发明名称
多电池组系统、多电池组管理系统、辅助电池组附属系统以及网络控制多电池组系统

摘要
本发明涉及一种多电池组系统和网络可控多电池组系统(10)。同时还提供了带有主正极输出(110)和主负极输出(120)的主电池组以及具有至少一个辅助正极输出(210)和至少一个辅助负极输出(220)的至少一个辅助电池组(200)。提供了包括至少一个切换设备(300)的主电气电路，该切换设备带有至少两个工作位置。这两个位置选择性地把所述主和至少一个辅助电池组耦合至公共正极端子(310)。在所述至少两个工作位置的第一工作位置上，为主电池组和至少一个辅助电池组提供电荷。还提供耦合至主电气电路的控制器，它基于来自至少一个传感器的输入切换所述至少一个切换设备。
1. 一种多电池组系统，包括：

具有各自耦合至电气系统的公共正极端子和公共负极端子的电池组外壳；具有主正极输出和主负极输出的主电池组；

具有辅助正极输出和辅助负极输出的至少一个辅助电池组；

以及包含了所述公共正极端子与切换设备的耦合的主电气电路，所述至少一个切换设备具有至少两个工作位置，在所述至少两个工作位置的第一工作位置上，将所述公共正极端子耦合至所述主电池组的正极输出并且耦合至单向充电电路，该单向充电电路位于所述辅助正极输出之前并与之耦合，而在第二工作位置，通过至少一个切换设备把所述公共正极端子耦合至与所述辅助正极输出耦合的单向充电电路的另一边的所述主电路内的一点。

2. 如权利要求1所述的多电池组系统，其特征在于，在所述至少一个切换设备的第二位置上，所述主电池组与所述辅助电池组是电气隔离的。

3. 如权利要求1所述的多电池组系统，其特征在于，所述电池组外壳还包括含有所述主电池组的至少一个主电池组隔间。

4. 如权利要求1所述的多电池组系统，其特征在于，所述主电池组是6伏、12伏或24伏电池组中的一种。

5. 如权利要求1所述的多电池组系统，其特征在于，仅主电池组的正极输出和至少一个辅助电池组的正极输出的耦合是由所述切换设备切换的。

6. 如权利要求1所述的多电池组系统，其特征在于，所述至少两个工作位置的第二工作位置将所述主电池组与电气系统隔离并且仅引入所述至少一个辅助电池组。

7. 如权利要求1所述的多电池组系统，其特征在于，所述电池组外壳还包括含有所述至少一个辅助电池组的至少一个辅助电池组隔间。

8. 如权利要求1所述的多电池组系统，其特征在于，所述至少一个辅助电池组是6伏、12伏或24伏电池组中的一种。

9. 如权利要求1所述的多电池组系统，其特征在于，所述主电池组是带有6个2伏电池的12伏电池组并且所述至少一个辅助电池组是带有6个2伏电池的12伏电池组。
10. 如权利要求 1 所述的多电池组系统，其特征在于，所述电池组外壳还包括包含所述主电池组的主电池组隔间以及包含所述至少一个辅助电池组的至少一个辅助电池组隔间，所述主电池组的隔间位于所述至少一个辅助电池组隔间的顶部。

11. 如权利要求 1 所述的多电池组系统，其特征在于，所述电池组外壳还包括至少一个注入管。

12. 如权利要求 11 所述的多电池组系统，其特征在于，所述至少一个注入管包括至少一个主电池组注入管。

13. 如权利要求 12 所述的多电池组系统，其特征在于，所述主电池组包括至少一个电池并且所述至少一个主注入管包括用于所述主电池组的每个电池的主注入管。

14. 如权利要求 1 所述的多电池组系统，其特征在于，所述至少一个注入管包括至少一个辅助电池组注入管。

15. 如权利要求 14 所述的多电池组系统，其特征在于，所述辅助电池组包括至少一个电池并且所述至少一个辅助注入管包括用于所述辅助电池组的每个电池的辅助注入管。

16. 如权利要求 1 所述的多电池组系统，其特征在于，还包括至少一个主注入管和至少一个辅助注入管，所述至少一个辅助注入管通过所述主电池组隔间。

17. 如权利要求 1 所述的多电池组系统，其特征在于，所述单向充电电路包括至少单向充电二极管。

18. 如权利要求 17 所述的多电池组系统，其特征在于，所述至少单向充电二极管还包括至少一个硅整流器。

19. 如权利要求 18 所述的多电池组系统，其特征在于，所述至少一个硅整流器具有约 25 到 95 安培之间的额定电流。

20. 如权利要求 19 所述的多电池组系统，其特征在于，所述主电池组是 12 伏的汽车电池组并且所述至少一个硅整流器具有 12 伏，45 安培的额定值。

21. 如权利要求 1 所述的多电池组系统，其特征在于，所述充电电路还包括至少一个高容量二极管以及耦合至所述至少一个高容量二极管的至少一个散热装置。
22. 如权利要求 21 所述的多电池组系统，其特征在于，所述至少一个高容量二极管的额定电流约为位于 25 到 95 安培之间。

23. 如权利要求 22 所述的多电池组系统，其特征在于，所述至少一个高容量二极管具有 12 伏，45 安培的额定值并且耦合至所述高容量二极管的至少一个散热装置具有足够的表面区域来散热由 12 伏，45 安培额定值的至少一个高容量二极管产生的热量。

24. 如权利要求 1 所述的多电池组系统，其特征在于，还包括耦合至所述至少一个切换设备并切换该设备的控制器。

25. 如权利要求 24 所述的多电池组系统，其特征在于，还包括与所述至少一个控制器通信的至少一个传感器。

26. 如权利要求 25 所述的多电池组系统，其特征在于，所述至少一个传感器还包括至少一个主电池组电压传感器。

27. 如权利要求 26 所述的多电池组系统，其特征在于，所述至少一个传感器还包括至少一个主电池组冷起动电流传感器。

28. 如权利要求 27 所述的多电池组系统，其特征在于，所述至少一个传感器还包括至少一个辅助电池组电压传感器。

29. 如权利要求 28 所述的多电池组系统，其特征在于，所述至少一个传感器还包括至少一个辅助电池组冷起动电流传感器。

30. 如权利要求 29 所述的多电池组系统，其特征在于，所述至少一个传感器还包括至少一个切换位置传感器。

31. 如权利要求 29 所述的多电池组系统，其特征在于，所述控制器耦合至所述位置传感器并与所述通信以检测所述切换设备的位置并基于所述至少一个主电池组电压传感器，所述至少一个主电池组冷起动电流传感器，所述至少一个辅助电池组电压传感器和所述至少一个辅助冷起动电流传感器中的至少一个的输入来选择性地接合所述切换设备。

32. 如权利要求 1 所述的多电池组系统，其特征在于，还包括辅助电池组放电系统。

33. 如权利要求 32 所述的多电池组系统，其特征在于，所述辅助电池组放电系统还包括带定时器的控制器。
34. 如权利要求 33 所述的多电池组系统，其特征在于，所述定时器可向所述控制器发送信号以周期性地改变所述切换位置以使得在所述至少两个工作位置的所述第二工作位置上能够在较短周期内放电所述辅助电池组并在随后切换回到所述至少两个工作位置的所述第一工作位置上。

35. 如权利要求 32 所述的多电池组系统，其特征在于，所述放电系统包括一记时器指示，它在一个短的时间周期内将所述电池组系统手动切换至所述第二工作位置并在随后将所述切换设备手动切换回所述第一操作位置。

36. 如权利要求 32 所述的多电池组系统，其特征在于，所述控制器在来自至少一个传感器的输入信号指示所述主电池组电压或冷起动电流低于一触发点的情况下切换所述切换设备使得所述公共正极端子耦合至所述辅助电池组正极输出。

37. 一种多电池组系统包括：
 带有耦合至主电池组的公共正极端子和公共负极端子的电池组外壳；
 带有主正极输出和主负极输出的主电池组；
 带有辅助正极输出和辅助负极输出的辅助电池组；
 带有至少两个工作位置的切换设备，所述至少两个工作位置选择性地接合所述主电池组和所述辅助电池组并且包括：
 所述至少两个工作位置的第一工作位置，其中把所述公共正极端子耦合至所述主正极输出并且还通过在所述至少一个辅助电池组之间和之前的单向充电电路耦合至所述至少一个辅助电池组的正极输出；以及
 所述至少两个工作位置的第二工作位置，其中把所述公共正极端子耦合至所述辅助正极使得所述公共正极端子在所述单向充电电路的另一边的一点上耦合至所述辅助电池组正极。

38. 如权利要求 37 所述的多电池组系统，其特征在于，所述第二工作位置使得所述辅助电池组单独与所述辅助电路系统串联并阻止所述辅助电池组内部的电能流入所述主电池组。

39. 如权利要求 37 所述的多电池组系统，其特征在于，所述单向充电电路在所述第二工作位置上电气隔离所述主电池组。

40. 如权利要求 37 所述的多电池组系统，其特征在于，在所述第一工作位置上，所述单向充电电路允许电能从所述电池组流入所述主电池组和辅助电池组。但是
阻止电能从辅助电池组内流出。

41. 如权利要求 37 所述的多电池组系统，其特征在于，仅主电池组和至少一个辅助电池组的正极输出是由所述切换设备切换的。

42. 如权利要求 37 所述的多电池组系统，其特征在于，所述至少两个工作位置的第二工作位置完全断开主电池组与电气系统的连接并且仅引入所述至少一个辅助电池组。

43. 如权利要求 37 所述的多电池组系统，其特征在于，所述主电池组是 6 伏、12 伏或 24 伏电池组中的一种。

44. 如权利要求 37 所述的多电池组系统，其特征在于，所述至少一个辅助电池组是 6 伏、12 伏或 24 伏电池组中的一种。

45. 如权利要求 37 所述的多电池组系统，其特征在于，所述电池组外壳还包括含有所述主电池组的主电池组隔间和含有所述至少一个辅助电池组的至少一个辅助电池组隔间，所述主电池组隔间位于所述至少一个辅助电池组隔间顶部。

46. 如权利要求 37 所述的多电池组系统，其特征在于，所述电池组外壳还包括至少一个注入管。

47. 如权利要求 37 所述的多电池组系统，其特征在于，所述单向充电电路包括至少单向充电二极管。

48. 如权利要求 47 所述的多电池组系统，其特征在于，所述至少单向充电二极管还包括至少一个硅整流器。

49. 如权利要求 48 所述的多电池组系统，其特征在于，所述至少一个硅整流器具有约在 25 到 95 电流之间的额定值。

50. 如权利要求 48 所述的多电池组系统，其特征在于，所述主电池组是 12 伏的汽车电池组并且所述至少一个硅整流器具有 12 伏，45 安培的额定值。

51. 如权利要求 37 所述的多电池组系统，其特征在于，所述充电电路还包括至少一个高容量二极管以及耦合至所述至少一个高容量二极管的至少一个散热装置。

52. 如权利要求 51 所述的多电池组系统，其特征在于，所述至少一个高容量二极管具有约为 25 到 95 电流之间的额定值。

53. 如权利要求 51 所述的多电池组系统，其特征在于，所述至少一个高容
量二极管具有12伏，45安培的额定值并且耦合至少一个高容量二极管的至少一个散热装置具有足够的表面区域来散发由所述至少一个二极管产生的热量。

54. 如权利要求37所述的多电池组系统，其特征在于，还包括耦至所述切换设备并切换该切换设备的控制器。

55. 如权利要求54所述的多电池组系统，其特征在于，还包括与所述控制器通信的至少一个传感器。

56. 如权利要求55所述的多电池组系统，其特征在于，与控制器通信的所述至少一个传感器包括检测所述切换设备位置的至少一个切换位置传感器并且所述控制器基于来自所述至少一个切换设备传感器和主电池组电压传感器、主电池组冷起动、辅助电池组电压传感器和辅助冷起动电流传感器中的至少一个的输入来驱动所述切换设备。

57. 如权利要求37所述的多电池组系统，其特征在于，还包括辅助电池组放电系统。

58. 如权利要求37所述的多电池组系统，其特征在于，所述辅助电池组放电系统还包括带定时器的控制器。

59. 如权利要求58所述的多电池组系统，其特征在于，所述定时器向所述控制器发送信号以周期性地改变所述切换位置以使得在所述至少两个工作位置的所述第二工作位置上能够在较短周期内放电所述辅助电池组并在随后切换回到所述至少两个工作位置的所述第一工作位置。

