Office de la Proprieté Canadian CA 2465880 C 2011/10/11

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 465 880
o Gmsca iy Conac 12 BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2002/05/15 (51) CLInt./Int.Cl. GO6F 9/445(2006.01),
. o . o . GO6F 15/763(2006.01), GO6F 17/30(2006.01),
(87) Date publication PCT/PCT Publication Date: 2002/11/21 GO6F 9/44(2006.01), GOGF 9/46 (2006.01)
(45) Date de délivrance/lssue Date: 2011/10/11 _
(72) Inventeur/Inventor:
(85) Entree phase nationale/National Entry: 2003/11/14 SCHAEFER, STUART, US
(86) N° demande PCT/PCT Application No.: US 2002/015378 | (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 2002/093369 MICROSOFT CORPORATION, US
(30) Priorité/Priority: 2001/05/16 (US09/859,209) (74) Agent: SMART & BIGGAR

(54) Titre : COUCHE D'ABSTRACTION ET DE PROTECTION DE SYSTEME D'EXPLOITATION
(54) Title: OPERATING SYSTEM ABSTRACTION AND PROTECTION LAYER

60

Application /User Dato

Application

Trusted Shared Resources

OSGuord

Operating System

(57) Abrégée/Abstract:
The present invention provides a system for creating an application software environment without changing an operating system of
a client computer, the system comprising an operating system abstraction and protection layer, wherein said abstraction and

RN]

et L/ /4

C an ad a http://opic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca \ ——

Sy :_‘-g‘;; IR 2 ~e-. % §?l
OPIC - CIPO 191 |

CA 2465880 C 2011/10/11

anen 2 465 880
13) C

(57) Abrege(suite)/Abstract(continued):

protection layer Is interposed between a running software application and said operating system, whereby a virtual environment In
which an application may run Is provided and application level interactions are substantially removed. Preferably, any changes
directly to the operating system are selectively made within the context of the running application and the abstraction and protection
layer dynamically changes the virtual environment according to administrative settings. Additionally, in certain embodiments, the
system continually monitors the use of shared system resources and acts as a service to apply and remove changes to system
components. The present thus invention defines an "Operating System Guard.” These components cover the protection semantics
required by DLLs and other shared library code as well as system device drivers, fonts, registries and other configuration items,
files, and environment variables.

2/093369 Al

S
>

CA 02465880 2003-11-14

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

21 November 2002 (21.11.2002) PCT
(51) International Patent Classification”: GO6F 9/445, (81)
9/44, 15/163, 17/30
(21) International Application Number: PCT/US02/15378

(22) International Filing Date: 15 May 2002 (15.05.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/859,209 16 May 2001 (16.05.2001) US
(71) Applicant: SOFTRICITY, INC. [US/US]; 332 Congress

Street, Boston, MA 02210 (US).

(72) Imventor: SCHAEFER, Stuart; One Gallison Avenue,
Marblehead, MA 01945 (US).

(74) Agents: KEYACK, Albert, T. et al.; Schnader Harrison
Segal & Lewis, LLP, 1600 Market Street, 36th Floor,
Philadelphia, PA 19103 (US).

(84)

(10) International Publication Number

WO 02/093369 Al

Designated States (national): AE, AG, AL, AM, AT, AU,
A7, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL., IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL., PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: OPERATING SYSTEM ABSTRACTION AND PROTECTION LAYER

- Application/User Data
L—--v—

— A pplication

A A -

Shared Resourcess

Rt e

Application/User Data 4+ é7 O

A pplic ation . e 5’0

Shared Resources

Trusted Shared Resources

v 1

OSGuard

R

OCperaling System

/O

(57) Abstract: The present invention provides a system for creating an application software environment without changing an
operating system of a client computer, the system comprising an operating system abstraction and protection layer, wherein said
abstraction and protection layer is interposed between a running software application and said operating system, whereby a virtual
environment in which an application may run is provided and application level interactions are substantially removed. Preferably,
any changes directly to the operating system are selectively made within the context of the running application and the abstraction
and protection layer dynamically changes the virtual environment according to administrative settings. Additionally, in certain em-
bodiments, the system continually monitors the use of shared system resources and acts as a service to apply and remove changes
to system components. The present thus invention defines an "Operating System Guard.” These components cover the protection
semantics required by DLLs and other shared library code as well as system device drivers, fonts, registries and other configuration

items, files, and environment variables.

CA 02465880 2008-03-06

OPERATING SYSTEM ABSTRACTION AND PROTECTION LAYER

The present invention relates to computer sofiware, and more particularly to

operating system software.

