, side
to side joystick movements, for example, may enable the user to step through a series of preset
characteristics or parameters (i.e., with simple joystick type user input, the user may change
various parameters of the particular component, hear the music effect(s) associated with such
parameter changes, and determine desirable characteristics for the particular music desired by
the user at the particular point in time, etc.). In yet another alternative, side to side joystick
movements, for example, may cause the view to shift from one tunnel to an adjacent tunnel,

etc. All such alternatives are within the scope of the present invention.

22



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In addition to other similar variations, the user can mute a particular lane in the I-Way
mode preferably by use of Stop key (shown in Fig. 2). In this example, while the lane is
muted, “Muted” can be displayed in the status bar and the round speaker can disappear.
Preferably in accordance with such embodiments, the user can un-mute the instrument by
again pressing the Stop key.

An additional desirable variation of the user interface preferably involves animating a
change to the visual appearance, corresponding to a new song part. For example, if in the
Underground mode shown in Fig. 8A, or in the I-Way mode shown in Fig. 7A, the movement
to a chorus section is accompanied by a movement through an opening doorway. The graphic
animation corresponding to a given section of the song (e.g., chorus, intro, bridge, ending,
etc.) can be used each time that section is played during the song. Examples of transitions are:
having the user go through a door from a tunnel with one set of visual characteristics, to a
tunnel with a second set of visual characteristics. Another example is to have the user move
through a transition doorway from a tunnel to a wider tunnel, or even an open area. The
preferable feature of this aspect of the present invention is to provide an engaging experience ‘
for the user by coordinating an animation transition that is closely linked to a musical transition
between song parts.

In certain alternative embodiments, it is preferable to provide multiple layers of
tunneling, as shown in Fig. 8C, with each layer associated with a given lane providing an
intuitive interface for editing a particular aspect of the musical component associated with that
lane. In certain of these embodiments, where adjacent lanes have certain related aspects that
are editable via a particular tunnel layer, it is preferable to enable the user to move directly
between the adjacent tunnels, as shown by the horizontal arrows in Fig. 8C.

Alternatives to the I-Way and Underground concepts can also be advantageously used
with the present invention. For example, a user interface that visually depicts the instruments
that are in the current song, and allows the user to select one to go into a tunnel or level where
parameters of the particular instrument may be adjusted. In this example, while the music is
playing, the user interface provides visual representations of the instruments in the current
song, with the active instruments preferably emitting a visual pulse in time with the music.

Fig. 13A is an example of such a user interface. In accordance with such embodiments, the
user can select a particular visual picture of an instrument (for example, such as with joystick
15 or function keys 11) and go into that instrument. For example, by selecting the vibrating

drumset 25, the user can go into another level, such as corresponding to the Underground

23



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

mode discussed above with reference to Fig. 8A, that has each drum shown that is currently
being played. Then, the user can select and change different aspects of the drums, as well as
the sound effects, and drum tracks. If the user selected another instrument such as are shown
in Fig. 13A, they would access a screen that allows them to similarly alter the parameters of
that particular instrument track. Accordingly, the use of alternative themes for the user
interface can be advantageously employed with the present invention, especially a theme where
the actual instruments are depicted, as if on a stage.

As a particular example of such an embodiment, Fig. 13B depicts a 3D stage. In
certain of such embodiments, it is preferable to enable the user to pilot around the stage in a
first-person perspective. The user preferably is able to move around intuitively, i.e., the 3D
display is updated during user movement to reflect the visual perspective of the user on the
stage. Techniques to accomplish this first-person effect are widely employed, for example, in
well known computer video games such as Quake ITI Arena, available from ID Software. The
user preferably can move towards a given instrument and adjust parameters of the musical
component represented by that instrument. As an example, in the case of a bass component,
and the example of Fig. 13B, the user is able to move towards a bass amplifier and cabinet on
the stage (e.g., the cabinet depicted on stage left of the 3D stage shown in Fig. 13B). Upon
moving close to the bass amplifier, certain 3D buttons and/or sliders are enlarged into the
display and preferably afford control of the sonic characteristics of the musical component in a
manner similar to the way actual bass amplifier controls may affect the sound of the bass
guitar. In this manner, the user is preferably provided with an intuitive graphical user interface
that mimics certain visual aspects of a music performance, so that the control of certain sonic
characteristics is made more intuitive.

In certain embodiments, both or multiple types of user interfaces are provided, and the
user may select an I-Way type of user interface, such as shown in Fig. 7A, or instrument group
or other type of interface. What is important is that the user interface in preferred
embodiments preferably provide an intuitive and easy to use way for users, who may have little
experience in creating music, to visually appreciate the instruments used to create the music,
and then have a visual way to access a mode in which parameters and effects associated with
particular instruments may be modified by the user, which is preferably accompanied by a
visual change that corresponds to the modified parameters/effects, etc.

Additionally, in certain preferred embodiments, the use of an external video display

device (e.g., computer monitor, television, video projector, etc.) is used to display a more

24



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

elaborate visual accompaniment to the music being played. In such cases the I-Way graphical
display preferably is a more detailed rendition of the I-Way shown in Fig. 7A (e.g., a higher
resolution image in terms of color depth and/or dots per inch).

In certain preferred embodiments, pressing Play preferably causes the lane instrument
to enter Forced mode. This can be implemented to force Player 10 to play this instrument
pattern at all times until Forced mode is exited by pressing Play again when the lane of that
instrument is active. In this case, if the instrument was not playing at the time Forced mode is
selected, Player 10 can be configured to automatically compose the instrument pattern and
play it immediately, or starting at the end of the current sequence (e.g., 2 bars). In addition,
pressing Play for a relatively long period (. g., a second or more) can pause the music, at
which time a “paused” message can flash in the status line,

In other preferred embodiments, where such a Forced mode may not be desired (e.g.,
for simplicity, and/or because it may not be needed for a particular type of music), pressing
Play briefly preferably causes a Pause to occur. Such a pause preferably would have a
‘Paused’ message appear on the Display 20, and preferably can be rhythmically quantized such
that it begins and ends in musical time with the song (e.g., rhythmically rounded up or down to
the nearest quarter note).

In Solo mode, all other instruments are muted (except for those that may already be in
Solo mode) and only this instrument is playing. Solo mode preferably is enabled by entering a
tunnel or other level for a particular instrument, and, if the instrument is already playing
entering Solo mode upon pressing of Play (e. g., the instrument is in Forced play and
subsequent pressing of Play in Underground mode initiates Solo mode for that instrument; the
particular key entry into Solo mode being exemplary). An instrument preferably remains
soloed when leaving the corresponding tunnel and going back to the music I-Way. The user
also preferably must re-enter the corresponding tunnel to exit Solo mode. Also, in certain
embodiments multiple levels of Solo mode are possible in that you can solo several tracks, one
at a time or at the same time, by going into different tunnels and enabling Solo mode. In
addition, in certain embodiments the user preferably can enable/disable Solo mode from the I-
Way by, for example, pressing Play for a long time (e. 8., 2 seconds) while in a lane. Following
this example, upon disabling Solo mode, any lanes that had previously been manually muted
(before Solo mode was invoked) preferably will remain muted.

Preferably, from a Sample menu different sample parameters can be edited. From the

Samples menu, the user can record, play and change effects on voice, music or sound samples.

25



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

This menu also preferably permits the creation and edition of sample Lists. The LCD preferably
displays “e.Samples™ in the status line and a list of available samples or sample lists in the
storage media (for example, the SmartMedia card, discussed in connection with Fig. 32) to
choose from.

When playing back a sample, the LCD preferably displays the play sample screen. The
name of the sample preferably scrolls in a banner in the center right part of the LCD while the
audio output level is indicated by a sizable frame around the name. The status line preferably
shows the current effect.

Sample sets or lists preferably are used by the e.DJ, for user songs, as well as MIDI
files. In the case of MIDI files, preferably a companion PC software program (e.g., a standard
MIDI editing software program such as Cakewalk) is used to enable the user to edit their own
MDI files (if desired), and use MIDI non-registered parameter numbers (NRPNs are discussed
below in more detail) to effectuate the playing of samples at a specific timing point. Following
this example, the companion PC software program can be enabled to allow the user to insert
samples into the MIDI data, using NRPNs. When a new e.DJ song is created, Player 10
preferably picks one of the existing sample lists (sample sets preferably being associated with
the particular Style/SubStyle of music) and then plays samples in this list at appropriate times
(determined by an algorithm, preferably based on pseudo random number generation, as
hereinafter described) in the song. When creating or editing a user song, the user preferably
can associate a sample list to this user song. Then, samples in this list will be inserted
automatically in the song at appropriate times. Each sample list can be associated with an
e.DJ music Style/SubStyle. For instance, a list associated with the Techno Style can only be
used by a Techno user song or by the e.DJ when playing Techno Style. In additional
variations, the user preferably can specify specific timing for when a particular sample is
played in a song, by way of NRPNs discussed below. This specification of the timing of a
particular sample preferably can be indicated by the user through the use of a companion PC
software program (e.g., a standard MIDI editing software program such as Cakewalk), and/or
through a text interface menu on the Player 10 itself

New Sample lists preferably are created with a default name (e. g., SampleList001).
The list preferably can be renamed in the System-files menu. When the selected item isa
sample, the current effect preferably is displayed in the status line. When the selected item is a
sample list, “List” preferably is displayed in the status line.

26



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Playback of preferably compressed audio, MIDI, Karaoke, and User songs (e.g., e.DJ
songs that have been saved) preferably is accessible via the “Songs” mode. Songs can be
grouped in so-called Play lists to play programs (series) of songs in sequence. The LCD
preferably will display “e.Songs” in the status line and a list of available songs or Play lists on
the SmartMedia card to choose from.

Depending on the type of the song (for example, user song, MIDI or WMA), different
parameters can be edited. The type of the current selection preferably is indicated in the status
bar: e.g., WMA (for WMA compressed audio), MID (for MIDI songs), KAR (for MIDI
karaoke songs), MAD x (for user songs {x=T for Techno Style, x=H for Hip-Hop, x=K for
Cool, etc.}), and List (for Play lists).

The name of the song preferably scrolls in a banner in the center right part of the LCD
while the audio output level is indicated by a sizable frame around the name. If the songis a
karaoke song, the lyrics preferably are displayed on two (or other number) lines at the bottom
of the LCD. The animated frame preferably is not displayed. If the song is a user song (i.e.,
composed by the e.DJ and saved using the Save/Edit button), the music I-Way mode is
entered instead of the play song mode.

The edit screen preferably is then displayed, showing two columns; the left column lists
the editable parameters or objects in the item, the right column shows the current values of
these parameters. For example, a Play list edit screen preferably will display slot numbers on
the left side and song names on the right side. The current object preferably is highlighted in
reverse video.

Play lists are used to create song programs. New Play lists are preferably created with
a default name (e.g., PlayList001), and preferably can be renamed by the user. When a list is
selected and played in the song select screen, the first song on the list will begin playing. At
the end of the song, the next song preferably will start and so on until the end of the list is
reached. Then, if the terminating instruction in the list is End List, the program preferably
stops and Player 10 returns to the song select screen. If the terminating instruction is Loop
List, the first song preferably will start again and the program will loop until the user interrupts
the song playing, such as by pressing the stop button.

In one embodiment of the present invention, the features of a conventional radio are
effectively integrated into the user interface of the present invention (see, e.g., the FM receiver
50 of Fig. 32). For example, when playing a station in Radio mode, the LCD preferably will
display a radio screen. The LCD preferably will display “Radio” in the status line as well as a

27



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

list of available station presets to choose from. If no preset has been preset, only the currently
tuned frequency might be displayed. The name of the radio station (or frequency if it is not a
stored preset) can scroll in a banner in the center right part of the LCD. An animation
representing radio waves can also be displayed. The status line preferably shows the tuned
frequency. In such embodiments Player 10 is enabled to operate as a conventional radio
device.

In preferred embodiments, radio-type functionality involves the use of the same type of
Radio interface, with virtual stations of different Styles. Each virtual station preferably will
generate continuous musical pieces of one or more of a particular Style or SubStyle. In this
v.Radio mode, the user can “tune-in” to a station and hear continuous music, without the use
of an actual radio. Such an arrangement can provide the experience of listening to a variety of
music, without the burden of hearing advertising, etc., and allows the user to have more
control over the Style of music that is played. In such embodiments, a user will enter v.Radio
mode and be presented with a list of v.Radio stations, each preferably playing a particular
Style or SubStyle of music. The user then preferably “tunes” to a v.Radio channel by
selecting a channel and pressing play, for example (see, e. g., Fig. 10), which causes Player 10
to begin auto-composing and playing songs in accordance with the particular v.Radio channel.
In certain embodiments, the v.Radio may be controlled to play user songs of the particular
Style or SubStyle associated with the particular v.Radio channel, which may be intermixed
with auto-composed songs of the particular type of SubStyle. In yet other embodiments, one
or more v.Radio channels may be provided that play songs of more than a single Style or
SubStyle, which also may be intermixed with user songs of various Styles or SubStyles. With
such embodiments, the user is provided options to select the particular type of v.Radio channel
that Player 10 “tunes” in. Additionally, in certain embodiments the v.Radio mode preferably
can be used to play a variety of different song formats (e.g., MP3, WAV, WMA, eDJ, etc.).

In accordance with certain embodiments, another variation of the Radio feature
integrates some aspects of the v.Radio with other aspects of the Radio. As one example, a
user could listen to a Radio station, and when a commercial break comes on, Player 10
switches to the v.Radio. Then, when the real music comes back on, the device can switch
back to a Radio. Another integration is to have news information from the Radio come in
between v.Radio music, according to selectable intervals, For example, most public radio
stations in the USA have news, weather, and traffic information every ten minutes during

mornings and afternoons. The v.Radio can be configured to operate as a virtual radio, and at

28



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

the properly selected interval, switch to a public station to play the news. Then it can switch
back to the v.Radio mode. These variations provide the capability for a new listening
experience, in that the user can have more control over the radio, yet still be passively
listening. It is considered that such an arrangement would have substantial use for commercial
applications, as discussed elsewhere in this disclosure.

Special functions can preferably be accessed from the System menu. These functions
preferably include: file management on the SmartMedia card (rename, delete, copy, list,
change attributes) (the use of such SmartMedia or other Flash/memory/hard disk type of
storage medium is discussed, for example, in connection with Fig. 32), Player configuration
(auto-play, power off, delay, keypad auto-repeat, language, etc.), firmware upgrade,
SmartMedia card formatting, microphone settings, and equalizer user presets. The Player can
preferably modify various attributes of a file stored on the SmartMedia card. As a precaution,
by default, all system files preferably can be set as read only.

In certain embodiments a User Configuration interface preferably enables the user to
enter a name to be stored with the song data on the removable memory storage (e.g., SMC),
and/or to enable the user to define custom equalization settings, and/or sound effects. As an
example of EQ settings, it is preferable to enable the user to select from a group of factory
preset equalizer settings, such as flat (e.g., no EQ effect), standard (e.g., slight boost of lower
and higher frequencies), woof (e.g., bass frequency boost), and hitech (e.g., high frequency
boost). In addition to such preset EQ settings, it is preferable to enable the user to define their
own desired settings for the EQ (as an example, a 4 band EQ with the ability to adjust each of
the 4 bands by way of the joystick). Additionally, in certain embodiments it is preferable to
enable the user to similarly customize sound effects to be used for particular samples.
Following this example, in addition to a set of standard factory preset sound effects such as
Lowvoice (e.g., plays the song with a slower speed and lower pitch to enable the user to sing
along with a lower voice), reverb, Highvoice (e.g., plays the song with a faster speed and
higher pitch), Doppler (e.g., varying the sound from Highvoice to Lowvoice), and Wobbler
(e.g., simulating several voices with effects), it is preferable to make a customized effect
capability available to the user that can incorporate various combinations of standard effects,
and in varying levels and/or with varying parameter values. Furthermore, in certain
embodiments it is preferable to use an equalizer as an additional filter and/or effect, e.g., an
‘AM Radio’ effect that simulates the equalization of an AM Radio station,

29



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

When the user saves a song that is being played in e-DJ mode, the song is preferably
created with a default name (e.g. TECHNO001). The song can preferably be renamed in the
System-files menu. When entering the Files menu, files present on the SmartMedia card and
the free memory size are preferably listed in an edit screen format. The status line preferably
indicates the number of files and the amount of used memory. The file management menu
preferably offers a choice of actions to perform on the selected file: delete, rename, copy,
change attributes, etc. The name of the current file preferably is displayed in the status line.
Additionally, in certain embodiments it is preferable to enable the use of System parameter
files that contain, for example, settings for radio presets (e.g., radio station names and
frequencies), settings for certain parameters (e.g., pitch, tempo, volume, reverb, etc.)
associated with music files such as WAV, WMA, MP3, MIDI, Karaoke, etc. In these
embodiments it is preferable for the parameter setting to apply to the entire file.

When entering the Configuration menu, an edit screen preferably is displayed showing
various configurable parameters. Fig. 14 describes some of the parameters that are preferably
configurable by the Configuration menu, along with possible values. When modifying a
selected character in a file name, Forward preferably can be used to insert a character after the
highlighted one, and Backward preferably to delete the highlighted character. To save the
edits and go back to file menu, Play preferably can be used.

With regard to Fig. 14, in certain embodiments it is preferable to support multiple
languages (e.g., French, English, Spanish, etc.) for representing the various menu options, etc. _
In certain of these embodiments, the use of a data structure (e.g., alookup table residing in
memory) is employed that defines the corresponding word (or word set, phrase, etc.) for each
term in each supported language. In such embodiments, before displaying a term (such as a
menu option), it is preferable to access a variable associated with the desired language to
determine which word among a set of words to use in as the displayed term. Furthermore, in
certain embodiments it is desirable to make a plurality of the words user-definable/editable, so
that the user can operate the system in a mode where he/she can type in a word for the system
to use in association with a particular term. Accordingly, in the case where the word “drum™
might be displayed, in certain of these embodiments it is preferable to allow the user to edit the
word so that “phat beat™ or other desired word or phrase may be displayed. Clearly, other
examples for user-customized menus and terms can be envisioned here,

When selecting copy, a screen proposing a name for the destination file in a large font

preferably is displayed. This name preferably is proposed automatically based on the type of

30



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

the source file. For instance if the source file is a Hiphop user song, the proposed name for the
destination file could be HIPHOO001 (alternatively, the user preferably can use the rename
procedure described above to enter the name of the destination file).

The Firmware Upgrade menu preferably permits the upgrade of the Player firmware
(embedded software) from a file stored on the SmartMedia card. Preferably, it is not possible
to enter the Upgrade firmware menu if no firmware file is available on the SmartMedia card.
In this case a2 warning message is displayed and the Player preferably returns to Systems menu.
In additional embodiments, the use of a bootstrap program preferably is enabled to allow the
firmware to be updated from a removable memory location (e. 8., SMC). Such a bootstrap
program preferably can alternatively be used for upgrading the DSP 42 soundbank located in
Flash 49.

The Player function keys, identified in Fig, 2, preferably are comprised of the standard
buttons found on CD-players or VCRs, and are used to control the playback of songs (e.g.;
Player-proprietary, MIDI, WMA, MP3, etc). The Record key controls recording (e.g.;
samples). When used in editing or selection menus the player keys preferably also have the
following actions: Play preferably is used to select a sub menu or validate a change, Stop
preferably is used to go back to previous menu, cancel an action or discard a change, Forward
preferably is used to insert an item in a list, and Reverse preferably is used to delete an item in
alist. This is one example of how to use a minimum of keys in a device, while retaining a
relatively large set of features, while also keeping the user interface relatively intuitive for a
variety of users.

In certain embodiments, one or more of the user interface controls are velocity-
sensitive (e.g., capable of measuring some aspect of speed and/or force with which the user
presses the control. As an example, one or more of the Player function keys can detect such
velocity-type of information and incorporate it into the sounds. In these exemplary
embodiments, if the Play button is being used to trigger a sample, it is preferable to
incorporate the velocity-type information derived from the button press into the actual sound

of the sample. In some embodiments, the result preferably is that the sample will sound louder

- when the button is pressed quickly and/or more forcefully. In other embodiments, this will

preferably result in a changed sound effect, i.e., depending how hard and or forcefully the
control is pressed, the resulting sound will be modulated, filtered, pitch-changed, etc., to a
different degree. As will be discussed later in more detail, many of the music events involve a

MIDI-type (or MIDI-similar) event descriptor, and accordingly, in certain embodiments it is

31



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

preferable to use the velocity portion (and/or volume, aftertouch, etc.) of a MIDI-type
descriptor to pass on the velocity and/or force characteristics of a button push to the DSP
(e.g., via the generation algorithms, etc.). Clearly, separate descriptor events can alternatively
be used, such as system exclusive messages or MIDI NRPN messages.

When a list is selected in the song select screen, pressing Play preferably will start
playing the first song in the list. While the sample lane is selected, Play preferably can be
configured to start playing the selected sample. While in an instrument lane, Play preferably
can be configured to enter solo mode for the current instrument, or Forced mode.

To create a song/sample list, Forward preferably can be used while in the song or
sample select screen.

To leave an edit screen, Stop preferably can be used to discard the edits and exit. For
example, in the sample selection screen press Stop to go back to the Home screen.
Additionally, for any given instrument during playback, Stop preferably can be used as a
toggle to mute/unmute the instrument.

Record preferably can be pressed once to start recording a sample (recording samples
preferably is possible in almost any operating mode of the Player). Record preferably can be
pressed again to end the recording (recording preferably is stopped automatically if the size of
the stored sample file exceeds a programmabie size, such as 500Kbytes). The record source
preferably is chosen automatically depending on the operating mode. If no music is playing,
the record source preferably is the active microphone (e.g., either local or integrated into an
external docking station). If music is playing songs, e.DJ or radio, the record source
preferably is a mix of the music and the microphone input if not muted. Further, it is possible
to use different sample recording formats that together provide a range of size)performance
options. For example, very high quality sample encoding format may take more space on the
storage medium, while a relatively low quality encoding format may take less space. Also,
different formats may be more suited for a particular musical Style, etc.

In certain embodiments it is preferable to support a sample edit mode. In these cases,
sample edit mode is preferably used by a user to edit a selected sample. The selected sample is
displayed (e.g., as a simplified waveform representation on LCD 20) and the user is able to
select a start point and an end point of the sample. Preferably, such graphical clipping
functions enable a user to easily crop a selected sample, e.g., so as to remove an undesired
portion, etc. After clipping/cropping the sample, the user is presented with the option of

saving the newly shortened sample file, e.g., with a new name. Clearly, other similar edit-type

32



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

functions in addition to or besides such clipping can be supported, to make use of LCD 20 to
provide a graphic version of the waveform of a selected sample, and to provide the end user
with a simple way to carryout basic operations on the selected sample.

In v-Radio mode, to listen to the selected station, Play preferably can be used. Press
Play to mute the radio. Press Stop to go back to station preset selection screen. To launch an
automatic search of the next station up the band, press Forward until the search starts. To
launch an automatic search of the next station down the band, press Backward until the search
starts. Press Forward/Backward briefly to fine-tune up/down by 50kHz steps.

In eDJ Mode, while in Sample lane, Play preferably can be pressed to play a selected
sample. As mentioned previously, in certain embodiments it is preferable to detect the velocity
or force of a particular button press, and to impart the detected information into the resulting
sound (e.g., in the case of a sample play event, preferably adjusting the volume, aftertouch,
pitch, effect, etc. of the sample sound). If sample playback had previously been disabled, the
first press on Play preferably will re-enable it. Subsequent presses preferably will play the
selected sample. If a sample is playing, Stop preferably will stop it. If no sample is playing,
pressing Stop preferably will mute the samples (i.e. disable the automatic playback of samples
by the e-DJ when returning to I-Way mode). When muted, “Muted” preferably is displayed in
the status bar and the round speaker preferably disappears on the I-Way sample lane,

In Song mode, to start the playback of selected song or Play list, preferably press Play
and the LCD will preferably display the play song screen. In Song mode, Stop preferably can
be pressed to stop the music and preferably go back to song selection screen. Preferably press
Forward briefly to go to next song (if playing a Play list, this preferably will go to the next
song in the list; otherwise, this preferably will go to the next song on the SmartMedia).
Preferably press Forward continuously to fast forward the song. Preferably press Backward
briefly to go to the beginning of the song and a second press preferably takes you to the
previous song (if playing a Play list, this preferably will go to the previous song in the list;
otherwise, this preferably will go to the previous song on the SmartMedia). Preferably press
Backward continuously to quickly go backward in the song.

Pressing Stop can be a way to toggle the muting of an instrument/lane. For example,
when on a Drums lane, pressing Stop briefly preferably can mute the drums, and pressing it
again briefly preferably can un-mute the drums. Additionally, pressing Stop for relatively long
period (e.g., a second or so) preferably can be configured to stop the music and go back to

Style selection screen.

33



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Forward preferably can be configured to start a new song. Backward preferably can be
used to restart the current song.

Forward or Backward preferably can be used to keep the same pattern but change the
instrument playing (preferably only “compatible” instruments will be picked and played by the
Player).

Preferably press Stop from within the MIC lane or tunnel to mute microphone.
Preferably press Play to un-mute the microphone.

To start the playback of the selected sample, preferably press Play. Preferably press
Stop to stop the sample and go back to sample selection screen.

In Song mode, preferably press Play to pause the music. Preferably press Play again to
resume playback. Pressing Forward key in the song select screen preferably will create a new
Play list. In the song selection screen, preferably press Stop to go back to the Home screen.

In the Style selection screen preferably press Stop to go back to the Home screen.

To enter the file management menu for the highlighted file, preferably press Play.

While browsing the file management list, preferably press Forward to scroll down to
next page. Press Backward preferably to scroll up to previous page.

In the file management menu, to start a selected action, preferably press Play.

When selecting Delete, preferably a confirmation screen is displayed.

When selecting Rename, preferably a screen showing the name of the file in big font is
displayed and the first character is preferably selected and blinking,

When copying a file, preferably press Play to validate the copy. If a file of the same
type as the source file exists with the same name, préferably a confirmation screen asks if the
file should be overwritten. Select YES or No and preferably press Play to validate. Press Stop
to abort the copy and preferably return to file menu. It is a preferable feature of this
embodiment to allow files to be copied from one removable memory storage location (e.g.,
SMC) to another by use of MP 36 RAM. In this example, it is a desirable to enable the
copying of individual song or system files from one SMC to another without using a
companion PC software program, however, in the case where an entire removable memory
storage volume (e.g., all the contents of a particular SMC) is to be copied, it is desirable to use
a companion PC software program to allow larger groups of data to be temporarily buffered
(using the PC resources) by way of the USB connection to the PC. Such a feature may not be

possible in certain embodiments without the PC system (e. 8., using the MP 36 internal RAM)

34



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

because it likely would involve the user repeatedly swapping the SMC target and source
volumes.

The e-DJ, v-Radio, Songs, Samples and System direct access keys detailed in Fig. 3
preferably permit the user to directly enter the desired mode from within any other mode.
These keys preferably can also be used to stop any mode, including the current mode. This
can be faster than the Stop key, because in some cases, such as while in eDJ Mode inside a
lane, the Stop key preferably may be used to mute the lane, rather than stop the eDJ Mode.

The audio output control is identified in Fig. 1 as Vol. Up/Down. Audio output
control keys preferably are also used to control the microphone input when used in
combination with prefix keys.

The Up/Down/Left/Right keys preferably comprise a joystick that can be used for:
menu navigation, song or music Style selection, and real time interaction with playing music.
Additionally, Up/Down preferably can be used for moving between modes such as the
Underground & I-Way modes in an intuitive manner.

When editing a list, objects preferably can be inserted or deleted by pressing Forward
to insert an object after the highlighted one or pressing Backward to delete the highlighted
object.

To browse the list or select parameters, preferably use Up/Down. To edit the
highlighted object preferably press Right. Press Left preferably to go directly to first item in
the list.

In instrument tunnels (i.e.; Drums, Bass, Riff and Lead), Right preferably can be
configured to compose a new music pattern. Similarly, Left preferably can be used to return
to previous patterns (see note below on music patterns). The new pattern preferably will be
synchronized with the music and can start playing at the end of the current music sequence
(e.g., 2 bars). In the mean time, preferably a “Composing...” message can be configured to
appear on the status line. Additionally, Down preferably can be used to compose a new music
pattern without incrementing the pattern number. This preferably has the same effect as Right
(compose and play another pattern), except that the pattern number preferably won’t be
incremented.

One benefit of these composition features is that they enable the user to change
between patterns during a live performance. As can be appreciated, another reason for
implementing this feature is that the user preferably can assemble a series of patterns that can

be easily alternated. After pressing Right only to find that the newly composed pattern is not

35



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

as desirable as the others, the user preferably can subsequently select Down to discard that
pattern and compose another. Upon discovering a pattern that is desirable, the user preferably
can thereafter use Right and Left to go back and forth between the desirable patterns.
Additionally, this feature preferably allows the system to make optimum use of available
memory for saving patterns. By allowing the user to discard patterns that are less desirable,
the available resources preferably can be used to store more desirable patterns.

In the file management menu, to select a desired action, preferably use Up/Down.
When renaming files, the user preferably can use Left/Right to select the character to be
modified, and Up/Down to modify the selected character. Pressing Right when the last
character is selected preferably will appefld anew character. The user preferably can also use
the Forward/Backward player function keys at these times to insert/delete characters.

In the microphone tunnel, Left/Right preferably can be configured to change
microphone input left/right balance. In the sample tunnel, Left/Right preferably can be used to
select a sample. Pressing Forward in the sample select screen preferably will create a new
sample list.

Down is an example of an intuitive way to enter the Underground mode for the current
I-Way mode lane. In this mode, the user preferably can change the pattern played by the
selected instrument (drums, bass, riff or lead) and preferably apply digital effects to it.
Similarly, Up preferably can be configured to go back to music [-Way from the Underground
mode.

In v-Radio mode, to select the desired station preset, preferably use Up/Down,
Preferably use Up/Down to go to previous/next station in the preset list and preferably press
Save/Edit while a station is playing to store it in the preset list.

The Save/Edit key preferably can be used to save the current song as a User song that
can be played back later. Such a song preferably could be saved to a secondary memory
location, such as the SmartMedia card. In the case of certain Player embodiments, this
preferably can be done at any time while the e-DJ song is playing, as only the “seeds” that
generated the song preferably are stored in order to be able to re-generate the same song when
played back as a User song. In certain embodiments it is preferable to incorporate a save
routine that automatically saves revised files as a new file (e. g., with the same name but a
different suffix). Such a feature can be used to automatically keep earlier versions of a file.

While the use of seeds is discussed elsewhere in this disclosure, it may be helpful at this

point to make an analogy on the use of the Save/Edit 17 key. This key is used to save the

36



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

basic parameters of the song in a very compact manner, similar to the way a DNA sequence
contains the parameters of a living organism. The seeds occupy very little space compared to
the information in a completed song, but they are determinative of the final song. Given the
same set of saved seeds, the Player algorithm of the present invention preferably can generate
the exact same sequence of music. So, while the actual music preferably is not stored in this
example (upon the use of the Save/Edit 17 key), the fundamental building blocks of the music
is stored very efficiently. The desirability of such an approach can be appreciated in a system
with relatively limited resources, such as a system with a relatively low-cost/low performance
processor and limited memory. The desirability of such a repeatable, yet extremely compact
method of storing music can also be contemplated in certain alternative embodiments, such as
those involving the communication with other systems over a relatively narrow band
transmission medium, such as a 56kbps modem link to the internet, or an iRDA/bluetooth type
of link to another device. Clearly this feature can be advantageously employed using other
relatively low bandwidth connections between systems as well. Additionally, this feature
allows the user to store many more data files (e.g., songs) in a given amount of storage, and
among other advantages, this efficiency enhances other preferable features, such as the
automatic saving of revised files as new files (as discussed above).

In certain embodiments, it is desirable to check the resources available to a removable
memory interface (e.g., the SMC interface associated with SMC 40) to safeguard the user
song in instances where a removable memory volume is not inserted, and/or there is not
enough available storage on an inserted removable memory volume. In these cases, when the
user saves a song (e.g., pushes the Save/Edit key 17 button) it is advantageous to prompt the
user to insert an additional removable memory volume.

The name of the song preferably can be temporarily displayed in the status line, in
order to be able to select this song (as a file) later on for playback. Of course the song file
name preferably can be changed later on if the User wishes to do so. Once an item has been
created, it preferably can be edited by selecting it in the song or sample selection screens and
pressing Save/Edit. Pressing Save/Edit again will preferably save the edited item and exit.
When the On/Off key is pressed for more than 2 seconds, the Player preferably can be
configured to turn on or off, yet when this combination is pressed only briefly, the On/Off key
can alternatively preferably be configured to turn the LCD backlight on or off,

When Pitch/Tempo is pressed simultaneously with Left or Right, it preferably can be

used as a combination to control the tempo of the music. When Pitch/Tempo is pressed

37



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

simultaneously with Up/Down, it preferably can control the pitch of the microphone input, the
music, etc.