60. 如权利要求58所述的多电池组系统，其特征在于，所述放电系统还包括一书面指示，能在一短时间周期内将所述电池组系统手动切换至所述第二工作位置并在随后将所述切换设备手动切换回所述第一工作位置。

61. 如权利要求58所述的多电池组系统，其特征在于，所述控制器在来自至少一个传感器的输入信号指示所述主电池组电压低于一触发点的情况下切换所述切换设备使得所述公共正极端子耦合至所述辅助电池组正极输出。

62. 如权利要求37所述的多电池组系统，其特征在于，还包括含有耦合至切换设备的定时器的辅助电池组循环放电系统，其中所述定时器周期性地使所述切换设备在较短时间周期内处于第二工作模式并在所述较短时间周期之后再使所述切换
换设备回到第一工作模式。

63. 一种辅助电池组附属系统包括：

带有至少一个主正极输出和至少一个主负极输出的主电池组；

具有至少一个公共正极端子，至少一个公共负极端子，至少一个正极耦合和至少一个负极耦合的电路外壳，所述至少一个正极和负极耦合把所述至少一个正极和至少一个负极主电池组的输出电气耦合至接着耦合到一电气系统的所述至少一个正极和至少一个负极公共端子；

带有辅助正极输出和辅助负极输出的至少一个辅助电池组，其中每个输出分别电气耦合至所述至少一个正极公共端子和至少一个负极公共端子；以及

包括至少一个切换设备和公共正极端子的耦合的主电气电路，所述至少一个切换设备具有至少两个工作位置，所述至少两个工作位置的第一工作位置通过至少一个正极耦合把所述公共正极端子耦合至所述主电池组的主正极输出并且还耦合至在辅助正极输出之前并与之耦合的单向充电电路；而第二工作位置通过至少一个切换设备将所述公共正极端子耦合至所述主电路中在所述耦合至辅助正极输出的单向充电电路的另一边的一点。

64. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述电路外壳安装在所述主电池组的顶部。

65. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述电路外壳安装在所述主电池组的一侧。

66. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，当位于第一工作位置时，所述单向充电电路允许电能从所述电气系统流入所述主电池组和辅助电池组，但是阻止电能从辅助电池组内流出。

67. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述至少两个工作位置的第二工作位置则完全断开所述主电池组与电气系统的连接并且仅引入所述至少一个辅助电池组。

68. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述至少一个正极和负极耦合位于所述电路外壳内。

69. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述至少一个辅助电池组是 6 伏、12 伏或 24 伏电池组中的一种。
70. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述电路外壳包括所述至少一个辅助电池组。

71. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述单向充电电路包括至少单向充电二极管。

72. 如权利要求 71 所述的辅助电池组附属系统，其特征在于，所述至少单向充电二极管还包括至少一个硅整流器。

73. 如权利要求 72 所述的辅助电池组附属系统，其特征在于，所述至少一个硅整流器具有约位于 25 到 95 电流之间的额定值。

74. 如权利要求 72 所述的辅助电池组附属系统，其特征在于，所述主电池组是 12 伏的汽车电池组并且所述至少一个硅整流器具有 12 伏，45 安培的额定值。

75. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述充电电路还包括至少一个高容量二极管以及耦合至所述至少一个高容量二极管的至少一个散热装置。

76. 如权利要求 75 所述的辅助电池组附属系统，其特征在于，所述至少一个高容量二极管具有大约位于 25 到 95 电流之间的额定值。

77. 如权利要求 76 所述的辅助电池组附属系统，其特征在于，所述至少一个高容量二极管具有 12 伏，45 安培的额定值并且耦合至至少一个高容量二极管的至少一个散热装置具有足够的表面区域来散发由所述至少一个 12 伏，45 安培额定值的二极管产生的热量。

78. 如权利要求 77 所述的辅助电池组附属系统，其特征在于，还包括耦合至所述切换设备并负责切换该设备的控制器。

79. 如权利要求 78 所述的辅助电池组附属系统，其特征在于，还包括与所述控制器通信的至少一个传感器。

80. 如权利要求 79 所述的辅助电池组附属系统，其特征在于，与所述控制器通信的至少一个传感器包括检测所述至少一个切换设备的所述位置的至少一个切换位置传感器以及主电池组电压传感器、主电池组冷起动电流传感器、辅助电池组电压传感器和辅助冷起动电流传感器的至少一个，所述切换设备由控制器基于来自所述至少一个传感器之一中的输入进行驱动。

81. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，还包括辅助电
池组放电系统。

82. 如权利要求 63 所述的辅助电池组附属系统，其特征在于，所述辅助电池组放电系统包括带定时器的控制器。

83. 如权利要求 82 所述的辅助电池组附属系统，其特征在于，所述定时器向所述控制器发送信号以周期性地改变切换位置使得在所述至少两个工作位置的所述第二工作位置上能够在较短周期内放电所述辅助电池组并在随后切换回到所述至少两个工作位置的所述第一工作位置。

84. 如权利要求 82 所述的辅助电池组附属系统，其特征在于，所述放电系统还包括一书面指示，以在一短暂时间周期内将所述电池组系统手动切换至所述第二工作位置并在随后将所述切换设备手动切换回所述第一操作位置。

85. 如权利要求 82 所述的辅助电池组附属系统，其特征在于，所述控制器在来自至少一个传感器的输入信号指示所述主电池组电压低于一触发点的情况下切换所述切换设备使得所述公共正极端子耦合至所述辅助电池组正极输出。

86. 一种检测电气系统中放电状态故障的方法，所述方法包括如下步骤：
检测车辆或机器的电气系统内的初始放电状态；
切换具有主和辅助电池组的电池组合以及带有两个工作位置的切换电路，使得从在其中所述主和辅助电池组通过位于所述辅助电池组的单向充电二极管在电气电路中耦合的主工作位置切换至其中所述辅助电池组与车辆或机器的电气系统串联耦合且电气隔离所述主电池组的辅助工作位置；
利用处于辅助工作位置的所述辅助电池组启动车辆或机器；
使所述切换设备返回到正常工作位置并且在正常工作位置上接合主电池组；
并且
确定车辆或机器是否在正常位置下运行，故障指明了电气系统中一普通操作故障。

87. 如权利要求 86 所述的方法，其特征在于，还包括使所述切换设备返回所述辅助位置并且接合所述辅助电池组以提供操作车辆或机器所需能量并且找寻电气故障的修理方法的步骤。

88. 一种多电池组系统包括：
带有主正极输出和主负极输出的主电池组；
带有至少一个辅助正极输出和至少一个辅助负极输出的至少一个辅助电池组；以及

包含了公共正极端子和至少一个切换设备的耦合的主电气电路，所述至少一个切换设备具有选择性地将所述主和至少一个辅助电池组耦合至所述公共正极端子的至少两个工作位置，其中所述至少两个工作位置的第一工作位置为所述主电池组和至少一个辅助电池组提供电气充电；以及

耦合至所述主电气电路并且基于来自至少一个传感器的输入切换所述至少一个切换设备的控制器。

89. 如权利要求88所述的多电池组系统，其特征在于，还包括将所述公共正极端子耦合至主电池组的主正极输出并将所述公共正极端子耦合至在所述至少一个辅助电池组上的至少一个辅助正极输出之前并与之耦合的单向充电电路的所述至少两个工作位置中的第一工作位置。

90. 如权利要求89所述的多电池组系统，其特征在于，还包括第二工作位置，其中通过至少一个切换设备将所述公共正极端子耦合至所述主电路中在所述耦合至辅助正极输出的单向充电电路的另一边的一点。

91. 如权利要求90所述的多电池组系统，其特征在于，在所述至少一个切换设备的至少两个工作位置的第二工作位置上，电气隔离所述主电池组与所述至少一个辅助电池组。

92. 如权利要求90所述的多电池组系统，其特征在于，仅主电池组的正极输出和至少一个辅助电池组的正极输出的耦合是由切换设备切换的。

93. 如权利要求90所述的多电池组系统，其特征在于，所述至少两个工作位置的第二工作位置隔离所述主电池组与所述系统，并且仅引入所述至少一个辅助电池组。

94. 如权利要求90所述的多电池组系统，其特征在于，所述控制器还包括至少一个指示元件。

95. 如权利要求94所述的多电池组系统，其特征在于，所述至少一个指示元件是汽笛、喇叭、灯、多盏灯、LCD面板、模拟人类语音、人类语音、发光二极管和多个发光二极管中的至少一个。

96. 如权利要求90所述的多电池组系统，其特征在于，所述至少一个指示元
件是带有红、橙、绿或琥珀色中至少一种颜色的多个指示元件。

97. 如权利要求 90 所述的多电池组系统，其特征在于，所述电池组系统还包括含有所述主电池组的主电池组隔间和含有所述至少一个辅助电池组的至少一个辅助电池组隔间的电池组外壳。

98. 如权利要求 97 所述的多电池组系统，其特征在于，所述主电池组隔间位于所述至少一个辅助电池组隔间的顶部。

99. 如权利要求 90 所述的多电池组系统，其特征在于，所述主电池组隔间位于所述至少一个辅助电池组隔间的一侧。

100. 如权利要求 90 所述的多电池组系统，其特征在于，所述单向充电电路包括至少单向充电二极管。

101. 如权利要求 100 所述的多电池组系统，其特征在于，所述至少单向充电二极管还包括至少一个硅整流器。

102. 如权利要求 100 所述的多电池组系统，其特征在于，所述至少单向充电二极管还包括至少一个可控硅整流器（SCR）。

103. 如权利要求 102 所述的多电池组系统，其特征在于，所述至少一个可控硅整流器（SCR）耦合至所述控制器并且在检测到辅助电池组中过充电的情况下能够禁用对所述至少一个辅助电池组的耦合。

104. 如权利要求 90 所述的多电池组系统，其特征在于，所述至少一个辅助电池组包括单个辅助电池组。

105. 如权利要求 90 所述的多电池组系统，其特征在于，所述至少一个辅助电池组包括多个辅助电池组。

106. 如权利要求 102 所述的多电池组系统，其特征在于，所述至少一个传感器还包括如下的至少一个：至少一个主电池组电压传感器、至少一个主电池组电流传感器、至少一个辅助电池组电压传感器、至少一个辅助电池组电流传感器和至少一个切换位置传感器。

107. 如权利要求 90 所述的多电池组系统，其特征在于，所述控制器还包括如下的至少一个：至少一个微处理器、至少一个信号处理器、至少一组查找表、至少一个存储器设备、至少一个安全协议/加密元件以及至少一个指示元件。

108. 如权利要求 90 所述的多电池组系统，其特征在于，所述控制器是无线
控制器系统。

109. 如权利要求 108 所述的多电池组系统，其特征在于，所述无线控制器系统包括无线控制器、无线收发机和输入设备。

110. 如权利要求 109 所述的多电池组系统，其特征在于，所述输入设备是无线输入设备并且还包括至少一个指示元件。

111. 如权利要求 90 所述的多电池组系统，其特征在于，所述控制器是网络可接口控制器，所述网络可接口控制器还包括网络接口和收发机。

112. 如权利要求 111 所述的多电池组系统，其特征在于，所述网络可接口控制器经由网络与网络操作中心（NOC）通信。

113. 如权利要求 112 所述的多电池组系统，其特征在于，所述网络可接口控制器耦合至少一个切换设备并与其通信以检测所述至少一个切换设备的位置，并且基于所述至少一个主电池组电压传感器、所述至少一个主电池组电流传感器、所述至少一个辅助电池组电压传感器和所述至少一个辅助电流传感器中至少一个的输入来选择性地接合所述至少一个切换设备。

114. 如权利要求 90 所述的多电池组系统，其特征在于，所述控制器能够包括一触发电器，它向所述控制器发信号以周期性地改变至少一个切换设备的切换位置使得在所述至少两个工作位置的所述第二工作位置上能够在较短周期内放电所述辅助电池组并在随后切换回到所述至少两个工作位置的所述第一工作位置。

115. 如权利要求 113 所述的多电池组系统，其特征在于，还包括至少一个 VI 传感器。

116. 如权利要求 90 所述的多电池组系统，其特征在于，所述多个电池组是 6 伏、12 伏、14 伏和 24 伏电池组电气系统中的至少一个的一部分。

117. 一种网络控制多电池组系统，包括：

与网络可接口控制器通信的网络；

检测至少一个主电池组状态的至少一个传感器；

至少一个受控切换设备，它耦合至所述至少一个网络可接口控制器并且响应于由网络送至所述网络可接口控制器的至少一个信号，从主电池组切换至至少一个辅助电池组。

118. 如权利要求 117 所述的网络可控多电池组系统，其特征在于，所述主电
池组还包括主正极输出和主负极输出并且至少一个辅助电池组还包括至少一个辅助正极输出和至少一个辅助负极输出。