BACKGROUND OF THE INVENTION

In many environments, but particularly in environments where an application is
delivered via a network, the most important feature is an ability to run applications on the fly,
without a complex installation. Typically, in certain prior art systems, great pains were taken
to modify a client system to appear as if a program was installed, or to actually install the .
software itself, and then back out these modifications to restore the original configuration. In
doing this, multiple problems present themselves: conflicts between an application and the
computer’s current configuration, nmltiple instances of the same or different applications,
complexity of the back out process requires an application to be put through a rigorous process
to ensure all of its modifications can be accounted for, and the use of shared files and system
components by multiple applic;tions complicates back out and the installation: process. -

CA 02465880 2008-03-06

SUMMARY OF THE INVENTION

The present invention provides a system for creating an application software
environment without changing an operating system of a client computer, the system
comprising an operating system abstraction and protection layer, wherein said abstraction
and protection layer is interposed between a running software application and said
operating system, whereby a virtual environment in which an application may run is
provided and application level interactions are substantially removed. Preferably, any
changes directly to the operating system are selectively made within the context of the
running application and the abstraction and protection layer dynamically changes the
virtual environment according to administrative settings. Additionally, in certain

embodiments, the system continually monitors the use of shared system resources and

acts as a service to apply and remove changes to system components.

Thus, for example, in embodiinents within Windows-based operating systems,
and wherein all operations to the Windpvs}rsM Registry are throngh the Win32 APL the
system preferably provides a means for hooking functions, whereby each time said
functions are invoked another function or application intercepts the call, and the system
most preferably hooks each appropriate API function to service a request whether made

by an application run from a server or if made by an application against a configuration

key being actively managed

In other preferred embodiments of the present invention, additional functionality
is provided, such as those embodiments wherein the operating system abstraction and
protection layer manages the integration of multiple instances of an application by
recognizing how many instances of an application are running, and in such embodiments
most preferably it also avoids making changes on startup and shutdovwn unless there is
only one application mstance running. In this embodiment it is aiso possible to support

multi-user operating systems in which mmltiple instances of an application can be running
on behalf of different users.

CA 02465880 2003-11-14

Thus, the opersting system abstraction and protection layer presents an
environment to an applicstion that sppears to be an installstion enrvironment without
perfonming an installstion, whereby a “psendo installstion™ is created in which all of the
settings are brought into a virtual euviranment at thé time the spplicstion'Tons. Orin the
case of an instalied application, acts to dynamically modify the behsavior of the
‘applibaﬂmatmn-ﬁme. Profirred etbodiments providé s means for preventing
information on the client computer from intesféring or modifying the behavior of an
application, and most preferably provide a means for dynamically changing the virtual
enviroument sccording to administrative settings. As mentioned above, in certain
embodiments it will be possible to have more than ons instance of a single sofiware
application rouming on the same client computer, cven if it was not originally suthored to
“do.so0. In such embodiments, shared, controlled contexts are provided in which st least
two of said instances of a single spplication share one or more virtnal settings. .

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram schematic showing the relative relationship of the present

invention, an operating system and a software application,;

FIG. 2 is a block diagram schematic showing two applications running with private
contexts and services;

FIG. 3 is a block diagram schematic showing two applications nnning while the
operating system provides shared views of the system resources; and

FIG. 4 is a block diagram schematic showing an operating system guard and subsystems.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1, thero is illnstrated 2 block disgram schematic showing the
relativo relationship of the. present invention, an openting system and = software spphiostion.
Preforred embodiments of the present invention provide sn opersting system abetraction and
protection layer 100 denominated an “Operating System Guard.” Internally, maty opersting
systemns 10 provide faakt domaing to protect applications 50 from affecting each other when
ran. However, shared systom resources and many other operating systemn fhatures allow this
protection domain to be compromised. An operating system abstraction and protection layer
100 will provide sn additional, programmatically controfled barrier between appfications S0 to

CA 02465880 2008-03-06

remove most application level interactions. Disp6 sed between the application 50 and operating
system 10 the operating system abstraction and protection layer 100 selectively allows
changes directly to the operating system 10, versus containing the change within the context of
the running application. For one example, in Windows-based systems, all operations to the
Windows Registry are typically done throngh the Win32 APL As explained below, system
functions ike QueryRegEx and GetProfileString can be hookéd so that each time they are
invoked, another function or application intercepts the call. The Operating System Guard 100
of the present invention will hook each appropriate API fimction to service the request, if
made by an application being actively managed or if made by an application against a
conficuration item being actively managed. In this way, unless explicitly configured to do so,
the present invention can create the application emvironment without making any actual
changes to the end-user’s system. Also, any modifications made at run-time by the
application can be persisted or removed easily.

Asused herein the term “Operating System Guard” defines layer between a
running application and the operating system of a target computer or client computer that
provides a virtual environment in which an applic ation may run. This virtual
environment has several purposes. First, it prevents a ranning application from making
changes to the client computer. If an application attempts to change underlying operating
system settings of a client computer, such settings are protected and only “made” mn the
virtual environment. For example, if an application attempts to change the version of a
shared object like MSVCRT.DLL, this change is localized to the application and the code
resident on the client computer is left uvntouched. .