When Effects/Filters is pressed simultaneously with Left/Right or Up/Down, it
preferably can control the effect (for example, cutoff frequency or resonance) and/or volume
(perhaps including mute) applied on a given instrument, microphone input, or sample.

As will be appreciated by one of ordinary skill in the art, other related combinations
can be employed along these lines to provide additional features without detracting from the
usability of the device, and without departing from the spirit and scope of the present
invention.

Various examples of preferred embodiments for the structuring of a song of the
present invention will now be described. Preferably for a new song, the only user input needs
to be an input Style. Preferably even this is not required when an auto-play feature is enabled
that causes the Style itself to be pseudo-randomly selected. But assuming the user would like
to select a particular Style, that is the only input preferably needed for the present embodiment
to begin song generation.

Before moving into the actual generation process itself, it is important to note that
preferably implicit in the user’s Style selection can be a Style and a SubStyle. That is, in
certain embodiments of the present invention, a Style is a category made up of similar
SubStyles. In these cases, when the user selects a Style, the present embodiment will
preferably pseudo-randomly select from an assortment of SubStyles. Additionally, it is
preferably possible for the user to select the specific SubStyle instead, for greater control. In
these particular embodiments, preferably whether the user selects a Style or a SubStyle, the
result preferably is that both a Style and a SubStyle can be used as inputs to the song
generation routines. When the user selects a SubStyle, the Style preferably is implicitly
available. When the user selects a Style, the SubStyle preferably is pseudo-randomly selected.
In these cases, both parameters are available to be used during the song generation process to
allow additional variations in the final song.

As shown in Fig. 15, the Song is preferably comprised of a series of Parts. Each part
preferably might be an intro, theme, chorus, bridge, ending, etc.; and different parts preferably
can be repeated or returned to later in a song. For example, one series of parts might be:
intro, theme, chorus, theme, chorus, theme, chorus, end. Certain Styles preferably may haf/e
special types of parts, and other Styles preferably may only use a subset of the available parts.
This depends on the desired characteristics for a particular Style or SubStyle. For example, a

38



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

“cool’ Style may not use a bridge part. Additionally, certain Styles that have a generally faster
tempo preferably can use a virtually-doubled part size by simply doubling each part (i.e., intro,
theme, theme, chorus, chorus, theme, theme, chorus, chorus, etc.).

Also, in certain cases, the user experience preferably may benefit from having the
display updated for a particular Part. For example, an indication of the current position within
the overall length of the song may be helpful to a user. Another example is to alert the user
during the ending part that the song is about to end. Such an alert preferably might involve
flashing a message (i.e., ‘Ending) on some part of the display, and preferably will remind the
user that they need to save the song now if they want it saved.

Another optimization at this level is preferably to allow changes made by the user
during the interactive generation of a song to be saved on a part-by-part basis. This would
allow the user to make a change to an instrument type, effect, volume, or filter, etc., and have
that revised characteristic preferably be used every time that part is used. As an example, this
would mean that once a user made some change(s) to a chorus, every subsequent occurrence
of the chorus would contain that modified characteristic. Following this particular example,
the other parts of the song would contain a default characteristic. Alternatively, the
characteristic modifications preferably could either be applied to multiple parts, or preferably
be saved in real time throughout the length of the song, as discussed further below.

Each Part preferably can be a different length, and preferably can be comprised of a
series of SubParts. One aspect of a preferred embodiment involves the SubPart level disclosed
in Fig. 15, but the use of the SubPart level is optional, in that the Part structure can be
comprised directly by Sequences without the intervening SubPart level.

In certain embodiments, where a SubPart layer is implemented, each SubPart
preferably can be of a different size. Such an approach can enhance the feel of the resulting
musical composition, as it affords a degree of variety to the Parts.

Each SubPart preferably is comprised of a series of Sequences (SEQs). In keeping
with the previous comment regarding the relationship between consistent sizing and flexibility
of rule applications, each SEQ preferably can be the same length and time signature. In the
example of Fig. 15, each SEQ is two bars long with a 4/4 time signature. Of course, these can
be adjusted in certain variations of the invention, but in this example, this arrangement works
well, because it allows us to illustrate how we can hold notes across a measure boundary.

Typically, it might be advantageous to lengthen the size of the SEQs (as well as the RPs to be

39



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

discussed hereinafter) to allow greater diversity in the musical outcome. Such a variation is
certainly within the scope of the present discussion, as well as Fig. 15.

Following the example of Fig. 15, each SEQ preferably consist of multiple Real
Patterns (RPs) in parallel. Generally, it is useful to have 1 RP for each type of instrument. In
this case, a type of instrument preferably corresponds to a single lane of the I-Way user
interface (i.e., drums, bass, riff, etc.). RP data preferably is actual note data; generally,
information at this level preferably would not be transposed unless through user interaction,
and even then such interaction preferably would likely apply to multiple instruments. Of
course this is a user interface decision, and is not a limitation to the embodiments discussed
here.

In this case, the multiple RPs preferably are merged together to comprise the SEQ. As
will be recognized by those skilled in the art, this is analogous to the way a state-of-the-art
MIDI sequencer merges multiple sets of MIDI Type 1 information into MIDI Type 0 file.

Further background detail on this can be found in the “General MIDI Level 2
Specification” (available from the MIDI Manufacturer’s Association) which is hereby
incorporated by reference.

One reason for allowing multiple RPs in parallel to define a SEQ, is that at certain
times, certain lanes on the I-Way may benefit from the use of multiple RPs. This is because it
may be desirable to vary the characteristics of a particular piece of the music at different times
during a song. For example, the lead preferably may be different during the chorus and the
solo. In this case it may be desirable to vary the instrument type, group, filtering, reverb,
volume, etc., and such variations can be enacted through the use of multiple RPs.
Additionally, this method can be used to add/remove instruments in the course of play. Of
course, this is not the only way to implement such variations, and it is not the only use for
multiple RPs.

Following the example of Fig. 15, each RP preferably is comprised of two bars, labeled
RPx and RPy. Such a two bar structure is useful because it preferably allows some variations
in MIDI information (chord changes, sustain, etc.) across the internal bar boundary. Such
variation can provide the effect of musical variation without adding the complexity of having
chordal changes occur inside a bar, or having notes sustained among multiple RPs.

Generally, it is cumbersome to allow notes to be held over multiple RPs. This is partly
because of the characteristics of MIDI, in that to hold a note you need to mask out the Note

Off command at the end of a pattern, and then mask out the Note On command at the

40



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

beginning of the next pattern. Also, maintaining the same note across pattern boundaries is a
concern when you switch chords, because the end of a pattern preferably is an opportunity to
cycle through the chord progression, and you need to make sure that the old note being
sustained is compatible with the new chord. The generation and merging of chord progression
information preferably occurs in parallel with the activities of the present discussion, and shall
be discussed below in more detail. While is considered undesirable to hold notes across
patterns, there are exceptions.

One example of a potentially useful time to have open notes across multiple patterns is
during Techno Styles when a long MIDI event is filtered over several patterns, herein called a
‘pad’. One way to handle this example, is to use a pad sequence indicator flag to check if the
current SEQ is the beginning, in the middle, or the end of a pad. Then the MIDI events in the
pad track can be modified accordingly so that there will be no MIDI Note Offs for a pad at the
beginning, no MIDI Note Ons at the beginning of subsequent RPs, and the proper MIDI Note
Offs at the end.

Continuing our discussion of Fig. 15, RPs preferably are comprised of Virtual Patterns
(VPs) that have had musical rules applied to them. Musical rules are part of the generation
and merging of chord progression information that will be discussed in more detail below. A
VP can be generally thought of as the rhythm of a corresponding RP, along with some general
pitch information. Preferably, musical rules are applied to the VP, and the result is the RP.
Musical rules are discussed in more detail below.

A VP preferably can be considered as a series of Blocks. In the example of Fig. 15,
each Block has two dimensions: Blockd and Blockfx, but this is but one possible variation. In
this example, Blockd corresponds to the data of the block, and Blockfx corresponds to effects
that are applied to the data (i.e., volume, filtering, etc.). In this example, the Blockd
information can be thought of as individual thythmic pattern information blocks selected from
a variety of possible rhythmic blocks (certain desirable approaches to create such a variety of
possible rhythmic blocks, and the corresponding selection thereof in creating a VP, is
discussed in greater detail later in this disclosure, with reference to Figs. 22 and 23).

The Blockfx dimension described in Fig. 15 is an optional way to add certain
preferably characteristics to the Blockd information. For example, in addition to volume or
filtering information mentioned above, the Blockd dimension preferably can be used for
allocation or distribution of musical information predictors, discussed in more detail below as

Virtual Note/Controller (VNC) information. However, the Blockfx dimension is optional, and

41



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

the Blockd information can be processed independently of such volume or filtering
information, to great success.

Assuming the example presented earlier wherein the time signature is 4/4 and the RP is
two bars, all Blocks in a pattern preferably must add up to 8 quarter notes in duration. In this
example, assuming n Blocks in a particular RP, the duration in quarter notes of each Block in
the corresponding VP would be between 1 and (8-{n-1}). While this example describes 4/4
time with a quarter note being the basic unit of length for a Block, simple variations to this
example preferably would include alternate time signatures, and alternate basic units for the
Block (i.e., 13/16 time signature and 32™ note, respectively, etc.).

Getting at the bottom of Fig. 15 we see an optional implementation of SubBlocks
(SBs). Such an implementation could preferably be used, for example, for the drum lane of
the I-Way during certain Styles, where it might be desirable to have separate SBs for the bass
drum, cymbal, snare, etc. A further optimization of this implementation of the present
embodiment would be to have the SB level of the drum lane preferably comprise directly the
VP of the drum lane. Such an arrangement preferably would effectively remove the
complexity of having a separate Blockfx for each individual SB of the drum lane. An example
of where such an optimization might be useful when implementing the present invention is in
an environment with limited resources, or an environment where having separate effects for
separate parts of the drums (snare, bass drum, etc.) is not otherwise desirable.

Additionally, in some applications of the present invention, it may be desirable to
enable certain levels in Fig. 15 to be bypassed. In such cases, this would preferably allow a
user to input real pattern data in the form of actual note events (e.g., in real time during a song
via a MIDI instrument as an input). Further, with the use of a companion PC software
application (and a connection to the PC), in certain embodiments it is preferable to allow users
to input their own MIDI patterns for use as Block data.

Various examples of preferred embodiments of the Music Rules used in the creation of
a Song of the present invention will now be described.

Fig. 16A is a flow diagram depicting a general overview of a preferred approach to
generating music in the context of the present invention. Starting at step 1, a style of music
and a selected instrument are defined or loaded. Once the style of music and the type of
instrument are known, the algorithm can apply Block rules to develop individual virtual
pattern sub-blocks (e.g., those shown in Fig. 22). In certain alternative embodiments, the

individual virtual pattern sub-blocks preferably are selected from a list or other data structure.

42



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In a presently preferred embodiment, the sub-block data is preferably created as
needed during the algorithmic processing of music generation. Fig. 16B illustrates an
alternative implementation of Fig. 16A, step 1.

As illustrated in Fig. 16B, step 1a, Style and Instrument related data are input into the
algorithmic routine to create compatible rhythmic events. As one example, a “first max %
parameter may be used as an input to indicate how often a rhythmic event occurs in the first
beat of the measure/period. A relatively high first max percentage may indicate that the
selected instrument will usually sound a note at the beginning of the measure or period in the
selected style; a relatively low first max percentage may indicate that the selected instrument
will usually not sound a note at the beginning of the measure or period in the selected style.
As another example, a “resolution grid” parameter may be used as an input to indicate the
typical locations for rthythmic events in a given instrument and style. The resolution grid may
indicate that a snare drum instrument will typically sound on the second and fourth beats in a
four beat measure for a rock style. As another example, a “pulse min/max” parameter may be
used as an input to indicate the range of tempo desired for a particular style of music. Many
other input parameters can be used in a manner consistent with the present invention; at this
point in the presently discussed embodiment, the point is to assemble a set of rhythmic events
for a given instrument and style. At this point in the algorithmic example, the rhythmic events
preferably are simply points in time that a note event will start. Preferably, other aspects of
the note, such as duration, velocity, etc., are not yet known.

As illustrated in Fig. 16B, step 1b, after thythmic events (e.g., note start events) are
algorithmically generated based on style and instrument parameter inputs, the algorithm
preferably assigns durations to the rhythmic events using rhythmic rules. Preferably, the
thythmic rules operate on the rhythmic events generated in step 1a using additional style
and/or instrument parameters such as “silence %”, “chord %”, “chord duration sensitivity %>,
“chord velocity sensitivity %, “velocity accent™, “velocity dynamic™, and/or “humanization”,
as examples. Silence % may be used to indicate the percentage of time during a measure (or
other period) when the instrument will be silent; a relatively high number would preferably
result in relatively long note durations, etc. Chord % may be used to indicate the percentage
of notes that occur as part of a chord. Chord duration sensitivity % may be used to indicate
the degree of cohesiveness in the stop time of multiple notes in a single chord; as an example,
whether some notes in a chord can have a longer duration than others, etc. Chord velocity

sensitivity % may be used to indicate the degree of cohesiveness in the velocity (e.g., volume)

43



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

of multiple notes that occur as part of a chord. Velocity accent may be used as a parameter to
indicate to the algorithm the location of an accent; this may be used to indicate that a bass
guitar in a reggae style accent the upbeat, for example. Similarly, velocity dynamic may be
used to indicate the degree to which the accent occurs; a relatively high degree of accent
would preferably result in a relatively high velocity (e.g., volume) of a musical event that
occurs on the accent, as compared to the other music events of the given instrument.
Humanization may be used as a parameter to indicate a degree of irregularity in the rhythmic
events. These are examples of parameters that may advantageously be used to assign
durations to the rhythmic events. Other parameters may be substituted or added depending on
the implementation while still achieving the benefits of the present invention. The result of this
step preferably is to generate virtual pattern sub block data that can be processed in a manner
as discussed elsewhere in this disclosure in connection with Figs. such as Fig. 16A.

Referring back to Fig. 16A, once the sub-blocks are available (e.g., from a list or from
a block rule algorithm) they are processed into a Virtual Pattern (VP) at step 2. At this point
in this example, a VP preferably is not music, although it does contain rthythmic information,
and certain other embedded musical characteristics. At step 3, using the embedded musical
characteristics of the VP data structure, musical rules preferably are applied to the VP to add
more musicality to the pattern, and the result preferably contains both the rhythmic
information of the VP, as well as actual musical information. At step 4 a tonic is preferably
applied to the output from step 3, in that each measure preferably is musically transposed
according to a tonic algorithm to impart a chordal progression to the data structures. Then at
step 5, a mode preferably is applied that makes subtle changes to the musical information to
output music information preferably set to a particular musical mode. Then, at step 6, a key
preferably is applied to the data structure to allow key changes, and/or key consistency among
various song components. Finally, at step 7, a global pitch adjustment pfeferably can be
applied to the data structure, along with the rest of the song components, to allow real time
pitch/tempo shifting during song play.

This process of applying various musical rules to generate a RP preferably can be a
part of the overall song generation process mentioned above in connection with Fig. 15.
Before going through the steps described in Fig. 16A in more detail, a discussion of the
embedded characteristics mentioned above, as well as some mention of tonic and key theory
will be helpful.

44



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Bearing in mind that the MIDI Specification offers a concise way to digitally represent
music, and that one significant destination of the output data from the presently discussed
musical rules is the MIDI digital signal processor, we have found it advantageous in certain
embodiments to use a data format that has some similarities with the MIDI language. In the
discussion that follows, we go through the steps of Fig. 16A in detail, with some examples of
the data that can be used at each step. While the described data format is similar to MIDI, it is
important to understand the differences. Basically, the present discussion describes how we
embed additional context-specific meaning in an otherwise MIDI compliant data stream.
During processing at each of the steps in Fig. 16A, elements of this embedded meaning
preferably is extracted, and the stream preferably is modified in some musical way accordingly.
Thus, one way to consider this process is that at each step, our stream becomes closer to the
actual MIDI stream that is played by the MIDI DSP (this aspect is addressed in more detail
below with reference to Fig. 21).

In the present example it is considered advantageous to break down the rhythmic and
musical information involved in the music into Virtual Notes énd/or Controllers (VNC). In the
example of Fig. 17, we have provided several examples of VNCs that we have found to be
useful. Basically, these VNCs represent our way of breaking down the musical rules of a
particular genre into simplified mechanisms that can be used by an algorithm preferably along
with a certain random aspect to generate new music that mimic the characteristics and variety
of other original music in the genre. Depending on the Style of music, different types of
VNCs will be useful. The list in Fig. 17 is simply to provide a few examples that will be
discussed later in more detail.

An important feature of this aspéct of the present invention is that we have embedded
control information for the music generation algorithm into the basic blocks of rhythmic data
drawn upon by the algorithm. We have done this in a preferably very efficient manner that
allows variety, upgradeability, and complexity in both the algorithm and the final musical
output. A key aspect of this is that we preferably use a MIDI-type format to represent the
basic blocks of rhythmic data, thus enabling duration, volume, timing, etc. Furthermore, we
preferably can use the otherwise moot portions of the MIDI-type format of these basic blocks
to embed the VNC data that informs the algorithm how to go about creating a part of the
music. As an example, we preferably can use the pitch of each MIDI-type event in these basic
sub-blocks of rhythmic data to indicate to the algorithm what VNC to invoke in association
with that MIDI-type event. Thus, as this rhythmic data is accessed by the algorithm, the pitch-

45



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

type data preferably is recognized as a particular VNC, and replaced by actual pitch
information corresponding to the VNC function. Fig. 17 shows, in the first colurmn, examples
of such embedded values, and in the second and third columns, examples of recognized VNC
nomenclature, and potential pitch information associated therewith.

In the example of Fig. 17, the fundamental type of VNC preferably is the Base Note.
This can be considered in certain musical styles as the cornerstone of the melody, except, for
example, when these notes are relatively short notes in a run. This is why rhythm exists in a
VP to provide context to the VNCs. Example values of the Base Note are C.E,GorB.
Which value is finally used preferably depends on a pseudo-random seed as part of an
algorithm. We find that in these examples, these values provide pretty good music for the
genres we have studied so far. The Magic Notes preferably can have the values indicated in
Fig. 17 (assuming a diatonic scale is used), and these values are preferably relative to the

- preceding Base Note. Unlike a Base Note, Magic Notes preferably are useful at providing a
note that does not strongly impact the melody. For example, the algorithm preferably will see
that the next note to be generated is a Magic Note 1, and it may therefore use the Pseudo
Random Number Seed to predictably select one of the possible values: +1, -1, +2, -2. The
predictably-selected value preferably will be used to mathematically adjust the value from the
preceding Base Note to preferably result in a note value. Following this example, if the
preceding Base Note was a C2, and the result of the algorithm is to select a +1, then the
Magic Note value is a D2. Note that preferably the only difference between Magic Note 0 and
1 is that Magic Note 0 can have a value of 0. Thus, the use of Magic Note 0 will occasionally
result in a note that is the same value as the preceding Base Note. This is an example of a way
to influence the sound of a particular Style in relatively subtle ways.

In the discussion above, by “predictably-selected’ we refer to the process of pseudo-
randomly selecting a result based on a seed value. If the seed value is the same, then the result
preferably will be the same. This is one way (though not the only way) to enable
reproducibility. Further discussion of these pseudo random and seed issues is provided
elsewhere in the present specification.

Continuing with Fig. 17 » a High Note preferably simply adds an octave to the
preceding Base Note, and is useful to make a big change in the melody. What is interesting
here is that multiple VNCs preferably can occur in between the previous Base Note and the
High Note, and this is a way to allow a musical phrase run to a tonic note, corresponding to an

earlier Base Note. Obviously, this VNC is very useful, as it again preferably enables the

46



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

structure of music to exist before the actual music itself is written. The algorithm preferably
does not know what the final key, or mode will be at this point, but the octave and tonic
preferably are available.

Similar to the Magic Note, the Harmonic Note VNC preferably allows the algorithm to
pseudo-randomly select a harmonic from a set of possible harmonics. This capability is useful
when there are multiple notes sounding at the same time in a chord. When this VNC is used,
it preferably can result in any of the relative harmonics described in Fig. 17. These values are
only examples of possible values, and ones that we find particularly useful for the types of
music we have addressed.

Last Note is a VNC that is very similar to the Base Note, except that it preferably only
contains a subset of the possible values. This is because, as we understand musical phrasing
for the types of music we address, the final note preferably is particularly important, and
generally sounds best when it has a relative value of C or G (bearing in mind that in this
example, all the notes preferably can subsequently be transposed up or down through
additional steps). As with all the VNCs, the precise note that might be played for this value
preferably depends on the Mode and Key applied subsequently, as well as general pitch
shifting available to the user. However, in the music we address, we find this to be a useful
way to add subtlety to the music, that provides a variety of possible outcomes.

One Before Last Note is a VNC that preferably immediately precedes the Last Note.
Again, this is because we have found that the last two notes, and the harmonic interval
between them, are important to the final effect of a piece, and accordingly, we find it
advanfageous with the Final Notes of C and G to use One Before Last Notes of E, G, or B.
These values can be adapted for other Styles of music, and only represent an example of how
the VNC structure can be effectively utilized.

The last example VNC in Fig, 17 is the ALC controller. This is one example of how
certain musical non-pitch concepts can preferably be employed using a MIDI controller. In
this example, the ALC controller can be thought of as a prefix which modifies the meaning of
immediately following notes. The ALC controller can be used to indicate that the next note is
to be treated in a special manner, for example, to setup a chord. In this example, you can use
a particular predefined value for the ALC controller to precede a sequence of a fixed note with
additional harmonic notes. Similar to the Magic Note VNC discussed above, the Harmonic
Notes following a ALC controller preferably allow the algorithm to pseudo-randomly select a

harmonic from a set of possible harmonics. This capability is useful when there are multiple

47



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

notes sounding at the same time in a chord. When this VNC is used, it preferably can result in
any of the relative harmonics described in Fig. 17. These values are only examples of possible
values, and ones that have been found particularly useful for the types of music addressed up
to the time hereof. Another example use of the ALC controller is to setup fixed notes. In this
case, preferably one follows the appropriate ALC controller with Fixed Note values for any
desired actual note value. This approach is useful in many instances to have a more carefully
limited song output where a particular interval between notes in the desired music can be
achieved. Additionally, playing well-known phrases or sequences preferably is possible with
this use of the ALC controller. One preferably could encode portions of an entire song this
way to have a piece that closely resembles an existing musical piece. In this example, one
preferably could have certain parts of the music still interactively generated to enable a song to
sound just like an existing song (in melody, for example), yet preferably still allow other parts
to be different (like bass or drums, for example).

In this manner, you can setup the resulting chord because the ALC value preferably
will alert the software routine that is processing all of the VNCs to let it know that the
following note is to be the basis of a chord, and that the next number of harmonic notes will be
played at the same as the basis note, resulting in a chord being played at once. This example
shows one way that this can be done effectively. Other values of VNC controllers preferably
can be used to perform similar musical functions.

It is important to note that an additional variation can preferably be implemented that
addresses the natural range, or Tessitura, of a particular instrument type. While the software
algorithm preferably is taking the VNCs mentioned above and selecting real values, the real
pitch value preferably can be compared to the real natural range of the instrument type, and
the value of subsequent VNC outcomes preferably can be inverted accordingly. For example,
if the Base Note of a given pattern is near the top of the range for a bass instrument Tessitura,
any subsequent Magic Notes that end up returning a positive number can be inverted to shift
the note to be below the preceding Base Note. This is a particular optimization that adds
subtlety and depth to the outcome, as it preferably incorporates the natural range limitations of
particular instrument types.

As a simplified example of Tessitura, Fig. 18A depicts the relative optimal ranges of
particular instrument types. In the present context, the Tessitura of an instrument preferably is
the range at which it sounds optimal. Certain sounds in the MIDI sound bank preferably are
optimized for particular ranges. Ifyou select a bass guitar sound and play very high pitched

48



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

notes, the result may not be very good. For higher pitches, a guitar or violin sound may work
better. Accordingly, when the musical rule algorithm is processing VNCs , the Tessitura of
the selected instrument type preferably can play a role in the outcome of the real note value
generated. If the selected instrument is approaching the top edge of its’ Tessitura, and the
musical rule routine comes across a High Note VNC, then the algorithm preferably can be
designed to bump the generated pitch down an octave or two. Similarly, other VNCs can be
processed with deference to the Tessitura of the selected instrument.

In certain alternative embodiments, it is preferable to perform the conversion between
virtual note controllers (VNCs) and real notes by relying in part upon state machines, tables,
and a “Magic Function” routine. In this manner, new musical styles preferably can
subsequently be released without changing the magic function. As an example, new styles can
be created that involve new and/or modified VNC types, by merely updating one or more
tables and/or state machines. Such an approach is desirable in that it enables the magic
function to be implemented in an optimized design (e.g., a DSP) without sacrificing forward
compatibility. In certain embodiments, state machine data preferably may be stored as part of
a song.

Fig. 18B illustrates a flow diagram of an exemplary magic function that relies on tables
and/or state machines for forward compatibility. This magic function is called by the
algorithmic music generator to generate a real note event based on a VNC event. It is
expected that this function preferably will be called upon many times during a music piece,
and, accordingly, the benefits of using an optimized design such as a relatively efficient DSP
hardware design will be evident for certain implementations.

Starting at the top left of Fig. 18B, the magic function starts with the previous real
note and the current virtual note (VNC) to be processed. The purpose of the function is to
determine a real note event to correspond with the current VNC. In this example, we
illustrate the use of a finite state machine (such as a Moore state machine, described in more
detail by the National Institute of Standards and Technology at
http://www.nist. gov/dads/HTML/finiteStateMachine html) as part of the magic function,
though it is not required in order to realize many of the advantages of the present invention.
Continuing the discussion of Fig. 18B, it is preferable to access a state machine (SM) and
thereby load a range of delta values from a table. Again, as discussed herein, the table and/or
state machine can be stored in a manner that preferably affords easy updates. As an example

of the range of delta values described here, assuming the use of a VNC such as the Magic

49



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Note 1 described herein in connection with Fig. 17, the range of delta values preferably loaded
fromatable is: {-2, -1, +1, +2}. At this point in Fig. 18B, the magic function randomly
selects a direction (e.g., increment or decrement) to move in from the previously determined
real note. For purposes of explanation herein, assume that a decrementing direction is chosen
at this point. Then, the range of delta values is masked so that it contains only decrementing
values (e.g., {-2, -1}). From this masked range, a single delta value preferably is then selected
by the magic function.

In certain embodiments where a tessitura associated with a particular musical
component (e.g., as described herein in connection with Fig. 18A) is NOT used, at this point
in the magic function the delta value preferably can be applied to the previously determined
real note to create a new real note. By way of example, assuming the previous real note was a
G3, and the delta value is -2, then the new real note preferably might be an E3.

In certain embodiments where a tessitura of allowable ranges IS desired, at the point of
the magic function illustrated in Fig. 18B that an individual delta value is selected from the
masked range, it is desirable to check if the selected delta value is within the tessitura range of
values. Ifit is not within the range, preferably the function discards the selected delta value
(e.g., -2), removes the max value (e.g,, -2) from the range of masked delta values, and checks
whether the new max value is within the range of allowed values corresponding to the
tessitura. If the new max value is within the range, the exemplary function randomly selects
another one of the remaining values in the masked range, and proceeds to create the new real
note. If, however, the new max value is not allowed by the tessitura range, then the magic
function then preferably discards the current masked range of delta values, changes the
direction (e.g., from decrement to increment), and masks the original range of delta values in
the new direction. In this manner, when the magic function is operating near one edge of the
allowed range of tessitura values, it preferably can ‘sense’ the edge and turn around. So, in
the event that VNCs associated with an instrument such as a flute (e.g., with a relatively high
tessitura range) are currently being processed, and the randomness of the process causes the
melody being composed to approach the bottom edge of the normal range associated with a
flute instrument, the present exemplary magic function preferably can change from a
decrementing direction to an incrementing one, and thereby stay within the normal pitch range
associated with a flute. In a manner such as the one described here, it is possible to provide an
efficient algorithm (e.g., DSP) for creating real pitch events from virtual pitch events, while
allowing future upgrades in the types of virtual pitch events (e.g., by updating the state

50



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

machine tables), as well as the individual delta values associated with each virtual pitch event
(e.g., by updating the table of values associated with a particular VNC). Furthermore, while
the representative examples discussed here are directed to the functions involved in moving
from a VNC to a real note, it will be clear to one of skill in this art that such an approach can
be similarly applied to any of the other composing elements described elsewhere in this
disclosure, such as the selection of a chord progression, a song structure, etc.

Fig. 19 describes another aspect of this musical process. Musical Key changes
preferably can be encoded as offsets. By this we mean that given a Key of X, the Key can be
shifted up or down by inserting an offset. Such an offset preferably will transpose everything
by the exact value to result in a musical phrase that is exactly as it was, but now in a different
Key. Fig. 19 has as examples the Keys of A, C, D, and G. A Key of C preferably would have
an offset of 0, A an offset of -3, D an offset of +2, and G an offset of +8. As will be
appreciated by a student of Musical Theory, the offset preferably corresponds closely with a
number of half steps in an interval. The interval between C and G is 8 half steps. Other Keys
can be similarly achieved.

The use of halfsteps for encoding Keys is advantageous because, as mentioned
previously, the MIDI language format uses whole numbers to delineate musical pitches, with
each whole number value incrementally corresponding to a half step pitch value. Other means
of providing an offset value to indicate Keys can be applied, but in our experience, the use of
half steps is particularly useful in this implementation because we are preferably using a MIDI
DSP, and so the output of the Musical Rules preferably will be at least partly MIDI based.

Fig. 20 describes another Musical Rule that preferably is part of the overall process:
Mode application. As can be appreciated by a student of Musical Theory, assuming the mode
is described in terms of sharps (as opposed to flats) the particular placement of sharps is a
large part of what gives each musical phrase its own identity. In Fig. 20 we give the example
of a Lydian Mode, with Ascending or Descending versions preferably available. Other well
established musical modes exist (Ionian, Dorian, Hypodorian, Phrygian, Hypophrygian,
Hypolydian, Mixolydian, Aeolian, Locrian, etc.) and we only use Lydian here in the interests
of space. Clearly, the present invention can involve other modes, with corresponding values
as those in Fig. 20. In cases where a mode is desired that is not a conventional western mode,
it is preferable to upgrade or alter the soundbank (e.g., located in Flash 49) so that other

musical intervals are possible.

51



10

15

20

25

30

WO 2004/064036

PCT/US2003/025813

Fig. 20 begins with a list of all preferably available notes in the genre of music that we
are addressing. That is followed by the corresponding preferably natural note values that we
term Natural Mode. The values of notes in the Natural Mode preferably correspond to the All
Notes row of notes without the sharps (again assuming that in the present discussion we are
defining our modes in terms of sharps, and not flats). Then the Lydian mode preferably is
listed, which does not allow F naturals. In order to decide whether an F natural is to be raised
to the next available pitch of F sharp, or lowered to the next available pitch of E, an algorithm
preferably will decide between an ascending or descending transposition. Accordingly, a
descendingly transposed F natural preferably will be changed to an E, and an ascendingly
transposed F natural preferably will be transposed to a F sharp. Given that sharps vary from
the Natural Mode, the use of an ascending Lydian Mode results in music that has more F
sharps, and is thus more aggressively Lydian. This general concept is evident in other Modes
as well, with ascending transpositions typically being more aggressive than descending
transpositions.

At this point we will go through a detailed example of the Musical Rule portion of the
algorithm, using Fig. 21 as the example. This.discussion will incorporate the earlier
discussions of the preceding figures, to demonstrate how a preferred embodiment of the
present invention preferably incorporates them,

Fig. 21 depicts the data as it preferably exists between each of the numbered steps 2 —
6 in Fig. 16A. Of course, in certain embodiments where the virtual pattern sub block data is
algorithmically generated based on parameter data (e.g., as shown in Fig. 16B), the VP Sub-
Blocks may be generated as needed, rather than loaded from a pre-defined set. Consequently,
in the discussion that follows, although the discussion of VP Sub-block data involves the use
of pre-defined data, keep in mind that in certain embodiments this may be defined as needed
during processing. The Musical Notation is represented to clarify the overall concept, as well
as to indicate a simplified example of the preferable format the data can take in the sofiware
routine.