119. 如权利要求 118 所述的网络可控多电池组系统，其特征在于，所述至少一个受控切换设备在至少两个工作位置之间切换，每个位置选择性地把公共端子与至少一个主电池组输出和至少一个辅助电池组输出中的至少一个相耦合。

120. 如权利要求 119 所述的网络可控多电池组系统，其特征在于，所述至少两个工作位置的第一工作位置为所述主电池组提供充电并且通过单向充电电路为至少一个辅助电池组提供充电。

121. 如权利要求 120 所述的网络可控多电池组系统，其特征在于，所述至少两个工作位置的第二工作位置把所述至少一个辅助电池组的至少一个正极辅助输出耦合至公共正极端子。

122. 如权利要求 120 所述的网络可控多电池组系统，其特征在于，所述至少单向充电电路包括至少一个单向充电二极管。

123. 如权利要求 122 所述的网络可控多电池组系统，其特征在于，所述至少单向充电二极管还包括至少一个硅整流器。

124. 如权利要求 122 所述的网络可控多电池组系统，其特征在于，所述至少单向充电二极管还包括至少一个可控硅整流器（SCR）。

125. 如权利要求 124 所述的网络可控多电池组系统，其特征在于，所述至少一个可控硅整流器（SCR）耦合至所述控制器并且在检测到辅助电池组中过充电状态下被关闭。

126. 如权利要求 117 所述的网络可控多电池组系统，其特征在于，所述至少一个可切换设备具有至少两个工作位置，其中至少两个工作位置的第一工作位置把公共正极端子耦合至主电池组的主正极输出并将所述公共正极端子耦合至在所述至少一个辅助电池组上的至少一个辅助正极输出之前并与之耦合的单向充电电路，而在第二工作位置上，在所述系统中单向充电电路的另一边的一点上把所述公共正极端子耦合至至少一个辅助电池组的至少一个辅助正极输出，并且有效地隔离直接连接至少一个辅助电池组的主电池组。

127. 如权利要求 117 所述的网络可控多电池组系统，其特征在于，还包括至少一个指示元件。
128. 如权利要求 127 所述的网络可控多电池组系统，其特征在于，所述至少
一个指示元件是具有至少一个颜色的至少一个发光二极管。

129. 如权利要求 127 所述的网络可控多电池组系统，其特征在于，所述至少
一个指示元件是带有红、橙、绿或琥珀色中至少一种颜色的多个指示元件。

130. 如权利要求 127 所述的网络可控多电池组系统，其特征在于，所述至少
一个指示元件包括气笛、喇叭、灯、多盏灯、LCD 面板、模拟人类语音、人类语
音、发光二极管和多个发光二极管中的至少一个。

131. 如权利要求 117 所述的网络可控多电池组系统，其特征在于，所述至少
一个网络可接口控制器具有至少一个微处理器、至少一个信号发射机、至少一个信
号接收机、安全协议/加密元件、指示元件和输入/输出总线。

132. 如权利要求 126 所述的网络可控多电池组系统，其特征在于，所述至少
一个传感器是至少一个 VI 传感器。

133. 如权利要求 126 所述的网络可控多电池组系统，其特征在于，所述多个
电池组是 6 伏、12 伏、14 伏或 24 伏电池组电气系统的一部分。

134. 一种多电池组系统，包括：
具有耦合至电气系统的公共正极端子和公共负极端子的电池组外壳；
具有主正极输出和主负极输出的主电池组；
具有辅助正极输出和辅助正极输出的至少一个辅助电池组；
带有至少两个工作位置的至少一个切换设备，所述至少两个工作位置选择性
地接合所述主电池组以及所述至少一个辅助电池组并且包括：
所述至少两个工作位置的第一工作位置，其中所述公共正极端子耦合至主
正极输出并且还通过在所述至少一个辅助电池组之间和之前的单向充电电路
来把所述公共正极端子进一步耦合至所述至少一个辅助电池组输出；
所述至少两个工作位置的第二工作位置，其中耦合公共正极端子至辅助正
极使得该公共正极端子在单向充电电路的另一边的一点上与辅助电池组正极
输出耦合；以及
耦合至所述至少一个切换设备并切换该设备的控制器。

135. 如权利要求 134 所述的多电池组系统，其特征在于，所述第二工作位置
把至少一个辅助电池组耦合至电气系统并且阻止至少一个辅助电池组的电能流入
主电池组。

136. 如权利要求134所述的多电池组系统，其特征在于，在所述第二工作位置上，所述单向充电电路电气隔离所述主电池组。

137. 如权利要求134所述的多电池组系统，其特征在于，所述至少一个辅助电池组还包括单个辅助电池组。

138. 如权利要求134所述的多电池组系统，其特征在于，所述至少一个辅助电池组还包括多个辅助电池组。

139. 如权利要求134所述的多电池组系统，其特征在于，所述单向充电电路包括至少单向充电二极管。

140. 如权利要求139所述的多电池组系统，其特征在于，所述至少单向充电二极管还包括至少一个硅整流器。

141. 如权利要求139所述的多电池组系统，其特征在于，所述至少单向充电二极管还包括至少一个可控硅整流器（SCR）。

142. 如权利要求141所述的多电池组系统，其特征在于，还包括与所述控制器通信的至少一个传感器。

143. 如权利要求142所述的多电池组系统，其特征在于，所述控制器基于来自至少一个传感器中的输入来驱动所述切换设备并且所述至少一个传感器包括至少一个主电池组电压传感器、主电池组电流、辅助电池组电压传感器和辅助电流传感器中的至少一个。

144. 如权利要求134所述的多电池组系统，其特征在于，还包括至少一个指示元件。

145. 一种控制多电池组系统的方法，该方法包括如下步骤：
查询至少一个传感器；
检测从所述至少一个传感器读取的异常；
把所述检测步骤的结果通知给操作者或网络操作中心；
一旦接收到来自操作者、网络操作中心或控制器的命令就从主电池组切换至至少一个辅助电池组；并且
确认该系统的操作。

146. 如权利要求145所述的控制多电池组系统的方法，其特征在于，还包括
在通信步骤之后，起动能量保存步骤的方法步骤。

147. 如权利要求 145 所述的控制多电池组系统的方法，其特征在于，还包括监控电生成并将其送入系统的步骤。

148. 如权利要求 147 所述的控制多电池组系统的方法，其特征在于，还包括在确认步骤之后，切换回到正常工作模式或者对操作者或 NOC 发出电气故障状态的警告的方法步骤。

149. 如权利要求 145 所述的控制多电池组系统的方法，其特征在于，还包括在查询步骤之后的附加步骤：

检测循环触发器或标志；
一旦检测到触发器或标志就切换到所述至少一个辅助电池组；
监控所述至少一个辅助电池组进行放电、充分再充电以及正常操作；
在一定时间内使用所述辅助电池组运行电气系统；
通过至少一个传感器检查所述至少一个辅助电池组的放电；并且
把所述至少一个开关切换回来以接合所述主电池组。

150. 一种多电池组管理系统，包括：
公共正极和公共负极端子；
带有主正极输出和主负极输出的至少一个主电池组；
带有辅助正极输出和辅助负极输出的至少一个辅助电池组；以及
电池组管理系统，它包括至少一个控制器、至少一个切换设备、至少一个再充电选择机构以及至少一个传感器，其中所述电池组管理系统选择性地将公共正极端子耦合至所述至少一个主电池组正极输出或者至少一个辅助电池组正极输出中的至少之一，并且所述至少一个再充电选择机构通过在所述再充电选择机构之前的至少一个单向充电电路将该公共正极端子耦合于相应的至少一个电池组而选择性地耦合至至少一个主或至少一个辅助电池组中的至少之一。

151. 如权利要求 150 所述的多电池组管理系统，其特征在于，所述至少一个再充电选择机构是至少一个继电器或者至少一个 MOSFET 器件或类似的固态电器件之一。

152. 如权利要求 151 所述的多电池组管理系统，其特征在于，所述至少一个切换设备具有至少两个工作位置并且所述至少两个工作位置的第一工作位置把所
述公共正极端子耦合至所述至少一个主电池组的主正极输出。

153. 如权利要求 152 所述的多电池组管理系统，其特征在于，所述第二工作位置通过至少一个切换设备把所述公共正极端子耦合至所述至少一个辅助电池组的辅助正极输出。

154. 如权利要求 153 所述的多电池组管理系统，其特征在于，所述至少一个再充电选择机构具有至少两个设置，第一设置中是通过单向充电电路向辅助电池组提供再充电而在第二设置中则通过单向充电电路向主电池组的主正极输出提供充电。

155. 如权利要求 154 所述的多电池组管理系统，其特征在于，所述电池组管理系统检测至少一个主和至少一个辅助电池组的至少一个的状态，并且选择性地接纳至少一个切换设备位于第一位置上而接合所述至少一个再充电选择机构位于所述第一位置，这就耦合了至少一个主电池组的主输出和公共正极输出并且通过至少一个单向充电电路对至少一个辅助电池组进行再充电。

156. 如权利要求 154 所述的多电池组管理系统，其特征在于，所述电池组管理系统检测至少一个主和至少一个辅助电池组的至少之一的状态，并且选择性地接合至少一个切换设备在第一位置上而接合所述至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个主电池组的主输出和公共正极输出并且通过至少一个单向充电电路对至少一个主电池组进行再充电，由此还电气隔离了至少一个辅助电池组。

157. 如权利要求 154 所述的多电池组管理系统，其特征在于，所述电池组管理系统检测至少一个主和至少一个辅助电池组的至少之一的状态，并且选择性地接合至少一个切换设备在第二位置上而接合所述至少一个再充电选择机构位于所述第一位置，这就耦合了至少一个辅助电池组的辅助正极输出和公共正极输出并且通过至少一个单向充电电路对至少一个辅助电池组进行再充电，由此还电气隔离了至少一个主电池组。

158. 如权利要求 154 所述的多电池组管理系统，其特征在于，所述电池组管理系统能够检测至少一个主和至少一个辅助电池组的至少之一的状态，并且选择性地接合至少一个切换设备在第二位置上而接合所述至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个辅助电池组的辅助正极输出和公共正极输出并
且通过至少一个单向充电电路对至少一个主电池组进行再充电。

159. 如权利要求150所述的多电池组管理系统，其特征在于，所述至少一个单向充电电路包括至少一个单向充电二极管。

160. 如权利要求159所述的多电池组管理系统，其特征在于，所述至少一个单向充电二极管包括至少一个可控硅整流器。

161. 如权利要求160所述的多电池组管理系统，其特征在于，所述至少一个单向充电二极管还包括至少一个可控硅整流器（SCR）。

162. 如权利要求154所述的多电池组管理系统，其特征在于，所述控制器与位置传感器耦合并通信以检测切换设备的位置并基于至少一个主电池组电压传感器、至少一个主电池组电流传感器、至少一个辅助电池组电压传感器以及至少一个辅助电池组电流传感器中的至少一个的输入来选择性地接合所述切换设备。

163. 一种车辆多电池组系统，包括：
带有附加正极输出和附加负极输出的附加电池组；
带有起动器正极输出和起动器负极输出的起动器电池组；
耦合至少一个传感器的控制器，所述控制器检测附加和起动器电池组的状态并将至少一个切换设备切换至至少两个切换位置中的一个；以及
带有至少两个工作位置的切换设备，所述至少两个工作位置选择性地接合所述附加电池组和所述起动器电池组并且包括；

所述至少两个工作位置的第一工作位置，其中公共正极端子耦合至附加正极输出并通过至少一个起动器电池组之间并在其之前的单向充电电路接合至少一个起动器电池组正极输出；以及

所述至少两个工作位置的第二工作位置，其中耦合所述公共正极端子和起动器正极使得公共正极端子在单向充电电路的另一边的一点上耦合至该起动器电池组正极。

164. 如权利要求163所述的车辆多电池组系统，其特征在于，一旦检测到启动序列，所述控制器就将所述至少一个切换设备置于第二工作位置以使得起动器电池组独自与电气系统串联并防止起动器电池组中的电能流入附加电池组。