Second,; the invention presents an environment to a running application that
appears to be an installation environment without performing an installation, and is thus 2
“psendo installation” or “installation-like.” All of the settings are brought into a viriual
environment at the time the application being served runs, or just-in-time when the
application needs the particular setting. For example, if a computer program such as
Adobe Photoshop® expects to see a set of Windows Registry entries under
HKEY L.OCAL_MACHINE\Software\Adob e and they are not there on the client

CA 02465880 2008-03-06

computer since Photoshoﬁmwas never installed, a system made in accordance with this
aspect of the present invention will “show” those registry entries to the Photoshop ™

-programming code exactly as if they were resident on the client computer.

Next, the invention prevents information that may exist on the client/users

machine from interfering with or modifying the behavior of an application. For example,
if the user has already existing registry entries under:
HKEY LOCAL MACHINE\Software\Adobe

for an older version of Photoshop, but now wishes to operate a newer version, these

entries can be hidden from the new application to prevent conflicts.

Finally, the present invention unlocks application beliavior that may not exist as
the application is currently written. It does this through the ability to dynamically change
the virtual environment according to administrative settings. For example; in a typical
mstance of an enterprise software application, a client ai:plication may expect to read a
setting for the address of the database to whibli the user should connect from a sétting n
the registry. Because this registry key is often stored in HKEY LOCAL MACHINE, the
setting is global for the entire client computer. A user can only connect to one database
without remnstalling the client, or knowing how to modify this registry key, and doing so
each time they wish to mmn the application. However, by implementing the present

invention, two instances of the application may now run on the same client computer,
each connecting to a different database.

CONTEXTS

In providing this functionality, each application is able to run in a private context
within the system. To the app]ication; it has its own private view of what the system
looks like and its behavior. The present invention provides this by its inherent nature.
Referring to FIG. 2, two separate applications 52,54, or two instances of the same
application (50 illustrated in FIG. 1), can be provided private contexts in which they will

appear to have separate or differing copies of system services, configuration and data. In
the preferred embodiment, this is the default behavior of the system.

_5..

CA 02465880 2008-03-06

By extending this concept, the Operating System Guard 100 of the present
invention can also provide shared, controlled contexts in which two or more applications
52,54 can share some or ; all of their virtual settings. This is important for application
suites such as Microsoft Oﬁce or for applications that perform differently in the
presence of other applications. For example, many applications use Microsoft \ Word as
an engine for doing Mail Merge or document creation fimctionality. The application
must know about the installation or presence of Word and be able to tap into its
fiunctions. Tn the preferred embodiment, two instances of the same application will share
a single context by default, while two separate applications will mainiain private
contexts. Referring to FIG. 3, the two applications 52,54 can run while the Operating

vystem Guard 100 provides a shared view of the available system resources.

JESIGN

As illustrated in FIG. 4, the Opg:rating System Guard is comprised of the
ollowing subsystems: core 102, configuration manager 104, file manager 106, shared
bject manager 108, device manager 110, font manager 112, process manager 120,
rOCess environmeﬁt manager 114, loader 116, and recovery manager 118. With the
xception of the core 102, the process manager 120, and the Joader 116, all other
ubsystems are elements of the Virtualization System described in further detail below.
(he core 102 is primarily responsible for managing applications and their context as
lefined by the configuration files.

The process manager 120 provided by the Operating System Guard allows the
ore 102 to be informed of any process or thread event that may be of interest. It also
rovides an abstraction layer to the operating system-dependent implementations for
nanaging a process space and handling thread processing. Processes may be grouped -
ogether into application bundles. An application bundle is a group of processes which all
hare their virtual resources with each other. For example, I\ﬁcrosoﬁ Word and Mlcrosoﬁ
ixcel may want to share the virtual reglstry and virtual file system to be able to work

ogether as an application suite. The process manager 120 calls these application bundles

CA 02465880 2008-03-06

“applications”. The information about an application exists until the process manager 120
is told to release the application. If another process needs to be loaded into the application

bundle, it may do so as long as the application has not been released.

The loader subsystem 116 of the present invention is used to allow virtual
environments to be transferred into and out of the running system. Each of the
Virtualization Subsystems is capable of serializing its configuration for the loader i1 0,
and retrieving it through the reverse process.. In addition, the loader 116 is capable of
staged Joading/unloading and combining the results of individual stages into one single

environment description.

REGISTRY AND CONFIGURATION

' Applications require varying amounts of configuration information to operate
properly. Anywhere from zero to thousands of configuration records exist for which an
application can read its configuration On Windows, there are two common places for
configuration information, the W'mdowT;Registry and system level initialization files
win.ini and system.ini. In addition, the \WINDO“%\SYSTEM directory is a common
~ place for applications to write application specific configuration or initialization files.
- Applications will also use configuration or data files in their local application directories
to store additional configuration information. Often this information is difficult to deal
ﬁth, as it is in a proprietary format. On platforms other than Windowg there is no
equivalent of the Registry, but common directories exist for configuration information. X
Windows has an app-defaults directory. Macinto sh has the Sj?stem Folder, and other

operating systems will have corresponding elements. It is important to note that on most
UND(néystems, each individual application 52,54 will most often store its own
configuration 152,154 locally, as seen in FIG. 2.