Beginning at the top row, there is a collection of predefined VP Sub-Blocks that
preferably can advantageously be indexed by music Style and/or length. These blocks
preferably are of variable sizes and preferably are stored in a hexadecimal format
corresponding to the notation of pitch (recognizing that in certain embodiments the pitch
information of a VP does not represent actual pitch characteristics, but VNC data as discussed

above), velocity, and duration of a MIDI file (the preferable collection of predefined VP-Sub-

52



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Blocks is discussed in more detail below with reference to Figs. 22 — 23). As shown in the top
row of Fig. 21, Rests preferably are also available in this collection of available patterns. This
collection of indexed Sub-Blocks preferably is used by a software routine to construct Virtual
Patterns (VPs). As mentioned earlier, certain alternative embodiments preferably involve using
algorithmic block rules to generate the collection of Sub-Blocks. Such algorithmic rules
preferably are configured to accépt the music style and instrument type as inputs to then
output a collection of Sub-Blocks that are appropriate for that style/instrument combination.
Whether the Sub-Blocks are selected from predefined collection, or generated on the fly with
an algorithm, they preferably are organized into a VP. VPs preferably are a collection of Sub-
Blocks that have been assembled by the routine into preferably consistently-sized groupings.

After step 2 of Fig. 16A is applied, we preferably have a VP. The second row of Fig.
21 (VP) depicts an example VP that is 2 bars long, and composed of the following sequence:
Base Note, Magic Note 1, Magic Note 0, High Note, and another Base Note. Note that at
this time the rhythm of the part preferably is in place, and the value of each note is
conceptually the embedded VNC information. If the VP is played at this point, the output
would likely not be pleasing. The right column of row 2 depicts the format that this data
preferably is stored in; as is discussed elsewhere in this disclosure, this format is remarkable
similar to MIDI format data, with one exception being that the VNC information preferably is
implicitly embedded in the data stream.

The third row (NCP) depicts the same data after step 3 of Fig. 16A is applied. The
VNCs embedded in the VP from row 2 preferably have been interpreted by the routine with
the help of pseudo-random selections from the possible VNC values. Thus, for the first Base
Note in row 2, we have a real note value of E in row 3, and for the Magic Note Type 1 of row
2 we have decremented the previous Base Note two half steps to a D in row 3. For the Magic
Note Type 0 we have adjusted the previous value by 0, resulting in another D. This goes on
through the VP, and the result is clear in row 3. At this point, we preferably have the basic
musical information that will end up in the song, except that the Chord and Mode
transpositions preferably have not yet been made.

The fourth row in Fig. 21 (PwT) depicts the data stream after step 4 of Fig. 16A is
applied. As can be seen, the NCP of row 3 has been transposed down. This is to allow the
particular pattern being constructed to preferably conform to a particular Tonic note, thus

placing it into a suitable chord preferably to match the other elements of the musical piece.

‘This feature allows different portions of the melody preferably to conform to different tonic

53



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

notes, thus preferably proceeding through a chord progression, while ensuring that all
instruments preferably conform to the same chord progression.

Row 5 of Fig. 21 (PWTM) takes the pattern of notes and preferably conforms it to a
particular Mode (e.g., Ionian, Dorian, Hypodorian, Phrygian, Hypophrygian, Lydian,
Hypolydian, Mixolydian, Aeolian, Locrian, etc.) preferably as well as a particular Mode type
(like descending, ascending, etc.). A more complete list of musical modes and mode types has
been prepared by Manuel Op de Coul (available on the world wide web at:
www.xs4all.nl/~huygensf/doc/modename.html) and is hereby incorporated herein by reference,
The conformation of the pattern of notes to a particular Mode preferably is done in a manner
consistent with Fig. 20, discussed above. In the example of Fig. 21, the resulting musical
phrase is very similar to that of Row 4, except the notable difference of the C sharp being
reduced to a C. This is because there is no such C sharp in the Lydian mode, and so it’s
removal is preferably required at this step. If the Modal adjustment were using the Lydian
ascendihg mode, which is more aggressively ascending because there are more sharps, this C
sharp would have preferably ‘rounded up’ to the next Lydian note of D. But, since in this
example we are using a Lydian descending mode, the C sharp is preferably ‘rounded-down’ to
aC.

The final row of Fig. 21 (RP) indicates the point when the musical phrase preferably
can be globally transposed up or down the scale. This is advantageous in the case where a
global pitch adjustment feature is desired to preferably allow the user to quickly and easily
shift the pitch of a song up or down (such as is discussed in an earlier example of the
Pitch/Tempo key used in combination with the Up/Down keys). The example of Row 6
shows a transposition of 2 half steps. As with all the rows of this figure, this can be seen in the
musical notation, as well as the software notation, where the third pair of numbers can be seen
to increment by a value of two, for each line.

Theré are instances where certain elements of the music preferably do not need the
musical rules discussed above to be invoked. For example, drum tracks preferably do not
typically relate to Mode or Key, and thus preferably do not need to be transposed.
Additionally, many instrument types such as drums, and MIDI effects, preferably are not
arranged in the MIDI sound bank in a series of pitches, but in a series of sounds that may or
may not resemble each other. In the example of drums, the sound corresponding to C sharp

may be a snare drum sound, and C may be a bass drum sound. This means that in certain

54



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

cases, different levels of the process discussed above in reference to Fig. 21 preferably may be
advantageously bypassed in these cases.

The collection of sub-blocks discussed above, from which VPs preferably are
constructed, can be better understood in light of Figs. 22 and 23.

Fig. 22 depicts an example of the thythmic variations that preferably are possible,
based on example durations of 1 or 2 quarter notes. The first row indicates the 4 possible
variations, given a few basic conditions: that the eighth note is the smallest unit, the length is 1
quarter note, and that all full rests are indicated separately as ‘empty’. The second row in Fig.
22 lists the possible variations, given similar variations: that the eighth note is the smallest unit,
that any variations in the first row are not included, and that the length is 2 quarter notes.

One way to create a set of thythmic variations such as those in Fig. 22 preferably is to
put the variation data into MIDI event format. This approach preferably involves using a
MIDI sequencer software tool (such as Sonar from Cakewalk, and Cubase from Steinberg) to
generate the rhythmic blocks. This preferably allows the use of a variety of input methods
(e.g., akeyboard controller, a MIDI wind controller, a MIDI guitar controller, etc.), and
further preferably allows the intuitive copying, pasting, quantizing, and global characteristic
adjustments (e.g., selecting multiple events and adjusting the pitch for all). Then, the MIDI
events preferably can be exported as a MIDI file (possibly 1 file for each instrument group).
Finally, a software batch file program preferably can be written to open the MIDI file and
parse out the substantial header information, as well as any unneeded characteristic
information (such as controller or patch information), and preferably output the optimized data
into a file that is suitable to include in the source code (e.g., ASCII text tables). The use of
the sequencing tool preferably enables one to quickly generate a variety of appropriate
thythmic blocks for a given instrument type, since the vast array of MIDI controller devices
are available that can mimic the characteristics of a particular instrument type. For example,
one can use a MIDI guitar controller to strum in patterns for a guitar type of instrument
group.

The example of Fig. 22 is simplified to convey a concept; that all rhythmic variations
covering up to two quarter notes (given the conditions discussed above) preferably can be
organized very efficiently according to rhythmic density. Fig. 22 teaches an advantageous way
to efficiently organize the set of blocks used to construct a VP shown in Fig. 15. If the
example of Fig. 22 were expanded to include additional rows for rhythmic blocks with longer

durations, given conditions such as those described above that are consistent across the rows,

55



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

then each subsequent row would have patterns of less density than those above it. This is
because of the condition that each row does not include any of the variations present in rows
above it, and because the duration of the pattern increases for each subsequent row. Thus,
there is a direct relationship between the example shown in Fig. 22 and the relative rhythmic
density of patterns used to make a VP.

Clearly, if any of the conditions described in Fig. 22 were changed, e.g., if a sixteenth
note were the smallest unit or full rests were indicated with a pattern containing a rest, then
preferably the number of variations would be different. While the number would be different,
the desirable effects of organizing patterns based on this concept of rhythmic density would
remain.

In addition to efficiency, such an approach to organizing the available thythmic blocks
preferably enables the use of thythmic density as an input to a software (e.g., algorithmic
function) or hardware (e.g., state table gate array) routine. Thus, one preferably can associate
arelative rhythmic density with a particular instrument type and use that rhythmic density,
possibly in the form of a desired block length, preferably to obtain a corresponding rhythmic
block. This preferably can be repeated until a VP is complete (see Fig. 15). The VP
preferably can thereby be constructed with a desired relative thythmic density. This is
particularly useful because it preferably allows the creation of VPs with almost limitless
variations that have thythmic characteristics preferably generally corresponding to a given
instrument type.

As will be apparent to one of ordinary skill in the art of MIDI, given the context of VP
generation discussed herein, the thythmic variations shown in Fig. 22 can be represented in the
form of MIDI events. In this case, many of the available characteristics in the MIDI events,
such as pitch, velocity, aftertouch, etc., preferably might be generically set. Then, additional
functions for such characteristics preferably can be applied to the MIDI events during the
creation of VPs to impart additional subtlety to the finished music. Such functions preferably
can be fairly simple and still be effective. As one example, for a given Style of music (e.g.,
rock), the velocity of any MIDI events in the VP that fall on a particular location in the
measure (e.g., the downbeat) can be modestly increased. Similarly, in a music Style that
generally has a rhythmic swing feel, where one or more of the beats in a measure may be
slightly retarded or advanced, the corresponding MIDI events in a VP preferably can be
modified so as to slightly adjust the timing information. Clearly, these types of simple

56



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

functions preferably can be selectively applied to either a given instrument type, and/or a given
musical Style.

Similar to the concept of using relative rhythmic density as a deterministic
characteristic in creating algorithmic music, Fig. 23 describes a concept of relative mobility of
note pitch. As shown in Fig. 23, the vertical axis indicates pitch change, and the horizontal
axis indicates time. Two example types of melody streams are depicted; the top having a fluid
movement through a variety of pitches, and the bottom having rather abrupt, discrete changes
among a fewer number of pitches. Thus, the melody on the top of Fig. 23 has a higher relative
mobility of note pitch. As can be appreciated by the previous discussion of VNCs, the melody
example on the top preferably would generally require more Magic Notes to imitate, and the
melody example on the bottom preferably would generally require more Base Notes and High
Notes to imitate.

This concept preferably applies to most instrument types in a given musical Style as
well, in that certain instruments have a higher relative mobility of note pitch than others. As
an example, a bass guitar in a rock Style can be thought of as having a lower relative mobility
of note pitch compared to a guitar in the same Style. The relationship between relative
mobility of note pitch and relevant VNC type can be very helpful in creating the collection of
predefined sub-blocks discussed above, in that it serves as a guide in the determination of
actual VNC for each rhythmic pattern. When one wants to create a set of rhythmic building
blocks for use in a particular musical Style and/or instrument type, it is advantageous to
consider/determine the desired relative mobility of note pitch, and allocate VNC types
accordingly.

As an additional variation, and in keeping with the discussion above regarding relative
rhythmic density, an architecture that constructs a VP for a given instrument type and/or
musical Style preferably can greatly benefit from a sofiware (e.g., algorithmic function) or
hardware (e.g., state table gate array) routine relating to relative mobility of note pitch. As an
example, a particular music Style and/or instrument type can be assigned a relative rhythmic
density value, and such a value can be used to influence the allocation or distribution of VNC
types during the generation of a VP.

The use of relative rhythmic density and relative mobility of note pitch in the present
context preferably provides a way to generate VPs that closely mimic the aesthetic subtleties
of ‘real’ human-generated music. This is because it is a way of preferably quantifying certain

aspects of the musical components of such ‘real” music so that it preferably can be mimicked

57



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

with a computer system, as disclosed herein. Another variation and benefit of such an
approach is that these characteristics preferably are easily quantified as parameters that can be
changeable by the user. Thus a given musical Style, and/or a given instrument type, preferably
can have a relative mobility of note pitch parameter (and/or a relative thythmic density
parameter) as a changeable characteristic. Accordingly, the user preferably could adjust such
a parameter during the song playback/generation and have another level of control over the
musical outcome.

Various examples of preferred embodiments for the block creation aspects of the
present invention will now be described. Again, as discussed above, in certain embodiments
the VP sub-block data may be algorithmically generated based on parameter input data (e.g.,
as illustrated in Fig. 16B), or loaded from a predetermined set as discussed/illustrated
elsewhere in this disclosure.

Continuing the example presented in Fig. 15, wherein a RP preferably is 2 bars, and a
VP preferably is comprised of 8 quarter notes (QN), the pattern structure creation example of
Fig. 24 assumes that the particular song generation implementation preferably involves a VP
length of 8 QN, a 2 bar RP, and variably-sized Blocks. While those skilled in the art will
appreciate the considerable number of advantages arising from the architecture of this
preferred embodiment, they will additionally appreciate that various adaptations and
modifications to these embodiments can be configured without departing from the spirit and
scope of the invention.

Certain presently preferred embodiments for the algorithmic generation of a style will
now be discussed in connection with Fig. 16C. As illustrated, it may be advantageous to use
the music generation concepts described herein to analyze music data (e.g., such as MIDI
files) to determine parameters and parameter ranges for use in subsequent automatic music
generation. In this manner, real-world music pieces may be fed into an algorithm, analyzed
and measured to determine characteristics, described in a database of characteristics, and
ultimately distilled into music rules that may then be used to generate similar music. In this
manner a process of creating music styles can be automated (although preferably with some
degree of human intervention), based on pre-existing music data, thus affording the ability to
derive autocomposed music based on pre-existing music. This can be advantageous in
creating music styles based on an artist (e.g., Eminem, Immolation, the Beatles, or Thelonious
Monk, etc.), genre (e.g., black metal, bop jazz, or progressive rock, etc.) and/or time period

(e:g., late 1970s disco), music label (e.g., Motown Records or Blue Note Music, etc.).

58



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

As shown in Fig. 16C, pre-existing music data (e.g., MIDI files) are loaded into an
analysis algorithm. The determination of the set of one or more musical inputs preferably is
determined by the human operator, based on the desired result (e.g., a set of Eminem songs
may be loaded and the result is an Eminem-specific music style). Once the music reference
data is loaded, the algorithm processes the data to measure various characteristics of the data.
The discussion above in connection with Fig. 16B affords examples of the types of parameters
that may be algorithmically derived from music input data. Using the example of MIDI data
files, various parameters can be measured for each instrument, such as first max %, resolution
grid, pulse, silence %, chord %, chord duration sensitivity %, chord velocity sensitivity %,
velocity accent, velocity dynamic, humanization, etc. Additionally, as discussed elsewhere in
this disclosure, other measurements may be derived such as mode, pitch, etc. As illustrated in
Fig 16C, an analysis algorithm may preferably allow some degree of user input to allow a user
to adjust the derived parameters. As an example, in the event that one of the input files has a
uncharacteristically slow tempo, the user may be able to tweak the derived tempo range to
remove the effect of the one uncharacteristically slow input piece. After the music inputs are
analyzed and measured, a set of parameters and parameter ranges preferably are stored in a
database. In this example, the database may preferably be accessed by a computer program to
formulate an include file for a programming language. In the example of Fig. 16C, the include
file may preferably be formatted for a MS Visual C++ programming language include file, that
preferably can be used to generate firmware or other sofiware for performing auto-
composition, as described throughout this disclosure. In this manner, pre-existing music data
(e.g., in the form of one or more MIDI files) may be used to create a style of music that
closely resembles the characteristics of the original music data.

In certain embodiments, the input music data may be in other formats than MIDI. For
example, certain approaches have previously been describéd for analyzing recorded music
(e.g., music in a PCM, WAV, CD-Audio, etc. format). Such previously disclosed techniques
may be incorporated into the context of the present invention, for example as part of the
“analysis algorithm” of Fig. 16C. “Classifying Recorded Music”, a MSc dissertation authored
by Seth Golub for the University of Edinburgh in 2000 is one example that includes exemplary
source code for such analysis. “Automatic Transcription of Simple Polyphonic Music” by
Keith Martin, published by MIT Media Laboratory Perceptual Computing in December of
1996 is another example of a technique for algorithmically analyzing recorded music to derive

characteristic data, in a manner consistent with the present invention. “Tempo and Beat

59



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Analysis of Acoustic Music Signals”, by Eric Scheirer, published by the Acoustical Society of
America in 1998 provides further examples of such analysis. Together these references
provide exemplary additional details on the measurement and analysis of acoustic, recorded
music to create parameter data. Such techniques are hereby incorporated by reference into the
present discussion, as examples of the analysis that can be performed to create music rules
based on artists, genres, etc., to create a music style for an auto-composition engine.

As shown in Fig. 24, one preferred embodiment of the present invention involves the
creation of a pattern structure. This pattern structure preferably is comprised of the
information needed to select the actual Blocks, which in many ways are the fundamental units
of the song generation. Of course, in certain preferred embodiments the actual blocks are
algorithmically generated as needed for a particular style and/or instrument, as discussed in
connection with Fig. 16B. Alternatively this present example of pattern structure creation
involves determining each Block’s duration (in a given VP), as well as the group of
instruments from which the Block will be selected. Following this step, and discussed below,
this information preferably is used to directly generate the Blocks themselves.

Patt_Info is a routine that preferably can be used to generate the pattern structure
information as part of the creation of a particular VP from Blocks.

Shift is a multiplier that preferably can be used in a variety of ways to add variation to
the composed VP; for example, it could be a binary state that allows different Block variations
based on which of the 2 bars in the RP that a particular Block is in. Other uses of a Shift
multiplier can easily be applied that would provide similar variety to the overall song structure.

Num_Types is the number of instruments, and Num_Sub_Drums is the number of
individual drums that make up the drum instrument. This latter point is a preferable variation
that allows an enhanced layer of instrument selection, and it can be applied to contexts other
than the drum instrument. Conversely, this variation is not at all necessary to the present
invention, or even the present embodiment.

Block_Ind is the Block index, FX_No is for any effects number information.
Combi_No is an index that preferably points to a location in a table called Comb_Index_List.
This table preferably is the size of the number of Styles multiplied by the number of instrument
types; each entry preferably contains: SubStyle Mask to determine if the particular entry is
suitable for the present SubStyle, Combi_Index to determine the Block length, and
Group_Index to determine the group of individual MIDI patches (and related information)
from which to determine the Block.

60



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Combi_Index preferably points to a table called Style_Type_Combi that preferably
contains multiple sets of Block sizes. Each Block_Size preferably is a set of Block sizes that
add up to the length of the SEQ. An example SEQ length is 8 QN.

Group_Index preferably points to a table called Style_Group that preferably contains
sets of MIDI-type information for each group of Styles, preferably organized by MIDI Bank.
PC refers to Patch Change MIDI information, P refers to variably sized MIDI parameters for a
given Patch, and GS stands for Group Size. GS for group 1 preferably would indicate how
many instruments are defined for group 1.

One preferable optimization of the execution of this step is to incorporate a pseudo-
random number generator (PRNG) that preferably will select a particular patch configuration
from the group identified by GS. Then, as the user elects to change the instrument within a
particular SubStyle, and within a particular lane, another set of patch information preferably is
selected from the group identified by GS. This use of a PRNG preferably can also be
incorporated in the auto-generation of a song, where, at different times, the instrument
preferably can be changed to provide variation or other characteristics to a given song, Part,
SubPart, SEQ, RP, VP, etc. There are other areas in this routine process that preferably could
benefit from the use of a PRNG function, as will be obvious to one of ordinary skill in the art.

Once the Block duration and instrument patch information preferably are determined
for a given VP, the virtual Block information preferably can be determined on a Block-by-
Block basis, as shown in Fig. 25.

Block_List preferably is a routine that can determine a virtual Block using the Block
size, and the instrument type. As shown in Fig. 25, Style preferably is a pointer to a table of
Virtual_Block_Data pointers that preferably are organized by Width (i.e., 1-8 QN) and Group
(i.e., instrument group). Once the Start Pointer is determined, the Block data preferably can
be obtained from a Virtual_Block Data table. Special cases exist where the Block data may
be already known; for example, empty Blocks, repeating Blocks, etc.

Again, as discussed above in connection with the pattern structure generation, the
present steps of the overall process preferably can use an optional PRNG routine to provide
additional variety to the Block. Another fairly straightforward extension of this example is to
use ‘stuffing’ (i.e.; duplicate entries in a particular table) preferably to provide a simple means
of weighting the result. By this we refer to the ability to influence the particular Block data
that is selected from the Virtual Block_Data table preferably by inserting various duplicate

entries. This concept of stuffing can easily be applied to other tables discussed elsewhere in

61



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

this specification, and other means of weighting the results for each table lookup that are
commonly known in the art can be easily applied here without departing from the spirit and
scope of the invention.

Additionally, as one of ordinary skill in the art will appreciate, though many of these
examples of preferred embodiments involve substantial reliance on tables, it would be fairly
easy to apply concepts of state machines, commonly known in the art, to these steps and
optimize the table architecture into one that incorporates state machines. Such an
optimization would not depart from the spirit and scope of the present invention. As an
example, refer to the previous discussion regarding Fig. 18B.

Various examples of preferred embodiments for pseudo-random number generation
aspects of the present invention will now be described.

Some of the embodiments discussed in the present disclosure preferably involve
maximizing the limited resources of a small, portable architecture, preferably to obtain a
complex music generation/interaction device. When possible, in such embodiments (and
others), preferably it is desirable to minimize the number of separate PRNG routines.
Although an application like music generation/interaction preferably relies heavily on PRNG
techniques to obtain a sense of realism paralleling that of similarly Styled, human-composed
music, it is tremendously desirable to minimize the code overhead in the end product so as to
allow the technology preferably to be portable, and to minimize the costs associated with the
design and manufacture. Consequently, we have competing goals of minimal PRNG
code/routines, and maximal random influence on part generation.

In addition, another goal of the present technology is preferably to allow a user to save
a song in an efficient way. Rather than storing a song as an audio stream (i.e.; MP3, WMA,
WAV, etc.), it is highly desirable to save the configuration information that was used to
generate the song, so that it preferably can be re-generated in a manner flawlessly consistent
with the original. The desirability of this goal can easily be understood, as a 5 minute MP3 file
is approximately SMB, and the corresponding file size for an identical song, preferably using
the present architecture, is approximately 0.5KB, thus preferably reduced by a factor of
approximately 10,000. In certain preferred embodiments, the sound quality of a saved song is
similar to a conventional compact disc (thereby demonstrably better than MP3). In this
comparison, a 5 minute song stored on a compact disc might be approximately 50MB; thus
the file size of a song using the present invention is reduced from a compact disc file by a

factor of approximately 100,000.

62



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Saving the configuration information itself, rather than an audio stream, preferably
allows the user to pick up where they left off; in that they can load a previously saved piece of
music, and continue working with it. Such an advantage is not easily possible with a single,
combined audio stream, and to divide the audio into multiple streams would exponentially
increase the file size, and would not be realizable in the current architecture without significant
trade-offs in portability and/or quality.

Additionally this aspect of the present invention preferably enables the user to save an
entire song from any point in the song. The user preferably can decide to save the song at the
end of the song, after experiencing and interacting with the music creation. Such a feature is
clearly advantageous as it affords greater flexibility and simplicity to the user in the music
creation process.

Turning now to Fig. 26, we have a diagram representing the preferable algorithmic
context for some examples of Pseudo-Random Number Generation (PRNG). Drum Seed
(DS) is a number that preferably is used as input to a simple PRNG routine to generate DSO-
DS4. As would be apparent to one of ordinary skill in this art, the number of outputs
preferably can be varied; we use 4 here for illustrative purposes. The 4 values that are output
from the PRNG preferably are fed into various parts of the Drum Part Generation Algorithm
to provide some pseudo-random variation to the drum part.

It is important to note that if the same seed input to the simple PRNG routine is used a
plurality of times, the same list of values preferably will be output each time. This is because
simple PRNG routines are not random at all, as they are a part of a computing system that is,
by its very nature, extremely repeatable and predictable. Even if one adds some levels of
complexity to a PRNG algorithm that take advantage of seemingly unrelated things like
clocks, etc., the end user can discern some level of predictability to the operation of the music
generation. As can be imagined, this is highly undesirable, as one of the main aspects of the
device is to generate large quantities of good music.

One benefit of the preferably predictable nature of simple PRNGs is that, by saving the
seed values, one preferably can generate identical results later using the same algorithm.
Given the same algorithm (or a compatible one, preferably), the seeds preferably can be
provided as inputs and preferably achieve the exact same results every time. Further
discussion of the use of seeds in the music generation/interaction process is discussed

elsewhere in this specification.

63



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

While it is a feature of the present invention to preferably incorporate PRNG that are
repeatable, there are also aspects of the present invention that preferably benefit from a more
‘truly-random’ number generation algorithm. For purposes of clarity, we call this ‘complex
PRNG’. Using the example of Fig. 26 and 27, if, on a regular basis, the same seed input were
used for both the Drum part and the Bass part, it might limit the variability of the outcome.
Another example is that, although preferably when playing a previously saved song, you want
A and A’ to always be the same, when you are generating a new song, it preferably is highly
desirable that these seed inputs be randomly different. Otherwise the song generation suffers
from the same repeatability as the song playback.

One example of a complex PRNG that works within the cost/resource constraints we
have set, is one preferably with an algorithm that incorporates the timing of an individual
user’s button-presses. For example, from time to time in the process of generating music and
providing user interaction in that generative process, we preferably can initialize a simple
timer, and wait for a user button press. Then the value of that timer preferably can be
incorporated into the PRNG routine to add randomness. By way of example, one can see that,
if the system is running at or around 33 MHz, the number of clocks between any given point
and a user’s button press is going to impart randomness to the PRNG. Another example is one
preferably with an algorithm that keeps track of the elapsed time for the main software loop to
complete; such a loop will take different amounts of time to complete virtually every time it
completes one loop because it varies based on external events such as user button presses,
music composition variations, each of which may call other routines and/or timing loops or the
like for various events or actions, etc. While it preferably is not desirable to use such a
complex PRNG in the generation of values from seeds, due to repeatability issues discussed
above, it preferably can be desirable to use such a PRNG in the creation of seeds, etc., as
discussed above. As an additional example, such a complex PRNG routine can be used to
time interval, from the moment the unit is powered up, to the moment the “press-it-and-forget-
it” mode is invoked; providing a degree of randomness and variability to the selection of the
first auto-play song in Home mode (discussed earlier in this disclosure). Of course, this type
of complex PRNG preferably is a variation of the present invention, and is not required to
practice the invention.

In certain embodiments, one desirable aspect of the present invention involves the
limiting of choices to the end user. The various ways instruments can be played are limitless,

and in the absence of a structure, many of the possible ways can be unpleasant to the ear. One

64



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

feature of palatable music is that it conforms to some sort of structure. In fact, it can be
argued that the definition of creativity is expression through structure, Different types of
music and/or instruments can have differing structures, but the structure itself s vital to the
appeal of the music, as it provides a framework for the listener to mterpret the music. The
present invention involves several preferable aspects of using seed values in the generation of a
piece of music. One preferable way to incorporate seeds is to use two categories of seeds in a
song: 1) seeds determining/effecting the higher-level song structure, and 2) seeds
determining/effecting the particular instrument parts and characteristics. Preferably, the first
category of seeds is not user-changeable, but is determined/effected by the Style/SubStyle and
Instrument Type selections. Preferably, the second category of seeds is user-changeable, and
relates to specific patterns, melodies, effects, etc. The point in this example is that, in certain
embodiments, there are some aspects of the music generation that are preferably best kept
away from the user. This variation allows the user to have direct access to a subset of the
seeds that are used for the music generation, and can be thought to provide a structure for the
user to express through. This preferable implementation of the present discussion of seeds
enables a non-musically-trajned end user to creatively make music that sounds pleasurable.

It is contemplated, however, that in certain cases it may be desirable to make some or
all of the choices accessible to a user. As an example, while for a given style of music it may
be desirable to limit some of the parameter values available to the generation algorithm to a
particularly appropriate range, in certain cases it is desirable to allow a user to edit available
range, and thereby have some influence on the style in question. As another example, the
range of values associated with a particular instrument or other component may be associated
with the typical role of that instrument/component in the song. Preferably, in certain
embodiments, such ranges of acceptable parameters are editable by a user (e.g., via the
companion PC program, etc.) to allow the user to alter the constraints of the style and/or
mstrument or component. As an example, while in certain styles there may be an instrument
type “lead” that has a relatively high pitch mobility, it may be desirable to allow the user to
lower the parameters associated with “lead” that may influence the pitch mobility. Other
examples along the lines of the magic notes, etc., also can be used advantageously in certain of
these embodiments.

Various examples of preferred embodiments for a simple data structure (SDS) to store

a song of the present invention will now be described.

65



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

The use of PRNG seeds preferably enables a simple and extremely efficient way to
store a song. In one embodiment of the present invention, the song preferably is stored using
the original set of seeds along with a small set of parameters. The small set of parameters
preferably is for storing real time events and extraneous information external to the musical
rules algorithms discussed above. PRNG seed values preferably are used as initial inputs for
the musical rules algorithms, preferably in a manner consistent with the PRNG discussion
above.

Fig. 28 lists some examples of the types of information in an SDS:

‘Application Number’ is preferably used to store the firmware/application version used
to generate the data structure. This is particularly helpful in cases where the firmware is
upgradeable, and the SDS may be shared to multiple users. Keeping track of the version of
software used to create the SDS is preferable when building in compatibility across multiple
generation/variations of software/firmware.

‘Style/SubStyle’ preferably is used to indicate the SubStyle of music. This is helpful
when initializing various variables and routines, to preferably alert the system that the rules
associated with a particular SubStyle will govern the song generation process.

‘Sound Bank/Synth Type’ preferably indicates the particular sound(s) that will be used
in the song. This preferably can be a way to preload the sound settings for the Midi DSP.
Furthermore, in certain embodiments this preferably can be used to check for sonic
compatibility.

‘Sample Frequency’ preferably is a setting that can be used to indicate how often
samples will be played. Alternatively, this preferably can indicate the rate at which the sample
is decoded; a technique useful for adjusting the frequency of sample playback.

‘Sample set’ preferably is for listing all the samples that are associated with the Style of
music. Although these samples preferably may not all be used in the saved SDS version of the
song, this list preferably allows a user to further select and play relevant samples during song
playback.

‘Key’ preferably is used to indicate the first key used in the song. Preferably, one way
to indicate this is with a pitch offset.

‘Tempo’ preferably is used to indicate the start tempo of the song. Preferably, one

way to indicate this is with beats per minute (BPM) information.

66



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

‘Instrument” preferably is data that identifies a particular instrument in a group of
instruments. Such as an acoustic nylon string guitar among a group of all guitar sounds. This
data is preferably indexed by instrument type.

‘State’ preferably is data that indicates the state of a particular instrument. Examples
of states are: muted, un-muted, normal, Forced play, solo, etc.

‘Parameter’ preferably is data that indicates values for various instrument parameters,
such as volume, pan, timbre, etc.

‘PRNG Seed Values’ preferably is a series of numerical values that are used to
initialize the pseudo-random number generation (PRNG) routines. These values preferably
represent a particularly efficient method for storing the song by taking advantage of the
inherently predictable nature of PRNG to enable the recreation of the entire song. This aspect
of the present invention is discussed in greater detail previously with respect to Figs. 26 and
27. |

Through the use of these example parameters in a SDS, a user song preferably can be
efficiently stored and shared. Though the specific parameter types preferably can be varied,
the use of such parameters, as well as the PRNG Seeds discussed elsewhere in this disclosure,
preferably enables all the details necessary to accurately repeat a song from scratch. It is
expected that the use of this type of arrangement will be advantageous in a variety of fields
where music can be faithfully reproduced with a very efficient data structure.

Fig. 29 depicts a logical flow chart for a preferable general architecture that could be
used in combination with the SDS to practice the present invention. This flow chart describes
the big picture for a preferable software/firmware implementation, and describes in more detail
how the song preferably is efficiently and interactively generated using seed values.