165. 如权利要求163所述的车辆多电池组系统，其特征在于，在第二工作位置上，所述单向充电电路电气隔离所述附加电池组。
166. 如权利要求 163 所述的车辆多电池组系统，其特征在于，其第一工作位置时，所述单向充电电路允许来自电气系统的电能流入所述附加和起动器电池组，但是阻止电能从起动器电池组中流出。

167. 如权利要求 166 所述的车辆多电池组系统，其特征在于，在第二工作位置，所述附加电池组与所述起动器电池组电气隔离。

168. 如权利要求 163 所述的车辆多电池组系统，其特征在于，仅仅是附加电池组和至少一个起动器电池组的正极输出是由所述切换设备切换的。

169. 如权利要求 163 所述的车辆多电池组系统，其特征在于，所述至少两个工作位置的第二工作位置能够将附加电池组从电气系统中完全断开并只引入所述至少一个起动器电池组。

170. 如权利要求 163 所述的车辆多电池组系统，其特征在于，所述附加电池组是 60 安培时电池组。

171. 如权利要求 163 所述的车辆多电池组系统，其特征在于，所述至少一个起动器电池组是 25 安培时电池组。

172. 如权利要求 163 所述的车辆多电池组系统，其特征在于，所述单向充电电路包括至少一个单向充电二极管。

173. 如权利要求 172 所述的车辆多电池组系统，其特征在于，所述至少一个单向充电二极管还包括至少一个硅整流器。

174. 如权利要求 173 所述的车辆多电池组系统，其特征在于，所述至少一个硅整流器是可控硅整流器。

175. 如权利要求 174 所述的车辆多电池组系统，其特征在于，所述控制器耦合至所述切换设备并切换该设备并且还耦合至所述可控硅整流器并控制该整流器。

176. 如权利要求 175 所述的车辆多电池组系统，其特征在于，还包括与所述控制器通信的至少一个传感器。

177. 如权利要求 176 所述的车辆多电池组系统，其特征在于，与所述控制器通信的至少一个传感器包括检测切换设备位置的至少一个切换位置传感器，其中所述控制器基于来自至少一个切换设备传感器以及电池组电压传感器、电流传感器和 VI 传感器中的至少一个的输入来驱动所述切换设备。

178. 如权利要求 177 所述的车辆多电池组系统，其特征在于，所述至少一个
可控硅整流器（SCR）耦合至所述控制器并且在所述至少一个传感器检测到辅助电池组中热击穿的情况下能够禁用该 SCR 与至少一个辅助电池组的耦合。

179. 一种车辆多电池组管理系统，包括：
公共正极和公共负极端子；
带有附加正极输出和附加负极输出的至少一个附加电池组；
带有起动器正极输出和起动器负极输出的至少一个起动器电池组；以及
电池组管理系统，它包括至少一个控制器、至少一个切换设备、至少一个再充电选择机构以及至少一个传感器，其中所述电池组管理系统选择性地把公共正极端子耦合至附加或起动器电池组正极输出的至少一个，并且所述电池组管理系统还通过在所述再充电选择机构之前的至少一个单向充电路，将相应的电池组输出耦合至公共输出而选择性地把至少一个再充电选择机构耦合至附加或起动器电池组。

180. 如权利要求 179 所述的车辆多电池组管理系统，其特征在于，所述至少一个再充电选择机构是至少一个继电器或至少一个 MOSFET 器件或类似的固态电气组件中的一个。

181. 如权利要求 180 所述的车辆多电池组管理系统，其特征在于，所述至少一个切换设备具有至少两个工作位置，并且所述至少两个工作位置的第一个工作位置能够把所述公共正极端子耦合至所述至少一个附加电池组的附加正极输出。

182. 如权利要求 181 所述的车辆多电池组管理系统，其特征在于，所述两个工作位置的第二工作位置能够通过至少一个切换设备把所述公共正极端子耦合至所述至少一个起动器电池组的起动器正极输出。

183. 如权利要求 182 所述的车辆多电池组系统，其特征在于，所述至少一个再充电选择机构具有至少两个设置，在第一设置中是通过单向充电路向起动器电池组提供再充电而在第二设置中则通过单向充电路向附加电池组的附加正极输出提供充电。

184. 如权利要求 183 所述的车辆多电池组管理系统，其特征在于，所述电池组管理系统能够检测至少一个附加和至少一个起动器电池组的状态，并且能够选择性地接合一个切换设备于第一位置上并接合所述至少一个再充电选择机构于所述第一位置，这就耦合了至少一个附加电池组的附加输出和公共正极输出并且通过至少一个单向充电路对至少一个起动器电池组进行再充电。
185. 如权利要求 183 所述的车辆多电池组管理系统，其特征在于，所述电池组管理系统还能够检测至少一个附加和至少一个起动器电池组的至少之一的状态，并且选择性地接合至少一个切换设备在第一位置上而接合所述至至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个附加电池组的附加输出和公共正极输出并且通过至少一个单向充电电路对至少一个附加电池组进行再充电，由此还电气隔离了至少一个起动器电池组。

186. 如权利要求 183 所述的车辆多电池组管理系统，其特征在于，所述电池组管理系统能够检测至少一个附加和至少一个起动器电池组的至少之一的状态，并且选择性地接合至少一个切换设备在第二位置上而接合所述至至少一个再充电选择机构位于所述第一位置，这就耦合了至少一个起动器电池组的起动器正极输出和公共正极输出并且通过至少一个单向充电电路对至少一个起动器电池组进行再充电，由此还电气隔离了至少一个附加电池组。

187. 如权利要求 183 所述的车辆多电池组系统，其特征在于，所述电池组管理系统能够检测至少一个附加和至少一个起动器电池组的至少之一的状态，并且能够选择性地接合至少一个切换设备在第二位置上而接合所述至至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个起动器电池组的起动器正极输出和公共正极输出并且通过至少一个单向充电电路对至少一个附加电池组进行再充电。

188. 如权利要求 179 所述的车辆多电池组管理系统，其特征在于，所述至少一个单向充电电路包括至少一个单向充电二极管。

189. 如权利要求 188 所述的车辆多电池组管理系统，其特征在于，所述至少一个单向充电二极管还包括至少一个硅整流器。

190. 如权利要求 189 所述的车辆多电池组管理系统，其特征在于，所述至少一个单向充电二极管还包括至少一个可控硅整流器（SCR）。

191. 如权利要求 183 所述的车辆多电池组管理系统，其特征在于，所述控制器与位置传感器耦合并通信以检测切换设备的所述位置并基于至少一个附加电池组电压传感器、至少一个附加电池组电流传感器、至少一个起动器电池组电压传感器以及至少一个电流传感器中的至少一个的输入来选择性地接合所述切换设备。

192. 如权利要求 179 所述的车辆多电池组管理系统，其特征在于，所述控制器还包括至少一个指示元件。
193. 如权利要求 192 所述的车辆多电池组管理系统，其特征在于，所述至少一个指示元件包括汽笛、喇叭、灯、多盏灯、LCD 面板、模拟人类语音、人类语音、发光二极管和多个发光二极管中的至少一个。

194. 如权利要求 193 所述的车辆多电池组管理系统，其特征在于，所述至少一个指示元件是带有红、橙、绿或琥珀色中至少一种的多个指示元件。

195. 如权利要求 150 所述的多电池组管理系统，其特征在于，所述至少一个辅助电池组包括单个辅助电池组。

196. 如权利要求 150 所述的多电池组管理系统，其特征在于，所述至少一个辅助电池组包括多个辅助电池组。

197. 一种用于电池组管理的方法，其包括的步骤如下：
检测至少一个主电池组和至少一个辅助电池组的状态；
基于在控制器内设置的电荷平衡参数，选择性地在至少两个位置之间切换带有主和辅助电池组的多电池组系统以选择性地接合主或辅助电池组中的至少一个；
通过选择性地接合再充充电机构内至少两个位置的第一位置而选择性地再充电池组系统；以及
通过选择性地切换以及选择性地再充充电系统内的电池组来保持每一电池组的充电电平。

198. 如权利要求 152 所述的多电池组管理系统，其特征在于，所述电池组管理系统还包括如下的至少一个：至少一个微处理器、至少一个信号处理器、至少一组查找表、至少一个存储器设备、至少一个安全协议/加密元件以及至少一个指示元件。

199. 如权利要求 198 所述的车辆多电池组系统，其特征在于，所述至少一个指示元件是汽笛、喇叭、灯、多盏灯、LCD 面板、模拟人类语音、人类语音、发光二极管和多个发光二极管中的至少一个。

200. 如权利要求 199 所述的车辆多电池组系统，其特征在于，所述至少一个指示元件是带有红、橙、绿或琥珀色中至少一种的多个指示元件。
多电池组系统、多电池组管理系统、辅助电池组附属系统以及网络控制多电池组系统

相关申请
本申请要求于2003年8月11日提交的先前美国申请，专利号为No. 10/604,703的优先权，其标题是“Multiple Battery System and Auxiliary Battery Attachment System”；要求于2004年3月22日提交的先前美国申请，专利号为No. 10/708,739的优先权，其标题是“Multiple Battery System and Network Controlled Multiple Battery System”；以及要求于2004年8月6日提交的美国申请，其标题是“Multiple Battery Management System, Auxiliary Battery Attachment System and Network Controlled Multiple Battery System”。

技术领域
本发明总的涉及包括了一个主电池和至少一个辅助电池组用于选择性电气通信的可再充电的电池系统，本发明尤其涉及在具有传统外部尺寸的外壳内配置电池系统的电池的车用电池组系统。此外本发明还包括使用选择性地接合所述主电池和至少一个辅助电池组的电路为传统电池提供至少一个辅助电池组附属系统的附属装置，并且还包括在耦合至所述电池系统的电气系统内检测电气故障的方法。

背景技术
现今绝大多数的车辆都需要电池进行操作。电池通常引发传统发动机核心处的内部燃烧反应。此外，随着直接依赖于电池运行的电动车辆以及混合式电动车辆的发展，就愈发需要从电池得到可靠的电源供应。近些年来电池技术的巨大进步使得传统大小的电池能够比之前的电池提供更多的动力、具有更长的寿命、对放电和再充电具有更好的响应以及更低的维护要求。这就改善了车辆、设备以及附属装置的启动并延长了它们的运作。

然而即使在车辆技术和安全的其他方面以取得了长足的进步，但是传统电池
的元件却基本上没有什么改变。例如，传统的车用电池组包括其内部含有若干电池（6个12伏的电池和3个6伏的电池）完全标准尺寸的矩形外壳。这些电池通常都包括正极和负极的电池组极板以及电解液以允许电池组存储备用电源并且从诸如电气系统的发电源补充这些储备用。电池组通常通过一组标准电缆耦合至车辆或设备的电气系统。

尽管如此，现有的电池组在所述传统电池组出于某种原因丢失电力或被放电的情况下会产生严重的问题。用于为车辆或装置的启动或操作提供电源的所需源就丢失了。类似地，若是在无意中长时间的开着车灯而汽车并未行驶，则电池组的放电不可避免。此外，如果开着诸如收音机、电扇之类的其他附属设备而引擎并未运行，则也会产生类似问题。车辆电气系统失效的另一种方式是电池组的短路或接触不良而导致该电池组在使用期间无法再充电。而此种情况在诸如交流发电机或发动机的再充电机构不运行时也会出现。这些仅是电池失效或放电导致车辆无法运行的各种问题或放电状态的一部分。

在放电状态下提供返回到电池组的电源的一种方式是通过助推启动。然而这需要另外的车辆，而这或许是不可行的。助推启动还会使得放电电池组和助推启动电池组易于发生潜在的损坏，甚至在不恰当地连接电气接头时还会导致灾难性的爆炸。还存在商业可用的选择以进行车辆对车辆的助推启动。主要是这些设备要包括用于助推启动放电电池组的便携式附属电源。这些设备的一大缺点是他们要求车辆的电气系统处于可操作条件下以用于恢复所述电池。这些便携的“备用电池组”中的大多数通常都包括插头插入汽车电气系统的小的备用电池组（例如通过点烟机插头）并且仅能在家用电源插座上被再充电。因为不能在车辆上再充电，所以要是出于任一情况放电再次出现，就会导致用户束手无策。这些系统以及助推启动电池组的传统方法当前仅能提供克服电池组内电源损失或其他放电状态的几种商业可用方式。