The present invention, in one.embodiment, includes a virtual Windows Registry
component, which will provide a fall function registry to an application, but prevent
modification to the underlying system registry. All keys that an application expects to
access will be preseni:, but may only exist in the virtual registry. In this way, the

CA 02465880 2008-03-06

Operating System Guard 100 of the present invention and the Windows Registry form a
two-stage process for accessing the registry. If an application needs access to a key, it
will query the Registry. The Operating System Guard will respond with the key and its
value if it knows it. Otherwise, it will allow the request to pass through to the Windows
Registry. If an attempt is made to modify the value, the Operating System Guard will
allow the modification to occur to itself only. The next time the application accesses the
key, it will be present in the Operating System Guard and the request will not flow
through to the real Registry, leaving it untouched.

“The keys that the Operating System Guard uses are specified in three separate
sections. These Operating System Guard keys are specified as commands in these
sections to modify an existing key, delete the presence of a key, or add a new key to the
registry. In this wéy, the virtual registry can appear exactly as the system intends. This is
important as the presence or absence of a key can be as important as the actual value of
the key. |

In the preferred embodiment, the Operating System Guard first loads a data file
that contains basic registry entries for the application. Then a second data file is loaded
that contains the user’s preferences. Finally, the Operating System Guard can optionally
load a set of keys that include policy items that the user is not allowed to override. The
three files load on top of each other with duplicate items in each file overriding items in
the file before it. The first time a user runs an application, the second data file will not
exist because there will be no user-specific information, only application defaults. After
eacﬁ session, though, the Operating System Guard will save the user’s changes,

generating that second data file for use in future sessions.

Configuration files can be modified in two ways. First, the file can be edited
directly by an application. In this scenario, the Operating System Guard File subsystem
described below will address the modification made to the file. Second, in the preferred
embodiment, an application can call the Windows API family of calls GetProfileString,
WriteProfileString, or others to modify these files. In this case, the Operating Sgrstem

CA 02465880 2008-03-06

Guard of the present invention performs exactly as described above intercepting these

calls and servicing them from within.

SHARED OBJECTS

Many components used by operating systems and running applications are shared
across several applications or instances. In general, this is a very good idea, It saves disk
space, not requiring many copies of the same file, It also provides the abﬂn:y for
operating system vendors and third parties to create and distribute libraries of commonly
used code. Onthe Windowémplatform, Dynamic Link Libraries, DLLs, are often shared
within and across applications. On other platforms, the problem is the same. On the
l\lladim:osl;,M INITSs and other system components are loaded for applications. These
components can have many versions, of which only one is used at a time. On UNIX
- systems, dynamic shared objects, e.g., “.s0” library files, are used by applications to
speed load time, save disk si)ace, and for other reasons. -Many programs use the default
“libc.so.” However, this library file is typically a symbolic link to some version of itself
such as libc.so.3. Tn practice, this feature has created havoc. These shared components
have often gone through revision, with many versions of the same component available to
be installed. Application authors have found their software to work with potentially only
one or some of the versions of the shared component. Thus, in practice, applications
typicaily install the version they desire, overwriting other present versions. This

potentially causes defaults in other applications running on a system.

On Windows a8, Windows 2000, Micro soﬂw:M has created the Windows Protected
File System (WPFS) to allow system administrators to create a file called
XXX LOCAL in the base directory of an application, where XXXX is the executable
file name without the extension. This causes the Windows Loader to alter its method of
resolving path references during LoadLibrary executions. This, however, is not sufficient
to completely solve the problem. First, setting up the XXXX file is lefi to the knowledge
of the system adm1n1strator which varies widely. Second, a component version mmst
undergo a rewind back to the original, then install this component in the local directory,

and then create the “L.OCAL” file. Thisisnota stralghtforward process for any but the

CA 02465880 2008-03-06

most basic components placed in WINDOWTSM\SYS’I"EM. Also, this solution does not
cover all of the needed functionality. During LoadLibrary, Windows uses different path -
resolution semantics depending on whether the component was resolved as a result of an
explicit or implicit LoédLibrary, and also whether a Registry Key exists indicating that it
is a named, or well-known, DLL. In this case, the Lo adLibrary call will always resolve
to the WINDOWS\SYSTEM directory.

DILLs and other shared components also retain reference count semantics to
ensure that 8 component is not touched unless no running applications refer toit. In
practice, only applications from the operating system vendor and the operating system
itself have done a good job of obeying this protocol.

As a general rule, it is desired to have a shared object always resolve to the

- correct component. To provide this fimctionality it is required to understand the version
of a component, or range of versions, that an application is able to function with. Then,
when the application is to be run, the present mmvention should ensure that the component
is resolved correctly. It is acceptable, in the present invention, to automate the use of
WPFS or other operating system provided capability, if desired. In this case, it is
necessary to detect needed components and place them in the local file system. This is
more complex than just watching installation, as an installation program will often not
install a component if the required one is already there.