At the start of Fig. 29, an initial set of seed values preferably is either loaded from a
data file (e.g., SDS) or determined anew (e.g., using the Complex PRNG approach discussed
elsewhere in this disclosure). While this set of values preferably can effectively be
determined/loaded for the entire song at this point, it may be considered advantageous to only
determine/load them in sections as needed, preferably to provide a degree of randomness to a
freshly generated song. Further, as discussed above, the seed values may preferably be
arranged in two categories, one user-changeable, and the other not. Once at least some seed
values preferably are determined/loaded, the music for a given song part preferably begins to
be generated, and the user interface (e.g., display, video output, force-feedback, etc.)

preferably can be updated accordingly. At any point in this process, if a user input is detected

67



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

(other than a ‘save’ command), such as a change of instrument or effect, the relevant seeds for
the part of the song currently being changed by the user preferably are updated and the
generation of the music for the given part preferably continues. If a user input ‘save’
command is detected, all seeds (not just the relevant seeds for the given song part) preferably
can be saved to a non-temporary storage location, such as Flash memory, a hard drive, or
some other writeable memory storage location that affords some degree of permanence. This
arrangement is desirable because it preferably allows a user to listen to most of a song before
electing to save it in its entirety. As long as there is no user input, the generation of music for
a given song part preferably continues until the end of song part is detected, at which time the
flow preferably proceeds to the next song part. At this time, if necessary, the relevant seeds
for the next song part preferably are determined/loaded. Eventually, when an end-of-song
condition preferably is detected, the song ends.

Various examples of preferred embodiments for a complex data structure to store a
song of the present invention will now be described.

In another variation to the present invention, it is contemplated that, for purposes of
saving and playing back songs, the reliance on seeds as inputs to the musical rule algorithms
(see SDS discussion above) preferably may be exchanged for the use of Complex Data
Structures (CDS). In part because of it’s efficiency, the seed-based architecture discussed
above is desirable when forward/backward compatibility is not an issue. However, it has some
aspects that may not be desirable, if compatibility across platforms and/or firmware revisions is
desired. In these cases, the use of an alternative embodiment may be desirable.

As described above, a seed preferably is input to a simple PRNG and a series of values
preferably are generated that are used in the song creation algorithm. For purposes of song
save and playback, the repeatability preferably is vital. However, if the algorithm is modified
in a subsequent version of firmware, or if other algorithms would benefit from the use of the
simple PRNG, while it is in the middle of computing a series (e.g.; DS0-DS3 in Fig. 26), or if
additional elements are needed for subsequent music Styles, etc., that involve additional seeds,
it is possible that the repeatability and backwards-compatibility may be adversely impacted.
This means that in certain applications of the present invention, preferably in order to allow
future upgrades to have significant leeway, and in order to maintain backwards-compatibility
with songs saved before the upgrade, another preferably more complex data structure for
saving the song is desirable. Furthermore, in certain embodiments the use of seeds may be

undesirable, e.g., in the case that the PRNG algorithm is upgradeable/changeable.

68



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Fig. 30 describes some example parameters to include in such a CDS. In general, the
difference between this structure and the SDS example described in Fig. 28 is that this
preferably does not rely on seed values to recreate the song. Instead, this CDS preferably
captures more of the actual data in the song, resulting in a file size that is larger than the SDS
example. The use of CDS preferably is still a tremendously more efficient and desirable means
of saving a song compared to an audio stream, as mentioned above in connection with the
seed method. While the seed method preferably gives you a size reduction over a typical MP3
audio stream of 10,000, the CDS method preferably might give an approximate size reduction
of 1,000; for a WAV audio of 100,000, the size reduction results in 10,000 (or when
compared to a compact disc the size reduction is approximately 100,000). While much larger
than the seed approach, the CDS approach is still advantageous over the audio stream
methods of music storage in the prior art.

In certain embodiments, a further distinction with a CDS is that it provides greater
capabilities to save real time user data, such as muting, filtering, instrument changes, etc.

While both examples have their advantages, it may also be advantageous to combine
aspects of each into a hybrid data structure (HDS). For example, the use of some seed values
in the data structure, while also incorporating many of the more complex parameters for the
CDS example, preferably can provide an appropriate balance between compatibility and
efficiency. Depending on the application and context, the balance between these two goals
preferably can be adjusted by using a hybrid data structure that is in between the SDS of Fig.
28 and the CDS of Fig. 30.

In the example of Fig. 30, ‘Application Number’, ‘Style/SubStyle’, ‘Sound Bank/Synth
Type’, ‘Sample Frequency’, ‘Sample List’, ‘Key’, “Tempo’, ‘Instrument’, ‘State’, and
‘Parameter’ are preferable parameters that are described above in reference to Fig. 28.

However, in certain embodiments it is desirable to capture many real time events
actuated upon by the user during a song. In these cases it is preferable to store the real time
data as part of the CDS, i.e., via the ‘Parameter’ parameter. In this example, real time changes
to particular instrument parameters preferably are stored in the ‘Parameter’ portion of the
CDS, preferably with an associated time stamp. In such a manner, the user events that are
stored can be performed in real time upon song playback. Such embodiments may involve a
CDS with a significantly greater size, but provide a user with greater control over certain

nuances of a musical composition, and are therefore desirable in certain embodiments.

69



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

‘Song Structure’ preferably is data that preferably lists the number of instrument types
in the song, as well as the number and sequence of the parts in the song.

‘Structure’ preferably is data that is indexed by part that preferably can include the
number and sequence of the sub-parts within that part.

‘Filtered Track’ preferably is a parameter that preferably can be used to hold data
describing the characteristics of an effect. For example, it preferably can indicate a modulation
type of effect with a square wave and a particular initial value. As the effect preferably is
typically connected with a particular part, this parameter may preferably be indexed by part.

‘Progression’ preferably is characteristic information for each sub-part. This might
include a time signature, number and sequence of SEQs, list of instrument types that may be
masked, etc.

“Chord’ preferably contains data corresponding to musical changes during a sub-part.
Chord vector (e.g., +2, -1, etc.), key note (e.g., F), and progression mode (e.g., dorian
ascending) data preferably are stored along with a time stamp.

‘Pattern’ and the sub-parameters ‘Combination’, ‘FX Pattern’, and ‘Blocks’, all
preferably contain the actual block data and effects information for each of the instruments
that are used in the song. This data is preferably indexed by the type of instrument.

‘Improv’ preferably is for specifying instruments or magic notes that will be played
differently each time the song is played. This parameter preferably allows the creation of
songs that have elements of improvisation in them.

Additional parameters can preferably be included, for example to enable soundbank
data associated with a particular song to be embedded. Following this example, when such a
CDS is accessed, the sound bank data preferably is loaded into non-volatile memory accessible
to a DSP such that the sound bank data may be used during the generation of music output.

Fig. 31 depicts a preferable example flow chart for the CDS approach discussed above.
It is similar to Fig. 29, except that at the points in the flow where the Seeds are loaded,
determined, updated, and/or stored, there are corresponding references to loading,
determining, updating, and/or storing CDS parameter data corresponding to Song Structure,
Structure, Filtered Track, Progression, Chord, Pattern, Instrument, State, Parameter, and
Improv.

In certain preferred embodiments the Player 10 is accompanied by a companion PC
software system designed to execute on a PC system and communicate with Player 10 viaa

data link (e.g., USB 54, Serial I/0 57, and/or a wireless link such as 802.11b, Bluetooth,

70



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

IRDA, etc.). Such a PC software system preferably is configured to provide the user with a
simple and effective way to copy files between the Player 10 and other locations (e.g., the PC
hard drive, the Internet, other devices, etc.). For example, the companion PC sofiware
program preferably operates under the MS Windows family of Operating Systems and
provides full access to the User for all Player10 functions and Modes, as well as the local
Player memory (e.g., SMC). Following this example, a user can connect to the Internet and
upload or download music related files suitable to be used with the Player 10 (e.g., MIDI,
WMA, MP3, Karaoke, CDS, SDS, etc.) as well as user interface-related files such as
customized user-selectable graphics preferably to be associated with music styles or songs on
the Player 10. Such a companion PC program preferably is also used to enable hardware
and/or software housekeeping features to be easily managed, such as firmware and sound bank
updates. This companion PC software system preferably is used to provide the user with an
easy way to share music components and/or complete songs with other users in the world
(e.g., via FTP access, as attachments to email, via peer-to-peer networking software such as
Napster, etc.). It is important to note the potentially royalty-free nature and extreme size
efficiency of musical output from the Player 10 lends itself well to the Internet context of open
source file sharing.

In addition to, or in combination with, the aforementioned embodiments involving a
portable system linked to a PC system, certain additional features are advantageously
employed in certain embodiments. For example, a companion PC software application
provides a sample edit mode to depict a graphic associated with the waveform of the selected
sample, e.g., via the PC display. In these embodiments, the user is provided with a simple way
to easily select the start and end points of the selected sample, e.g., via a pointing device such
as amouse. Preferably, such graphical clipping functions enable a user to easily crop a
selected sample, e.g., so as to remove an undesired portion, etc. After clipping/cropping the
sample, the user is presented with the option of saving the newly shortened sample file, e.g.,
with a new name. Clearly, other similar functions in addition to or besides such clipping can
be supported, to make use of the display and/or processing resources available on the PC
system, to provide a graphic version of the waveform of a selected sample, and to provide the
end user with a simple way to carryout basic operations on the selected sample. In these
embodiments, the newly modified sample file is then transferable to the portable system, e.g.,
via connector 53 in Fig. 32 (for example, via USB bus 54 and USB interface 39, etc.).

71



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In certain embodiments where a link (e.g., wireless 802.11) is present between more
than one device, the devices preferably can operate in a cooperative mode, i.e., wherein a first
user and/or device is in control of parameters relating to at least one aspect of the music (e.g.,
one instrument or effect), and a second user/device is in control of parameters relating to a
second aspect of the music (e.g., another instrument, or microphone, etc.). In certain of these
embodiments, the plurality of devices preferably will exchahge information relating to music
style, as well as certain musical events relating to the music generation. In at least some
embodiments it is preferably to commonly hear the resulting music, e.g., via a commonly
accessible digital audio stream. Furthermore, as will be clear to one of ordinary skill in the
art, the aforementioned cooperative mode can advantageously be utilized in embodiments
where one or more of the devices are computers operating while connected to a network such
as a LAN and/or the Internet.

Various examples of preferred embodiments for hardware implementation examples of
the present invention will now be described.

Fig. 32 is a block diagram of one portable hardware device embodiment 35 of the
present invention. The microprocessor (MP 36), preferably including internal RAM, controls
local address and data busses (MP Add 37 and MP Data 38); the universal serial bus interface
(USB 39), the smart media card interface (SMC 40) (as discussed previously, alternatives to
SmartMedia, such as other types of Flash or other memory cards or other storage media such
as hard disk drives or the like may be used in accordance with the present invention), and a
memory such as Flash 41 are preferably on the MP data bus 38; and the MIDI/Audio DSP
(DSP 42) is preferably on both the MP address bus 37 and MP data bus 38. The SMC
interface 40 preferably has a buffer 59 between it and the MP Data bus 38, and there
preferably are keyboard interface 42 (with MP Data Latch 44) and LCD interface 45
associated with the MP busses as well. In this example, the MP 36 can preferably perform as
a sequencer to extract timing information from an input data stream and send MIDI
information (possibly including NRPN-type data discussed elsewhere in this disclosure) to the
DSP 42. The DSP 42 additionally preferably has dedicated address and data busses (DSP Add
46 and DSP Data 47) that preferably provide access to local RAM 48 and Flash 49 memories.

The MP 36, DSP 42, FM receiver 50, and Microphone input 51 all preferably have
some type of input to the hardware CODEC 52 associated with the DSP 42.

The connector 53 at the top left of Fig. 32 can be considered as a docking station

interface or as a pure USB interface or external power interface, preferably complete with

72



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

interfaces for USB 54, power 55, rechargeable battery charge 56, serial I/O 57, and Audio I/0
58. An example of a block diagram for a docking station device 70 of the present invention is
provided in Fig. 34. As is shown in Fig. 34, the docking station 70 preferably includes a local
microprocessor (LMP 71), preferably with a USB interface 72, address and data busses (LMP
ADD 73 and LMP Data 74), a MIDI I/O interface 75, and memory such as Flash 76.
Additionally, the docking station device 70 preferably contains an Audio Codec 77, a Video
I/0 interface 78, and a Power Supply 79. (

The MP 36 in this example is preferably the ARM AT91R40807, though any similar
microprocessor could be utilized (such as versions that have on-board Flash, more RAM,
faster clock, lower voltage/lower power consumption, etc.). This ARM core has 2 sets of
instructions: 32bit and 16bit. Having multiple width instructions is desirable in the given type
of application in that the 16bit work well with embedded systems (Flash, USB, SMC, etc.),
and 32bit instructions work efficiently in situations where large streams of data are being
passed around, etc. Other variations of instruction bit length could easily be applied under the
present invention.

For 32bit instructions, the system of the present invention preferably pre-loads certain
instructions from the Flash memory 41 into the internal RAM of the MP 36. This is because
the Flash interface is 16bif, so to execute a 32bit instruction takes at least 2 cycles. Also, the
Flash memory 41 typically has a delay associated with read operations. In one example, the
delay is approximately 90ns. This delay translates into the requirement for a number of
inserted wait states (e.g., 2) in a typical read operation. Conversely, the interna, RAM of the
MP 36 has much less delay associated with a read operation, and so there are less wait states
(e.g., 0). Of course, the internal RAM in this case is 32bits wide, and so the efficiencies of a
32bit instruction can be realized.

As is shown above in the example regarding the wait states of Flash memory 41, there
are many reasons why it is desirable to try to maximize the use of the internal MP RAM. As.
can be seen from Fig. 32, this example of the present invention preferably does not include an
SDRAM or RDRAM. While these types of memory means are available to include in such a
system, and such use would not depart from the spirit and scope of the present invention, in
certain portable applications, such as depicted in Fig. 32, the use of relatively unnecessary
complexity (e.g., SDRAM controllers & address logic, etc.) is not preferable. The current
example of Fig. 32 achieves many of the benefits of the present invention, in a simple design

suitable for a portable device.

73



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

One example of a trade-off associated with complexity and portability is the use of a
widely available WMA audio decoder algorithm from Microsoft. In this example, when
operating the ARM MP of Fig. 32 at 32MHz/3.0V, Microsoft’s WMA decoding algorithms
can be incorporated to successfully decode and play a WMA-encoded song in stereo at 44KHz
and at a sample rate of 128Kbps. However, as discussed elsewhere in this specification, a
preferable feature that allows the speed of an audio stream song to be adjusted can also be
incorporated. In this case, when speeding up the WMA 44KHz song using the speed control,
it is possible that the system of Fig. 32 may encounter an underrun condition. In this specific
example, such cases do not occur when the ARM MP 36 is operated at 40MHz/3.0V.
However, when operating the MP 36 at 40MHz/3.0V, a significant performance hit on battery
life can occur. So, because the use of the WMA at 44KHz in combination with the pitch
speed feature seems to be relatively unnecessary, this particular example feature can preferably
be sacrificed for the benefit of a longer battery life. Obviously, one could incorporate
variations such as: a better battery system, a speed stepped approach that operates at full
speed when plugged in and at a slower speed when using batteries, a more efficient WMA
algorithm, etc. However, this example illustrates the point that competing needs can
preferably be balanced with performance and portability.

In the example of Fig. 32, the MP 36 contains 136KB of internal RAM. The
performance/portability balance described above dictates that one preferably must play certain
tricks on the system to maximize the efficiency of the 136Kb RAM. For example, the memory
range can preferably be divided into different regions for buffering, programs, etc., and in
real-time modes (e.g., WMA playback), the percentage used for the code can preferably be
maximized and the percentage used for buffers preferably minimized.

Another alternative embodiment can be an MP 36 with preferably more internal RAM
(for example, 512KB) which would preferably allow a reduction or elimination of the use of
Flash memory 41. Such a system may add to the total cost, but would reduce the complexities
associated with using Flash memory 41 discussed above.

Another variation is the example shown in Fig. 33, which describes the local DSP area
of Fig. 32 wherein preferably additional RAM 90 is accessible on the DSP bus. Such
additional RAM can be preferably used to temporarily store large MIDI sound loops that can
be played quickly and often. RAM 90 can also preferably be used to temporarily store one or
more sound streams (e.g., PCM) that can thus be preloaded and played quickly. Without this
feature, each sample might need to be managed and sent by the MP to the DSP every time it is

74



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

used, in real time. While this is not a problem in certain implementations of the present
invention, it may be advantageous to use such additional RAM 90 as shown in Fig. 33 when
extensive usage of sound streams is desired. In such cases, a typical size of the RAM 90 in
Fig. 33 might preferably be 512KB, and the MP will preferably only need to send an
instruction to the DSP to play the locally stored stream.

Continuing the discussion of the architecture shown in Fig. 32, Fig. 35 describes one
example for an address map for the internal RAM of the MP. Starting from the bottom of the
map, the bottom two sections represent the libraries and routines that are often used, and are
always loaded in RAM. The midsection labeled “multi-use” is preferably used for WMA/MP3
related code during the playback of WMA, MP3, and/or other similarly encoded audio stream
songs from the SMC. However, during other modes, such as eDJ mode, this midsection is
preferably used for Block, Song, and SMC buffers. The next section above this area is
preferably used as a buffer for streaming media. This section is preferably divided into a
number of subsections, and each subsection is preferably sent to the DSP device at regular
intervals (e.g., 5.8ms @44.1kHz, 16bit, 1Kb blocks). Above this, at the top of Fig. 35, is the
general-purpose area of MP RAM preferably used for variables and general buffers.

In this example, when the Player is not operating in a WMA/MP3/etc. mode, the
‘multi-use’ mid section can preferably be used for at least three types of buffers. Block buffers
are preferably used by the eDJ Block creation algorithms (e.g., Figs. 24 and 25) to store
Block data during operation. Song buffers are preferably used by the eDJ algorithms to store
Song data (see Fig. 15) after Block creation has occurred. This Song data is preferably fed
out to the DSP device shown in Fig. 32. SMC buffers are preferably used for write operations
to the SMC.

SMC is a Flash memory technology that doesn’t allow the modification of a single bit.
To perform a write to the SMC, one must read the entire SMC Block, update the desired
portion of the SMC Block, and then write the entire SMC Block back to the SMC. In the
interests of efficiency, the currently used SMC Block is preferably maintained in the SMC
buffers.

As one can appreciate, the system configuration described above cannot
simultaneously playback large WMA/MP3 streams while also writing to the SMC. This is
because the two functions preferably alternatively use the same memory region. This is a
creative use of limited resources, because it is preferably a relatively unusual condition to be

reading WMA/MP3 while writing SMC at the same time. So the code is preferably arranged

75



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

to swap in and out of the same location. Such an arrangement allows maximized use of the
limited resources in a portable environment such as Fig. 32.

However, in a more powerful environment (with additional resources, and/or faster
clock speed), this ‘multi-use’ of a shared region of memory could preferably be eliminated, and
simultaneous use of WMA/MP3 and the Record function could easily be implemented.
Obviously, these additional enhancements for use in a portable environment do not limit the
other aspects of the present invention.

The system discussed above is portable, but preferably has extremely high-quality
sound. On a very basic level, this is partly due to the use of a sound chip that typically would
be found in a high-end sound card in a PC system. The SAM9707 chip is preferable because
of its excellent sound capabilities, but this has required it be adapted somewhat to work in the
portable example discussed herein.

One characteristic of the SAM9707 is that it is typically configured to work with
SDRAM in a sound card. This SDRAM would typically hold the MIDI sound banks during
normal operation. Such sound banks are preferably a critical part of the final sound quality of
music that is output from a DSP-enabled system. In fact, another reason why this particular
chip is preferable is to allow custom sounds to preferably be designed.

In the example above of a portable system, SDRAM adds significantly to the power
requirements, as well as the address logic. Accordingly, it is desirable to use a variation of the
configuration, preferably using Flash as local DSP sound bank storage (see Fig. 32). The use
of Flash memory as local DSP storage is a bit problematic because, in order to allow a user to
upgrade the sound banks of their portable Player system, the local DSP Flash memory
preferably needs to be accessible from the MP side of the architecture. Such access could be
gained through the use of a dual-port Flash memory, with memory access from both the DSP
busses and the ARM MP busses, but such a dual port architecture would add expenses and
complexity to the system.

The problem of reaching a proper balance between maintaining the low power/simple
architecture on one hand, and providing high quality, upgradeable, music sound banks on the
other hand, is preferably solved by adapting a mode of the DSP chip, and preferably
customizing the address logic in such a way that the DSP can be “tricked” into providing the
access from the MP side to the local DSP Flash memory.

Fig. 36 describes an example of an addressing space for the DSP local RAM and Flash

storage. Starting from the bottom of the map, the first section is preferably for Firmware, and

76



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

this is typically addressed to a Flash memory region. The next section is preferably the sound
banks, and this is also typically addressed to a Flash region. The third section is preferably
addressed to Flash when signal A24 is active (in this case, A24 is active low, or = 0). Signal
A24 is discussed more below. The fourth section, with starting address 0x1000000, is
preferably a 32KB32KB block that is not addressed to any memory locations. The fifth
section is preferably also 32KB and is preferably addressed to the local DSP RAM (labeled
RAM,). Note that when addressing this area, signal A24 is preferably high. The seventh
section, with starting address 0x2000000, is preferably a 32KB section that preferably resolves
to RAM (labeled RAM;). The two 32KB RAM regions are preferably combined into the
64KB local RAM.

So the first variation of the present invention, to the general use of the DSP chip,
especially in its intended context of a sound card for a PC, is the address location of the
RAM,. This region is selected to allow a very simple address decode logic arrangement
(preferably external to the DSP) so that the assertion of A24 will preferably toggle the
destination of RAM, addresses, between DSP-local RAM and DSP-local Flash memories.

This variation preferably involves a firmware modification that will allow the specific location
of RAM, to be configured properly preferably by default at startup time. There are other ways
to modify this location after initialization, but they are more complicated, and therefore are not
as desirable as the present method.

Another variation to the intended context of the DSP chip address map preferably
involves a creative implementation of the DSPs BOOT mode to allow the sound banks to be
upgraded, even though the sound banks are preferably located in the local Flash memory of
the DSP chip; a location not typically accessible for sound bank upgrades.

In this example, the BOOT mode of the DSP causes an internal bootstrap program to
execute from internal ROM. This bootstrap program might typically be used while upgrading
the DSP firmware. As such, the internal bootstrap expects to receive 256 words from the
16bit burst transfer port, which it expects to store at address range OIOOH-OIFFH in the local
memory, after which the bootstrap program resumes control at address 0100H. This relatively
small burst is fixed, and is not large enough to contain sound banks. Furthermore, it does not
allow the complex Flash memory write activities, as discussed above in connection with the
SMC. Since our design preferably uses Flash instead of SDRAM, we have found it highly
desirable to use this bootstrap burst to load code that preferably ‘tricks’ the ROM bootstrap to
effectuate the transfer of special code from the ARM MP bus to the RAM. This special code

77



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

is then used to preferably effectuate the transfer of sound bank upgrade data from the ARM
MP bus to the Flash memory.

Fig. 37 is a simple truth table that provides additional information on this unusual use
of the DSP bootstrap mode addressing scheme. Fig. 38 is a more detailed truth table that
highlights the usefulness of our unusual DSP address logic, including the preferable use of the
A24 signal controllable by the ARM MP, preferably by use of the BOOT signal.

In the present example, the A24 address line generated by the DSP is preferably altered
by the BOOT signal controlled by the MP before being presented to the address decoding
logic of the DSP local memory. This arrangement permits the MP to preferably invert the
DSP’s selection of RAM and Flash in BOOT mode, and thus allows the RAM to preferably be
available at address 0x100 to receive the upgrade code.

Additional variations to the hardware arrangement discussed above can be considered.
For example, if the power level is increased, and the MP performance increased, the DSP
could be substituted with a software DSP. This may result in lower quality sounds, but it
could have other benefits that outweigh that, such as lower cost, additional flexibility, etc.
The DSP could similarly be replaced with a general-purpose hardware DSP, possibly with the
result of lower quality sounds, possibly outweighed by the benefits of increased portability,
etc. The MP could be replaced with one having a greater number of integrated interfaces
(e.g., USB, SMC, LCD, etc.), and/or more RAM, faster clock speed, etc. With a few changes
to some of the disclosed embodiments, one could practice the present invention with only a
DSP (no separate MP), or a dual die DSP/MP, or with only an MP and software. \
Additionally, the SMC memory storage could be substituted with a Secure Digital (SD)
memory card with embedded encryption, and/or a hard disk drive, compact flash, writeable
CDROM, etc., to store sound output. Also, the LCD could be upgraded to a color, or multi-
level gray LCD, and/or a touch-sensitive display that would preferably allow another level of
user interface features.

Yet a further variation of the present discussion preferably can be the incorporation of
a electromagnetic or capacitive touch pad pointing device, such as a TouchPad available from
Synaptics, to provide additional desirable characteristics to the user interface. Both the touch
pad and the touch sensitive display mentioned above can be used to provide the user with a
way to tap in a thythm, and/or strum a note/chord. Such a device preferably can be used to
enable a closer approximation to the operation of a particular instrument group. For example,

the touch pad can be used to detect the speed and rhythm of a user’s desired guitar part from

78



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

the way the user moves a finger or hand across the surface of the touch pad. Similarly, the
movement of the users hand through the x and y coordinates of such a pointing device can be
detected in connection with the pitch and/or frequency of an instrument, or the characteristics
of an effect or sample. In another example, a touch pad pointing device can also be used to
trigger and/or control turntable scratching sounds approximating the scratching sounds a
conventional DJ can generate with a turntable.

As can be seen in Fig. 32, one example of a DSP that can be used in the context of the
present invention is the SAM9707 chip available from the Dream S.A. subsidiary of Atmel
Corporation. This particular chip is able to handle incoming MIDI and audio stream
information.

When incorporating the DSP into a generative/interactive music system, it is highly
desirable to synchronize the MIDI and audio streams. A sample preferably has to play at
exactly the right time, every time; when the audio stream components get even slightly out of
sync with the MIDI events, the resulting musical output generally is unacceptable. This
delicate nature of mixing audio streams and MIDI together in a generative/interactive context
is worsened by the nature of the Flash read process, in that SMC technology is slow to
respond, and requires complex read machinations. It is difficult to accurately sync MIDI
events with playback of audio from a Flash memory location. Because of the delay in
decoding and playing a sample (compared to a MIDI event), there is a tradeoff in either
performing timing compensation, or preloading relatively large data chunks. Because of these
issues, it is preferable to configure a new way to use MIDI and audio streams with the DSP
chip. While this aspect of the present invention is discussed in terms of the DSP architecture,
it will be obvious to one of ordinary skill in the art of MIDI/audio stream synchronization that
the following examples apply to other similar architectures.

Fig. 39 shows a simplified logical arrangement of the MIDI and Audio Streams in the
music generation process. The two inputs going to the Synth are preferably merged and
turned into a digital audio output signal. This output signal is then preferably fed to a digital
to analog converter (DAC), from which is preferably output an analog audio signal suitable for
use with headphones, etc. Note that in our example, the Audio stream input to the Synth
might typically come from a relatively slow memory means (e.g.; Flash memory), while the
MIDI input to the Synth might come from a relatively fast memory means (e.g.; SRAM
buffer).

79



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

The two inputs to the Synth device preferably may actually share a multiplexed bus;
but logically they can be considered as separately distinguishable inputs. In one example, the
two inputs share a 16bit wide bus. In this case, the MIDI input preferably may occupy 8bits at
one time, and the audio stream input preferably may occupy 16bits at another time. Following
this example, one stream preferably may pause while the other takes the bus. Such altemating
use of the same bus can mean that relatively small pauses in each stream are constantly
occurring. Such pauses are intended to be imperceptible, and so, for our purposes here, the
two streams can be thought of as separate.

Fig. 40 shows a simplified MIDI/Audio Stream timeline. Assume that Fig. 40 is the
timing for the very beginning of a Block. It follows then, that in this case, the designer wants
to play a MIDI note, starting 250ms after the beginning of the Block, that will last 500ms.
The duration of the note relates to the type of note being played, for example, if it is a quarter
note in a 4/4 time, and with a measure duration of 2 seconds, a 500ms would correspond to a
quarter note duration. Also indicated in Fig. 40, that an Audio stream event such as a short
voice sample “yo” will preferably be synchronized to occur in the middle of the MIDI event.
Bear in mind that this method allows the sample to preferably be quantized to the music, in the
sense that it can involve the subtle correction of minor timing errors on the part of the user by
synchronizing the sample to the musical context.

In this example, largely because of the constraints of the system architecture example
discussed above, this is not a trivial thing to accomplish consistently and accurately using
conventional techniques. Keeping in mind that the MIDI event is preferably generated almost
instantly by the Synth chip, whereas the Audio Stream event could require one or more of the
following assistance from the ARM MP: fetching a sound from SMC, decompressing (PCM,
etc.), adding sound effects (reVerb, filters, etc.).

In this example, it is highly desirable to create a special MIDI file preferably containing
delta time information for each event, and specialized non-registered parameter numbers
(NRPNs). This feature is especially advantageous when used with a Sample List (as
mentioned above) because the name of a particular sample in a list is preferably implicit, and
the NRPNs can preferably be used to trigger different samples in the particular sample list
without explicitly calling for a particular sample name or type. This type of optimization
reduces the burden of fetching a particular sample by name or type, and can preferably allow
the samples used to be preloaded. In the following discussion, it should be understood that in

80



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

certain embodiments, the use of MIDI System Exclusive messages (SYSEXSs) may be used in
place of (or perhaps in addition to) the NRPNs.

Fig. 41 depicts an example of a MIDI NRPN that can be advantageously incorporated
into the present invention to allow efficient synchronization of MIDI events with audio
samples and effects. The left column depicts the hexadecimal values making up the MIDI
Ni{PN stream. As anyone who works with the MIDI Specification (previously incorporated
by reference) will appreciate, the MIDI NRPN is a data structure that enables custom use of
portions of a MIDI stream. Accordingly, it can preferably be used to trigger specific custom
events for a given architecture.

In Fig. 41, the first hexadecimal value ‘B0’ preferably indicates a channel number, as
well as that it is a MIDI controller command. This can be used to assist with routing in a
multi-channel arrangement. In our example, for purposes of simplicity this is set channel 0.
The second value 63’ preferably indicates that this particular stream contains NRPN
information for a particular controller (e.g., ‘A’). In this example, NRPN Controller A can be
understood by the firmware/software to indicate an audio sample type. The third row value of
‘40’ preferably is data that corresponds to the controller, and in our example this data can be
understood to describe the type of sample. As an example of the usefulness of this
arrangement, if the type is set to ‘long’, then the firmware/software preferably can arrange to
load the sample in chunks. In another example, this ‘type’ of sample can be used to
differentiate between long and short samples so that the algorithm may use them differently
during auto composition. The fourth row preferably indicates a delta time, in MIDI ticks, that
can preferably be used to precisely time the next event. In our example, this delta time is set
to ‘00’ for simplicity. The fifth row preferably indicates that this particular stream contains
NRPN information for a ‘B’ controller. In this example, NRPN Controller B can be
understood by firmware/software to indicate an audio effects type. This is because we have
found it advantageous to use a MIDI DSP component that includes certain audio effects that
can be controlled effectively in a timely manner via MIDI NRPNs. The sixth row preferably
indicates the identification of the particular audio effects type called for in this NRPN example.
While ‘00’ is shown for simplicity, it should be understood that the value in this part of the
MIDI stream can be interpreted by the firmware/software to select a particular effect from the
available audio effects for a particular architecture. The seventh row preferably indicates
another delta time that can be interpreted as a delay. The eighth row preferably can be used to

indicate to the firmware/software the identification of a register to store the NRPN Controller

81



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

A value shown in row nine. The ninth row uses ‘03’ as an example; this preferably can be
mterpreted to mean the third audio sample in a list corresponding to a song (see ‘Sample List’
in Figs. 29 and 30). Value ‘00” can be used effectively to instruct the firmware/software to
select a sample from the sample list randomly. The tenth row of Fig. 41 is preferably another
delta time value (e.g., ‘00’ is zero MIDI ticks). The eleventh row preferably can be used to
indicate to the firmware/software the identification of a register to store the NRPN Controller
B value shown in row 12. The twelfth row uses ‘07’ as an example; in the present discussion
this preferably can be interpreted by the firmware/software to instruct the MIDI DSP to apply
a particular audio effect among those available.

Fig. 42 is ;1 simplified depiction of a special MIDI type file that is an example of the
arrangement of the data being sent from the ARM MP to the DSP preferably via the MIDI
input stream, along the lines of the example above.