业已尝试了通过利用辅助电池组来排除助推启动的需要以改善放电状态下电池组功能的各种方法，但是它们都没有获得任何商业上的成功。对于双电池组系统中的这些先前的商业尝试都是不可靠和麻烦的，甚至是没有用的。在早先的许多系统中都可发现诸多严重缺陷。它们由于不标准的电池组大小而需要进行代价高昂的修改，诸如对电池组端子的修改和/或对车辆或设备的电气系统的修改。这些修改导
致这些系统的实现成本过高，而且不如标准大小的电池组可靠。这些早先尝试的实例包括 Roberts 的美国专利 3,200,014 以及 Strider 的美国专利 3,029,301。

这些早先系统的另一个实例包括来自 DELCO 的三接线柱系统。该电池组的外壳具有从盖中伸出的三个外部端子：主电池组正极端子、备用电池组正极端子以及公共的负极端子。系统内每个电池组的负极端子电极据说是通过电池外壳盖组件内的一联杆连接的。这样，该车辆电气系统要求三根电缆供应所述系统并且要求在启动期间通电的附加螺线管。此种非标准配置意味着额外的成本并且对于终端用户来说要求三个专用的接线柱电池组和电缆也是让人头痛的。由于需要附加的电气组件而导致的额外开销使得该设备在商业上没有成功。

对于实现适合于标准电池电缆配置而可靠于商业上成功的系统的其他尝试也失败了。例如 Klenenow 等人的 No. 5,002,840 美国专利和 Dougherty 等人的 No. 5,002,164 美国专利（“840”和“164”专利）所示的车用电池组系统示出了一个主单元和一个备用单元，它们仅通过单一单向二极管分隔以保持在非使用期间所述备用单元处于充电状况。“840”和“164”专利的所述主电池组和备用电池组由在其中间的二极管和电阻并联耦合并且仅要求标准的二接线柱电池组配置。在正常工作模式下，诸如可变电阻、正温度系数电阻的电阻放置在所述单向二极管之前。所述可变或正温度系数电阻逐步降低电流以限制电流的量，从而限制了由所述二极管产生的热量。该二极管防止备用电池组向主电池组放电同时允许电流流向该电池组，但是它限制了为所述备用电池组提供用于再充电的滴点式充电。提供一分流器用于放电状态的连接以有效地旁路所述电阻器和二极管并且使得两个电池组单元无需二极管就可并联，从而连接了所述备用电池组。整个系统通过接触到所述并联电路的每个电池组的负极端子耦合。

这些电路和电池组配置有诸多缺陷。在“840”和“164”专利中描述的二极管是低电容二极管。这些低电容二极管的问题在于它们的电流承载能力有限。因为低电容二极管具有相对较小的电流承载能力，所以如果通过它们驱动过电流就可能损坏它们。例如，如果车辆电气系统的全部电流容量是单独通过二极管驱动的，就会损坏这些二极管。这样这些系统就需要使用电阻逐步降低电流。这就限制了为备用电池组充电的电流流量。因此，这些设备以及其他类似的设备就仅限于使用低电流或“滴点式”充电来为备用电池组充电，这就使得该备用电池组的再充电时间很
长。备用电池组过长的充电时间是该设备放电状态下的一个显著缺点。

此外，电路中分流器就如所述的连接使放电电池和充电电池并联。这样，充电的备用电池组就必需抗衡由车辆或设备加在其上的负载和放电的主电池组的负载。操作者误差能够引起其他的问题。如果无意间使得开关或分流器处于旁路模式，或者是如果在电池组或电气系统中出现了未被发现的故障，由此就削弱了备用单元作为辅助启动电池组的能力。

这样在放电的情况下，“840”和“164”专利的设备会给备用电池组带来额外的压力并且很可能要求一较长的周期来为存储其中的备用电再充电。这在车辆发生短路或其他电气系统故障的情况下是一个尤为严重的问题，严重限制了仅靠备用电池组的车辆运行时间。

类似地，Kump 的美国专利 5,256, 502 揭示了一组极板和极板框、可移动母线和电路组件，包括在电路中允许用于再充电由该组极板所定义并由一开关所连接的备用电池组的二极管。该二极管防止从备用电池组中获取电流，除非将一开关切换至备用设定。类似于“840”和“164”专利，在专利“502”中，当选择性连接备用电池组的极板时，就在开关的连接时使主电池组和备用电池组并联。这一解决方案与“840”和“164”专利有着相同的问题，并且同样地耦合了两个电池组的负极端子。由于连接损耗了系统中备用电能，当在放电状态下尝试启动时，该备用电池组就承受了电路系统的负载和放电的主电池组的负载。前述参考文件中都没有为解决这一问题提供任何建议，并且在“502”专利的情况下，因为备用电池组与主电池组共享极板，所以也无法电隔离该备用电池组。

在Hwa 的美国专利 6,121, 750 中，揭示了具有微处理器控制开关的两部分的电池组。Hwa 的设备包括了在一个单个外壳内共享一个公用负极端子末端和一个正极端子的两个 12 伏特电池组。设置一用于间歇连接的次级电池组用于满足短持续时间、高电流输出情形的要求。设置一个开关箱用于提供从仅使用主电池组到连接主电池组和次级电池组的切换。此外，出于类似之前相关于其他参考文件中的讨论的原因，当连接并拙劣地配置以处理放电状态时，所述该两电池组是并联的。并且在“750”专利的电路中，并未提供用于充电次级电池组的二极管或类似设备的迹象或暗示，这样因为次级电池组仅提供附加的起动电机电源，所以就不必将次级电池组保持在充电状态。
而Yu的美国专利5,683,827中揭示了用于在放电周期期间电池组群生成的输出电压小于阈电压时自动断开电池组群的可控硅整流器。所述整流器耦合了组成电池组群的一系列电池中的各单个的电池。系统切换各电池组，但是不提供超过各单独电池的备用电能。此外，该切换并未教导或暗示一辅助电池组，也没有暗示在放电状态下对辅助电池组的隔离。

迄今为止所知的所有多电池组系统的性能都不能令人满意。甚至对于由电池组提供方便可用的备用电源的现有尝试来说，也存在巨大的改善空间以及对应急启动电源的迫切需要。先前的尝试需要对车辆进行过于昂贵的改型以适应不同大小的电池组外壳、不同的终端结构或遥控电路。至今也没有发展出在紧急的时候为操作车辆或设备提供所必需的备用电源并在所有情况下都充分可靠的系统。

已知的多电池组结构不能设置至少两个电池组的配置，其中的每个电池组都在由传统车辆电池组外壳限定的机壳内并具有设计适用于传统电缆结构的终端位置，允许为启动和运行车辆递送足够的功率。没有系统能够提供车辆电气系统的全部电流用于立即开始再充电至少一个辅助电池组。实际上，先前尝试系统的可靠性和安全性能受到电流负载能力不足的二级管的牵制，这些相同的二级管在再充电期间很可能在事实上已被损坏。此外，先前的设备都不能提供单向充电电路，在需要时也不能隔离辅助电池组以提供应急备用电源。最后，先前的设备都不能提供一种方法来判定引起主电池组放电的是否是车辆的电气系统，也不能提供在此情况下所必需的辅助电源来获取援助。

发明内容

能够容易认识到在本发明的多电池组系统内可方便实现的可靠的辅助电源的诸多好处。它不需要对车辆的助攻启动，而在电气系统故障的情况下，它允许用户判定该故障并且可以使用辅助电池组获取某些帮助。本发明还无需冒险尝试可能会导致电火花和爆炸的车辆助攻启动。此外，通过使用本发明避免了助攻启动，就无需离开你的车辆寻求帮助或者在车辆无法启动时拦下陌生人，从而提高了安全保障。缩短了充电时间也是本发明又一大优点。对现有设备电池的再充电即使可能也需要花费大量的时间，而例如你正停在一条人迹稀少的路上。然而本发明允许用户快速启动并且能够立刻开始对主电池组和至少一个辅助电池组的充电。在此将进一
步讨论本发明的这些和其他优点。

本发明的一个目标是提供一种解决或改善本领域内问题和不足的改进的车用电池组。

本发明的另一个目标是提供一种通常能够通用地安装在传统电池组位置上的改进的多电池组系统和电池组附属系统。

本发明的另一个目标是提供一种若非全部情况也是在大多数情况下，甚至是在诸如电气系统故障的最坏放电状态下仍然具有充足备用电源的改进的车用电池组。

本发明的又一个目标是提供一种能够轻易并快速地提供辅助电源的改进的车用电池组。

本发明的再一个目标是提供一种结构上简单，但是无需过多的或昂贵的结构并无需对现有电气系统，电路或其他组件进行修改，并且生产和使用都很经济的改进的车用电池组。

本发明的另一个目标是提供一种有效，耐用和可靠的改进的车用电池组。

本发明的一个目标是提供一种能够隔离带有可靠启动和运行车辆或设备所需的充足备用电源的辅助电池组的电路。

本发明的一个实施例的又一个目标是有效利用传统电池外壳内的可用空间使得主电池组超过对大多数原始设备生产商（OEM）的车辆适用的 SAE 推荐的最小 CCA 额定输出功率。

本发明一个实施例的又一个目标是提供一种具有选择性地与辅助电池组电气通信的主电池组的交换式多电池组系统，在具有传统外部尺寸特征的外壳内布置该系统并且布置各端子以适应传统的车辆电路结构。传统电池外壳罩的使用通过利用现有的生产设备和工艺能够相对降低生产成本。此外，它还允许本发明立即代替现有的电池组。

根据一个实施例的一个目标，在辅助电池外壳上沿着电池组外壳的纵轴放置主电池组的电池。辅助电池组的电池可以约为主电池高度的四分之一。在典型实施例中，辅助电池是置于主电池组之下的。这一结构使得附属的电池系统能够更方便地与各种传统两终端汽车电池互换。

根据本发明一个实施例的另一个目标，切换机构也可放置在外罩内并且包括
用于选择性地建立主电池组和备用电池组之间通信的可手动操作的传动装置。

根据本发明的又一个实施例，配置放置在车辆内的所述交换多电池组系统用于与传统车辆电池组电缆电气通信。如果主电池组的输出太低而无法启动车辆，操作者就把切换置于辅助位置，因此就使得由充电二极管电路保持在完全充电状态的辅助电池组联机。一旦启动车辆，操作者就把切换置回到正常位置，由此使用电气系统连接主电池组和辅助电池组以开始再充电。在车辆运行期间，就以传统方式再充电主电池组和辅助电池组。

此外，本发明的另一个目标是辅助电池组内的电源在主电池组放电或失效时也能运行汽车。这样，当主电池组不可用时，就可利用辅助电池组直到能够便利地获得修复或代替。

本发明的另一个实施例是主级和次级存储电池组都具有足够强度使得在普通天气条件下能够操作起动器和车辆而无需求助于另一个。这样，如果由于某种原因两个电池组中的一个完全放电，则车辆仍是可操作的。

本发明的装置包括一个多电池组系统。此多电池组系统包括带有都耦合电气系统的一个公共正极端子和公共负极端子的电池组外壳。主电池组具有主正极输出和主负极输出而至少一个辅助电池组具有一个辅助正极输出和一个辅助负极输出。所述多电池组系统包括使用至少一个切换设备耦合至所述公共正极端子的主电气电路。所述至少一个切换设备具有至少两个工作位置。在所述至少两个工作位置的第一工作位置上，所述公共正极端子耦合至所述主电池组的主正极输出并且耦合至与所述辅助正极输出耦合的单向充电电路。在第二工作位置，所述公共正极端子通过至少一个切换设备耦合至在与所述辅助正极输出耦合的单向充电电路另一边的所述主电路的一个点，将所述公共正极端子耦合至所述辅助正极输出。

在电池组系统中，在所述至少一个的切换设备的第二位置内可以电气隔离主电池组和辅助电池组。

在所述系统中，所述电池组的外壳也可以包括含有所述主电池组的至少一个主电池组隔间。所述主电池组可以是 6 伏、12 伏、14 伏或 24 伏电池组中的一种。在多电池组系统的又一个实施例中，仅仅是主电池组的正极输出和至少一个辅助电池组的负极输出的耦合是由所述切换设备切换的。此外，至少两个工作位置的第二工作位置能够隔离主电池组和电气系统并且从引入至少一个辅助电池组。
电池组外壳可以包括含有至少一个辅助电池组的至少一个辅助电池组隔间。
所述至少一个辅助电池组可以是 6 伏、12 伏、14 伏或 24 伏电池组中的一种。此外，
主电池组可以是带有 6 个 2 伏电池的 12 伏电池组并且至少一个辅助电池组也可以是带有 6 个 2 伏电池的 12 伏电池组。