It is desired to identify a method to ensure that named objects are also loaded
correctly. On the Windows platform, MSVCRT.DLL is a significant culprit within this
problem area. If mmltiple versions of this object are maintained, the aforementioned
Reégistry key can be dynamically changed, allowiﬁg the LoadLibrary function to resolve
the correct component version. Another reasonable method of ensuring correct
component loading is the dynamic editing of a process environment to use a valid search
path. This search path will ensure that a local component is resolved before a system
wide component. Another possible method for resolution of the correct shared object is

through the use of symbolic links, A symbolic link can be made for a shared component,

;xo-

CA 02465880 2008-03-06

which is resolved at run-time by the computer’s file system to the needed component.
Finally, the actual opan!read/close requests for information from a shared obJect’s file -
can be intercepted by the present invention and responded to dyna mically for the correct

version of the file which may exist on the local system or within the invention’s

subsystems.

Several special forms exist. On the Windowgmplatform, OLE, ODBC, MDAG, ...
as well as a number of other vendor specific components, are written to be shared
globally among several or all running processes. In the case of OLE, going as far as
sharing data and memory space between separate processes. OLE prevents more than
one copy of itself running at a time, as do many of these components. OLE also has
many bugs and features requiring a specific version to be loaded for a specific
application. In the present invention, an application is able to load wﬁatever version of
OLE is required, still enabling the shared semantics with other components using the

same version of OLE.

 In general, unless specifically configured as such, shared objects should be loaded
privately to ensure conflict prevention. Nothing about the method used to allow a
component to be loaded privately should prevent it from being unloaded cleanly or
correctly loading for another software application, whether being actively managed by
the Operating System Guard or not. In addiﬁon, if the system crashes it is required to
recover from this crash to a clean state, not having overwritten or modified the

underlying operating system.

FILES
Many applications use data files within the application to store configuration

entries _61' other application data. The present invention provides a virtual file system
much like the virtual registry described above. Before the application starts, the present
invention can load a list of file system changes, including files to hide and files to add to |
the virtual environment or files to redirect to another within the virtnal environment.

Whenever the application accesses or modifies any files, the Operating System Guard

_11-

CA 02465880 2003-11-14
WO 02/093369 PCT/US02/15378

checks if the file must be redirected, and if so, in the preferred embodiment redirects the
request to a location specified in the Operating System Guard configuration.

If an application tries to create a new file or open aﬁ existing file for writing on a
user’s local drive, the Operating System Guard must ensure that the file is actualljz
created or modified m the redirected location. If the application is reloaded at a later time,
this file mapping must be reloaded into the Operating System Guard virtual environment.
When the request is to modify an existing file, which resides on a user’s local drive, the
Operating System Guard must copy the file in question to the redirection point before
conﬁnuﬁng with the request. The redirected :ﬁles‘may not be of the same name as the
original file to ensure safe mapping of file i)aths. In the preferred embodiment, INI files
are handled in this way to offer maximum system security while allowing maximum

application compatibility,

The present invention is particularly useful for applications delivered over a
network. In such implementations it is important to understand that software applications
are made of several kinds of daia, where the bulk of the files a software application uses
are most preferably mounted on a separate logical drive. Configuration, including both
file based and registry based, can be user specific and system wide. The application
dehivery system used should mark each file for which of these types any file is. Thas
information provides hints to the Operating System Guard system to act on appropriately.

DEVICE DRIVERS
Many applications use device drivers or other operating system. level software to

~ 1mplement some of its functions such as hardware support or low leve] interactions
directly with the operating system. In the present invention, the Op erating System Guard
will provide the capability of dynamically, and as possible privately, adding and

removing these components to an app]ication’é virtual environment..

Many device drivers are built to be dynamically loadable. If at all possible, it is
the preferred embodiment to load all device drivers dynamically. If a device driver

12~

CA 02465880 2008-03-06

requires static load at boot time, the user must be presented with this knowledge before
running the application. Once the system has r;sbooted, the application should continue
from where it left off However, a large pércenta ge of device drivers are not dynamically
unloadable. Although it is preferred to dynamically unload the driver, if this cannot be
accomplished the driver will be marked for removal on the next rebo ot, and the user
should be made aware ofthis, Ifthe application is run a second time before the next
reboot, the system should remain aware of the presence of the dtiver' and not attempt a

second installation, waiting for termination to remark the component removable at next

reboot.

Ttis important to characterize the base similarities and differences, as they exist
for each device driver claés, to ensure the present invention can correctly function. It1is
not truly desired to load and unload device drivers for system hardware that is constat{tly
present. . It should be understood that although this is not a preferr.ed embodiment in
terms of programming ease, it is within the scope of the present invention and may be
required for specific reasons, such as the restriction. in licensing agreements for

applications that are delivered and run using the present invention.