The top of the figure indicates that the first information in this file is a delta time of
250ms. This corresponds to the 250ms delay at the beginning of Fig. 40. Next in the file
depicted in Fig. 42 is general MIDI information preferably indicating a note on event for
channel 1, pitch C. This corresponds to the time in Fig. 40 when 250ms has passed. Next in
Fig. 42, we have another 250ms delta time. This represents the time between the previous
MIDI event, and the next Audio Stream event at time 500ms in Fig. 40. Next, in Fig. 42 we
have an NRPN message that preferably indicates to the Synth chip that it needs to play the
audio stream event X, with various parameters P, and various effects E. This corresponds to
the audio stream event (‘yo’) depicted in Fig. 40. Then, in Fig. 42 we have another delta time
event of 250ms, followed by the general MIDI information preferably indicating a note off
event for channel 1, pitch C. This final step corresponds to the end of the MIDI event in Fig.
40 (e.g., ‘C’ quarter note). '

In the previous example, the delta time preferably can be different (and often is) each
time in the special MIDI type file. In our simplified example, and because we want to make
the timing relationship with a quarter note, etc., more clear, we have used the same 250ms
value each time. Obviously, in a more complex file, the delta time will vary.

Additionally, as discussed earlier in connection with the example of the Player function
keys in Fig. 2, in certain embodiments it is preferable to detect the speed and/or velocity of a
button press. In many of these embodiments, when the button press is, for example, causing a
sample event to occur, it is preferable to pass the detected velocity-type information of the

button press event into a MIDI-type event that triggers the sample to be played. In these

82



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

examples, the velocity-type information can be advantageously represented in a MIDI-type
event, in the portion of the event designated for velocity, aftertouch, volume, etc.
Additionally, a MIDI-type event such as a system exclusive message, or an NRPN message,
can alternatively be used.

As previously described, voice and other audio samples may be encoded, stored and
processed for playback in accordance with the present invention. In certain preferred
embodiments, voice samples are coded in a PCM format, and preferably in the form of an
adaptive (predictive), differential PCM (ADPCM) format. While other PCM formats or other
sample coding formats may be used in accordance with the present invention, and particular
PCM coding formats (and ways of providing effects as will be hereinafter described) are not
essential to practice various aspects of the present invention, a description of exemplary
ADPCM as well as certain effects functions will be provided for a fuller understanding of
certain preferred embodiments of the present invention. In accordance with such
embodiments, a type of ADPCM may provide certain advantages in accordance with the
present invention.

As will be appreciated by those of skill in the art based on the disclosure herein, the use
of ADPCM can enable advantages such as reduced size of the data files to store samples,
which are preferably stored in the non-volatile storage (e.g., SMC), thus enabling more
samples, song lists and songs to be stored in a given amount of non-volatile storage.
Preferably, the coding is done by a packet of the size of the ADPCM frame (e. 8., 8 samples).
For each packet, preferably a code provides the maximum value; the maximum difference
between two samples is coded and integrated in the file. Each code (difference between
samples (delta_max) and code of the packet (diff max)) uses 4 bits. In accordance with this
example, the data/sample is therefore (8*4+4)/8 = 4.5 bits/sample. 4

As will be appreciated, this type of coding attempts to code only what is really
necessary. Over 8 samples, the maximum difference between two samples is in general much
less than the possible dynamic range of the signal (+32767/-32768), and it is therefore possible
to allow oneself to code only the difference between samples. Preferably, the ADPCM is
chosen to be suitable for the voice that is relatively stationary. By predictive filtering, it is
possible to reduce the difference between a new sample and its prediction. The better the
prediction, the smaller the difference, and the smaller the coding (the quantization) that is
chosen, taking into account the average differences encountered. While it will be appreciated

that this approach requires additional computation ability for the prediction computation, it is

83



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

believed that this approach provides significant advantages in reduced storage for samples with
acceptable sample coding quality in accordance with the present invention. While more
conventional or standardized ADPCM desires to offer a coding time without introducing
delays, with the present invention it has been determined that such attributes are not essential.

A simple coding without prediction and taking into account only average values of
differences encountered reacts very poorly to a non-stationary state (e.g., each beginning of a
word or syllable). For each new word or syllable, a new difference much greater than the
average differences previously encountered typically cannot be suitably coded. One therefore
tends to hear an impulse noise depending on the level of the signal. Preferably, the solution is
therefore to give the maximum value of the difference encountered (one therefore has a delay
of 8 samples, a prediction is thus made for the quantizer only) for a fixed number of samples
and to code the samples as a function of this maximum difference (in percentage). The coding
tends to be more optimal at each instant, and reacts very well to a non-stationary state (each
beginning of a word or syllable). Preferably, the coding is logarithmic (the ear is sensitive to
the logarithm and not to the linear), and the Signal/Noise ratio is 24 db. In preferred
embodiments, this function is put in internal RAM in order to be executed, for example, 3
times more rapidly (one clock cycle for each instruction instead of three in external flash
memory).

Preferably certain effects may be included in the ADPCM coding used in certain
embodiments of the present invention. For example, a doppler effect may be included in the
ADPCM decoding since it requires a variable number of ADPCM samples for a final fixed
number of 256 samples. As is known, such a doppler effect typically consists of playing the
samples more or less rapidly, which corresponds to a variation of the pitch of the decoded
voice accompanied by a variation of the speed together with the variation of pitch. In order to
give a natural and linear variation, it is desirable to be able to interpolate new samples between
two other samples. The linear interpolation method has been determined to have certain
disadvantages in that it tends to add unpleasant high frequency harmonics to the ear.

The method traditionally used consists of over-sampling the signal (for example, in a
ratio of 3 or 4) the signal and then filtering the aliasing frequencies. The filtered signal is then
interpolated linearly. The disadvantage of this method is that it requires additional
computational ability. Preferably, in accordance with certain embodiments, a technique is
utilized that consists of interpolating the signal with the four adjacent samples. It preferably

corresponds to a second order interpolation that allows a 4.5 dB gain for the harmonics

84



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

created by a linear interpolation. While 4.5 db seems low, it is important to consider it in high
frequencies where the voice signal is weak. The original high frequencies of the voice are
masked by the upper harmonics of the low frequencies in the case of the linear method, and
this effect disappears with second order interpolation. Moreover, it tends to be three times
faster than the over-sampling method. Preferably, this function is put in internal RAM in order
to be executed, for example, 3 times more rapidly (one clock cycle for each instruction instead
of three in external flash memory).

Also in accordance with preferred embodiments, a frequency analysis function is
included, which consists of counting the period number (the pitch) in an analysis window in
order to deduce from this the fundamental frequency. Preferably, this function may be utilized
to process samples in order to reveal the periods. In general, it is not feasible to count the
peaks in the window because the signal tends to vary with time (for example, the beating of 1
to 3 piano strings that are not necessarily perfectly in tune); moreover, in the same period,
there can be more than one peak. In accordance with such embodiments, the distance between
a reference considered at the beginning of the analysis window and each of the panes shifted
by one sample. For a window of 2*WINDOW_SIZE samples and a reference window of
WINDOW_SIZE samples, one therefore may therefore carry out WINDOW_SIZE
computations of distance on WINDOW_SIZE samples. Preferably, the computation of
distance is done by a sum of the absolute value of the differences between reference samples
and analysis samples. This function preferably is put in internal RAM in order to be executed,
for example, 3 times more rapidly (one clock cycle for each instruction instead of three in
external flash memory).

Also in accordance with such embodiments, special effects such as wobbler, flange,
echo and reverb may be provided with the ADPCM encoding. Such special effects preferably
are produced over 256 samples coming from the ADPCM decoder and from the doppler
effect. Preferably, this function is put in internal RAM in order to be executed, for example, 3
times more rapidly (one clock cycle for each instruction instead of three in external flash
memory). Preferably, the average value of the sample is computed, and it is subtracted from
the sample (which can be present over the samples) in order to avoid executing the wobbler
function on it, which would add the modulation frequency in the signal (and tend to produce

an unpleasant hiss). Preferably, the method for the wobbler effect is a frequency modulation

85



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

based on sample = sample multiplied by a sine function (based on suitable wobbler frequencies,
as will be understood by those of skill in the art).

Also in accordance with the preferred embodiments, the purpose of the flange effect is
to simulate the impression that more than one person is speaking or singing with a single
source voice. In order to limit the computation power, two voices preferably are simulated.

In order to provide this impression, preferably the pitch of the source voice is changed and
added to the original source voice. The most accurate method would be to analyze the voice
using a vocoder and then to change the pitch without changing the speed. In each case, one
could have the impression that a man and a woman are singing together, although such a
method typically would require DSP resources. A method that changes the pitch without
changing the speed (important if one wants the voices to remain synchronous) consists of
simulating the second voice by alternately accelerating and decelerating the samples. One then
produces the doppler effect explained in the preceding, but with a doppler that varies
alternately around zero in such a way as to have a slightly different pitch and the voices
synchronous. With such embodiments, one may simulate, for example, a person placed on a
circle approximately 4 meters in diameter regularly turning around its axis and placed beside
another stationary person.

Also in accordance with such embodiments, the echo effect is the sum of a source
sample and of a delayed sample, and the reverb effect is the sum of a source sample and a
delayed sample affected by a gain factor. The delayed samples preferably may be put in a
circular buffer and are those resulting from the sum. The formula of the reverb effect may
therefore be:

Sample(0) = sample(0) + sample(-n)*gain + sample(-2*n)*gain"2 + sample
(-3*n)*gain™ + ... + sample(-i*n)*gain’i. Preferably, the gain is chosen to be less than 1 in
order to avoid a divergence. In accordance with preferred embodiments, for reasons of size of
the buffer, which can be considerable, the echo effect preferably uses the same buffer as that of
the reverb effect. In order to have a true echo, it is necessary to give reverb a gain effect that is
zero or low. The two effects can function at the same time. The delay between a new sample
and an old one is produced by reading the oldest sample put in the memory buffer. In order to
avoid shifting the buffer for each new sample, the reading pointer of the buffer is incremented
by limiting this pointer between the boundaries of the buffer. The size of the memory buffer

therefore depends on the time between samples.

86



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Also in accordance with such embodiments, an electronic tuner function may be
provided, the aim of which is to find the fundamental of the sample signal coming from the
microphone in order to give the note played by a musical instrument. Similar to what has been
described previously, a preferred method will consist of computing the number of periods for a
given time that is a multiple of the period in order to increase the accuracy of computation of
the period. In effect, a single period will give little accuracy if the value of this period is poor
because of the sampling. In order to detect the periods, preferably one uses a routine which
computes the distance between a reference taken at the beginning of the signal and the signal.
As will be understood, the period will be the position of the last period divided by the total
number of periods between the first and the last period. The effective position of the last
period is computed by an interpolation of the true maximum between two distance samples.
The period thus computed will give by inversion (using a division of 64 bits/32bits) the
fundamental frequency with great precision (better than 1/4000 for a signal without noise,
which is often the case).

Also in accordance with such embodiments, a low pass filter (or other filter) function

-may be provided as part of the effects provided with the ADPCM sample coding. Such a
function may eliminate with a low-pass filter the high frequencies of the samples used for
computation of the distance such for the routines previously described. These high
frequencies tend to disturb the computations if they are too elevated. Filtering is done by
looking for the highest value in order to normalize the buffer used for computation of the
distance.

Also in accordance with the present invention, there are numerous additional
implementations and variations that preferably can be used with many desirable aspects of the
present invention. Exemplary ways to use the present invention to great effect include a
software-based approach, as well as general integration with other products. Additionally,
several valuable variations to the present invention can be used with great success, especially
with regard to media content management, integration with video, and other miscellaneous
variations.

Many aspects of the present invention can advantageously be employed in connection
with a digital/video light show. As described in more detail in US Patent 4,241,295, entitled
“Digital Lighting Control System,” and US Patent 4,797,795, entitled “Control System for
Variable Parameter Lighting Fixtures,” hereby incorporated by reference in their entirety, the

control of video and/or stage-type lighting systems can be performed using digital commands

87



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

such as MIDI-type descriptor events. Accordingly, in certain of the presently described
embodiments, it is preferable to integrate aspects of the music generation with such types of
video/light control systems. As an example, the musical and visual events can be
synchronized, temporally quantized, and/or otherwise coordinated using parameters such as
the delta time, velocity, NRPN, system exclusive, etc. Such coordinétion may be
advantageous, as significant changes in the music (e.g., going from Intro to Chorus) may be
arranged to coincide with the timing and/or intensity, color, patterns, etc., of the visuals. In
such embodiments, the experience for someone listening and viewing the audio/visual output
will desirably be improved.

Many aspects of the present invention can be incorporated with success into a
software-based approach. For example, the hardware DSP of the above discussion can be
substituted with a software synthesizer to perform signal processing functions (the use of a
hardware-based synthesizer is not a requirement of the present invention). Such an approach
preferably will take advantage of the excess processing power of, for example, a contemporary
personal computer, and preferably will provide the quality of the music produced in a
hardware-based device, while also providing greater compatibility across multiple platforms
(e.g., it is easier to share a song that can be played on any PC). Configuring certain
embodiments of the present invention into a software-based approach enables addi‘éional
variations, such as a self-contained application geared toward a professional music creator, or
alternatively geared towards an armchair music enthusiast. Additionally, it is preferable to
configure a software-based embodiment of the present invention for use in a website (e.g., a
java language applet), with user preferences and/or customizations to be stored in local files
on the user’s computer (e.g., cookies). Such an approach preferably enables a user to indicate
a music accompaniment style preference that will ‘stick” and remain on subsequent visits to the
site. Variations of a software-based approach preferably involve a ‘software plug-in’ approach
to an existing content generation software application (such as Macromedia Flash, Adobe
Acrobat, Macromedia Authorware, Microsoft PowerPoint, and/or Adobe AfterEffects). Itis
useful to note that such a plug-in can benefit from the potentially royalty free music, and that
in certain embodiments, it may be preferable to export an interactively generated musical piece
into a streaming media format (e.g., ASF) for inclusion in a Flash presentation, a PDF file, an
Authorware presentation, an AfterEffects movie, etc. Certain embodiments of the present
invention can be involved in a Internet-based arrangement that enables a plurality of users to

interactively generate music together in a cooperative sense, preferably in real time. Aspects

88



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

of the present invention involving customized music can be incorporated as part of music
games (and/or music learning aids), news sources (e.g., internet news sites), language games
(and/or language learning aids), etc. Additionally, a software/hardware hybrid approach
incorporating many features and benefits of the present invention can involve a hybrid “DSP”
module that plugs into a high speed bus (e.g., IEEE 1394, or USB, etc.) of a personal
computing system. In such an approach, the functionality of MP 36 can be performed by a
personal computing system, while the functionality of DSP 42 can be performed by a DSP
located on a hardware module attached to a peripheral bus such as USB. Following this
example, a small USB module about the size of a automobile key can be plugged into the USB
port of a PC system, and can be used to perform the hardware DSP functions associated with
the interactive auto-generation of algorithmic music.

As will be appreciated, many advantageous aspects of the present invention can be
realized in a portable communications device such as a cellular telephone, PDA, etc. As an
example, in the case of a portable communications device incorporating a digital camera (e.g.,
similar in certain respects to the Nokia 3650 cellular telephone with a built-in image capture
device, expected to be available from Nokia Group sometime in 2003), certain preferred
embodiments involve the use of the algorithmic music generation/auto-composition functions
in the portable communications device. Following this example, the use of a digital image
capture device as part of such embodiments can allow a user to take one or more pictures
(moving or still) and set them to music, preferably as a slideshow. Such augmented images
can be exchanged between systems, as the data structure required to store music (e.g., SDS
and CDS structures and features illustrated in Figs. 28-31 and discussed herein) preferably is
relatively efficient, and accordingly lends itself to such a slideshow distribution, as the
bandwidth available to such a portable communications device is relatively limited.

As will be appreciated, aspects of the present invention may be incorporated into a
variety of systems and applications, an example of which may be a PBX or other telephone
type system. An exemplary system is disclosed in, for example, USP 6,289,025 to Pang et al,
which is hereby incorporated by reference (other exemplary systems include PBX systems
from companies such as Alcatel, Ericsson, Nortel, Avaya and the like). As will be appreciated
from such an exemplary system, a plurality of telephones and telephony interfaces may be
provided with the system, and users at the facility in which the system is located, or users who
access the system externally (such as via a POTS telephone line or other telephone line), may

have calls that are received by the system. Such calls may be directed by the system to

89



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

particular users, or alternatively the calls may be placed on hold (such aspects of such an
exemplary system are conventional and will not be described in greater detail herein).
Typically, on-hold music is provided to callers placed on hold, with the on-hold music
consisting of a radio station or taped or other recorded music coupled through an audio input,
typically processed with a coder and provided as an audio stream (such as PCM) and coupled
to the telephone of the caller on hold.

In accordance with embodiments of the present invention, however, one or more
modules are provided in the exemplary system to provide on-hold music to the caller on hold.
Such a module, for example, could include the required constituent hardware/software
components of a Player as described elsewhere herein (see, e.g., Fig. 32 and related
description) (for purposes of this discussion such constituent hardware/software components
are referred to as an “auto-composition engine™), but with the user interface adapted for the
PBX-type of environment. In one such exemplary embodiment, one or more auto-
composition engines are provided, which serve to provide the on-hold music to one or more
callers on hold. In one example, a single auto-composition engine is provided, and the first
caller on hold may initially be presented with auto—coinposed music of a particular style as
determined by the auto-composition engine (or processor controlling the exemplary system)
(this may also be a default on hold music style selected by a configuration parameter of the
exemplary system). Preferably, via an audio prompt provided by the resources of the
exemplary system, the caller on hold is provided with audio information indicating that the
caller on hold may change the style of on-hold music being provided (such audio prompt
generation is considered conventional in the context of such exemplary systems and will not be
described in greater detail herein). Preferably, the user may indicate such desire by pressing a
predetermined digit (which preferably is identified in the audio prompt) on the telephone key
pad, which may be detected by the resources of the exemplary system (such digit detection
capability is considered conventional in the context of such exemplary systems and will not be
described in greater detail herein), and thereafter may be provided with preferably a plurality
of music styles from which to select the style of on-hold music (such as with audio prompts
providing available styles of music followed by one or more digits to be entered to select the
desired style of music). Thereafter, the user may depress the appropriate digit(s) on the
telephone keypad, which are detected by the resources of the exemplary system, which

preferably decodes the digits and sends control information to one of the auto-composition

90



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

engines, in response to which the auto-composition engine thereafter begins to auto-compose
music of the selected style, which is directed to the caller on hold as on hold music.

What is important is that, in accordance with such embodiments, one or more auto-
composition engines are adapted for the exemplary system, with the command/control
interface of the auto-composition engine being changes from buttons and the like to
commands from the resources of the exemplary system (which are generated in response to
calls being placed on hold, digit detection and the like). In accordance with variations of such
embodiments, a plurality of auto-composition engines are provided, and the resources of the
system selectively provide on-hold music to on hold callers of a style selected by the caller on
hold (such as described above). In one variation, there may potentially be more callers on hold
than there are auto-composition engines; in such embodiments, the callers on hold are
selectively coupled to one of the output audio streams of the auto-composition engines
provided that there is at least one auto-composition engine that is not being utilized. Ifa caller
is placed on hold at a time when all of the auto-composition engines are being utilized, the
caller placed on hold is either coupled to one of the audio streams being output by one of the
auto-composition engines (without being given a choice), or alternatively is provided with an
audio prompt informing the user of the styles of on-hold music that are currently being offered
by the auto-composition engines (in response thereto, this caller on hold may select one of the
styles being offered by depressed one or more digits on the telephone keypad and be coupled
to an audio stream that is providing auto-composed music of the selected style).

Other variations of such embodiments include: (1) the resources of the exemplary
system detect, such as via caller ID information or incoming trunk group of the incoming call,
information regarding the calling party (such as geographic location), and thereafter directs
that the on hold music for the particular on hold be a predetermined style corresponding to the
caller ID information or trunk group information, etc.; (2) the resources of the exemplary
system selectively determines the style of the on-hold music based on the identity of the called
party (particular called parties may, for example, set a configuration parameter that directs that
their on hold music be of a particular style); (3) the resources of the exemplary system may
selectively determine the style of on-hold music by season of the year, time of day or week,
etc.; (4) the exemplary system includes an auto-composition engine for each of the styles being
offered, thereby ensuring that all callers on-hold can select one of the styles that are offered,
(5) default or initial music styles (such as determined by the resources of the exemplary system

or called party, etc., as described above) are followed by audio prompts that enable the caller

91



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

on hold to change the music style; and (6) the resources of the exemplary system further
provide audio prompts that enable a user to select particular music styles and also parameters
that may be changed for the music being auto-composed in the particular music style (in
essence, audio prompt generation and digit detection is provided by the resources of the
exemplary system to enable the caller on hold to alter parameters of the music being auto-
composed, such as described elsewhere herein.

Other examples of novel ways to generally integrate aspects of the present invention
with other products include: video camera (e.g., preferably to enable a user to easily create
home movies with a royalty free, configurable soundtrack), conventional stereo equipment,
exercise equipment (speed/intensity/style programmable, preferably similar to workout-
intensity-programmable capabilities of the workout device, such as a StairMaster series of
hills), configurable audio accompaniment to a computer screensaver program, and
configurable audio accompaniment to an information kiosk system.

Aspects of the present invention can advantageously be employed in combination with
audio watermarking techniques that can embed (and/or detect) an audio “fingerprint’ on the
musical output to facilitate media content rights management, etc. The preferable
incorporation of audio watermarking techniques, such as those described by Verance or
Digimarc (e.g., the audio watermarking concepts described by Digimarc in US patents
6,289,108 and 6,122,392, incorporated herein by reference), can enable a user with the ability
to monitor the subsequent usage of their generated music.

In another example, certain embodiments of the present invention can be incorporated
as part of the software of video game (such as a PlayStation 2 video game) to provide music
that preferably virtually never repeats, as well as different styles preferably selectable by the
user and/or selectable by the video game sofiware depending on action and/or plot
development of the game itself.

Certain embodiments involve the use of the algorithmic music generation described
herein to provide music to a video game player. In one embodiment, referring to selected
portions of Fig. 32, a module (e.g., suitable for use with a video game system such as the
Xbox from Microsoft Corporation) incorporating DSP 42 (and preferably one or more of the
following: Flash 49, RAM 48, DSP data bus 47, and DSP address bus 46) is operably
connected to a video game console (e.g., such as a personal computer system, the
aforementioned MS Xbox, and/or PS2 from Sony Computer Entertainment of America).
Such a module permits the high quality musical sounds to be generated, e.g., via the high

92



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

quality afforded by the DSP resource. Preferably, much of the algorithmic processing of the
musical rules, etc., is performed by the processing resources of the video game console itself.
Of course, as described elsewhere herein, certain embodiments use a software-based DSP to
provide the computing resources afforded by the DSP 42 (and related subsystems). In such
alternative embodiments, the DSP processing is performed by the video game console as well.

In certain video game embodiments, the music being generated is updated in response
to events in the game. For example, in the case of a game where a user encounters various
characters during the game, one or more characters preferably have a style of music associated
with them. In these embodiments, although the music may not repeat, the style of music
preferably will indicate to the user that a particular character is in the vicinity.

In certain video game embodiments, a particular component of the music (e.g., the lead
instrument, or the drums) is associated with a character, and as the particular character moves
in closer proximity to the video game user, the corresponding component of the music
preferably is adjusted accordingly. For example, as a video game user moves closer to a
particular villain, the music component that corresponds to that villain (e.g., the lead
instrument) is adjusted (e.g., raises in relative volume, and /or exhibits other changes such as
increased relative mobility of note pitch as illustrated in Fig. 23, and/or increased relative
thythmic density as illustrated in Fig. 18, etc.).

In certain video game embodiments, information relating to the musical piece (e.g.,
information such as the parameters illustrated in Figs. 28, 30, and 59) preferably is saved to a
removable memory location, e.g., as discussed elsewhere herein. In certain examples, e.g.,
such as the Sony Playstation 2, it is preferable to save the information to a modular Flash
memory card provided for saving other video game data. In these examples, the relatively
small size of the musical information required to recreate a musical piece is particularly
advantageous, given the relatively limited size (and high expense) of the removable flash
memory cartridges used by the video game console to save video game data.

Additionally, there are certain novel variations to the present invention that incorporate
many advantages of the present invention to great effect. For example, in the portable
hardware device 35 in Fig. 32, the incoming data on MIC input 51 (e.g., a vocal melody of the
user) can pass through hardware codec 52 to MP 36, where it can be analyzed by the MP 36
and processed/adjusted by DSP 42 (under control of MP 36) to subtly ‘improve’ pitch and/or
thythm characteristics. This example illustrates a preferable arrangement that allows a user’s

vocal input to be adjusted to conform to the key and/or rhythmic characteristics of the

93



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

accompanying music. Continuing this example, the pitch of a user’s input to MIC input 51
preferably can be analyzed by the portable hardware device 35 and bumped up or down in
pitch to more closely match a pitch that fits the current key and/or mode of the music. Such a
variation provides a novice user with an easy way to generate songs that are musically
compelling, yet preferably are also noticeably derivative of the user’s input (e.g., vocal). In.
another example variation, the circuitry mentioned here preferably can be available to analyze
the user’s input (e.g., vocal) and infer some type of timing and/or melody information, which
information preferably can then be used in the interactive music autogeneration to help define
the pitch values and/or the thythmic data comprised in the RP. This example presents a way
for a user to demonstrably interact with, and influence, the musical output, all the while
without needing to fully understand the complexities of musical composition.

In certain embodiments it is preferable to enable a vocal chord mode that analyzes the
vocal microphone input in real time and, as part of the music composition being generated,
mimics the input vocal characteristics in a realtime manner. As one example, this feature can
provide a vocal chord effect that combines the user’s vocal input events with one or more
artificially generated vocal events. In this fashion, preferably a user can sing a part and hear a
chord based on their voice. This feature may advantageously be used with a pitch-correcting
feature discussed elsewhere in the present disclosure.

In certain embodiments it is preferable to provide a reference note to the user in real
time. Such a reference note preferably will provide a tonic context for the user, e.g., so that
they are more likely to sing in tune. Further, in certain embodiments, such a reference note
may serve as a reference melody, and provide the user with an accurate melody/rhythm line to
sing along with. These features may be particularly advantageous in a karaoke context. In
many of these embodiments, it is desirable to limit the reference note to the user’s ear piece
(e.g., allowing the user to bar the reference note information from any recording and/or
performance audio output).

Certain embodiments directed to additional inventive concepts associated with the
generation of a singing part will now be further described in greater detail. This discussion
may also provide further context for certain vocal-related features discussed herein.

On one level, vocal communication can be considered to be various combinations of a
limited number of individual sounds. For example, linguists have calculated a set of
approximately 42 unique sounds that are used for all English language vocal communication.

Known as ‘phonemes’, this set is of the smallest segments of sound that can be distinguished

%4



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

by their contrast within words. For example, a long ‘E’ sound is used in various spellings such
as ‘me’, “feet’, ‘leap’, and ‘baby’. Also, a ‘sh’ sound is used in various spellings such as
‘ship’, “nation’, and ‘special’. As further examples, a list of English language phonemes is
available from the Auburn University website at
http://www.auburn.edu/~murraba/spellings.html. Phonemes are typically associated with
spoken language, and are but one way of categorizing and subdividing spoken sounds. Also,
the discussion herein references only English language examples. Clearly, using the set of
English phonemes as an example, one can assemble a set of sounds for any language by
listening and preparing a phonetic transcription. Similarly, while the above discussion
references only spoken examples, the same technique can be applied to sung examples to
assemble a set of phonetic sounds that represent sung communication. While the list of
assembled sound segments preferably will be longer than the set of English phonemes, this
method can be used to identify a library of sung sound segments.

The Musical Instrument Digital Interface standard (MIDI) was developed to enable a
communication protocol for digital-based musical products. It has since become the defacto
standard for all digital-based music-related products that are designed to interact with each
other. MIDI incorporates the capability to assign a bank of sounds to a particular ‘soundbank’
such that, for example, a set of grand piano sounds can be selected by sending a soundbank
MIDI command identifying the sound bank. Thereafier, it is possible to sound individual
notes of the soundbank using, for example, a ‘note-on” command. Additionally, certain
characteristics indicating how the individual note should sound are available (e.g., such as
‘velocity’ to indicate the speed at which the note is initiated). More information on MIDI can
be received from the MIDI Manufacturer’s Association in California.

In accordance with embodiments of the present invention, MIDI can be
advantageously incorporated into a larger system for generating music including a singing part.
Given the context of a music generation environment such as previously referenced, a vocal
track can be added to the system, preferably with a library of sounds (e.g., phonemes), and
preferably through the use of a control protocol (e.g., MIDI). Following this example, a
library of phonemes can be associated with a MIDI soundbank (e.g., preferably via a particular
channel that is set aside for voice). Preferably, individual phonemes in the library can be
identified by the “program’ value for a given MIDI event. The amplitude of a given piece of
sound (e.g., phoneme) preferably can be indicated by the velocity information associated with

a given MIDI event. The pitch of each piece of sound preferably can similarly be identified

95



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

using the ‘note’ value associated with a given MIDI event. In addition, the desired duration
for each piece of sound can preferably be indicated in MIDI using the sequence of a note-on
event associated with a certain time, followed by a note-off event associated with a delta time
(e.g., a certain number of MIDI clocks after the note-on event was executed). Of course, the
alternative usage of another note-on command with a velocity of zero can also be used to
indicate the end of a note, as is well known in the MIDI field.

Previously disclosed embodiments for the autogeneration of music have been
mentioned herein. The various features and implementations of these previous disclosures
include the use of musical rules (e.g., computer algorithms) to generate a complete musical
piece. These musical rules can include ways of automatically generating a series of musical
events for multiple simultaneous parts (e.g., drums, bass, etc.) of a musical piece. Further,
preferably a music rule that can effectively quantize the individual parts such that they are
preferably harmony-corrected to be compatible with a musical mode (e.g., descending Lydian).
In addition, these musical rules can preferably incorporate rhythmic components as well, to
quantize generated events of each part such that they preferably are time-corrected in keeping
with a particular groove, or style of music (e.g., swing, reggae, waltz, etc.). Finally, the
previously referenced disclosures also provide certain embodiments for enabling user-
interaction with an auto-generated musical composition.

Using the music autogeneration concepts previously discussed, vocal processing
functions can similarly be used that, for example, generate a string of MIDI events
incorporating auto-generated pitch, amplitude, and/or duration characteristics, to sound a
series of vocal sounds from a library of fundamental vocal sounds. As an example, the series
of pitches generated preferably can be harmony-corrected according to a particular musical
mode, and the rhythmic duration and/or relative loudness preferably can be rhythm-corrected
according to a particular desired groove, time-signature, style, etc. Furthermore, in certain
embodiments it is preferable to impose additional rules relating more specifically to text. As
an example, human voice communication can be observed to only change pitch during certain
phonemes (e.g., vowel sounds). Accordingly, in certain embodiments it is desirable to check
the phoneme type during the autogeneration process before allowing a pitch value to be
changed. In another example, in certain embodiments it is preferable to only allow pitch
change to occur to an accented syllable, or a ‘long’ syllable (e.g., the “0” sound as opposed to
the “range” sound in “orange”). In these embodiments it is desirable to confirm that a

particular sound is compatible with a pitch change during the autogeneration process. Such

96



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

screening activity can be performed in a variety of ways; as an example, the vocal library can
be arranged as a sound bank, with the “pitch-change-compatible’ sounds arranged to be
together in one region of the addressable range associated with the soundbank. Following this
example, when the music rules are being performed, and a sounding vocal note is being given
a note change event, it is preferable to check the MIDI address of the current sound to
determine if it is in the ‘acceptable’ range associated with a pitch change event. As will be
clear to one of ordinary skill in the art, this is but one implementation example.

The discussion thus far has addressed how to generate and play a series of nonsensical
sounds in a musical generation system, preferably in order to approximate the sound of a vocal
track in a musical composition. The next section adds to the mixture the ideas of text-to-
speech algorithms, in order to enable a sensical string of vocal sounds.

Text information preferably can readily be ahalyzed to identify individual phonetic
components. For example, language analysis routines can be employed to identify context for
each word, correct misspelling for commonly misspelled words, and identify commonly used
abbreviations. Many text-to-phoneme schemes exist'in the prior art; one example is the 1976
article authored by Honey S. Elovitz, Rodney Johnson, Astrid McHugh, and John E. Shore
entitled “Letter-to-sound rules for automatic translation of English text to phonetics” (IEEE
Transactions on Acoustics, Speech and Signal Processing). As illustrated in Fig. 44 of the
present disclosure, text information (e.g., ASCII text) is generated or loaded (step 21), and
preferably is parsed into a stream of phonetic descriptors (step 22). Preferably, this parsing
process is associated with a generation and/or loading of characteristic information (e.g., pitch,
amplitude, and duration) associated with each phonetic descriptor. Once a phonetic descriptor
stream is assembled, preferably including characteristic information, it is processed and
assembled into a control stream (e.g., MIDI-compliant data) preferably containing sound
library identification information, pitch information, amplitude information, and/or
duration/timing information (step 23). Preferably such a control stream is then processed by
accessing a vocal library and assembling a series of sounds that together comprise a vocal
track (step 24). Before the sound is output, it is preferable to perform processing operation
such as a ‘smoothing’ operation to make simple adjustments to pitch, amplitude, and/or
duration, etc., such that the output sound sounds more realistically as a flowing vocal line
(step 25).