电池组外壳也可以具有包含主电池组的主电池组隔间以及含有至少一个辅助电池组的至少一个辅助电池组隔间，所述主电池组的隔间可以位于所述至少一个辅助电池组隔间的顶部。

电池组外壳也可以具有至少一个注入管。所述至少一个注入管能够可以是至少一个主电池组注入管。主电池组可以包括至少一个电池并且所述至少一个主注入管可以是用于主电池组的每个电池的主注入管。所述至少一个注入管也可以是至少一个辅助电池组注入管。辅助电池组可以包括至少一个电池并且所述至少一个辅助注入管可以是用于辅助电池组每个电池的辅助注入管。此外，所述至少一个辅助注入管可以是至少一个主注入管和至少一个辅助注入管，所述至少一个辅助注入管通过所述主电池组隔间。

多电池组系统的单向充电电路可包括至少一个单向充电二极管。所述至少一个单向充电二极管可以是至少一个硅整流器。

所述至少一个硅整流器的额定电流位于 25 到 95 安培之间。在另一个典型实施例中，主电池组可以是 12 伏的电池组并且所述至少一个硅整流器额定具有 12 伏，45 安培。此外，充电电路可以包括至少一个高容量二极管以及耦合至所述至少一个高容量二极管的至少一个散热装置。所述至少一个高容量二极管的额定电流大约位于 25 到 95 安培之间。此外在还一个典型实施例中，所述至少一个高容量二极管额定具有 12 伏，45 安培并且所述耦合至所述至少一个高容量二极管的至少一个散热装置具有足够的表面区域来散热由额定 12 伏，45 安培的至少一个高容量二极管产生的热量。

所述多电池组系统还可具有耦合至所述至少一个切换设备并负责切换该切换设备的控制器。所述多电池组系统还可具有与所述控制器通信的至少一个传感器。所述至少一个传感器可以包括至少一个主电池组电压传感器、至少一个主电池组电流传感器、至少一个辅助电池组电压传感器、至少一个切换位置传感器以及至少一个辅助电池组电流传感器。所述控制器可以耦合至所述位置传感器并与其通信以检
测切换设备的位置并基于所述至少一个主电池组电压传感器、所述至少一个辅助电池组电压传感器和所述至少一个辅助电流传感器中至少一个的输入来选择性地连接所述切换设备。

所述多电池组系统也可具有辅助电池组放电系统。所述辅助电池组放电系统可以具有定时器的控制器。所述定时器可向所述控制器发信号以周期性地改变切换位置使得在所述至少两个工作位置的所述第二工作位置上能够在较短周期内放电所述辅助电池组并在随后切换回到所述至少两个工作位置的所述第一工作位置上。

所述放电系统还可以是在一个短暂的时间周期内将所述电池组系统手动切换至所述第二工作位置并在随后将所述切换设备手动切换回所述第一操作位置的书面指示。

所述放电系统还可以使得控制器在来自至少一个传感器的输入信号指示所述主电池组电压或电流低于一触发电点的情况下切换所述切换设备使得所述公共正极端子耦合至所述辅助电池组正极输出。

本发明的装置还包括一主电池组系统，该系统包括带有耦合至一电气系统的公共正极端子和公共负极端子的电池组外壳；带有主正极输出和主负极输出的主电池组；带有辅助正极输出和辅助负极输出的辅助电池组；带有至少两个工作位置的切换设备，所述至少两个工作位置选择性地连接所述主电池组和所述辅助电池组。所述至少两个工作位置的第一工作位置把所述公共正极端子耦合至所述主正极输出并且通过在所述辅助电池组之间和在前的单向充电电路耦合至所述辅助正极输出。所述至少两个工作位置的第二工作位置能够把所述公共正极端子耦合至所述辅助正极使得所述公共正极端子在所述单向充电电路的另一边的某一点上耦合至所述辅助电池组正极。

所述多电池组系统的第二工作位置能够使得所述辅助电池组单独与所述电气系统串联并且阻止辅助电池组内的电能流入主电池组。单向充电电路在第二工作位置上能够电气隔离所述主电池组。在所述第一工作位置上，单向充电电路允许电能从电气系统流入主电池组和辅助电池组，但是阻止电能从辅助电池组内流出。此外在本发明的一个典型实施例中，仅仅是主电池组和至少一个辅助电池组的正极输出是由切换设备切换的。此外，当位于所述至少两个工作位置的第二工作位置时，系
统能够完全断开主电池组与电气系统的连接并且只引入所述至少一个辅助电池组。

主电池组是6伏、12伏、14伏或24伏电池组中的一种。所述至少一个辅助电池组是6伏、12伏、14伏或24伏电池组中的一种。

电池组外壳可包括含有主电池组的电池组间隔，而且至少一个辅助电池组间隔，所述主电池组间隔位于所述至少一个辅助电池组间隔顶部。电池组外壳也可包括至少一个注入管。

单向充电电路可包括至少一个充电二极管。所述至少一个充电二极管可包括至少一个硅整流器。所述至少一个硅整流器的额定电流应在25到95安培之间。主电池组是12伏的汽车电池组并且所述至少一个硅整流器额定具有12伏，45安培。充电电路还可包括至少一个高容量二极管以及耦合至所述至少一个高容量二极管的至少一个散热装置。所述至少一个高容量二极管的额定电流大约位于25到95安培之间。所述至少一个高容量二极管额定具有12伏，45安培，并且耦合至至少一个高容量二极管的至少一个散热装置具有足够的表面区域来散发由所述至少一个二极管产生的热量。

所述系统具有耦合至所述至少一个切换设备并负责切换该设备的控制器。还提供与所述控制器通信的至少一个传感器。与控制器通信的至少一个传感器包括检测切换设备位置的至少一个切换位置传感器并且控制器随后基于来自所述至少一个切换设备传感器和至少一个主电池组电压传感器、主电池组电流、辅助电池组电压传感器和辅助电流传感器中的输入来开动所述切换设备。

本发明的所述系统还包括辅助电池组放电系统。所述辅助电池组放电系统包括带定时器的控制器，其中所述定时器可向控制发送信号以周期性地改变切换位置使得在所述至少两个工作位置的所述第二工作位置上能够在较短周期内放电所述辅助电池组并在随后切换回到所述至少两个工作位置的所述第一工作位置上。

所述放电系统还是一对短暂时间周期内将所述电池组系统手动切换至所述第二工作位置并在随后将所述切换设备手动切换回所述第一操作位置的书面指示。

所述控制器在来自至少一个传感器的输入信号指示所述主电池组电压低于一触发点的情况下切换所述切换设备使得所述公共正极端子耦合到所述辅助电池组正极输出。

还可为所述系统提供包括了耦合至切换设备的定时器的辅助电池组循环放电
系统，其中所述定时器周期性动切换设备，使其在较短时间周期内处于第二工作模式并在所述较短时间周期之后动切换设备回到第一工作模式。

本发明的装置还包括一辅助电池组附属系统，该系统包括带有正极输出和负极输出的主电池组以及至少一个公共正极端子、至少一个公共负极端子、至少一个正极耦合和至少一个负极耦合的电池组外壳，所述至少一个正极和负极耦合把所述至少一个正极和至少一个负极电池组输出电气耦合至一电气系统的所述至少一个正极和至少一个负极公共端子。所述系统还包括带有辅助正极输出和辅助负极输出的至少一个辅助电池组，其中每个输出分别电气耦合至所述至少一个正极公共端子和至少一个负极公共端子，以及主电气电路，该电路包括带有至少一个切换设备的公共正极端子的耦合。在所述主电路中，所述至少一个切换设备具有至少两个工作位置：所述至少两个工作位置的第一工作位置通过至少一个正极耦合把所述公共正极端子耦合至所述主电池组的主正极输出并且还耦合至先于并与辅助正极输出耦合的单向充电电路；而第二工作位置通过至少一个切换设备将所述公共正极端子耦合至所述主电路中在所述耦合至辅助正极输出的单向充电电路的另一边的某一点。

所述电路外壳安装在所述主电池组的顶部或者所述电路外壳安装在所述主电池组的一侧。并且当位于第一工作位置时，单向充电电路允许电能从电气系统流向主电池组和辅助电池组，但是阻止电能从辅助电池组内流出。当位于所述至少两个工作位置的第二工作位置时，系统能够完全断开主电池组与电气系统的连接并且仅引入所述至少一个辅助电池组。

所述至少一个正极和负极耦合位于所述电路外壳内。所述至少一个辅助电池组是 6 伏、12 伏、14 伏或 24 伏电池组中的一种。所述电路外壳包括所述至少一个辅助电池组。

所述附属系统的单向充电电路也可包括至少一个单向充电二极管。所述至少一个单向充电二极管例如是至少一个硅整流器。所述至少一个硅整流器的额定电流位于 25 到 95 安培之间。所述主电池组是 12 伏的汽车电池组并且所述至少一个硅整流器额定具有 12 伏，45 安培。

所述电池组系统还提供带有至少一个高容量二极管以及耦合至所述至少一个高容量二极管的至少一个散热装置的充电电路。所述至少一个高容量二
极管的额定电流大约位于 25 到 95 安培之间。所述至少一个高容量二极管也可具有额定 12 伏，45 安培并且耦合至至少一个高容量二极管的至少一个散热装置具有足够的表面区域来散发由所述至少一个的 12 伏，45 安培的二极管产生的热量。

所述多电池组系统具有耦合至所述切换设备并负责切换该设备的控制器。至少一个传感器还可与所述控制器通信。与控制器通信的至少一个传感器包括检测所述至少一个切换设备的所述位置的至少一个切换位置传感器以及主电池组电压传感器、辅助电池组电压传感器和辅助电流传感器的至少一个，所述切换设备由处理器基于来自所述至少一个传感器中的输入来开动。

所述辅助电池组附属系统还包括辅助电池组放电系统。同样地，所述辅助电池组放电系统包括带定时器的控制器。所述定时器可向控制器发信号以周期性地改变切换位置使得在所述至少两个工作位置的所述第二工作位置上能够在较短周期内放电所述辅助电池组并在随后切换回到所述至少两个工作位置的所述第一工作位置上。所述放电系统还包括在一段较短时间周期内将所述电池组系统手动切换至所述第二工作位置并在随后将所述切换设备手动切换回所述第一工作位置的书面指示。

所述控制器在来自至少一个传感器的输入信号指示所述主电池组电压低于一触发点的情况下切换所述切换设备使得所述公共正极端子耦合至所述辅助电池组正极输出。

本发明的所述方法包括检测电气系统中放电条件故障的方法，所述方法包括如下步骤：检测车辆或机器电气系统内的初始放电条件，切换具有主和辅助电池组的电池组以及带有两个工作位置的切换设备，使得从在其中所述主和辅助电池组通过先于所述辅助电池组的单向充电二极管耦合至电气系统的第一工作位置切换至所述辅助电池组与电气系统串联耦合并电气隔离所述主电池组的辅助工作位置。随后利用处于辅助工作位置的辅助电池组启动车辆或机器并切换所述切换设备回到正常工作位置并且在正常工作位置上连接主电池组并且确定车辆或机器是在正常位置下运行还是由故障指明了电气系统中一通常的操作故障。本方法还包括把切换设备返回到辅助位置并且连接所述辅助电池组以提供操作车辆或机器所需能量并且在寻找电气故障的修理方法后步骤。
本发明的上述目标和优点是对可由本发明实现的示意性而非彻底的描述。通过组成说明书一部分，并且以本发明示例性实施例的方式示出的附图来做出参考。这样通过在此的描述以及其他对本领域普通技术人员来说显而易见的修改变化，本发明的这些和其他目标和好处将变得显而易见。

本发明还包括一种系统并且该系统作为多电池组系统包括带有正极输出和负极输出的主电池组以及带有至少一个辅助正极输出和至少一个辅助负极输出的辅助电池组。还提供了使用至少一个切换设备耦合公共正端子的主电气电路。所述切换设备具有选择性地将主电池组和至少一个辅助电池组耦合至所述公共正端子的至少两个工作位置。在至少两个工作位置的第一工作位置上，为主电池组和至少一个辅助电池组提供电能。控制器耦合至所述主电气电路并且基于来自至少一个传感器的输入切换所述至少一个切换设备。本系统还包括将所述公共正端子耦合至主电池组的正极输出并将所述公共正端子耦合至主电池组中的至少一个辅助正极输出耦合的单向充电电路的所述至少两个工作位置中的第一工作位置。所述多电池组系统还包括第二工作位置，其中通过至少一个切换设备将所述公共正端子耦合至所述主电路中在所述耦合至辅助正极输出的单向充电电路的另一端的某一点。在至少一个切换设备的至少两个工作位置的第二工作位置上，可将所述主电池组与至少一个辅助电池组隔离。