On non-Micro SOﬁ“iJ latforms, device drivers are typically handled very differently.
Macintoshmsystems support both static and dynamic drivers, but they are all installed and
removed through the same method. Linking with the Macinto shmsyst em folder will
provi&e the necessary support. For UND(méystems, device drivers most typically require
a modification to the running UND(TiemeL followed by a reboot. This process can be

very complex. In the preferred embodiment, this process is automated; mcluding
| resetting the kernel once the application is complete. The general parameters of the
process are the same as that described above for Windows applications, the actual process
steps of conipilation and persons familiar with such operating systems can carry out
reboot.

_13-

CA 02465880 2008-03-06

~ Finally, those of skill in the art will understand that it is desirable to be able to
recover and remove drivers across system failures. Whatever data or processes necessary
to retain system integrity are therefore a preferred embodiment of the present invention.
Those of skill in the art will also appreciate that all types of device drivers ﬁight not be
conveniently or efficiently provided via the present invention, most particularly those

associated with permanent hardware attached devices.

- OTHER ITEMS

In the present invention, it is recognized that there are several compoﬂents ofthe
invention, the behavior or presence of which is .diﬂ‘erent on alternate operating systems.
These components include fonts, processes, environment variables, and others.

Some applications require fonts to be installed in order to perform correctly. Any
fonts required will be specified in the Operating System Guard’s configuration file. The
Operatiﬁg System Guard will enable these fonts prior to running the applfléation and if
necessary remove them afterwards. Most systems have a common area for storage of

fonts in addition to a process for registering them or making the system aware of their
presence, the Operating System Guard will utilize these available methods.

On Windows, a font is copied to the \WIND OWTg\FONTS directory. This
however does not guarantee that the font is available to the ruming program. In the
preferred embodiment, if the program uses the Windows API to access fonts, the font will
need to be registered with a Win32 API call such as CreateScalableFontResource/

AddFontResource. This will insert the font into the system font table. Once complete,
the Operating System Guard can remove the font with another apprapriate API call like
RemoveFontResource, then remove the file from the system. As an alternate
embodiment, the Operating System Guard could hook the APT functions as described in

the virtual registry method. In addition, the Operating System Guard can use its File
subsystem to.avoid placing the actual font file in the running system.

On Maciniosﬁ,M the process is extremely similar and based on files i the
Macinto shmsy stem folder and registration activation. On UNDf,Mhowever, the process is

-14-

CA 02465880 2008-03-06

- dependent upon the application. Most typically, font resources are added to the system as |
regular files resolved 1n the proper location, so they can be accessed by name. With
many Motif systems, a font description needs to be placed into a font resource file, which
will allow the font to be resolved. The Motif or X application can invoke the font either
through the resolﬁtion subsystem or by a direct call. Recently; many Motif and CDE
based systems utilize Adobe scalable postscript fonts. These fonts need to managed
through the Adobe type management system. There are exceptions, however, and as
stated above, there are alternates to the Windows or other operating syst eﬁz default font
management systenis. The Adobe Type Manager provides some alternate interfaces for
this process, as do other third party type management systems. In most cases it should be
decided whether to suppoit the intérface o1 igndré it. The purpose of Operating System

Guard is not to provide a universal layer for all these systems, only to do so for the
operating system’s own subsystem

Many applications requife environment variables to-be set. This is most comxmon
on UND(Tgystems, but is also heavily used by software, which was originally written on
UNIX and ported to the Windows operating systems. 'App lications on the Windows
operating systems heavily rely on the DOS PATH environment variable and ofien set

~ their own application specific entries. On the Windows 9x/Me environments, there are
many environment settings, which are apphcable as at its core is the DOS subsystem. If
an. application requires the presence of specific vanables or values to be set in existing

. environment variables, the required environment variables will be specified in the
Operating System Guard’s configuration file. The Operating System Guard will set these

variables for the application’s main process when it is launched. As applications do not

typically change environment settings as they operate, the virtual environment will not
trap these calls, nor will it provide the full complement of fimctionality that the registry
and configuration subsystem does.

RECOVERY

In some cases shown in the previous sections, actual modifications must be made

to the operating system. This is frequent with dévice drivers and fonts. Tn addition,

-15-

CA 02465880 2003-11-14
WO 02/093369 PCT/US02/15378

changes can be made to the virtual environment that need to be persisted and available
the next time an application is run. ¥ is required that the Operating System Guard system
be able to recover from changes to the system, removing the change from the system at
its earliest possible opportunity. Alternately, if the system crashes du:rmg an
application’s execution, the Operating System Guard should track enough information to
remove any change to the system if it 1s rebooted or otherwise, and should track the -
changes made to the virtual environment. In the preferred embodiment, this is
implemented as a transaction log, but can in other embodiments be done as some other

similar component, which can be read on system startup so that changes can be backed
out.

CONTROLLING VIRTUALIZATION

An important aspect of the invention relates to control of the many facets of
virtualization which the Opei'ating System Guard is capable of. In the preferred
embodiment there exists an instrumentation program able to ascertain the correct aspects
of a software system to control. Also included is a method to allow administrators and
end ﬁsers_ to view and modify those items to be virtualized by the system.