‘While the text can be user-definable/loadable, it also can be nonsensical. Certain

examples in the music world incorporate nonsense singing syllables, such as ‘scat’ in jazz

97



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

music, and ambient music from ‘The Cocteau Twins’, such as the “Heaven or Las Vegas”
album. In certain embodiments where a more simple effect or architecture is desirable, it is
preferable to have a reduced number of available phonemes in a sound library.

One variation of preferred embodiments of the present invention can be practiced by
enabling an end user to enter or load text, for example, via a user input interface such as a
keyboard (or, in certain embodiments, via voice input), via a removable memory location,
and/or via an interface to a personal computer (i.e., such as disclosed in the referenced and
incorporated patent applications), and enable the inputted text to be used as a basis for an
auto-generated vocal part, musically compatible with a musical composition. As an example
in the context of the previously referenced and incorporated patent applications, Fig. 45 of the
present disclosure depicts portable musical generation device 30, including visual output
interface 32 (e.g., an LCD display), and audio output interface 34 (e.g., a stereo headphone
output jack). As shown in the simplified example of Fig. 45, text input interface 36 allows an
end user to enter text. In this example, text input interface 36 preferably is a miniature
QWERTY keyboard, and preferably the user will see the entered text displayed on visual
output interface 32. As portable musical generation device 30 preferably generates music
according to music rules and algorithms, the text input by the end user via text input interface
36 preferably is parsed into a phonetic descriptor stream, combined with generated
characteristics data (e.g., pitch, amplitude, duration, etc.), and processed to generate a control
stream such as a MIDI-compatible stream. Preferably, as discussed herein in connection with
the example of Fig. 44, the control stream preferably is then processed by accessing a vocal
library and preferably assembling a series of sounds comprising the vocal track. At this point,
the assembled vocal track preferably is subjected to any final processing (e.g., ‘smoothing’,
etc.). Finally, the vocal sounds are preferably output along with any other musical parts via
audio output interface 34 to the user. Preferably, the finished output is recognizable by the
end user as bearing some connection with the text input by the end user via text input interface
36.

In other variations, in addition to, or in lieu of, the use of a text input interface, it is
desirable to enable the use of prefabricated text, e.g., through an interface to another
computer/the Internet (e.g., Data I/O interface 38 in Figure 3). In other variations, a storage
location such as storage memory 39 can be used to store and load text for use in a vocal track.
Storage memory 39 preferably is a re-writeable, non-volatile memory such as flash, hard drive,

etc.

98



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In certain embodiments it is preferable to support the use of MIDI Lyric commands in
carrying out the text-to-vocal processing. As an example, the text information can be
provided in the form of a series of one or more MIDI Lyric commands (e.g., one command for
one or more text syllables). Each MIDI Lyric command in this series is then preferably
analyzed by the algorithm to create/derive one or more MIDI Program Change messages
associated with the syllable. Following this example, in certain embodiments it is preferable to
support a MIDI Karaoke file incorporating a series of MIDI Lyric commands associated with
asong. Additionally, in certain cases it is preferable to parse the MIDI Lyric commands in a
particular Karaoke file to subdivide the descriptors further, affording greater rhythmic control,
as each Lyric command includes one delta time parameter associated with it. Accordingly,
greater rthythmic control is provided as a finer degree of delta time control is possible.

In yet another embodiment, visual output interface 32 has a touchscreen overlay, and a
keyboard may be simulated on visual output interface 32, with the keys of the simulated
keyboard activated by touching of the touchscreen at locations corresponding to images of the
keys displayed on visual output interface 32. With such embodiments, the use of the
touchscreen may also obviate the need for most, if not all, of the physical buttons that are
described in connection with the embodiments described in the referenced and incorporated
patent applications.

In yet another alternative embodiment, the use of such key entry enables the user to
input a name (e.g., his/her name or that of a loved one, or some other word) into the
automatic music generation system. In an exemplary alternative embodiment, the typed name
is used to initial the autocomposition process in a deterministic manner, such that a unique
song determined by the key entry, is automatically composed based on the key entry of the
name. In accordance with certain disclosed embodiments in the referenced and incorporated
patent applications, for example, the characters of the name are used in an algorithm to
produce initial seeds, musical data or entry into a pseudo random number generation process
(PRNG) or the like, etc., whereby initial data to initiate the autocomposition process are
determined based on the entry of the name. As one example, add the ASCII representation of
each entered character, perhaps apply some math to the number, and use the resulting number
as an entry into a PRNG process, etc. As another example, each letter could have a numeric
value as used on a typical numeric keypad (e.g., the letters ‘abc’ corresponds to the number
2’ “def’ to 3, etc.,) and the numbers could be processed mathematically to result in an

appropriate entry to a PRNG process. This latter example may be particularly advantageous

99



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

in situations where certain of the presently disclosed embodiments are incorporated into a
portable telephone, or similar portable product (such as a personal digital assistant or a pager)
where a keypad interface is supported.

As the process preferably is deterministic, every entry of the name would produce the
same unique or “signature” song for the particular person, at least for the same release or
version of the music generation system. While the autocomposition process in alternative
embodiments could be based in part on the time or timing of entry of the letters of the name,
and thus injecting user time-randomness into the name entry process (such human interaction
randomness also is discussed in the referenced and incorporated patent documents) and in
essence a unique song generation for each name entry, in preferred alternate embodiments the
deterministic, non-random method is used, as it is believed that a substantial number of users
prefer having a specific song as “their song” based on their name or some other word that has
significance to them (a user may enter his/her name/word in a different form, such as
backwards, no capital letters, use nick names, etc. to provide a plurality of songs that may be
associated with that user’s name in some form, or use the numbers corresponding to a series
of letters as discussed herein in connection with a numeric keypad interface). As will be
appreciated by those of skill in the art, this concept also is applicable to style selection of
music to be autocomposed (as described in the referenced and incorporated patent documents;
the style could be part of the random selection process based on the user entry, or the style
could be selected, etc.). For example, for each style or substyle of music supported by the
particular music generation system, a unique song for each style or substyle could be created
based on entry of the user’s name (or other word), either deterministically or based, for
example, on timing or other randomness of user entry of the characters or the like, with the
user selecting the style, etc.

As will be appreciated, the concept of name entry to initiate the autocomposition
process is not limited to names, could be extended to other alphanumeric, graphic or other
data input (a birthdate, words, random typed characters, etc.). With respect to embodiments
using a touchscreen, for example, other input, such as drawn lines, figures, random lines,
graphic, dots, etc., could be used to initiate the autocomposition process, either
deterministically or based on timing of user entry or the like. What is important is that user
entry such as keyboard entry of alphanumeric characteristics or other data entry such as
drawings lines via the touchscreen (i.e., e.g., data entry that is generally not musical in nature),

can be used to initiate the composition of music uniquely associated with the data entry events.

100



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Thus, unique music compositions may be created based on non-musical data entry, enabling a
non-musically inclined person to create unique music based on non-musical data entry. Based
on such non-musical data input, the music generation process picks seeds or other music
generation initiation data and begins the autocomposition process. As will be appreciated,
particularly with respect to entered alphanumeric data entry, such characters also could be
stored (either alone or with music generation initiation data associated with the data entry),
could be transmitted to another music generation system, whereby the transmission of the non-
musical data is used to, in effect, transmit a unique song to another user/system, with the
transmission constituting only a small number of bytes of data to transmit information
determining the song to be created by the music generation system.

In yet other embodiments, the music generation system assists in the creation of lyrics.
In one exemplary embodiment, the user selects a style or substyle of music, and preferably
selects a category of lyric such as ballad/story, rap, gangsta rap, thymes, emotional, etc.

Based on the style/substyle of music and the lyric category, in response to entry of a word or
phrase, the system attempts to create lyrics consistent with the user selections, such as via the
use of cognates, rhymes, synonyms, etc. Words or phrases preferred are characterized by the
lyric category (e.g., story, emotion, nonsensical, etc.), which enables words or phrases to be
selected in a manner more consistent with the user selections. In accordance with such
embodiments, lyrics and phrases could be generated by the music generation system,
preferably in time with the music being generated, and the user could selectively accept (e.g.,
store) or reject (e.g., not-stored) the system generated lyrics.

In addition to the use of pre-fabricated text, and user input text as discussed above, in
certain embodiments it is preferable to generate the text itself. As an example, through the use
of a commonly available algorithmic approach to generating strings of sensical text such as the
A.L.IC.E Al Foundation’s “Artificial Intelligence Markup Language (AIML) version 1.0.1
working draft dated October 25" 2001 (available to the public on the internet at:
http://alice. sunlitsurf.cony), hereby incorporated by reference in its entirety. AIML is one
example of a draft standard for creating a simple automatic text creation algorithm. It is useful
in the present invention as a means to algorithmically support the auto-generation of text, and
consequently, the auto-generation of phoneme streams as a vocal track. In the context of Fig.
43, the use of an algorithm to create the text itselfis shown in step 1. Similarly, step 21 of
Fig. 44 also preferably is where the use of an algorithmic text creation such as AIML can be

used. Even a simple implementation of AIML, with a relatively limited number of phrases can

101



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

be used with great effect. In certain cases, such as a portable music device as depicted in Fig.
45, where power/processing resources may be limited, it is particularly effective to limit the
complexity of the AIML algorithm for efficiency.

In combination with many of the various embodiments and features discussed herein, in
certain embodiments it is preferable to create a vocal library (e.g., vocal library A in Fig. 43)
by recording a set of phonemes with a human voice. In this example, the end user may be
given the option of recording themselves singing each of a set of phonemes. In this particular
case, the resulting vocal library can be used during the autogeneration of the vocal track to
achieve musical output with a sound that preferably very much resembles the end user’s voice.
Additionally, celebrity phonemes can preferably be recorded to generate a vocal library
corresponding to the celebrity. In this manner, a vocal track can be generated that preferably
closely resembles the voice of the celebrity. Following this example, there may be a vocal
library corresponding to David Bowie (e.g., either his actual voice recorded for each phoneme,
or that of an impersonator), Jimi Hendrix, etc. In this manner, the end user can have the
‘yoice’ of David Bowie and/or Jimi Hendrix at their disposal. In certain embodiments it may
be considered advantageous to allow multiple vocal libraries to be accessed and blended.

Certain additional embodiments associated with the routing of audio information will
now be discussed. Fig. 46 illustrates certain additional embodiments of the present invention.
As shown, player 10 incorporates, as examples (see, e.g., Fig. 32), DSP 42, microprocessor
36, audio coder/decoder 52, audio input/output jack 66, microprocessor busses 37 and 38, bus
interface 39 (alternatively Serial I/O 57), microprocessor RAM (i.e., RAM internal to, or
otherwise under the control of, MP 36), and bus port connector 53. Further, in this set of
examples, the signal(s) going between DSP 42 and hardware codec 52 (digital signal 62)
preferably is a digital signal, and hardware codec 52 is sending/receiving digitized data to/from
DSP 42. The signal(s) going between hardware codec 52 and analog audio I/0 66 are analog
signals.

The present example is an audio device that can preferably generate audio information
(e.g., music) using DSP 42. In certain embodiments the audio information may be encoded in
a proprietary format (i.e., an efficient format that leverages the hardware details of the
portable music device). In certain other embodiments (for example, when the audio device is
capable of storing data and/or connecting to other systems), it may be desirable to generate a
non-proprietary format of the audio information (for example, in addition to a proprietary

format) such that the audio information can be more easily shared (e.g., with other different

102



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

systems) and/or converted to a variety of other formats (e.g., CDROM, etc.). As an example,
one preferable format for the audio information is the MP3 (MPEG Audio Layer 3). As will
be obvious, other formats such as WAV, ASF, MPEG, etc., can also be used.

Fig. 46 illustrates an example of how such an audio device preferably may be
connected to a system to facilitate the sharing of audio information in a streaming format. As
shown, player 10 is connected to system 460 via connector 53 and analog audio I/O 66. As
will be evident to one of ordinary skill in the art, either connection can be used alone or in
combination with the other. In one embodiment, system 460 is a personal computer with an
audio input plug (and associated audio processing circuitry and software) and a USB port (in
certain embodiments USB 39 can be alternatively be a PCMCIA, cardbus, serial, parallel,
IrDA, wireless LAN, etc., interface) In certain embodiments, system 460 preferably can be a
tape recorder, a CD recorder, an MP3 player, etc. System 460 can be any audio capable
device (e.g., with an audio I/O connection and associated capabilities), and optionally may also
include a bus port for connecting to connector 53 of player 10.

Continuing the discussion above in connection with Figs. 32 and 46, in certain
embodiments, the digital signal 62 output from DSP 42 during an audio generation operation
of player 10 preferably can be in the I2S format, and preferably can be routed via additional
signal line(s) to USB I/F 39 (alternatively Serial /0 57). In this example, USB I/F 39
(alternatively Serial 1/0 57) preferably is a bus master that is preferably capable of directly
accepting an input signal from DSP 42 (such as an I2S format signal) and conforming it into
an output data stream on connector 53. In this example, an exemplary device that may
advantageously be used as USB I/F 39 (alternatively Serial I/O 57) is the SL11R USB
controller available from ScanLogic Corporation in Burlington, Massachusetts.

In certain embodiments, digital signal 62 output from DSP 42 during an audio
generation operation of player 10 can preferably be routed via additional signal line(s) to MP
address bus 37 and MP data bus 38. In this example USB I/F 39 (alternatively Serial I/O 57)
can advantageously be a slave USB device such as the SL.811S USB Dual Speed Slave
Controller also available from ScanLogic Corporation. In this example, while certain cost
savings can be realized with the use of a simpler USB I/F 39 (as opposed to a master USB
device such as the SL811R mentioned above), a trade-off is that MP 36 will need to be
capable of controlling the flow of digital signal 62. This is primarily because in this example
MP 36 is the master of MP address bus 37 and MP data bus 38, and will need to perform the

transfer operations involving this bus. In certain cases where MP 36 already has sufficient

103



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

capabilities to perform these added functions, this embodiment may be preferable. As
mentioned above in the previous embodiment, in other cases where price/performance is at a
premium the use of a more capable USB I/F 39 (alternatively Serial I/O 57) part can be used
with little detrimental effect to the available resources on MP address bus 37 and MP data bus
38.

In the examples described above, the audio information output from DSP 42, in the
form of digital data, is sent over the connector 53 for reception by system 460. System 460
must be capable of receiving such digital data via a corresponding bus port (e.g., a USB port,
or alternatively, another port such as, for example, a port compatible with at least one of the
following standards: PCMCIA, cardbus, serial, parallel, IrDA, wireless LAN (e.g., 802.11),
etc.

Such an arrangement will preferably involve the use of a control mechanism (e.g.,
synchronization between the audio playing and capturing) to allow a more user-friendly
experience for the user, while the user is viewing/participating in operations such as
generation/composition of music on player 10, routing of digital audio information from digital
signal 62 to connector 53, receiving and processing of audio information on system 460, and
recording the audio information on system 460. One example of such a control mechanism is
a software/firmware application running on system 460 that responds to user input and
initiates the process with player 10 via connector 53 using control signals-that direct MP 36 to
begin the audio generation process. Alteratively, the user input that initiates the procedure
can be first received on player 10 as long as the control mechanism and/or system 460 are in a
prepared state to participate in the procedure and receive the digital audio information.

In the foregoing discussion, control information preferably flows between player 10
and system 460 over connector 53 (e.g., in addition to digital audio information). Such
control information may not be necessary in order to practice certain aspects of the present
invention, but if used, will provide the end user with a more intuitive experience. For example,
in certain embodiments such an arrangement which incorporates a controllable data link
preferably will not require a connection on analog audio I/0 66 (e.g., an analog audio link
using, for example, an eighth inch stereo phono plug), as digital audio data can be controllably
directed over connector 53 (e.g., in lieu of analog audio information passing over analog audio
1/0 66).

In certain alternative embodiments, e.g., with more processing resources, digital signal

62 output from DSP 42 during an audio generation operation of player 10 can preferably be

104



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

routed to a local memory location on the player 10 (e.g., a removable memory such as via
SMC 40, or a microdrive, RAM, other Flash, etc.). In this fashion, a digital audio stream can
be saved without the use of an external system such as system 460. Possible digital formats
that can be used in such an operation preferably include MP3, WAV, and/or CD audio.

In other embodiments, routing audio information to system 460 (e.g., to enable
sharing, etc.) can be achieved by routing analog signal 64 through analog audio /0 66 to a
corresponding analog audio input (e.g., eighth inch stereo phono input plug) on system 460
(e.g., by use of an existing sound card, etc.). In this case, the alternative signaling
embodiments discussed herein preferably may not required, in that the digital audio
information output from DSP 42 does not need to be routed to connector 53. Such an
embodiment may be advantageous in certain applications, as it may not require either a more
capable MP 36, or a mastering type of USB I/F 39, and accordingly may provide a more cost-
effective solution. Consequently, the present embodiment can easily and efficiently be
incorporated into player 10. In spite of such ease and efficiency, the present approach may be
less desirable in certain respects than the previous embodiments, as the format of the audio
information being passed to system 460 is analog, and thus more susceptible to signal loss
and/or signal interference (e.g., electromagnetic). In any event, this arrangement can
additionally preferably involve control information passing between system 460 and player 10
via connector 53. Such an arrangement can provide the end user with a more intuitive
experience (in the various ways referred to herein) in that the user can initiate the process, and
the synchronization of the process can be achieved transparently to the user via control
information passing between the devices through connector 53.

At this time, we address certain novel embodiments of a file format that is particularly
useful to use in the present embodiment. However, it should be understood by one of ordinary
skill in the field of file formats that the portions of the present disclosure concerning file
formats can be easily utilized in a variety of other contexts than a portable music device.
Accordingly, while at times examples are referenced that may be associated with a music
device, it should be clear that other very similar examples can be readily envisioned that
involve other contexts, such as files used in general computing systems, music files such as
compact disks, files used in other types of portable devices, etc.

The presently described “Slotted” file format involves a collection of independent units
called “slots”. This typically provides some flexibility in the organization of data within a file,

because slots preferably can be added or removed without affecting the other slots, slots of a

105



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

given type preferably can be enlarged or shrunk without affecting the other slots, and the slots
that have an unknown type within a given firmware/operating system (OS) release, or within
the current context, preferably are ignored, which typically helps solve backward compatibility
issues.

Having the same generic file format for all proprietary files typically permits the use of
the same code for verifying the checksum and the consistency of the file data, as well as the
first level parsing (e.g., to access each individual slot).

Referring now to Fig. 47, a Slotted Structure (SLS) preferably is made of a Slotted
Structure Header followed by N Slots, where each Slot preferably contains an item.

Fig. 48 illustrates an exemplary SLS Header structure. The “Header Length” field
contains the length of the Header, and it preferably is used to allow future expansion of the
Header without creating an incompatibility. The “Checksum” field contains the checksum of
the Slotted File. The “SLS Shade” field preferably contains information that allows the exact
File Type of the Slotted File to be determined, e.g., when the file is imported and/or accessed.
The “SLS Type” field preferably indicates what kind of Slotted File this is, e.g., whether the
file is a Song, a Playlist, a Sample Set, etc. The “SLS Version field” preferably is used to
maintain compatibility, e.g., if the event that in the future the format of a particular kind of
Slotted File changes.

The “Data Length” field preferably contains the number of bytes that the Data Length
field of each slot contains. In certain embodiments, this field is used to optimize the size of the
Slotted Files, because certain types of Slotted Files may use a very small Data field or no Data
field at all (e.g., Lists), whereas other types of Slotted Files use a very big Data field (e.g.,
Samples).

The “Num Slots™ field preferably holds the number of Slots (N) in the Slotted
Structure. Decoding the file is easier if the number of slots is readily available. In certain
embodiments, this redundant information is used to verify the consistency of the Slotted
Structure.

The purpose of the checksum is to protect the Slotted Files against read/write errors.
In many embodiments, it is expected that the best protection would be given by a CRC
calculation, but this typically would be slow and complex, and likely is not really required
anyway, because, since read/write errors are very rare, we do not need a protection against
multiple errors. Accordingly, it is expected that a simple checksum calculation is sufficient for

this purpose.

106



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In certain embodiments, e.g., involving a 32-bit processor, the fastest and most
efficient checksum computation typically is to add all the data of a file, dword by dword.
Unfortunately dword by dword computation, as well as word by word computation, can create
alignment problems. In such embodiments, the case where the number of bytes in a file may
not be a multiple of dwords or words preferably can be fixed by adding null padding bytes at
the end of the file for the checksum computation. However, in such embodiments, a more
complex checksum situation is when the file is written in several chunks, unless the size of
each chunk is typically constrained to be a multiple of dwords or words.

An alternative embodiment involves a compromise solution to this issue by forcing all
the fields of Slotted Files to be word aligned. In these alternative embodiments, all the Slots
preferably have an even size, e.g., an integral number of words. In this manner it becomes
relatively easy to compute the checksum word by word. This may not be not as fast as dword
by dword computation, but it is nevertheless typically faster than byte by byte computation. In
certain embodiments where the file is located on a relatively slow medium, such as a flash
memory card, the impact of this issue is not enormous, because by far the biggest contribution
to the checksum computation delay may be the time it takes to read the data.

We refer now to the exemplary Slot Format embodiment illustrated in Fig. 49. The
“Slot Type” field preferably indicates the nature of the contents of the Slot, in the case that
different kinds of slots are used in a given Slotted File. The “Name Length” field preferably
holds the length of the “Name” field in bytes. In certain embodiments, if no “Name” field is
present, Name Length preferably is 0. The “Name” field preferably can hold any character
string up to 65535 characters (e.g., since in this example the “Name Length” field is 2 bytes).
The “Data Length” field preferably holds the length of “Data” field in bytes (again, if no
“Data” field is present, Data Length preferably is 0). The “Data” field preferably holds
information whose meaning depends on the type of Slotted Structure, and/or on the type of
slot within a given type of Slotted Structure,

In certain embodiments, a special type of slot may hold a reference to a file. In such a
“File” slot, the Slot Type preferably is associated with the File Type of the file referenced by
the slot, and the “Name” field preferably contains the name of the file. Thus a File slot may
reference a file independently of the type given by the SLS Type.

Certain types of Slotted Files may contain slots that reference a file in a specific way.
In this case, the Slot Type preferably has a fixed value, which is valid for this type of Slotted
File only. The “Name” field of such a slot preferably contains the name of the file, and the File

107



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Type preferably is given by the context. Continuing this example, the “Data” field of File slots
may advantageously be used to store the File Settings in the File Settings File.

In the present discussion, “Alien slots” (in a given type of Slotted File) are slots whose
type is not recognized by the current firmware and/or operating system release. As an
example, Alien slots may exist if we read a file on Release A that was originally written in
Release B (where Release B is typically more recent than Release A). In certain cases, a
Slotted File created or modified on a computer may add its own types of slots, which the
portable system might regard as alien slots. Typically, it is advantageous for all the Slotted
Files to be able to accept alien slots, no matter where they are placed in the Slotted Structure,
without creating an incompatibility. This arrangement incurs two constraints in the Slotted File
management: alien slots preferably are ignored (e.g., they must have no effect in the current
firmware release), and alien slots preferably are preserved (e.g:, not deleted) when the Slotted
File is modified. This arrangement preferably permits complementary information to be added
to any Slotted File in future firmware/OS releases without creating an incompatibility.
Preferably, older releases will be able to read the Slotted Files created in the new release, and
if an older release modifies such a Slotted File, the information relevant to the new release
preferably will be preserved.

In certain Slotted Files, it is desirable for all the slots to have distinct Slot Type values.
In these cases, the order in which the slots are placed in the Slotted Structure preferably
should not matter because the firmware will scan/load the entire file to find the slots that it is
looking for. In some other types of Slotted Files, the order in which the slots are placed
should matter, as the order preferably can be used to determine how the file operates. As
examples, such an arrangement is desirable in the case with lists, since the items (e.g., Songs
or Samples) can be played/executed/accessed/etc., in the order in which they are located in the
Slotted Structure. Accordingly, in a given implementation, the slot ordering may matter for a
class of slots (for instance the File slots), and may not matter for other classes of slots.

In certain embodiments, for a Slotted Structure of a given type (e.g., as defined by the
SLS Type), certain slots (e.g., as defined by a Slot Type value or a range of Slot Type values)
preferably contain a complete Slotted Structure (e.g., placed in the “Data” field of the slot).
This arrangement is advantageous because it permits nested slot structures.

When reading any Slotted File, it may be advantageous to perform verification at one
or more of the following three points: the type of Slotted Structure must be a known type in

the current Release, the SLS Version must be supported in the current Release, and/or the

108



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Slotted File data must be consistent. The data consistency check preferably consists in
verifying that the size of the file matches the sum of the sizes of the N slots, where N is the
number of slots read in the SLS Header. So as an example, the data consistency check will
detect an error in the number of slots specified in the SLS. In certain embodiments, these
verifications are performed after the file checksum. This verification preferably is not
redundant with file checksum verification, because the latter typically will detect errors in
writing or reading the file, whereas the verification of Slotted Structure consistency typically
will detect things like a change in the format of the Slotted Structure (e.g., an older format
which is not supported in the current firmware/OS release). In certain cases, checksum
verification preferably may be skipped, e.g., if it takes too long for real-time operation. This
might be desirable in the case of relatively large files such as samples, which can be accessed
for real-time playback.

In certain embodiments a Song file preferably may have one or more of the following
four slots: a Song Data Slot, an Instrument Slot (e.g., holding the instrument indexes that may
be stored separately), a Sample Set Slot (e.g., holding any associated Sample set file), and a
Settings Slot (e.g., holding the Song Settings (Volume, Speed and Pitch). In the case where
Samples are stored in a Slotted File, any applicable Sample Settings (e.g., Sample Descriptor,
Normalization factor, Effect index and Effect type) preferably can be stored in the same file as
the Sample data. This feature typically affords great flexibility for ﬁJ.tureAevolutions. In certain
embodiments it may be desirable to store samples as slots in a file.

The “Sample data” preferably designates the data (e.g., PCM data) involved in playing
the Sample. In certain embodiments, all of the Sample data may be stored in the “Data” field
of one slot. In other implementations, Sample files preferably involve additional
complementary information such as, for example, the definition of a custom effect that may
not fit in the Sample Settings slot. This complementary information preferably is stored in a
different slot, e.g., with an associated Slot Type. Another variation (not necessarily mutually
exclusive with the previous one) involves splitting the Sample into smaller chunks that
preferably can be played individually. As one example, such an implementation permits
playing the Sample with a time interval between the chunks (e.g., rather than continuously).

In certain embodiments, Sample files preferably have two slots: a Sample Data slot,
which preferably may hold the Sample data (e.g., PCM data), and a Sample Settings slot,
which preferably holds the Sample Settings (e.g., Sample Descriptor, Normalization factor,
Effect, etc.). It is further desirable to allow alien slots to be accepted in a sample file (e.g.,

109



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

ignored if not recognized by the firmware/OS). As an example, this could be used to contain
comments or other data associated with the sample file data.

Ideally, the order in which the slots are placed in the Sample file should not matter.
However, Sample files have special constraints because they are big, as explained in “Sample
File evolution” above. If we place the Sample Settings slot after the Sample Data slot, then in
certain situations (such as, for example, a heavily fragmented cluster allocation) the time to
load the sample settings information may be undesirably long. For example, in the case of
fragmentation, typically it is not easy to calculate the address of the end of the sample file
where the settings may be stored (i.e. the “Data” field of the Sample Settings slot). To
address this issue, in certain embodiments the area to be modified is always located in the
primary VSB (Variable Size Block in dynamic memory allocation) of the Sample file. This may
be achieved by making the Sample Settings slot the first slot in the Sample file, based on the
fact that the length of this slot is small enough in comparison with the size of a cluster.

In certain embodiments that involve a List File, (e.g., in cases where each slot may
identify an item or action, and the order of the slots affects the order of play and/or execution),
it is advantageous for the last slot to be a “Terminating Instruction slot”, which tells what
happens after executing the last item. As examples, such a slot might indicate “stop playing™
or “loop to beginning” to keep on playing until there is a manual intervention. In certain of
these embodiments, the order in which the File slots are placed in the List File preferably
determines the order in which items of the List (e.g. Samples or Songs) are executed and/or
played (e.g., even if a terminating instruction slot is not incorporated). On the other hand, if
used, the Terminating Instruction slot typically can be placed anywhere in the S List File.

Following the above examples, a List File may hold references to one or more files that
are no longer available. Each reference (e.g., held by a File slot) to a File that does not longer
exist can be considered a “lost item”. When a List File is modified, lost item slots, unlike alien
slots, preferably are deleted.

In certain embodiments that involve a list of items such as radio station presets, the
presets of the radio stations preferably are stored in a dedicated List File. As an example, each
slot of such a Radio List File preferably holds the name and frequency of a preset. In this
example it preferably is possible to add more fields, e.g., within the “Data” field, without
creating an incompatibility.

In certain embodiments that involve graphic files, it is desirable for graphics to be

stored in a Graphics file. The Slotted File format presently discussed preferably permits several

110



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

images/graphics to be stored, e.g., each with different attributes. This arrangement permits
various still images (e.g., for multiple GUI display screens on a portable device) to be located
in one file. In certain cases this arrangement can also be used to store animations, e.g., data
associated with successive frames of the animation preferably can be located in individual
slots, and the ordering of the slots preferably can be used to determine the ordering of
successive frames of the animation.

Musical generation systems that generate music according to musical rules are typically
fully aware of a specific musical mode, as well as a set time signature. The musical
rules/algorithms that generate audio information typically are organized to operate around
particular musical modes and time signatures so that the resulting output is musically
compelling. As such, at any point in time during the generation or playback of a generatively
created musical piece, there are defined variables that track the mode (e.g., a set of pitches
that are compatible at any point in time) as well as the time signature (e.g., the beat and/or
groove of the music, including the appropriate locations for accents, drum fills, etc.).

In addition, a final musical output is often favorably augmented with the use of
selected samples that are played back in response to user-input or as part of the musical rules.
As an example, a short sample of a female voice singing a simple melody may be favorably
added to a particular hip-hop style song at certain key moments. Such an example illustrates
how pre-recorded sounds can be utilized by a musical generator/playback system or algorithm
to enhance the musical output.

The use of a sample format that is non-proprietary is also very desirable, as it enables
an end user to easily share and/or generate samples of other sounds, possibly using other
means, and include them in a generatively created musical piece. Such an arrangement allows
a high degree of creativity and musical involvement on the part of the end user; even in cases
where the end user has no musical background or experience. In fact, it is one of the aims of
the present disclosure to effectively provide such a novice end user with a compelling
experience in musical creativity.

Additionally, certain preferable embodiments of a musical system enable the use of
signal processing on the samples used. This approach allows, for example, the user to easily
adjust the pitch or speed of a sample with the use of certain DSP functionality in a preferred
type of system. As one example, the Dream DSP chip available from Atmel Corporation, data
sheets and application/user manuals for which are hereby incorporated by reference, allows

samples to be adjusted along various lines, including pitch, speed, etc., as well as the

111



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

application of various preferred sound effects, such as doppler, warbler, echo, etc. These
aspects and features are described in greater detail herein.

One problematic aspect in the generative creation of audio content is that the playback
of the sample during a section of music can sometimes sound out of sync with the music in
terms of pitch or thythm. This generally is a result of the lack of a default synchronization
between the sample and the music at a particular point in time. One way around this is to use
samples that do not have a clear pitch or melody, e.g., a talking voice, or a sound effect.
However, as the use of melodic samples, especially at higher registers, is desirable in many
styles of music, it is desirable in certain cases to have the capability for associating pitch and/or
periodicity information (embedded or otherwise) into a sample. Such information can then be
interpreted by the musical rules and/or algorithm of the music device to enable a
synchronization of the sample to the particular pitch, melody, and/or periodic characteristics of
the musical piece. A particular example of such an arrangement in accordance with certain
preferred embodiments will now be described.

Fig. 50 depicts an example of sample data structure 540 utilized in accordance with
one preferred embodiment of the present invention. As illustrated, sample data structure 540
includes sample data field 535 and optional header field 530. In the illustration of Fig. 50,
sample data field 535 contains sound sample data 510, and header field 530 contains tag ID
525, period information 520 and pitch information 515.