此外，本系统能够但不限于仅用于由切换设备切换的主电池组的正极输出和至少一个辅助电池组的正极输出的耦合。所述至少两个工作位置的第二工作位置能够但不限于将主电池组与系统隔离，并且仅引入至少一个辅助电池组。

多电池组系统的控制器还可包括至少一个指示元件。所述至少一个指示元件包括但不限于汽笛、喇叭、灯、多组灯、LCD面板、模拟人类语音、人类语音、发光二极管和多个发光二极管。在某些实施例中的至少一个指示元件是至少带有红、橙、绿或琥珀色的多个指示元件。

多电池组系统还可包括含有主电池组的主电池组隔间和含有至少一个辅助电池组的至少一个辅助电池组隔间的电池组外壳。所述主电池组隔间位于所述至少一个辅助电池组隔间顶部。在其它实施例中，所述主电池组隔间也可位于所述至少一个辅助电池组隔间的一侧。

本发明的单向充电电路例如是，但不限于至少一个单向充电二极管。在某些
实施例中，至少一个单向充电二极管还可包括至少一个硅整流器。在其它实施例中，至少一个单向充电二极管包括但不限于至少一个可控硅整流器（SCR）。所述至少一个可控硅整流器（SCR）能够但不限于可耦合至所述控制器并且在检测到辅助电池组过充电条件的情况下能够禁用对所述至少一个辅助电池组的耦合。

在本系统的某些实施例中，所述至少一个辅助电池组还包括单个辅助电池组。在其它实施例中，所述至少一个辅助电池组还包括多个辅助电池组。

所述至少一个传感器在某些实施例中还可包括至少一个主电池组电压传感器、至少一个主电池组电流传感器、至少一个辅助电池组电压传感器、至少一个辅助电池组电流传感器和至少一个切换位置传感器中的至少一个。所述至少一个传感器包括但不限于至少一个 VI 传感器。类似地，在某些典型实施例中的所述控制器还可包括至少一个微处理器、至少一个单处理器、至少一组查找表、至少一个存储器设备、至少一个安全协议/加密元件以及至少一个指示元件中的至少一个。

在某些实施例中，控制器是无线控制器系统。无线控制器系统包括但不限于无线控制器、无线收发机和输入设备。无线输入设备包括至少一个指示元件。在另外的实施例中，控制器是网络有接口控制器，其中所述网络可接口控制器具有网络接口和收发机。网络可接口控制器经由网络与网络操作中心（NOC）通信。网络可接口控制器能够耦合至至少一个切换设备并与其通信以检测至少一个切换设备的位置，并且基于所述至少一个主电池组电压传感器、所述至少一个主电池组电流传感器、所述至少一个辅助电池组电压传感器和所述至少一个辅助电池组电流传感器中至少一个的输入来选择性地连接所述至少一个切换设备。

控制器能够包括一触发器，它向所述控制器发信号以周期性地改变至少一个切换设备的切换位置使得在所述至少两个工作位置的所述第二工作位置上能够在较短周期内放电所述辅助电池组并在随后切换回到所述至少两个工作位置的所述第一工作位置上。多电池组系统中的多个电池组是 6 伏、12 伏、14 伏或 24 伏电池组电气系统中的一部分。

本发明还包括网络可控多电池组系统。本系统包括与网络可接口控制器通信的网络以及检测至少一个主电池组条件的至少一个传感器。至少一个受控切换设备耦合至所述至少一个网络可接口控制器并且响应于由网络送至所述网络可接口控制器的至少一个信号将主电池组切换至至少一个辅助电池组。
主电池组包括但不限于主正极输出和主负极输出并且至少一个辅助电池组包括但不限于至少一个辅助正极输出和至少一个辅助负极输出。至少一个受控切换设备能够但不限于，在至少两个工作位置之间切换，每个位置选择性地将公共端子与至少一个主电池组和至少一个辅助电池组耦合。

在系统的典型实施例中，所述至少两个工作位置的第一工作位置能够为主电池组提供充电，并且通过单向充电电路为至少一个辅助电池组充电。至少两个工作位置的第二工作位置能够将至少一个辅助电池组的至少一个辅助输出耦合至公共输出。

至少一个单向充电电路可包括至少一个单向充电二极管。至少一个单向充电二极管例如还是但不限于至少一个硅整流器。至少一个单向充电二极管包括但不限于至少一个可控硅整流器（SCR）。所述至少一个可控硅整流器（SCR）能够耦合至所述控制电路并且在检测到辅助电池组中过充电条件的情况下能够关闭。

网络还可包括带有至少两个工作位置的至少一个受控切换设备，其中至少两个工作位置的第一工作位置把公共正极端子耦合至主电池组的主正极输出并将所述公共正极端子耦合至与在所述至少一个辅助电池组上的至少一个辅助正极输出耦合的单向充电电路，而在第二工作位置上，则在所述系统中单向充电电路的另一边的某一点上把所述公共正极端子耦合至至少一个辅助电池组的至少一个辅助正极输出，并且有效地隔离直接连接至至少一个辅助电池组的主电池组。

所述网络可控多电池组系统还可包括至少一个指示元件。所述至少一个指示元件具有至少一个颜色的至少一个发光二极管。所述至少一个指示元件也是带有带有红、橙、绿或琥珀色中至少一个的多个指示元件。所述至少一个指示元件包括但不限于汽车、喇叭、灯、多盏灯、LCD 面板、模拟人类语音、人类语音、发光二极管和多个发光二极管。

所述网络可控多电池组系统的至少一个网络可接口控制器包括但不限于至少一个微处理器、至少一个信号发射机、至少一个信号接收机、安全协议/加密元件、指示元件和输入/输出总线。所述至少一个传感器包括至少一个 VI 传感器。该网络可控多电池组系统是但不限于 6 伏、12 伏、14 伏或 24 伏电池组电气系统的一部分。

本发明还包括带有公共正极端子和公共负极端子耦合至电气系统的电池组外
壳的又一个多电池组系统。还提供了带有主正极输出和主负极输出的主电池组以及带有辅助正极输出和辅助负极输出的至少一个辅助电池组。本系统还包括带有至少两个工作位置的至少一个切换设备，所述至少两个工作位置选择性地连接所述多电池组以及所述辅助电池组，其中在所述至少两个工作位置的第一工作位置上，所述公共正极端子耦合至主正极输出并且还通过在所述至少一个辅助电池组之间并先于它们的单向充电电路来把所述公共正极端子耦合至所述至少一个辅助电池组输出；而在所述至少两个工作位置的第二工作位置上，则结合公共正极端子至辅助正极使得该公共正极端子在单向充电电路的另一边的某一点上与辅助电池组正极输出耦合。本系统还包括耦合至所述至少一个切换设备并切换该设备的控制器。

在某些实施例中，第二工作位置把至少一个辅助电池组耦合至电气系统并且阻止至少一个辅助电池组的电能流入主电池组。在所述第二工作位置上，单向充电电路电气隔离主电池组。至少一个辅助电池组是单个辅助电池组。至少一个辅助电池组也是多个辅助电池组。

所述单向充电电路例如是但不限于是至少一个单向充电二极管。至少一个单向充电二极管例如还是但不限于是至少一个硅整流器。至少一个单向充电二极管还是但不限于是至少一个可控硅整流器（SCR）。

所述多电池组系统具有与所述控制器通信的至少一个传感器。所述控制器基于来自至少一个传感器中的输入来对切换设备进行动作并且所述至少一个传感器包括至少一个主电池组电压传感器、主电池组电流检测器、辅助电池组电压传感器和辅助电池组电流传感器中的至少一个。所述多电池组系统还可包括至少一个指示元件。

本发明的所述方法包括了一种控制多电池组系统的方法。该方法包括如下步骤：查询至少一个传感器；读取所述至少一个传感器以检测异常；把所述检测步骤的结果通知给操作者或网络操作中心；一旦接收到来自操作者、网络操作中心或控制器的命令就从主电池组切换到辅助电池组；并且确认该系统的操作。

该控制多电池组系统的方法还可包括在通信步骤之后，起动能量保存步骤的方法步骤。本方法还包括监控电能供给并将其传送入系统的步骤。本方法还包括在确认步骤之后，切换回到正常工作模式或者对操作者或NOC发出电气故障情况的警告。

本发明还包括又一个多电池组管理系统。该系统具有公共正极和公共负极端
子，带有主正极输出和主负极输出的主电池组以及带有辅助正极输出和辅助负极输出的至少一个辅助电池组。本系统还具有包括了至少一个控制器、至少一个切换设备、至少一个再充电选择机构以及至少一个传感器的电池组管理系统，其中所述电池组管理系统选择性地把公共正极端子耦合至所述至少一个主电池组正极输出或者至少一个辅助电池组正极输出中的至少一个，并且所述至少一个再充电选择机构通过先于所述再充电选择机构的至少一个单向充电电路而选择性地把至少一个主或至少一个辅助电池组耦合至分别带有至少一个电池组的主公共正极接线柱。

所述再充电选择机构是但不限于是至少一个继电器或者至少一个 MOSFET 器件或类似的固态电气器件中的一个。至少一个切换设备具有至少两个工作位置并且所述至少两个工作位置的第一工作位置能够把所述公共正极端子耦合至所述至少一个主电池组的主正极输出。所述第二工作位置则能够通过至少一个切换设备把所述公共正极端子耦合至所述至少一个辅助电池组的辅助正极输出。

所述至少一个再充电选择机构具有两个设置，例如在第一设置中是通过单向充电电路向辅助电池组提供再充电而在第二设置中则通过单向充电电路向主电池组的主正极输出提供充电。此外，该电池组管理系统能够检测至少一个主和至少一个辅助电池组的情况，并且选择性地连接至少一个切换设备位于第一位置上而连接所述至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个主电池组的主输出和公共正极输出并且通过至少一个单向充电电路对至少一个辅助电池组进行再充电。

类似地，该电池组管理系统能够检测至少一个主和至少一个辅助电池组的情况，并且选择性地连接至少一个切换设备位于在第一位置上而连接所述至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个主电池组的辅助输出和公共正极输出并且通过至少一个单向充电电路对至少一个辅助电池组进行再充电，并且通过至少一个单向充电电路对至少一个辅助电池组进行再充电，由此还电气隔开了至少一个辅助电池组。此外，该电池组管理系统能够检测至少一个主和至少一个辅助电池组的情况，并且选择性地连接至少一个切换设备位于在第二位置上而连接所述至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个辅助电池组的辅助正极输出和公共正极输出并且通过至少一个单向充电电路对至少一个辅助电池组进行再充电，由此还电气隔开了至少一个主电池组。

同样地，该电池组管理系统能够检测至少一个主和至少一个辅助电池组的情
况，并且选择性地连接至少一个切换设备位于在第二位置上而连接所述至少一个再
充电选择机构位于所述第二位置，这就耦合了至少一个辅助电池组的辅助正极输出
和公共正极输出并且通过至少一个单向充电电路对至少一个主电池组进行再充电。
所述至少一个单向充电电路例如包括但不限于至少一个单向充电二极管。所述
至少一个单向充电二极管例如还可包括但不限于至少一个硅整流器。此外，至少
一个单向充电二极管是至少一个可控硅整流器（SCR）。所述控制器能够与位置传
感器耦合并通信以检测切换设备的位置并基于至少一个主电池组电压传感器、至少
一个主电池组电流传感器、至少一个辅助电池组电压传感器以及至少一个辅助电池
组电流传感器中的至少一个的输入来选择性地连接所述切换设备。所述至少一个辅
助电池组包括多个辅助电池组或多单个辅助电池组。
所述电池组管理系统例如还可包括但不限于包括至少一个微处理器、至少
一个单处理器、至少一组查找表、至少一个存储器设备、至少一个安全协议/加密元
件以及至少一个指示元件中的至少一个。所述至少一个指示元件包括但不限于汽
笛、喇叭、灯、多盏灯、LCD 面板、模拟人类语音、人类语音、发光二极管和多
个发光二极管。此外，所述至少一个指示元件是带有红、橙、绿或琥珀色中至少一
种的多个指示元件。
本发明还包括一车辆对电池组系统。该系统包括带有附加正极输出和附加负
极输出的附加电池组、带有启动器正极输出和起动器负极输出的起动器电池组、耦
合至至少一个传感器的控制器，所述控制器检测附加和起动器电池组的情况并将至
少一个切换设备切换至少两个切换位置中的一个。本系统还包括带有至少两个工
作位置的至少一个切换设备，所述至少两个工作位置选择性地连接所述附加电池组
和所述起动器电池组，并且包括其中公共正极端子耦合至附加正极输出并通过先于
并耦合至至少一个起动器电池组的单向充电电路耦合至至少一个起动器电池组的
所述至少两个工作位置的第一工作位置；以及耦合所述公共正极端子和起动器正极
使得公共正极端子在单向充电电路的另一边的某一点上耦合该起动器电池组正极
的所述至少两个工作位置的第二工作位置。
一旦检测了启动序列，控制器就将所述至少一个切换设备置于第二工作位置
以使得起动器电池组独自与电气系统串联并防止起动器电池组中的电能流入附加
电池组。在第二工作位置上，单向充电电路电气隔离附加电池组。类似，在第一工
作位置时，单向充电电路允许来自电气系统的电能流入附加和起动器电池组，但是阻止电能从起动器电池组中流出。在第二工作位置，附加电池组与起动器电池组电气隔离。

