
March 17, 1931.

J. LE VALLEY

COMPRESSOR UNLOADER Filed Sept. 14, 1929

INVENTOR.

**John LeValley.

BY L. C. C.

HIS ATTORNEY.

UNITED STATES PATENT OFFICE

JOHN LE VALLEY, OF PAINTED POST, NEW YORK, ASSIGNOR TO INGERSOLL-RAND COMPANY, OF JERSEY CITY, NEW JERSEY, A CORPORATION OF NEW JERSEY

COMPRESSOR UNLOADER

Application filed September 14, 1929. Serial No. 392,695.

This invention relates to compressors, but and is urged thereagainst by a spring T intermore particularly to a compressor unloader adapted to automatically unseat the inlet valve or valves of compressors whenever the 5 pressure in the receiver into which the compressor discharges reaches a certain predetermined value.

One object of the invention is to prevent communication between the cylinder of the compressor and the channels through which

air is conveyed to the cylinder.

Another object is to protect the unloader and cooperating elements against severe jars or strains by suitable cushioning means which 15 will yield gradually to the pressure applied for actuating the unloader.

Other objects will be in part obvious and

in part pointed out hereinafter.

The figure in the accompanying drawing is 20 a sectional elevation of a compressor unloader constructed in accordance with the practice of the invention and showing the unloader

applied to a compressor.

Referring more particularly to the draw-25 ing, A represents a portion of a compressor cylinder having a compressor chamber B in which is disposed a piston C. A closure is provided for the compressor chamber B by a head D which may be secured to the cylinder 30 in any suitable and convenient manner.

The cylinder A comprises an inner wall E and an outer wall F spaced with respect to the wall E to form therebetween a passage G through which air, either compressed air 35 from a lower stage cylinder or atmospheric air, may flow to the compressor chamber B. The walls E and F are provided with apertures H and J respectively which are arranged coaxially with respect to each other.

The aperture H is adapted to accommodate valve mechanism designated generally by K, and comprising a valve seat L which seats against the wall E and in this instance has seating surfaces O and P at opposite ends. 45 In the valve seat L is a port or ports Q through which the air from the passage G enters the compressor chamber B. The outlet end R of the port Q is controlled in this inposed between the valve plate S and a stop plate U which may be secured to the valve seat in any suitable manner, as by a bolt W and a nut X

In order to conveniently hold the valve assembly in the aperture H an unloader cylinder Y is threaded into the aperture J and said unloader cylinder carries at its inner end a skirt Z adapted to bear against the valve seat L. In this skirt are formed ports b to afford free communication between the passage G and the port Q in the valve seat.

In addition to the function described, the unloaded cylinder Y also serves as a housing 65 for unloading devices intended to selectively cut off communication between the port Q and the passage G. To this end the cylinder Y is provided with a bore c to slidably receive a hollow plunger d. The bore c extends en- 70tirely through the unloader cylinder Y, although the inner portion, that is, the portion adjacent the skirt Z is of somewhat reduced diameter as at e to accommodate a reduced extension f of the plunger d. In this way is 75 formed a shoulder g in the bore c which may act as a stop for a shoulder h on the plunger d in order to assure the retention of the plunger in the bore, particularly during the assembly of the device in the compressor.

Secured to the outer end of the unloader cylinder, as by means of bolts j, is a cover kwhich forms a closure for the bore c, and said cover k is preferably provided with a cavity o to serve as a chamber into which 85 pressure fluid from a suitable source of supply may be introduced into the end of the bore c for depressing the plunger d. For this purpose a pipe p is threaded into the

cover k.

The cavity q in the plunger d is adapted to accommodate slidably a valve r of cup shape having a hollow body portion s and at its open end a lateral flange t to cooperate with the $\theta 5$ seating surface P for closing the inlet end of the port Q.

In order to normally assure the retracted stance by a valve plate S which cooperates positions of the plunger d and the valve r, with the seating surface O for this purpose a spring v is disposed within the plunger d 100 to bear against the end of the valve r, and a spring w is interposed between the valve seat L and the valve r.

Any suitable and well known means, as for instance, an auxiliary valve (not shown) may be interposed in the pipe p for automatically controlling the admission of pressure fluid into the chamber o, when the receiver pressure exceeds a certain predetermined value, and to automatically exhaust such pressure fluid from the chamber o after the pressure in the storage receiver has again dropped below that which it is desired to maintain.

During the normal operation of the compressor, as when the compressor is operating under full load conditions, the plunger d and the valve r will be held in the retracted position by the springs v and w. Air will then flow from the passage G through the port G and into the chamber G where it will be compressed by the piston G. This operation may continue until the pressure in the storage receiver into which the compressor discharges reaches a maximum value which it is desired to maintain therein and at which such controlling devices as may be interposed in the pipe F are adapted to act for unloading the compressor.

the compressor. Whenever this pressure has been attained, 30 pressure fluid will be admitted into the pressure chamber o to act against the plunger d and to move the plunger in the direction of the valve assembly. The movement of the plunger will be transmitted through the 35 spring v to the valve r and the spring w will then also act to resist the movement of the plunger as well as the movement of the valve r. The plunger and the valve will however be moved inwardly until the flange t seats against the seating surface P to close the inlet opening of the port Q. This pressure of the valve may be reached without compressing the spring v to such an extent where the innermost end of the reduced portion f of the 45 plunger will contact with the flange t_2 depending, of course, upon the tension of the The plunger may however be spring v. The plunger may however be pressed into body contact with the flange tto hold the valve r in the closed position until the receiver pressure has again been decreased below the maximum pressure at which the unloader is intended to act. When this condition in the receiver obtains the means pro-

55 sure fluid in the chamber o may then act and the plunger d and the valve r will again be restored to the retracted positions by the springs acting thereagainst.
I claim:
1. A compressor unloader, comprising a relate cost beging a port a valve plate for

vided for automatically releasing the pres-

valve seat having a port, a valve plate for controlling one end of the port, an unloader cylinder over the valve seat, a pressure actuated plunger therein, a valve slidable in the plunger and adapted to seat over the other

end of the port, and a spring between the plunger and the valve for transmitting the movement of the plunger to the last said valve.

2. A compressor unloader, comprising a valve seat having a port, a valve plate for controlling the outlet end of the port, an unloader cylinder over the valve seat, a pressure actuated plunger therein, a valve slidable in the plunger and adapted to seat over the inlet end of the port, and a spring between the plunger and valve for causing the last said valve to follow the movement of the plunger.

3. A compressor unloader, comprising a so valve seat having a port, a valve plate for controlling the outlet end of the port, an unloader cylinder over the valve seat, a pressure actuated plunger therein, a valve slidable in the plunger and having a flange adapted to seat over the inlet end of the port, a spring between the plunger and valve for transmitting the movement of the plunger to the last said valve, and a second spring between the valve plate and the valve to normally maintain the valve free from the valve seat.

4. A compressor unloader, comprising a valve seat having a port, a valve plate for controlling the outlet end of the port, an unloader cylinder over the valve seat, a pressure actuated plunger therein, a cup-shaped valve slidable in the plunger and having a flange at its open end adapted to seat over the inlet end of the port, a spring in the plunger abutting the closed end of the valve for transmitting the movement of the plunger to the last said valve, and a second spring positioned in the cup-shaped valve and abutting the valve plate to normally maintain the valve free from the valve seat.

In testimony whereof I have signed this specification.

JOHN LE VALLEY.

115

110

120

125

130