Preferably, tag ID 525 is used to identify optional header 530 to a compatible system,
and may be used to provide backwards compatibility in a non-compatible system. The
backward compatibility is achieved, for example, by providing a pointer to the start of sound
sample data 510, in such a way that a legacy system reading the sample will read sound sample
data 510 and disregard period info 520 or pitch info 515 (as examples). In certain
embodiments, this preferably may be achieved via the slotted file format described herein. In
certain additional embodiments, this preferably is achieved in a manner similar to the way in
which mixed mode CDROMs are encoded to work on both native-Apple and native-IBM-
compatible personal computer CDROM drives, in effect by providing a pointer at the
beginning of the volume that transparently causes each system to skip to the correct portion of
the volume. Such a technique fools the legacy system into believing that the volume (or file) is
actually a legacy-formatted volume. So, while benefits of the present invention may be utilized
when the sample data file is provided with period info 520 and/or pitch info 515 in header field
530 in a system that can benefit from the additional data in header field 530, the same sample

112



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

data file can also be used to provide sample data in systems that cannot benefit from the
additional data in the header field. Preferably, in the latter case the file will appear to the
system as providing only sound sample data 510.

Pitch information 515 preferably contains parameter data indicating a pitch associated
with the sample, preferably given a native periodic rate. This parameter data could indicate,
for example, that if the sample is played at a normal, unadjusted rate, a pitch value is
associated with it corresponding to C#. This preferably would indicate to the music rules
and/or algorithms involved in the music generation process that the associated sound sample
data should be treated as a C# note. In other words, if a C# note is deemed compatible, the
sound sample preferably may be played without any pitch adjustment. One benefit to this
arrangement is that in the event that C# is not deemed compatible, the sound sample data
preferably can be pitch-transposed up or down to an appropriate pitch value. Since the
algorithm/music rules will know the pitch info for a native playback speed, they can calculate
an adjustment to pitch, and preferably use DSP resources and functionality (such as discussed
herein with respect to the Dream chip) to adjust the perceived pitch of the sample during
playback. Thus, sample pitch preferably will generally conform to an appropriate pitch, given
the current mode (as one example).

Period information 520 preferably contains period-related parameter data. This data
preferably identifies a timing characteristic of associated sound sample data. For example, if
the sound sample has a rhythmic emphasis point 75 milliseconds from the start, this parameter
preferably might indicate this. In this example, the period portion of the header will inform the
music rules/algorithm generating a musical piece that this particular sound sample has a
rhythmic emphasis point 75 milliseconds into it, when played at native speed. Accordingly, the
music rule/algorithm preferably will know the rhythmic emphasis point of the sample when it is
loaded into memory, and when the end user plays the sample during a song, the music
rules/algorithm preferably can time-adjust the sample such that the rhythmic emphasis point
occurs at a suitable point in the music (e.g., a downbeat). This time-adjustment preferably can
be made using, as an example, DSP resources and functionality as discussed herein. The
Period information 520 preferably can be conveyed in the form of beats per minute (BPM)
information, e.g., in cases where the sample has an identifiable tempo.

As can be appreciated, such embodiments of the present invention can provide the
music playing system with a way to improve the musical experience of the end user. Such an

arrangement can preferably be employed in a hardware system, e.g., a handheld portable

113



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

device, or a software system, e.g., a software musical system running on a personal computer.
Samples preferably can thus be played during a song by an end user, with relatively little ill
effects due to pitch or time incompatibilities.

Fig. 51 illustrates a simplified example of an amplitude waveform associated with a
sample sound file. In the illustrated example, there are three general points of increased
rthythmic activity (e.g., a sharp temporary increase in amplitude) labeled T1, T2 and T3. A
sample data file preferably can be processed via software to identify such areas of increased
amplitude. Assume for example that the waveform depicted in Fig. 51 is 290ms in duration.
For purposes of example, if an analysis tool has a grid resolution of 10ms (indicated in the
figure with the vertical grid lines), then the analysis tool will scan the file to look for the
thythmic events (e.g., brief moments of relatively high amplitude). In one preferred example,
the tool will identify the grid point immediately preceding a rhythmic event and preferably
capture that information for inclusion into the data in optional header field 530. Further
discussion of the analysis process can be found below, with reference to Fig. 54.

As illustrated in Fig. 51, the example sample has approximately 3 significant rthythmic
events that are spaced out in a non-equidistant distribution. Of course, this example
distribution is based on the somewhat arbitrary example of a grid resolution of 10ms, and a
sample duration of 290ms. Given this grid resolution, this example illustrates an example
where 4 rhythmic subparts (e.g., the parts beginning at TO, T1, T2, and T3) are not equal in
duration. In this particular example, the first thythmic subpart has a time stamp TO of 0 ms
and a pitch value PO of G. The second rhythmic subpart has a timestamp T1 of 50ms and a
pitch value P1 of F#. The third rhythmic subpart has a timestamp T2 of 110ms and an
undefined pitch value. The fourth rhythmic subpart T3 has a timestamp of 200ms and a pitch
value of G#.

In this example, we assume for the sake of clarity that the musical mode is Lydian
Descending at the point in a song wherein the sample is played.

Accordingly, the first thythmic subpart identified as TO:PO has a pitch value that is
allowable in the Lydian Descending Mode. Therefore, preferably this section of the sample is
not pitch-shifted. Similarly, as the rhythmic event of the start of the sample is preferably
initiated by the end user, the time TO is not adjusted.

Continuing this example, the second subpart identified as T1:P1 has a pitch value of
F#, which is allowable in the Lydian Descending mode, and is therefore preferably not pitch-
shifted. The rhythmic event T1 is associated with 50ms, and accordingly this can be time-

114



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

shifted to more closely match the tempo of the music (e.g., it can be slightly slowed down or
speeded up so as to coincide with the thythmic grid/resolution of the music being created). If
the section of the song has a tempo wherein, as an example, an eighth note has a duration of
60ms, then the start of T1:P1 preferably could be adjusted to occur in time with the beginning
of an eighth note, and/or the duration of T1:P1 preferably could be slightly lengthened so as to
occupy 60ms, in keeping with the time signature of the music. Of course, these examples
constitute various options that may not necessarily be used in order to practice the present
invention.

The third subpart T2:P2 would begin at 110ms, if the preceding subparts had been
played at normal speed. As our example has the previous subpart being lengthened by 10ms,
preferably to be in synch with our tempo, the T2:P2 subpart begins at 120ms. Accordingly, in
our example of a 60ms eighth note, the beginning of subpart T2:P2 preferably will occur in
synch with the tempo, and as it has a duration of 90ms, it preferably could be time-stretched
50% for a duration of 120ms (in keeping with our 69ms eighth note), be time-reduced to
60ms, or remain at 90ms (e.g., depending on the particular magic rules/algorithms in place for
the style of music being played). As this subpart does not have an associated pitch value, it
preferably is not pitch-adjusted.

The last subpart T3:P3 in Fig. 2 has an associated pitch value of G#. Assuming our
current mode is Lydian Descending, wherein preferably a G# note encountered during the
music generation flow would be replaced with a G, this section of the sample preferably might
be pitch-adjusted so as to lower the associated pitch to a G. The starting point and duration
could be addressed as described herein in keeping with the style of music and/or the time
signature, groove, etc.

The information identifying the Pitch and Periodicity associated with a sample can be
contiguously arranged, as illustrated in Fig. 50. This information can also be arranged in
alternating subfields of header field 590, as illustrated in Fig. 52. In the case of Fig. 52, where
three sets of period/pitch information are illustrated, the Tag ID 585 preferably may contain
information setting forth the number of header subfields/parameters to follow before the sound
sample data 550 in sample data field 595. In the example of Fig. 52, this arrangement
preferably indicates to the system during processing that sound sample data 550 has three
associated period/pitch subparts, identified as Period Info 580 and Pitch Info 575, Period Info
570 and Pitch Info 565, and Period Info 560 and Pitch Info 555.

115



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

In certain preferred embodiments of the present invention, note that the Pitch and
Periodicity info does not have to be in a header field portion of a sample file, but alternatively
could be in separate descriptor file (e.g., a general sample list file for multiple samples or a
single second file for each sample with the same name, different suffix, etc.). One example of
this is shown in Fig. 53, wherein Separate Descriptor File 615 preferably contains information
associated with Native Format Sample Files 616 (e.g., name, pitch, period and other
information). One advantage of this approach is that the sample files remain in a native format
(e.g., MP3, WAV, etc.), so they do not have additional pitch and/or period information added
into a header portion as discussed herein. Such an approach improves cross-platform
compatibility while still enabling certain of the benefits of the present invention to be realized.

Fig. 54 illustrates an exemplary process flow for a method to create the descriptor
information associated with a sample file. Such a process may occur in real time during music
generation, assuming that the processing resources of the system are sufficient. Alternatively,
the process illustrated in Fig. 54 may prefera,bly occur in advance for systems (e.g., portable)
that do not have sufficient processing capabilities for real time sample characteristic
processing. In addition, the steps illustrated in Fig. 54 préferably may be performed on a
personal computing system where computing resources are relatively plentiful. In this
variation, the sample descriptors preferably can be transferred to a portable system that
actually plays the music. Consequently, although the analysis features described in Fig. 54
may be suitably perforimed by a relatively powerful computing system, the benefits of such an
analysis preferably can be realized on a portable system such as in the context of the previously
referenced and incorporated patent applications.

Fig. 54 begins with the access and/or load of a sample (step 650). Depending on
where the sample is located in memory, the computing system may simply access it (e.g., from
RAM) or load it (e.g., from Flash or Microdrive or smart media, etc., into RAM). Step 651
involves the analysis of the sample to derive rhythmic characteristics. Step 651 is preferably
performed before the pitch analysis of step 652, in that it may be useful to associate the
subsequent pitch characteristics in terms of rhythmic timing information. In alternative
embodiments, however, this order may be modified; as will be appreciated by those of skill in
the art, the steps do not have to be performed in this particular order to realize certain of the
benefits of the present invention. Step 653 preferably involves the preparation (e.g.,
consolidation) of derived pitch and/or rhythmic characteristics into a data format. Step 654

preferably involves the assembly of such a characteristic data format into a file (e.g., into a

116



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

separate descriptor file or as a header portion of the sample data file, such as previously
described).

Fig. 55 illustrates an exemplary process flow for the playback of a sample in the
accordance with preferred embodiments of the present discussion. As an example, this
playback process flow can be used by a portable and/or software-based music device that is
playing a given sampie during the creation/playback of a musical composition or song. As
discussed in great detail elsewhere in this disclosure, in the present example, while the music
device may be a portable hardware system or a software plug-in on a personal computer, it
preferably has music algorithms that track the current musical mode and/or tempo. Examples
of how this information is tracked and used during music play is described in detail elsewhere
herein; for the present discussion it is enough to point out that this music mode/tempo
information is preferably available during sample playback.

Upon accessing and/or loading the sample file (step 660), Fig. 55 illustrates
determining whether there are associated descriptors for the sample file (step 662). Ifnot,
then the sample can be played as is (steps 670 and 672) during the music creation/playback.
If, however, sample file descriptor information is found to be associated with a given sample
file (e.g., determination of ‘yes’ at step 662), then it preferably is accessed (step 664) and
processed relative (e.g., compared) to the current global pitch and/or thythmic information of
the music being played (step 666) (e.g., refer to the discussion of Fig. 51 herein). After
comparison or processing relative to the current global pitch and/or rhythmic information, a
set of DSP-function operations preferably is prepared (step 668) to control the speed and/or
pitch of the sample to more closely or desirably conform it to the global pitch and/or thythmic
information. Preferably, this set of operations is subsequently used when the sample is actually
played (steps 670 and 672), with the end result preferably being that the pitch and/or rthythm
of a sample is generally conformal to the music being played, preferably with a minimum of
user action involved therein. As will be appreciated, at step 670 a determination is made of
the appropriate time to play the sample, and at step 672 the sample is actually played, which
may be with DSP operations to control speed and/or pitch based on global information, such
as has been previously described.

Accordingly, as discussed in detail herein, in the case of a sample for which a series of
pitches and rhythmic events have been detected, such events can be time-adjusted and/or
pitch-adjusted so as to more closely match the music being generated. This is done using the

digital signal processing resources or functions of the system, e.g., through the execution of

117



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

DSP instructions to carry out DSP-type operations. As will be appreciated, the present
invention may be applied in a simpler way, such as by assigning only a single pitch value
and/or rhythmic event to a sample, as opposed to a series.

Previously herein, e.g., particularly in connection with Figs. 39-42 and related
description, a discussion is provided of the efficient synchronization of MIDI events with
audio samples and effects, and hardware for carrying out the same, including the use of MIDI
NRPN messages to achieve such synchronization. Preferred embodiments of the present
invention are used in combination with such synchronization of MIDI events and audio
samples and effects.

Preferred embodiments of the present invention provide a portable automatic music
generation device, which may be implemented such as disclosed herein. In accordance with
the present invention, however, it should be noted that a wireless capability, such as that used
in a cell phone, a personal data assistant, etc., may easily be incorporated into the example
architectures of the previously described portable automatic music generation device. As one
example, a USB communication interface of the previous disclosure preferably could be
substituted with a communication interface connecting to the data reception and/or broadcast
circuitry of a preferably RF-amplifier-based cellular communication module. Other data
interface arrangements can be effectuated while still achieving the benefits of the present
invention. Similarly, the portable device may be part of an automobile-based system (e.g.,
radio or communications system), or even part of a home-based music system (e.g., for
purposes of compatibility with bandwidth-poor portable technology). All such implementation
examples are within the scope of the present invention.

Fig. 56 illustrates a broadcast arrangement in accordance with preferred embodiments,
wherein Transmitter 710 is broadcasting Broadcast Music Data File 715, preferably as part of
a larger broadcast program (which preferably consists of multiple styles/categories of music or
other content, etc.). As shown in Fig. 56, Node Music Generator Device 720 preferably
receives Broadcast Music Data File 715 and begins to generate music therefrom. It should be
noted that Node Music Generator Device 720, in accordance with such embodiments, may
receive Music Data File 715 and begin automatically composing music based on the received
Music Data File 715, or the music generation may begin after receipt of user input, such as a
key, button or switch depression or activation, and alternatively the music generation may

being after modification of the user of received Music Data File 715.

118



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

Fig. 56 also illustrates an alternative embodiment in which a Node-authored Music
Data File 725 is uploaded from Node Music Generator Device 720 to Transmitter 710. Node-
authored Music Data File 725, for example, could be a music data file that was automatically
composed by Node Music Generator Device 720, which may have been modified by the user
of such Node, or may be a music data file that was previously received by such Node, which
may have been thereafter modified by the user of such Node, etc. It should be understood
that, while the example of Fig. 56 describes the Node-authored file being sent to the
Transmitter 710, in accordance with alternative embodiments Music Data File 725 is sent to
another similar Node, which preferably also is associated with Transmitter 710, or in yet other
alternative embodiments is sent to another Node directly. For example, the Node-authored
Music Data File 725 can be sent to a receiver associated with a broadcasting service that is
directing the broadcasting of Broadcast Music Data File 715. This “upload” function
preferably enables a node subscriber unit to author music and forward it up to the broadcast
system, where it may be incorporated into the broadcast. As can be appreciated, this approach
preferably enables user participation in the actual music being broadcast, and can allow sharing
of music between nodes. This approach also preferably enables easy sharing of music content
between nodes directly (e.g., not involving general broadcast from a Transmitter 710).

Fig. 57 illustrates selection of a Radio Style within a Node/Subscriber Unit Radio. As
illustrated, the Node Subscriber Unit preferably includes an Antenna 755 for
receiving/transmitting information. Preferably, such a Node Subscriber Unit also will
incorporate one or more of the following: Speaker 760, Audio Input 765, Audio Output 770,
Display 775, User Interface 780, and Microphone 785. As illustrated, Display 775 preferably
can be used to provide a user with a radio style selection view. Such a view preferably allows
the user to easily select between a plurality of radio stations and/or music styles. Preferably,
after selecting a station and/or style, the broadcast/reception activities (e.g., as described
herein in connection with Fig. 56) can take place, preferably with the user-selected
station/style corresponding to the style of music data file to be received.

Fig. 58 illustrates an example of certain functional blocks associated with a preferred
embodiment of a Node Subscriber Unit of the present invention. Node Subscriber Unit 860
preferably includes Antenna 800, Transmission/Reception Circuit 805, Telephone/PDA Unit
810, Communication Interface 815, and Display 820. Additionally, it preferably includes a
Music Generator 825, which itself preferably includes Music Algorithm Block 830, DSP Block
835, and Memory 840. Such an exemplary Node Subscriber Unit also preferably contains one

119



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

or more of the following: Audio Input 840, Microphone 845, Audio Output 850, and Speaker
855.

Novel aspects of embodiments of the present invention include the usage of a
particularly efficient music distribution and generation system. Unlike various FM Radio
broadcast systems, or Internet streaming systems in conventional approaches, the present
invention utilizes music that preferably can be generated by the Node, and preferably not by
the Transmitter. The Node receives a data file that contains, in essence, data or instructions
that define a song to be generated, and may be used by the hardware/software of the Node in
order to generate a song (the data or instructions, however, may include some sub-
components of the song that are akin to prior art broadcasting/streaming systems, such as
samples). Examples of such information, data or instructions are discussed below with
reference to Figs. 59 and 60. Generally, in accordance with preferred embodiments, the
instructions comprise data that can be sent, for example, in text form or some other similarly
format (i.e., that consume relatively very little bandwidth, particularly as compared with
conventional streaming audio-type approaches). In the examples discussed below, it is
contemplated that the size of the Broadcast Music Data File (measured here in bits of data)
may preferably be, for example, approximately 200 kilobits for a 3 minute song.

Fig. 59 illustrates various exemplary parameters that preferably can be incorporated
into a broadcast music data file.

‘ Application Revision® is preferably used to store the firmware/application version used
to generate the data structure. This is particularly helpful in cases where the firmware is
upgradeable.

‘Style/SubStyle’ preferably is used to indicate the Style and/or SubStyle of music. This
is helpful when initializing various variables and routines, to preferably alert the system that
the rules associated with a particular Style and/or SubStyle will govern the song generation
process. In certain preferred embodiments, Style and/or SubStyle can refer to a radio station
style of music, such as ‘Hard Rock’, ‘Ambient’, ‘Easy Listening’, etc. In certain cases, for
example as discussed below, the radio station style may be user-selectable prior to the
reception of the music data file.

‘Sound Bank/Synth Type’ preferably indicates the particular sound(s) that will be used
in the generation of the song. As an example, this can be a way to preload the sound settings
for a MIDI DSP resource.

120



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

‘Sample Frequency’ preferably is a setting that can be used to indicate how often
samples will be played, if samples are incorporated into the song. Alternatively, this preferably
can indicate the rate at which the sample is decoded, which provides a technique useful for
adjusting the frequency of sample playback.

‘Sample List’ preferably lists all of the samples that are associated with the data
structure, This list preferably allows a user to further select and play relevant samples during
song playback.

‘Key’ preferably is used to indicate the first key used in the song. Preferably, one way
to indicate this is with a pitch offset.

“Tempo’ preferably is used to indicate the start tempo of the song. Preferably, one
way to indicate this is with beats per minute (BPM) information.

‘Instrument’ preferably is data that identifies a particular instrument in a group of
instruments. For example, this could reference an acoustic nylon string guitar among a group
of all guitar sounds. This data is preferably indexed by instrument type.

‘State’ preferably is data that indicates the state of a particular instrument. Examples

* of states are: muted, un-muted, normal, Forced play, solo, etc.

‘Parameter’ preferably is data that indicates values for various instrument parameters,
such as volume, pan, timbre, etc.

‘PRNG Seed Values’ preferably is a series of numerical values that are used to
initialize the pseudo-random number generation (PRNG) routines (such PRNG Seed Values
are used in certain embodiments, but not in other embodiments; the present invention is not
limited to the use of such PRNG Seed Values). These values preferably represent a
particularly efficient method for storing the song by taking advantage of the inherently
predictable nature of PRNG to enable the recreation of the entire song.

‘Song Structure’ preferably is data that preferably lists the number of instrument types
in the song, as well as the number and sequence of the parts in the song.

‘Structure’ preferably is data that is indexed by part that preferably can include the
number and sequence of the sub-parts within that part.

‘Filtered Track® preferably is a parameter that preferably can be used to hold data
describing the characteristics of an effect. For example, it preferably can indicate a modulation
type of effect with a square wave and a particular initial value. As the effect preferably is
typically connected with a particular part, this parameter may preferably be indexed by part.

121



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

‘Progression’ preferably is characteristic information for each sub-part. This might
include a time signature, number and sequence of SEQs, list of instrument types that may be
masked, etc.

‘Chord’ preferably contains data corresponding to musical changes during a sub-part.
Chord vector (e.g., +2, -1, etc.), key note (e.g., F), and progression mode (e.g., dorian
ascending) data preferably are stored along with a time stamp.

‘Pattern’ and the sub-parameters ‘Combination’, ‘FX Pattern’, and ‘Blocks’, all
preferably contain the actual block data and effects information for each of the mstruments
that are used in the song. This data is preferably indexed by the type of instrument.

Additional parameters can preferably be included, for example to enable at least some
of the soundbank data associated with a particular song to be embedded. Following this
example, when such a broadcast music data file is accessed, at least some of the sound bank
data preferably is loaded into non-volatile memory such that the sound bank data may be used
during the generation of music output.

Additionally, many of these parameters preferably can incorporate data with associated
timestamps. This optional feature can preferably be used to indicate the timing of each event,
etc.

Through the use of such exemplary parameters in a broadcast song data structure, data
from which a song can be generated preferably can be efficiently broadcast to a number of
node music generator devices. Though the specific parameter types preferably can be varied,
the use of such parameters preferably enables all the details necessary to accurately and
faithfully regenerate a song from scratch at a node.

Fig. 60 depicts a logical flow chart for a preferable general architecture that could be
used by each node music generator device in combination with the broadcast song data file to
practice the present invention. This flow chart illustrates the big picture for a preferable
software/firmware implementation, and provides in more detail an exemplary process flow for
the song generation process.

At the start of Fig. 60 (start point 862), parameter data preferably is loaded from the
broadcast song data structure after it is received by a subscriber unit (block 864). Once at
least some parameter values preferably are determined/loaded, the music for a given song part
preferably begins to be generated (block 866), and the user interface (e.g., display, video
output, force-feedback, etc.) preferably can be updated accordingly (block 868). Preferably,

at any point in this process, if a user input is detected (decision block 872) (other than a ‘save’

122



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

command), such as a change of instrument or effect, the relevant parameter data for the part
of the song currently being changed by the user preferably is updated (block 876) and the
generation of the music for the given part preferably continues. If a user input ‘save’
command is detected (decision block 874), all parameter data preferably can be saved to a
non-temporary storage location, such as Flash memory, a hard drive, or some other writeable
memory storage location that affords some degree of permanence (block 870). This
arrangement is desirable because it preferably allows a user to listen to most of a song before
electing to save it inits entirety. As long as there is no user input, the generation of music for
a given song part preferably continues until the end of song part is detected (decision block
878), at which time the flow preferably proceeds to the next song part (block 884). At this
time, if necessary, the relevant parameter data for the next song part preferably are
determined/loaded. Eventually, when an end-of-song condition preferably is detected
(decision block 880), the song ends (block 882).

Fig. 61 describes exemplary Telecommunication Industry Association (TIA) standards
that can be applied to certain embodiments of the present invention. Given the broad range of
message and/or other data services options available in the present cellular industry, the music
distribution concepts described herein can be implemented using a variety of different means.
There are several available architectures that can be used to distribute music data files in
accordance with the present disclosure; as examples, time division multiple access (TDMA),
Global System for Mobile Communications (GSM), and code division multiple access
(CDMA). Figure 61 references certain standards that contain further details on preferable
implementations of data distribution in a cellular context, and therefore are each hereby
incorporated by reference in their entirety. Clearly this is not to be considered an exhaustive
listing; rather it is intended to simply give some illustrative preferred examples of relevant
published standards.

Fig. 62 provides as an example certain excerpts from one such exemplary standard:
TIA/EIA IS-637 “Short Message Service for Wideband Spread Spectrum Cellular System.”
As indicated in Fig. 62, a SMS Broadcast Message has been defined that allows optional
Bearer Data. Following this example, Bearer Data can preferably include Subparameter Data
of variable length (e.g., as described in connection with SUBPARAM_LEN). This example of
an SMS Broadcast Message may preferably be used to practice certain aspects of the present
invention (e.g., the means to transmit Broadcast Music Data File 715 as illustrated in Fig. 56).

Additionally, there are other similarly defined messages defined in the 1S-637 standard that

123



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

may preferably be used in association with Node-authored Music Data File 725 illustrated in
Fig. 56. As one example, see the “Data Burst Message” described in TIA/EIA IS-95-A.
Clearly, other standards alternatively can be adopted while achieving certain of the benefits of
the present invention. Similarly, other types of data transactions identified in the
aforementioned telecommunications standards may be substituted for the particular exemplary
embodiments mentioned herein without departing from the spirit and scope of the present
invention.

In yet another alternative embodiment, referring back to Fig. 57, many benefits of the
present invention can be advantageously incorporated into a clock or clock radio device. As
shown in Fig. 57, a clock radio has a display (e.g., display 775) that can display a graphical
interface for a clock radio user. In one example, the display also is used for indicating the
time, as well as alarm settings. The user input interface 780 can similarly be used to afford a
clock radio ‘user with a means to input time and/or alarm information. In certain examples,
speaker 760 plays the clock alarm at the desired time. Many aspects of the preferred
embodiments discussed herein can be used in an alarm clock that preferably will allow a user
to wake up each morning to a completely new musical piece. In certain embodiments, the
style of music can be selected by the user (e.g., via user input interface 780 and display 775).

In certain embodiments, characteristics of the music output can be adjusted during the
alarm operation. As an example, the style of music may progressively change from a quiet,
relaxing ambiance to a more energetic and loud style of music. Preferably this progression
occurs each time the user presses a snooze button (e.g., via user input interface 780) or at
predetermined intervals of time (which may be without further user action). In this manner the
alarm clock can first wake the user with a relaxing quiet and/or simple piece, and progressively
become more lively the longer the user chooses to remain in bed (e.g., by continuing to press
the snooze button, or alternatively, by simply remaining in bed without turning off the alarm).

In certain alarm clock embodiments it is preferable to similarly progressively adjust the
music from a soothing chord progression to a more dissonant one. As an example, referring
to Fig. 19, the alarm clock music could begin with a major chord and become more dissonant,
e.g., a minor chord, the longer the alarm continues to sound.

In certain alarm clock embodiments it is preferable to start with music with a relative lower
mobility of note pitch (e.g., see Fig. 23), and progressively increase the relative mobility of
note pitch the longer the user remains in bed. In another example, the rhythmic density
preferably will progress from a relatively low thythmic density (e.g., see Fig. 22) to a relatively

124



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

high rhythmic density. Preferably, certain of these embodiments will wake a user up with a
soothing musical piece and progressively become more energetic, complex, and/or dissonant
the longer the user remains in bed.

In yet another alternative embodiment, referring back to Fig. 57, the use of User
Interface 780 (e.g., a typical portable phone numeric keypad, with letters overlaying certain
numbers) enables the user to input a name (e.g., his/her name or that of a loved one, or some
other word) into the automatic music generation system. In an exemplary alternative
embodiment, the typed name is used to initial the autocomposition process in a deterministic
manner, such that a unique song determined by the key entry is automatically composed based
on the key entry of the name. In accordance with certain disclosed embodiments disclosed
herein, for example, the characters of the name are used in an algorithm to produce initial
seeds, musical data or entry into a pseudo random number generation process (PRNG) or the
like, etc., whereby initial data to initiate the autocomposition process are determined based on
the entry of the name. As one example, add the ASCII representation of each entered
character, perhaps apply some math to the number, and use the resulting number as an entry
into a PRNG process, etc. Continuing this example, each letter could have a numeric value as
used on a typical numeric keypad (e.g., the letters ‘abc’ corresponds to the number ‘2, ‘def’
to 3, etc.,) and the numbers could be processed mathematically to result in an appropriate
entry to a PRNG process. This latter example may be particularly advantageous in situations
where certain of the presently disclosed embodiments are incorporated into a portable
telephone, or similar portable product (such as a personal digital assistant or a pager) where a
keypad interface is supported.

As the process preferably is deterministic, every entry of the name would produce the
same unique or “signature” song for the particular person, at least for the same release or
version of the music generation system. While the autocomposition process in alternative
embodiments could be based in part on the time or timing of entry of the letters of the name,
and thus injecting user time-randomness into the name entry process (such human interaction
randomness also is discussed in the referenced and incorporated patent documents) and in
essence a unique song generation for each name entry, in preferred alternate embodiments the
deterministic, non-random method is used, as it is believed that a substantial number of users
prefer having a specific song as “their song” based on their name or some other word that has
significance to them (a user may enter his/her name/word in a different form, such as

backwards, upside down using numbers, no capital letters, use nick names, etc. to provide a

125



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

plurality of songs that may be associated with that user’s name in some form, or use the
numbers corresponding to a series of letters as discussed herein in connection with a numeric
keypad interface). As will be appreciated by those of skill in the art, this concept also is
applicable to style selection of music to be autocomposed (as described in the referenced and
incorporated patent documents; the style could be part of the random selection process based
on the user entry, or the style could be selected, etc.). For example, for each style or substyle
of music supported by the particular music generation system, a unique song for each style or
substyle could be created based on entry of the user’s name (or other word), either
deterministically or based, for example, on timing or other randomness of user entry of the
characters or the like, with the user selecting the style, etc.

As will be appreciated, the concept of name entry to initiate the autocomposition
process in Node/Subscriber Unit Music Generator Device 720 is not limited to names, could
be extended to other alphanumeric, graphic or other data input (a birthdate, words, random
typed characters, etc.). With respect to embodiments using a touchscreen, for example, other
input, such as drawn lines, figures, random lines, graphic, dots, etc., could be used to initiate
the autocomposition process, either deterministically or based on timing of user entry or the
like. What is important is that user entry such as keyboard entry of alphanumeric
characteristics or other data entry such as drawing lines via the touchscreen (i.e., e.g., data
entry that is generally not musical in nature), can be used to initiate the composition of music
uniquely associated with the data entry events. Thus, unique music compositions may be
created based on non-musical data entry, enabling a non-musically inclined person to create
unique music based on non-musical data entry. Based on such non-musical data input, the
music generation process picks seeds or other music generation initiation data and begins the
autocomposition process. As will be appreciated, particularly with respect to entered
alphanumeric data entry, such characters also could be stored (either alone or with music
generation initiation data associated with the data entry), could be transmitted to another
music generation system (e.g., via Transmitter 710), whereby the transmission of the non-
musical data is used to, in effect, transmit a unique song to another user/system, with the
transmission constituting only a small number of bytes of data to transmit information
determining the song to be created by the music generation system.

Additionally, many aspects of the present invention are useful to enable a new concept
in Firmware upgrades. Using aspects of the present invention, firmware updates can be made

available to users, complete with embedded advertising, which provides the Firmware

126



10

15

20

WO 2004/064036 PCT/US2003/025813

manufactures/distributors with a revenue source other than the user. This concept preferably
involves the distribution of firmware (or other software-based programs such as sound bank
data) upgrades that contain embedded advertising images (and/or sounds). Such
images/sounds preferably can temporarily appear during the operation of the music product,
and can fund the development of customized firmware for users to preferably freely download.

As will be understood by a person of ordinary skill in the art of portable electronic
music design, the examples discussed here are representative of the full spirit and scope of the
present invention. Additional variations, some of which are described here, incorporate many
aspects of the present invention.

Although the invention has been described in conjunction with specific preferred and
other embodiments, it is evident that many substitutions, alternatives and variations will be
apparent to those skilled in the art in light of the foregoing description. Accordingly, the
invention is intended to embrace all of the alternatives and variations that fall within the spirit
and scope of the appended claims. For example, it should be understood that, in accordance
with the various alternative embodiments described herein, various systems, and uses and
methods based on such systems, may be obtained. The various refinements and alternative and
additional features also described may be combined to provide additional advantageous
combinations and the like in accordance with the present invention. Also as will be understood
by those skilled in the art based on the foregoing description, various aspects of the preferred
embodiments may be used in various subcombinations to achieve at least certain of the benefits
and attributes described herein, and such subcombinations also are within the scope of the
present invention. All such refinements, enhancements and further uses of the present

invention are within the scope of the present invention.