¥n the gutomated program, the application to be controlled is observed in order to
gauge the aspects of control. The automated program is capable of performing this task
during the installation process of the application, during run-time of the application, or a
combination of both. In the preferred embodiment, the Operating System Guard is
embedded in a wrapper application. Post installation, or after one or many uses of the

software, the wrapper application will query the Operating System Guard for a detailed
list of all of its actions. From this list of actions, the wrapper application will create the

configuration files required to load and operate the Operating System Guard on

subsequent uses.

If used as part of the installation process, the Operating Sysfem Guard, in the
preferred embodiment, will act as a virtual layer allowing the installation to be entered
into its environment only. After the installation, all of the files, settings, et. al. can be

_16-

CA 02465880 2003-11-14
WO 02/093369 PCT/US02/15378

dumped for reload later. In this way, the installation will leave the original system mtact
and will have automatically created the necessary configuration files. When used during
use of the application, the Operating System Guard is able to record either differential

modifications to the environment, or recodify the configuration files.

The Operating System Guard will pass its information to the wrapper app]ication
for post-pro cessin g. Inthe preferred embodiment, in addition to the automatic entries
that the system can create, the wrapper application is programmed with operating system
specific and application or domain specific knowledge. This knowledge is used to alter
the output of the process to reflect known uses of conﬁgmatioﬁ items or other entries. In
the preferred embodiment, a rules-based system is employed to compare observed

behaviors with known scenarios in order to effect changes to the coding.

The wrapper :application is also used as a viewer and/or editor for the
configuration output of the process. This editor, in the preferred embodiment, enables a
system administrator to add, edit, or delete items or groups of items from the
configuration. In observing the conﬁguration through the editor, the administrator can
also make replicas of the configuration, changing specific items as needed to effect

~application level or user custom changes.

Referring now to FIG. 1, an embodiment of the present‘ invention 1is i]lustrafced
functionally. In this embodiment, two sets of application/user data 60 are illustrated.
The Operating System Guard 100 keeps the two instances of the application 50 from
mterfering with oﬁe another. In addition, as explained above, the operating system guard
100 serves as an abstraction layer and as such collects commands and communications
between the application soﬁwai:e 50 and the actual operating system 10 of the client
computer. As illustrated graphically by the arrows, certain commands are between the
Operating System Guard and the software application, this is in distinction to typical
mstallations whefe these commands would instead be acted upon by the operating system
itself, resulting in changes to the client computer that might not necessarily be what the

_17-

CA 02465880 2003-11-14
WO 02/093369 PCT/US02/15378

operator intended. On the other hand, other commands pass through the Operating
System Guard and are then transferred to the Operating System itself.

While this invention has been particularly shown and described with references to
- preferred embodiments thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein without departing from the

scope of the invention encompassed by the appended claims.

-1 8-

CA 02465880 2008-03-06

THE EMBODIMENTS OF THE INVENTION FOR WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A computer-readable storage medium comprising computer-executable instructions for
providing one or more application environments on a client computer, the instructions when
executed providing: an operating system protection layer, executing on an operating system
of the client computer, one or more applications executing on said operating system, the
operating system protection layer comprising one or more subsystems, wherein said
protection layer is provided between one or more applications and said operating system and
between each of the one or more applications;

wherein the protection layer provides each of the one or more applications with 1ts
respective virtual operating environment in which each of the one or more applications
execute,;

wherein said respective virtual operating environment appears to each of the one or
more applications to be an installation environment without performing an installation,;

whereby a pseudo installation is created in which at least one setting 1s brought into
the respective virtual operating environment at the time the one or more applications execute;
and

wherein the operating system protection layer comprises a virtual registry that

provides a full function registry to each of the one or more applications.

2. The computer-readable storage medium of claim 1, wherein the operating system

protection layer continually monitors the use of shared system resources and mediates at least

one of said shared system resources to each of the one or more applications.

3. The computer-readable storage medium of claim 1, wherein said operating system 1s a

Windows -based operating system.

4. The computer-readable storage medium of claim 1, wherein the operating system
protection layer intercepts each operating system request whether made by an application
executing directly on the operating system or made by said one or more applications 1n the

respective virtual environment.

-10.

CA 02465880 2008-03-06

5. The computer-readable storage medium of claim 1, wherein said operating system

protection layer manages the integration of multiple separate instances of an application.

6. The computer-readable storage medium of claim 1, wherein the operating system
protection layer prevents information on the client computer from interfering or modifying

the behavior of each of the one or more applications.

7. The computer-readable storage medium of claim 1, further comprising an interface for
dynamically changing the respective virtual environments during at least one of prior to,

during, or post the execution of each of the one or more applications.

8. The computer-readable storage medium of claim 1, wherein more than one instance of a
single application executes on the client computer, and wherein each of said more than one
instance of the single application operates with a different configuration than the other

instances of the single application.