127



10

15

20

25

30

WO 2004/064036 PCT/US2003/025813

What is claimed is:

1. A method for generating broadcast music comprising the steps of:

generating a music data file;

broadcasting the music data file from a base station to a plurality of nodes;

receiving the music data file at one or more of the plurality of nodes;

extracting musical definition data from the music data file, wherein the musical
definition data provides information regarding a song data structure and data for musical
parameters in accordance with the song data structure;

processing the musical definition data, wherein a song in accordance with the song
data structure and the musical parameters is generated by the one or more of the plurality of
nodes; and

playing the generated song at the one or more of the plurality of nodes.

2. A system for generating a musical composition based on received music data
file, comprising:

a transmitter/receiver, wherein the transmitter/receiver transmits and receives data
from/to one or more second systems remote from the system, wherein the data received by the
system includes at least a music data file;

a music generation device, wherein the music generation device executes at least a
music generation algorithm, wherein musical rules are applied to musical data in accordance
with the music generation algorithm to generate music output for a musical composition;

a memory, wherein at least the received music data file is stored in the memory;

wherein, musical data is generated based on data from the received music data file,
wherein the music generation device generates the musical composition based on the received
music data file.

3. The apparatus of claim 2, further comprising a user input, wherein activation of
the user input by a user causes data in the received music data file to be modified, wherein a
modified music data file is created, wherein the music generation device generates a modified
musical composition based on the modified data file.

4. The apparatus of claim 3, wherein the modified data file is transmitted by the
transmitter/receiver for reception by one or more remote systems, wherein the one or more
remote systems may generate the modified musical composition based on the modified data

file,

128



WO 2004/064036 PCT/US2003/025813

5. The apparatus of claim 2, wherein the music data file is transmitted as part of

initiating a telephone call.

6. The apparatus of claim 2, wherein the music data file is transmitted as part of a

telephone call.

129



PCT/US2003/025813

WO 2004/064036

1/56

I DI

11 skay uonoun 1afeq

¢] Aoy odwor /gong

71 hoy %

11 skey womoung Jakely (7

9] SAay apol

9] sAay apojy D
\ //.// 81 49Y 440/NO

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

PCT/US2003/025813

2/56

P | Play

B | Stop
pP» | Forward
44 | Reverse

® | Record

Player Function keys

FIG. 2

JJ |eDJ

“g" | VRadio
m Songs

Samples

System

Mode/Direct Access keys

FIG 3

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813
3/56

Joystick for help

FIG. 4

Home Screen

Press any key to return
1, PITCH/TEMPO:
Up-down: change

Pitch

FIG 5 Left-right: change

tempo

Help Screen

e.DJ Style

I_===:L
! 1

Garage

FIG 6 House
TECHNO MIX

e.DI Style Selection Screen
SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

4/56

SONG INTRO

Riff lane
e.DJ I-Way Screen

FIG. 7A

SONG INTRO

Riff #2 \ Lead #1

Alternate I-Way Screen

FIG. 7B

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

5/56

RIFF #1

FIG. 8A

—

¢.DJ Underground Screen

RIFF #1

FIG. 8B

Alternate Underground Interface

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

6/56

Bass Lane <—:_> Riff #1 <::> Riff #2

Lane Lane

1 i

Bass Tunnel Riff #1 Riff #2
: — —

Tunnel 1 Tunnel 1

I i i

Bass Tunnel Riff #1 Riff #2
5 — —

Tunnel 2 Tunnel 2

Exemplary GUI Spatial Organization

FIG. 8C

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813
7/56

e.Songs

FIG 9 (( Fragile

Play Song Screen

v.Radio 96.0 MHz

FIG. 10 [ C Radio01

Play Radio Screen

New SONGLIST001

1 JINGLE

2 ALLNIGHT
FIG. 11 3 FRAGILE

4

5

List Edit Screen

Configuration -

AUTOPLAY OFF

POWER OFF - DISABLED
FIG 12 AUTOREPEAT 40 ms

’ EQ PRESETS DEFAULT
STATION SEARCH AUTO
AREC FORMAT PCM
Rufigueon Screen

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

8/56

Alternative User Interface for I-Way Mode

FIG. 13A

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

9/56

Alternative 3D Music Stage Interface

FIG. 13B

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

PCT/US2003/025813

10/56

Parameter Values Description
AutoPlay On/Off If AutoPlay is On, the MadPlayer automatically starts
playing the first Play list contained on a SmartMedia card
when inserted.

Power Off Disabled, Auto power off delay. The MadPlayer will power off
Imn to 60mn | automatically after this delay if no user action is detected.
in steps of
Imn.

AutoRepeat 40ms to Keyboard auto-repeat delay in milliseconds. Delay before
600ms in repeating the corresponding action when a key is pressed
steps of continuously.
20ms

EQ Preset Factory Presets for 4-band equalizer. Factory, Woof, HiTek and Flat
Woof are factory presets and fixed. User preset can be configured
Hitek by the User via the System-Equalizer menu.

Flat
User ’

Mic State On/Off Microphone input is On or Off,

Mic Volume 0to 31 Microphone volume.

Echo Level -0to 127 Level of echo applied to microphone input

Echo Time 0to 127 Microphone echo delay. 0 shortest, 127 longest.

Echo Feedbk 0 to 31 Echo feedback: 0 minimum feedback, 127 maximum

feedback.

Rec Format PCM Format used to store recorded samples:

HQFADPC |PCM: PCM, 16bits mono, 19.31kHz

M HQFADPCM: High Quality ADPCM
| Language English Language used for the menus.

Francais

Espanol

Sort Files By Name Criterion used to sort files when displaying a list: by name
By Type (alphabetically) or by type (songs, samples, lists...).

Sort Presets By Name Criterion used to sort radio presets: by name (alphabetically)
By Freg or by frequency.

Product String Read Only. Hardware version

Release String Read Only. Firmware version

Configuration Parameters

FIG. 14

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036

Song

Part

SubPart

Sequence <

Real
Pattern

Virtual
Pattern

Block

Sub
Blocks

PCT/US2003/025813

Po | P1| Py w
SPo ISPy SPo|  SPs | SP4| SPs| SPs Py

. Blockg

BlOCkfx

SBx

SB,

5B,

By

Song Structure

FIG. 15

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

12/56
Style and
Instrument
l l 1. Apply Block Rules
Virtual
Pattern Sub

lL 2. Apply rhythmic rules to combine into series

Virtual
Pattern

! 3. Apply musical rules to generate basic music

Non-
Chorded

ll 4. Apply Tonic

NCP with
Tonic

5. Apply Mode

(—

NCP with
Tonic &

6. Apply Key

]

Real Pattern

—

7. Apply any global pitch adjustment in real

General Musical Generation Flow

FIG. 16A

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

Style and
Instrument

\/

Rhythmic
Event(s)

\/

PCT/US2003/025813

13/56

la. Create Rhythmic Events using Style
and/or Instrument related parameter
data (e.g., First Max %, Resolution Grid,

and/or Pulse min/max).

1b. Assign durations to Rhythmic events using
thythmic rules (e.g., Silence %, Chord %,
Chord Duration Sensitivity %, Chord Velocity
Sensitivity %, Velocity Accent, Velocity
Dynamic, and/or Humanization).

Virtual Pattern
Sub Blocks

Sub-Block Generation

FIG. 16B

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

14/56

Take Measurements of MIDI data.
User :> Analysis |
Input Algorithm Allow user input to tweak derived

parameters, etc.

Computer

Include

ﬁles(s
Exemplary Automated
Music Analysis
Portable Music Pl ayer PC |
" FIG. 16C

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

15/56
Hexadecimal Value Internal Nomenclature Potential Values
40 Base Note C,EG,B
41 Magic Note | +1, -1, +2,-2
42 Magic Note 0 +1,-1,4+2,-2,0
43 High Note +7
44 Last Note C,G
45 One Before Last Note E,G,B
46 . ALC Controller
e Harmonic Note 0, +2, +4,+6, -3, -5, -7
o Fixed Note any

Examples of Virtual Notes/Controllers

FIG. 17

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

16/56

Treble Instrument, such as a
violin, with an optimum
range that is relatively high in
pitch.

Midrange Instrument, such as
a guitar, with an optimum
range that is relatively
medium in pitch.

Bass Instrument, such as a
bass guitar, with an optimum
range that is relatively low in
pitch.

LU

Example of Tessitura

FIG. 18A

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

PCT/US2003/025813

17156

Start with a
virtual note | | Access stafe
and previous | | machme (SM)

Based on SM output,

A

load range of delta

values from table ™ Table

real note
Y
Randomly select a direction
(increment or decrement)
/
Change Mask range based
direction - on direction

Y

Randomly select one delta
value (D) from masked range (R)

Modified
R within T?

Yes

Use
No

tessitura
(1)?

from R

Remove max D

Yes

A

Y

Randomly pick another D

Is
D within T
range?

Yes

from modified R

FIG. 18B

g leat.
P Y

Y

Create new real note based on previous
real note plus modifier indicated by D

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

18/56
) Key

Chord A C D G

Offset | -3 0 +2 T +8
Mode Type Individual Notes
AllNotes |C |C# |D |D# |E|F |F# |G |G# |A |A# |B
Natural C |€C |D |b |E|F |F |[G|G |A |A |B
Lydian C |C D |\D |EJE |[F#|G|G (A |A |B
Descending
Lydian C |D |D |E E|F# |F# |G |A |A |A |B
Ascending

FIG. 20

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

19/56

Musical Notation «  Software Notation
(QN=30)

C4 = Base Note
F#4 = Magic Note Type 1
D4 = Magic Note Type 0
C#4 = High Note
C4  =Base Note

1
s
[

Virtual Pattern | — — —
Sub-Blocks | =F B = =

Virtual Pattern 0 00 91 30 70 1le 81 30
(VP) & —= ——1| 00 91 36 64 le 81 36

. 00 91 32 7f le 81 32
00 91 31 72 le 81 31
3C 91 30 64 2d 81 30

?ﬁn
il
!

e

T
|

[ 120
2|

00 91 32 64 le 81 32
Pattern (NCP) 00 91 32 7f le 81 32

00 91 3e 72 le 81 3e
3C 91 37 64 2d 81 37

Non-Chorded J,Q : ' 00 91 34 70 le 81 34
L]

00 61 31 70 1e 81 31
; || 00 91 2f 64 le 81 2f
o o & 00 91 2f 7f le 81 2f
00 91 3b 72 le 81 3b
3C 91 34 64 2d 81 34

NCP with
Tonic (PwT)

BN
elll

G 1S

00 91 30 70 le 81 30
| 00 91 2fF 64 le 81 2f
00 91 2f 7f le 81 2f
00 91 3b 72 le 81 3b
3C 91 34 64 2d 81 34

PwT with
Mode (PWTM)

DIty
| YRR

,.
N

TTe

el
Ly
Ll
L

Real Pattern *9 y/ T T ) 00 91 32 70 le 81 32
®P) G —7—F—————" |00 91 31 64 le 81 31
3} bd ﬁ'ol - i 00 91 31 7f le 81 31

00 91 3d 72 le 81 3d
3C 91 36 64 2d 81 36

Example of VP-to-RP Flow

FIG. 21

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

20/56
Rhythmic Blocks/Sub-Blocks i Conditions
A
. All variations, given:
=+ == = s e cighth note is smallest unit
o, ., ; * e length of 1 quarter note
o all full rests are indicated
Relative separately as ‘empty’
Rhythmic
Density
e e . — | All variations, given:
O, o #e— 2%, |e cighthnote is smallest unit
L ) e length of 2 quarter notes
= D R a—— o does not include 1 quarter
—— e i . .
¢ J J ’ note variations above
[
i

Rhythmic Variations based on Duration

FIG. 22

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

21/56

More Magic Notes

Pitch

More Base and High
Notes

1

Time

Relative Mobility of Note Pitch

FIG. 23

SUBSTITUTE SHEET (RULE 26)



PCT/US2003/025813

WO 2004/064036

22/56

¥C DI

ojdurexyq UWOLRAI) 2INjOnNS WaNed

{

il ] i
1] i i

T's0 9 & Md™ INvg} dnoin  s1hig J

t@um%oé 1quo)” fad& 1 orfag J

{*xopul” dnoin “Ixapur 1qwon “Mysey o1f1Sqns} A||_

SUBSTITUTE SHEET (RULE 26)

xopuy 1qmiory ‘odA1 ‘erkig} [sodAy wmp ; so7A1S] IS¥T Xopul qwio)
Pul 19 I J

{oN1qwo) ToN"Xd ‘pul Yoig} [swniq qng wnN 4 sedAL waN] [ijrs] o5ul wed



PCT/US2003/025813

WO 2004/064036

23/56

¢¢ DU

ojdwexy uonesr) aImonLg Fo0[g

{ere@ Yoo[g TeniiiA}

{1aymog nesg “Idno1n Ysep o1A1sqns “ypim}

il

{xopuy Yoo[g ‘®edA[ ‘orfig} [swniq qng wng , sodL] wnN , 91A1g] ISTT Yooig

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

24/56
0] R — .
A . B |

: > DSy > Drum Part
| DS .| Generation
L 2L [ Algorithm
i - DS, E > C
(D8, -

v

Drum Part D

Pseudo-Random Number Implementation 1

FIG. 26

Bass Seed (BYS)

A . B
g - BS, i > Bass Part
' 39 .| Generation
"L [T ) Algorithm
g > BSZ E > C'
[ BS;
Bass Part D'

Pseudo-Random Number Implementation 2

i, 27

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

25/56

Application Revision Firmware/application version used to generate the data
structure

Style, SubStyle The style and/or substyle

Sound Bank, Synth Type | The sound bank/synth type

Sample Frequency How often a sample is played in song

Sample List List of samples associated with the Style

Key First Key used, pitch offset

Tempo Start Tempo (e.g., in pulses per quarter note)

Instrument Identification of a particular instrument in an instrument
group. Indexed by type of instrument

State State of instrument indexed by instrument type (e.g.,
muted, un-muted, normal, Forced play, solo, etc.)

Parameter Instrument parameters indexed by instrument type (e.g.,
volume, pan, timbre, etc.) '

PRNG Seed Values Seed values used to initialize the PRNG routines

Simple Data Structures

FI1G. 28

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036
26/56

\

Determine/Load initial seed values

Y

Generate music with song

structure for a given song part

PCT/US2003/025813

Y

Update user interface

A

Receive
user input?

End of

song part?

Go to next song part.
Determine/load relevant

seeds if necessary.

SUBSTITUTE SHEET (RULE 26)

Save all seeds
(as part of Song
Structure) to
non-temporary
Memory Storage

Is user
input ‘Save'?

Update any
relevant seeds
in temporary

storage

Example of SDS Flow

FIG. 29



WO 2004/064036

PCT/US2003/025813

27156

Application Firmware/application version used to generate the data
Revision structure
Style, SubStyle The style and/or substyle

Sound Bank, Synth
Type

The sound bank/synth type

Sample Frequency

How often a sample is played in song

Sample List List of samples associated with the Style

Key First Key used, pitch offset

Tempo Start Tempo (e.g., in pulses per quarter note)

Song Structure Number of types, number of parts, sequence of parts, etc.
Structure For every part: number of sub-parts, sequence of sub-

parts, etc. [ndexed by Part :

Filtered Track

Type, function (e.g., sawtooth wave, sine wave, square
wave, etc.), initial value, etc., of an effect. Indexed by
Part.

Progression Time signature, number of SEQs, list of maked types, etc.
Indexed by Sub-Part.

Chord Time stamp, chord vector, key note, progression mode,
etc. Indexed by Sub-Part.

Pattern Combination (Instrument), block data, effects data, etc.

Indexed by Type.

Combination

List of instruments. Sub-set of ‘Pattern’ above.

FX Pattern Effects data. Sub-set of ‘Pattern’ above.

Blocks Block data. Subset of ‘Pattern’ above.

Instrument Identification of a particular instrument in an instrument
group. Indexed by type of instrument

State State of instrument indexed by instrument type (e.g.,
muted, un-muted, normal, Forced play, solo, etc.)

Parameter Instrument parameters indexed by instrument type (e.g.,

] volume, param1, param2, etc.)
Improv Improvisation data (e.g., certain instruments or notes) that

might be different each time the song is played.

~

Complex Data Structures

FIG. 30

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813
_ 28/56

Determing/load initial seed values, as well as data corresponding to song structure, structure,
filtered track, progression, chord, pattern, instrument, state, parameter, and improv data.

Y
Generate music with song structure for a given song part <

4

Y Save all seed values, as well as data
Update corresponding to song structure, structure,
user filtered track, progression, chord, pattern,
inferface instrument, state, parameter, and improv
data to non-femporary memory storage

Receive Is user

user input? input 'Save'?

Update any relevant
seeds, and/or

data corresponding
to song structure,
structure, filtered track,
progression, chord,
pattern, instrument,
state, parameter, and
improv data in
not-temporary storage

~

Go to next song part. Determine/load relevant
seeds, as well as relevant data corresponding to

1 song structure, structure, filtered track, Example of CDS Flow
progression, chord, pattern, Tnstrument, state, |
parameter, and mpeay, data.if- necessary FIG. 31

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813
29/56 :

SMC
40
Portable Hardware LCD (mo Buffer ||
Device 45 59
35 s
\
Keyboard k| Lateh K Flash K
- D |DAT
N 37|38
Flash ( RAM (
4l 8
il
DI [
th . 5
MP
— W K o K
NI | @ qv
JUTT 7 UL
|
Hardware
USB C(;%ec
39 & 2
Recharge BV l\/
Battery | ¢ 1 1 A
33V LA
Regul. M
—>Receiver
\ A 50
Connector 33
— . Analog
. ¢ Mic gygio
Charge Power Serial USB Audio mput  po
56 55 To #I10 A ¢

31 3

FIG. 32

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

30/56

SAM9707 RAM Flash/ROM| RAM
7S AT ST
4 SAM ADD K )
4 SAM Data »

Additional Variation

FIG. 33

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

31/56
DC
|
Docking Station
& Device
v ia A
Power Flash N
Supply 16
19
; (T e e
ADD | {DATA
LMP | 193 |74
+5V | 1 il ]
a] (
/J
Charge U7S2B \_L/ N
3.3V < — |
A A \
Connector
Serial [«
USB |
Audio 1/0 =
Y
v Video
. IF
Audio [I%I‘i 7
Codec -
i
A A
A

A A y
Audio  Audio Video Video USB MIDI
In  Out In  Out I';?

FiG. 34

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

32/56

General Purpose

il

Split into{ Streaming Buffers
Subsections

~

Block Buffers

WMA
Multi-Use Code Buff
| (32 bit) Song Butters
SMC Buffers
>
Always 32bit Routines
Loaded ;
n RAM 32bit Libraries
-

Address Map for MP RAM

FIG. 35

SUBSTITUTE SHEET (RULE 26)

0x20000

0x0



WO 2004/064036

CS_RAM=0;
CS_ROM=1

CS_RAM=1+
CS_ROM=0

PCT/US2003/025813

33/56

32Kb
32Kb

wf

A24=1+

A24=0+

RAM,

|

0x2000000

32Kb
32Kb

Flash Sound Banks

Firmware

0x1000000

DSP-Local RAM/Flash Address Space

- FIG. 36

SUBSTITUTE SHEET (RULE 26)

0x0



WO 2004/064036

PCT/US2003/025813

34/56
BOOT
0 1
A24
0 Flash RAM '
1 RAM Flash

Bootstrap Mode Addressing

FIG. 37

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

35/56
CS RAM
A24 0 1
CS_ ROM
BOOT 0 1 0 1
\
0 NA NA Flash RAM
0 Normal
Mode
1 RAM RAM NS NS
J
)
0 NA NA RAM Flash
1 Upgrade
) Mode
1 NA NA NS NS

CS_RAM and CS_ROM
are active low

NS = Nothing Selected

NA =Not Applicable

FIG. 38

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

36/56
Synth DAC
—>
MIDI Sound
P [ > = NS
Audio Digital Anal
Stream > Audio na f)g
Audio
MIDI/Audio Stream

FIG. 39

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

37/56
Audio
Stream < J
(yo)
>
MIDI
Stream
(-C’ an) ! .
! H
| { |
A 4 A 4 \ 4 <
Oms 250ms 500ms 750ms )
Time

Simplified MIDI/Audio Stream Timeline

FIG. 40

SUBSTITUTE SHEET (RULE 26)



O ©

WO 2004/064036 PCT/US2003/025813
38/56
NRPN Stream
exadecimal) | Indication/Meaning

BO Channel Number

63 NRPN Controller A (e.g., audio sample type)

40 Identification of sample type (e.g., long, short, stereo, mono,
etc.)

00 Delta time

62 NRPN Controller B (e.g., audio effects type)

00 Identification of effects type (ping pong, ripple, phaser,
distortion, etc.)

00 Delta time

06 Identification of register for NRPN Controller A value

03 NRPN Controller A value (play 3" audio sample in set, €00’ is
random)

00 Delta time

26 Identification of register for NRPN Controller B value

07 NRPN Controller B value (apply audio effect #7, ‘00 is

N R P O

random)

Simplified NRPN Example

'FIG. 41

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

39/56

A 250ms

Note = On
Channel =1
Pitch=C

A 250ms

NRPN
Audio X, [P], [E]

A 250ms

Note = Off
Channel =1
Pitch=C -

Simplified Special MIDI Type File

FIG. 42

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

40/56

CPU
Functional

Unit Step 1: prepare

fcontrol stream based
on text, generative
algorithms, and/or
other means

Step 2: send control
stream to DSP
function referencing
vocal library

\/

"~ MIDI/DSP Memory

Functional Locations
Unit Jl> Vocal
<} Library A

Step 3: access vocal
library stored in
memory locations

Step 4: generate vocal
track sound output

V4

Sound
. Output

FIG. 43

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

PCT/US2003/025813

41/56

21) Generate/load text data

Y

22) Parse text data into phonetic descriptor stream, generate/load
characteristics associated with text (e.g., pitch, amplitude, and/or duration)

Y

23) Process each phonetic descriptor,

in association with any related

characteristics, fo generate a control stream (e.g.,, a MIDI-compatible stream)

A

24) Process control stream; access vocal library and assemble series

sounds comprising the vocal track

A

(

25) Perform any final processing (e.g., 'smoothing' amplitude, etc.) and

output sound as part of music output

FIG

. 44

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036

PCT/US2003/025813

42/56

Portable Musical

Generation Device Audio
30 Output
. Interface
Visual Output Interface 34
32
Storage Text Input Interface Data 1/0
Memory 36 Interface
39 38
Player
10 USB | System
39 USB 34 460
Hardware ~
Codec < s
52 L~ | Analog audio J/O 66

FIG. 46

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

43/56

SLS Header Slot 0 Slot 1 Slot N-1

Siot{ed Structure

FIG. 47

Header Checksum | SLS SLS SLS Data Length | Num Slots

Length Shade | Type Version | Length =N)

= 14) (=nl)

2 bytes 2 bytes 2 bytes 2bytes 2 bytes 2 bytes 2 bytes
SLS Header

FIG. 48

Slot Type | Name Length | Name Data Length Data
(=n2) (=n3)
2 bytes 2 bytes n2 bytes nl bytes n3 bytes

‘where nl = Data Length Length value in SLS Header.

Slot Format

FIG. 49

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

Sample Data Structure

44/56

540 with Optical

PCT/US2003/025813

Header
4 A
525 520 515 510

L S (
Tag |Period | Pitch
ID |Info |Info Sound Sample Data
_ . N B

Header Field Sample Data Field

530

FIG. 50

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

45/56
A
TO { T1 T2 1 T3
\_ A A A _J
Y Y " ~N
TO=00ms TI1=50ms T2=110ms T3=200ms
PO=G . PI=F# P2=0 P2= G#

FIG. 51

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

46/56

PCT/US2003/025813

SUBSTITUTE SHEET (RULE 26)

585 580 575 570 565 560 555 550
S S S SN S S —
Tag |Period | Pitch |Period |Pitch |[Period |Pitch |Sound
ID |{Info |Info |[Info |Info |Info |Info |Sample Data
_ . A
| Header Field Sample
590 Data Field
595
FIG. 52



WO 2004/064036 PCT/US2003/025813

47156

Name A 600

Period Info 601
Pitch Info 602 Name A 600’
Other Info 603

Name B 605
Period Info 606 Name B 605’
Pitch Info 607
Other Info 608

Name'C 610
Period Info 611 Name C 610°
Pitch Info 612
Other Info 613

NG /
YT ~ ~ ~

Separate Descriptor File 615

Native format Sample Files
616

FIG. 53

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

48/56

650) Access/Load sample

Y

651) Analyze sample to derive thythmic characteristics

Y

652) Analyze sample to derive pitch characteristics

Y

653) Prepare information identifying pitch and/or
period characteristics

Y

654) Assemble characteristic information (e.g., into a separate
descriptor file or as a header portion of the sample

Y

655) Save sample and/or separate descriptor file

FIG. 54

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813

49/56

Access/load_sample file F—660

664

s

662

Does

it have associated 168

Access sample file descriptors

descriptors?

Y

No

Process based on current
666 —— global pitch and/or
thythmic information

Y

Prepare DSP operations

668 —_| o control speed and/or pitch

of sample based on global
information

670

Is
it time to play
sample?

672

Play sample along with any DSP operations
to control speed and/or pitch of sample

based on global information FIG 55

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

50/56

Broadcast Music .
Data File 715

()1
—/ |7

Node-authored

Music Data Node/Subscriber
File 725 ’ Unit Music
Generator Device
Transmitter 710 720

FIG. 56

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

51/56

Antenna 755

PCT/US2003/025813

Audio
Input
71635

Speaker
760

Audio
Output
170

Radio Style

r-=_l

Garage

House

TECHNO MIX

Display 775

User Input
Interface

180

Microphone 785

Node/Subscriber Unit Radio Style Selection

FIG. 57

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036

Antenna

52/56

PCT/US2003/025813

Music
Algorithm
Block
830

DSP
Block
835

Memory

840

A

Node Subscriber Unit 860

800
A
\
Trﬁg‘fen;ﬁf,fn "l Telephone/PDA |_
Circuit - glllg
80 * Audio
! T > Input
340
\ 4 :
Communication . _| Microphone
Interface Display 845
815 820
! } Audio
—{  Output
850
Speaker
N A A ] @
Music Generator 8§23

Node/Subscriber Unit Functional Blocks

SUBSTITUTE SHEET (RULE 26)

FIG. 58



WO 2004/064036

PCT/US2003/025813

53/56

Application Revision

Firmware/application version used to generate the data
structure

Style, SubStyle

The style and/or substyle (and/or Radio Station Style)

Sound Bank, Synth

The sound bank/synth type

Type

Sample Frequency How often a sample is played in song

Sample List List of samples associated with the Style

Key First Key used, pitch offset

Tempo Start Tempo (e.g., in pulses per quarter note)

Song Structure Number of types, number of parts, sequence of parts, etc.
Structure For every part: number of sub-parts, sequence of sub-

parts, etc. Indexed by Part

Filtered Track

Type, function (e.g., sawtooth wave, sine wave, square
wave, etc.), initial value, etc., of an effect. Indexed by
Part.

Progression

Time signaturc, number of SEQs, list of maked types,
etc. Indexed by Sub-Part.

Chord Time stamp, chord vector, key note, progression mode,
etc. Indexed by Sub-Part.
Pattern Combination (Instrument), block data, effects data, etc.

Indexed by Type.

Combination

List of instruments. Sub-set of ‘Pattern’ above.

EX Pattern Effects data. Sub-set of ‘Pattern’ above.

Blocks Block data. Subset of ‘Pattern’ above.

Instrument Identification of a particular instrument in an instrument
group. Indexed by type of instrument

State State of instrument indexed by instrument type (e.g.,
muted, un-mutcd, normal, Forced play, solo, etc.)

Parameter Instrument parameters indexed by instrument type (e.g.,
volume, param1, param?2, etc.)

PRNG Seed Values Preferably a serics of numerical values that are used to

initialize the pseudo-random number generation (PRNG)
routines (used in certain embodiments).

Sound Bank Data

Soundbank data associated with a particular song;
preferably loaded into non-volatile memory such that the
sound bank data may be used during the generation of
music output.

Example Music Data File

Figure 59

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813
54/56

Receive broadcast music data file 715 from transmitter 710 ——-862 864

A

Determinefload initial seed values, and/or data corresponding to song structure, structure,
fltgred track, progression, chord, pattem, instrument, state, parameter, ete,

y
Generate music with song structure for a given song part f<—

9 \,

866

Y

Save all seed values, as well as data
Update corresponding to song structure, structure,
user filtered track, progression, chord, pattern,
868 | interface instrument, state, parameter, efc,, to
non-temporary memory storage

870 % Yes

Is user
mput 'Save'?

872 874

Receive
user input?

Update any relevant
seeds, and/or
data corresponding
fo song structure,
structure, filtered track,
progression, chord,
pattern, instrument,
stafe, parameter, efc.,
in femporary storage

876 /

Go to next song part. Determine/load relevant
seeds, as well as relevant data corresponding to Example of Music
—  song structure, structure, filtered track, Generation Flow
progression, chord, pattern, instrument, state,

paramefer,, 4G, I necessary. FIG 60

SUBSTITUTE SHEET (RULE 26)




WO 2004/064036 PCT/US2003/025813

55/56

Data Services Description

TIA/EIA IS-95A  [Mobile Station-Base Station Compatibility standard for Dual-
Mode Wideband Spread Spectrum Cellular System
TIA/EIA 1S-99 Data Service Option standard for Wideband Spread Spectrum
Digital Cellular System
TIA/EIA 1S-637 Short Message Service for Wideband Spread Spectrum Cellular’
System
TIA/EIA 1S-657 Packet Data Service Optional standard for Wideband Spread
Spectrum Systems
TIA/EJA IS-658 Data Services Interworking Function Interface for Wideband

‘ Spread Spectrum Systems
TIA/EIA IS-707 Short Message Service 14.4 Kbps
(TIA/EIA TSB-79  {Short Message Service for Wideband Spread Spectrum Systems
TIA/EIA TSB39-A [Message Type Assignments

Exemplary Standards associated with

Cellular Data transmission/Reception Services

Fig. 61

SUBSTITUTE SHEET (RULE 26)



WO 2004/064036 PCT/US2003/025813
56/56

SMS Broadcast Message Parameters

- | Parameter Type

Broadcast Service Category Mandatory

Bearer Data Optional

The Bearer Data parameter variable-length format:

Field Length (bits)
PARAMETER_ID 8
PARAMETER_LEN 8 )
One or more occurrences of the following subparameter record:
SUBPARAMETER ID 8
SUBPARAM_LEN 8
Subparameter Data 8w
SUBPARAM_LEN

PARAMETER_ID: SMS parameter identifier. This field shall
be set to ‘00001000°.

PARAMETER_LEN: SMS message parameter length. This
field shall be set to the number of octets in the parameter, not
including the PARAMETER _ID and PARAMETER_LEN
fields.

SUBPARAMETER _ID: Subparameter identifier.
SUBPARAM_LEN: Subparameter length. This field shall be
set to the number of octets in the subparameter, not including the

SUBPARAMETER_ID and SUBPARAM_LEN fields.

Subparameter Data: Subparameter data fields.

Exemplary Excerpts from
TIA/EIA 1S-637 Short Message Service for Wideband
Spread Spectrum Cellular System

Fig. 62

SUBSTITUTE SHEET (RULE 26)



International application No.

INTERNATIONAL SEARCH REPORT

. PCT/US03/25813
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GIOH 7/00
US CL 1 84/645

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 84/645

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
BRS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2002/0033090 A1 IWAMOTO et al) 21 March 2002 (21.03.2002), see Abstract, Figure 1-6
A %jS 2002/0046899 A1 (MIZUNO et al) 25 April 2002 (25.04.2002), see Abstract. 1-6
A US 2002/0023529 A1 (KURAKAKE et al) 28 February 2002 (28.02.2002), see Abstract. 1-6
AP US 2003/0013497 A1 (YAMAKI et al) 16 January 2003 (16.01.2003), see Abstract. 1-6
A US 2003/0176206 A1 (TANIGUCHI et al) 18 September 2003 (18.09.2003), see Abstract. 1-6
AE US 2003/0205125 A1 (FUTAMASE et al) 6 November 2003 (06.11.2003), see Abstract. 1-6

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A"»  document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“Xn document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L"  document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “yr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O"  document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P»  document published prior to the international filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
21 January 2004 (21.01.2004) 0 9 MAR 2004
Name and mailing address of the ISA/US Authorized officer

Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450 .
Alexandria, Virginia 22313-1450 Telephone No. (703) 308-1782 {4

Facsimile No. (703) 305-3230 M o\

Jeffrey Donels

Form PCT/ISA/210 (second sheet) (July 1998)



	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