9. The computer-readable storage medium of claim 1, wherein the operating system
protection layer responds to a request with a resource if said resource is stored within the
operating system protection layer, and if not stored, the operating system protection layer
allows the request to pass through to the underlying system registry, wherein said resource

comprises one or more of said subsystems of the operating system protection layer.

10. The computer-readable storage medium of claim 9, wherein if an attempt 1s made to

modify the resource, the operating system protection layer allows the modification to occur to

the respective appropriate virtual environment only.

11. The computer-readable storage medium of claim 1, wherein a first of the one or more
applications and a second of the one or more applications are two different versions of a same

application program.

220-

CA 02465880 2008-03-06

12. The computer-readable storage medium of claim 1, wherein the operating system
protection layer further comprises a data file, stored in memory coupled to the chient
computer, the data file containing data and configuration information for providing the one or

more virtual environments.

13. The computer-readable storage medium of claim 1, further comprising a logically
protected computing environment under control of the operating system protection layer, the
logically protected environment including a substantially duplicative resource corresponding
to a system resource needed by at least one of the one or more applications, said duplicative
resource allowing the one or more applications to execute without affecting the

corresponding system resource.

14. The computer-readable storage medium of claim 1, wherein each of the respective virtual
execution environments are a plurality of logically protected environments for protected
operation of a corresponding plurality of applications, each within its own logically protected

environment.

15. The computer-readable storage medium of claim 1, wherein the subsystems comprise
one or more of a process manager, a virtual file system manager, a loader, a recovery

manager and a virtual environment manager.

16. The computer-readable storage medium of claim 15, wherein the virtual environment
manager comprises one or more of subsystems including configuration, files, shared objects,

devices and fonts.

17. A computer-readable storage medium comprising computer-executable instructions for
executing one or more application programs on a computer system having an operating
system therein, the operating system having access to and brokering the use of system
resources, in accordance with the following steps:

executing a protective program on the operating system, the protective program
providing a customized logically protected environment for running the one or more

application programs, wherein said customized logically protected environment appears to

-21-

CA 02465880 2008-03-06

each of the one or more application programs to be an installation environment without

performing an installation whereby a pseudo-installation is created in which at least one
setting is brought into the respective logically protected environment at the time the one or
more application programs execute, and wherein the protective program comprises a virtual
registry that provides a full function registry to each of the one or more application programs;

executing the one or more application programs adapted for use on the operating
system 1n a respective one or more customized logically protected environments;

controlling interactions between the one or more application programs and the
operating system it is adapted to run on, including controlling interactions between the one or
more application programs and the system resources of the computer system and controlling
interactions between the one or more application programs; and

servicing at least some requests from the one or more application programs using the

protective program without transferring the requests to the operating system.

18. The computer-readable storage media of claim 17, further comprising instructions for
installing the one or more application programs in the logically protected environment
without permitting the installation to alter the computer system outside the logically protected

environment.

19. A computer-implemented method for executing one or more application programs on a
computer system having an operating system therein, the operating system having access to
and brokering the use of system resources, the method comprising the steps of:

executing a protective program on the operating system, the protective program
providing a customized logically protected environment for running the one or more
application programs, wherein said customized logically protected environment appears to
each of the one or more application programs to be an installation environment without

performing an installation whereby a pseudo-installation is created in which at least one
setting is brought into the respective logically protected environment at the time the one or
more application programs execute, and wherein the protective program comprises a virtual
registry that provides a full function registry to each of the one or more application programs;

executing the one or more application programs adapted for use on the operating

system in a respective one or more customized logically protected environments;

29

CA 02465880 2008-03-06

controlling interactions between the one or more application programs and the
operating system it is adapted to run on, including controlling interactions between the one or
more application programs and the system resources of the computer system and controlling
interactions between the one or more application programs; and

servicing at least some requests from the one or more application programs using the

protective program without transferring the requests to the operating system.

20. The computer-implemented method of claim 19, further comprising the step of installing
the one or more application programs in the logically protected environment without
permitting the installation to alter the computer system outside the logically protected

environment.

_23-

CA 02465880 2003-11-14

1/2

Shared Resources

Shored Resources
Trusted Shared Resources

71 7T
" A
S S

Operating System 10

Application 2 54
instance 1

Faig.2
192 Application Configuration Application Configuration 154
System Configuration sz System Configuration

: [}

Fag. 1

Application 1

52 instance 1

CA 02465880 2003-11-14

212

Application 1
Instance 2

Application 1
Instance 1

Operating System Guard 100

Shared
Fig.3

52

Application Configuration| context

System Services System Configuration

110 112
108 114

)}

Virtual File System
Manoger

Shared Objects ~

- | Devices
Fonts
B
Enviromnent

&
Configuration

.- W mm.m Ay - - L agn -af

20

Application

I |
T
g

Shared Resources

Shared Resources
Trusted Shared Resources

| I N |
S S |

Operating System

] =
:

100

10

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - abstract drawing