虽然肯定不限于此，但是车辆多电池组系通过切换设备提供附加电池组和至少一个起动器电池组的正极输出的切换。至少两个工作位置的第二工作位置能够将附加电池组从电气系统中完全断开并只引入至少一个起动器电池组。

附加电池组是但不限于 60 安培时（amp hour）电池组。至少一个起动器电池组是但不限于 25 安培时电池组。单向充电电路例如是但不限于至少一个单向充电二极管。至少一个单向充电二极管例如还是但不限于至少一个硅整流器。至少一个硅整流器例如是但不限于至少一个可控硅整流器。

所述车辆多电池组系统还包括耦合并切换所述切换设备的耦合至单向充电电路的控制器。至少一个传感器还可与所述控制器通信。与控制器通信的至少一个传感器包括检测切换设备位置的至少一个切换位置传感器并且所述控制器基于来自至少一个切换设备传感器以及电池组电压传感器、电流传感器和 VI 传感器中的至少一个的输入来对所述切换设备进行动作。所述至少一个可控硅整流器（SCR）管例如还能够耦合至所述控制器并且在检测到辅助电池组中热击穿的情况下能够禁用该 SCR 与至少一个辅助电池组的耦合。

本发明还包括车辆多电池组管理系统的又一个典型实施例。该典型实施例可具有公共正极和公共负极端子、带有正极输出和负极输出的附加电池组以及带有起动器正极输出和起动器负极输出的至少一个起动器电池组；以及一个电池组管理系统。本电池组管理系统具有但不限于具有至少一个控制器、至少一个切换设备、至少一个再充电选择机构以及至少一个传感器，其中所述电池组管理系统选择性地把公共正极端子耦合至附加或起动器电池组正极输出的至少一个，并且所述电池组管理系统还通过先于所述再充电选择机构的至少一个单向充电电路而选择性地把附加或起动器电池组，从而将其各自的电池组输出耦合至公共输出。

所述至少一个再充电选择机构例如是但不限于至少一个继电器或至少一个 MOSFET 器件或类似的固态电气器件中的一个。至少一个切换设备具有具有但不限于具有至少两个工作位置，并且所述至少两个工作位置的第一工作位置能够把所述公共正极端子耦合至所述至少一个附加电池组的附加正极输出。所述两个工作位
置的第二工作位置则能够通过至少一个切换设备把所述公共正端子耦合至所述至少一个起动器电池组的起动器正极输出。

所述至少一个再充电选择机构例处具有但不限于具有至少两个设置，在第一设置中是通过单向充电电路向起动器电池组提供再充电而在第二设置中则通过单向充电电路向附加电池组的附加正极输出提供电荷。

该电池组管理系统能够检测至少一个附加和至少一个起动器电池组的情况，并且能够选择性地连接至少一个切换设备位于第一位置上而连接所述至少一个再充电选择机构位于所述第一位置，这就耦合了至少一个附加电池组的附加输出和公共正极输出并且通过至少一个单向充电电路对至少一个起动器电池组进行再充电。

该电池组管理系统还能够检测至少一个附加和至少一个起动器电池组的情况，并且选择性地连接至少一个切换设备位于在第一位置上而连接所述至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个附加电池组的附加输出和公共正极输出并且通过至少一个单向充电电路对至少一个附加电池组进行再充电，由此还电气隔离了至少一个起动器电池组。

权利要求 34 中的车辆多电池组管理系统，其特征在于该电池组管理系统能够检测至少一个附加和至少一个起动器电池组的情况，并且选择性地连接至少一个切换设备位于在第二位置上而连接所述至少一个再充电选择机构位于所述第一位置，这就耦合了至少一个起动器电池组的起动器正极输出和公共正极输出并且通过至少一个单向充电电路对至少一个起动器电池组进行再充电，由此还电气隔离了至少一个附加电池组。

该电池组管理系统能够检测至少一个附加和至少一个起动器电池组的情况，并且能够选择性地连接至少一个切换设备位于在第二位置上而连接所述至少一个再充电选择机构位于所述第二位置，这就耦合了至少一个起动器电池组的起动器正极输出和公共正极输出并且通过至少一个单向充电电路对至少一个附加电池组进行再充电。

所述至少一个单向充电电路例如是但不限于是至少一个单向充电二极管。所述至少一个单向充电二极管例如是但不限于是至少一个硅整流器。至少一个单向充电二极管例如是但不限于是至少一个可控硅整流器（SCR）。所述控制器能够与位置传感器耦合并通信以检测切换设备的位置并基于至少一个附加电池组电压传
感器、至少一个附加电池组电流传感器、至少一个起动器电池组电压传感器以及至少一个起动器电池组电流传感器中的至少一个的输入来选择性地连接所述切换设备。

所述控制器还包括至少一个指示元件。所述至少一个指示元件包括但不限于汽笛、喇叭、灯、多盏灯、LCD 面板、模拟人类语音、人类语音、发光二极管和多个发光二极管。所述至少一个指示元件是但不限于带有红、橙、绿或琥珀色中至少一种的多个指示元件。

本发明的所述方法包括了如下的附加方法步骤：检测循环触发器或标志；一旦检测到触发器或标志就切换到至少一个辅助电池组；监控至少一个辅助电池组进行放电、充分再充电以及正常操作；在一定时间内使用辅助电池组运行电器系统；通过至少一个传感器检查至少一个辅助电池组的放电，并且把所述至少一个开关切换回来以连接所述主电池组。

本发明的所述方法还包括了一种电池组管理的方法，其中包括的步骤如下：检测至少一个主电池组和至少一个辅助电池组的情况；基于在控制器内设置的电荷平衡参数在选择性地连接至少一个主或辅助电池组的至少两个位置之间选择性地切换带有主和辅助电池组的多电池组系统；通过选择性地连接再充电机构内至少两个位置的第一位置而选择性地再充电辅助电池组；以及通过选择性地切换以及选择性地再充电系统内的电池组来保持每一电池组的电荷水平。

附图说明

图 1 显示出了本发明一个典型实施例的立体图。

图 2a 和图 2b 分别示出了本发明一个典型实施例的顶视图和截面图。

图 3a 和图 3b 分别示出了在正常工作模式下的本发明一个典型实施例的顶视图和电路图。

图 4a 和图 4b 分别示出了在辅助工作模式下的本发明一个典型实施例的顶视图和电路图。

图 5a 和图 5b 分别示出了在存储工作模式下的本发明一个典型实施例的顶视图和电路图。

图 5c 到图 5e 显示出了本发明又一个典型实施例的电路图。
图 5F 到图 5I 示出了具有增强的电池组管理系统的一种发明又一个典型实施例的电路图。

图 6 和图 7 示出了作为用于现有主电池组的辅助电池组附属系统的本发明典型实施例的立体图。

图 8A 示出了结合有自动化控制器的本发明一个典型实施例的电路图。

图 8B 示出了结合有自动化控制器和指示元件的本发明一个典型实施例的电路图。

图 8C 示出了本发明又一个典型实施例的电路图。

图 9 示出了结合有辅助放电循环系统的本发明一个典型实施例的电路图。

图 10A 示出了结合有无线电接口和无线电控制输入的本发明又一个典型实施例的组件图。

图 10B 示出了结合有网络接口控制器和网络的本发明又一个典型实施例的组件图。

图 11A 示出了本发明中所述控制器的一个典型实施例的操作步骤的流程图。

图 11B 示出了本发明中所述控制器的一个典型实施例的包括了辅助电池组维护步骤的操作步骤的流程图。

图 12A 到图 12D 示出了具有增强的电池组管理系统的本发明又一个典型实施例的电路图。

具体实施方式

附图中描绘的元件不必按比例画出，并且在各个附图中类似的元件由相同或类似的编号指定。

本发明涉及具有主电池组和至少一个辅助电池组结合的多电池组系统。在本发明的一个非限制性典型实施例中涉及用于符合初始设备制造商规范的汽车、轮船以及机械应用的标准 12 伏电池组。例如图 1、2a 和 2b 所示的非限制性典型实施例包括在传统大小和比例的单个电池组外壳内的 2 个 12 伏的电池组。如下还将详述包含在外壳 10 内的主电池组 100 和备用、辅助或备份电池组 200。另外的实施例还可包括提供了 6 伏、24 伏、36 伏、48 伏、72 伏等等的主电池组和/或辅助电池组的变化型。为配合一特定的应用可提供关于电池组数量、电池组电压、电池数
量、每一电池的相对功率和电池内组件数量的另外配置和变化型并且它们也不背离本发明的方面。

图 1示出了本发明一个典型实施例的立体图。在图 1以及图 2到图 5中示出的典型实施例中，电池组外壳 10的上部包括主电池组 100而电池组外壳 10的下部包括辅助电池组 200。在示出的典型实施例中，主电池组 100占了电池组外壳 10的四分之三而辅助电池组 200占了四分之一。主电池组 100端接主正极输出 110和主负极输出 120。辅助电池组端接第二或辅助正极输出 210和第二或辅助负极输出 220。这样，示出的典型实施例就为电池组外壳内的每个电池组提供了两个正极输出和两个负极输出。

在图 1的典型实施例中，至少一个公共正极接线柱或端子，在此实施例中是一组公共正极接线柱或端子 310以及至少一个公共负极接线柱或端子，在此是一组公共负极接线柱或端子 320电学耦合至第一输出 110和 210以及第二组输出 120和 220。如下将详述通过切换设备 300选择性地耦合正极输出 110和 210。

附加的典型实施例可以提供单个正极公共端子和单个负极公共端子。在图 1的典型实施例中，端子 310、320与各自输出的耦合是在电池组外壳 10内部。能够使用任何合适的方式实现该耦合，例如母线耦合或汇流条或者通过配线连接或类似的电学耦合方式。可以附加的电池组并且该电池组的耦合可以完全或部分位于电池组外壳之外而不背离本发明的精神。

如图 1中所示的典型实施例的描述，公共负极和正极端子或接线柱 320和 310由电池组外壳的顶部和侧面突出以便位于该电池组外壳 10之外并且能够方便地耦合由电气系统(未示出)伸出的电气接头。该结构适用于普通车辆或设备电气系统的电气接头。可以提供不同的接线柱或接头的位置、数量或型号而不背离本发明的各发明点。此种变化的一个非限制性实例可以是在恶劣环境下为系统和车辆提供与公共端子的内部连接的典型实施例。

主正极输出 110和辅助正极输出 210耦合至切换设备 300，该设备接着基于各种工作条件和切换位置和它们选择性地在各种工作位置电气耦合的电池组 100和 200各自的正极输出 110和 210至公共正极端子 310。每个工作位置对应于将主电池组正极输出 110和辅助正极输出 210耦合至公共正极输出接线柱或端子 310的不同电路结构。
在图 1 到图 5 中示出的典型实施例中，切换设备 300 包括在外壳内。它选择性地将主电池组 100 和辅助电池组 200 电气耦合至车辆的电气系统。另外的实施例可以改变切换设备 300 的工作位置或定位和放置的数目。例如在另外的实施例中，切换设备 300 可以包括含有电路和辅助电池组 200 的附属或分开的外壳，这些将在随后参考图 6 和图 7 讨论。此外为了描述明了，以带有第一（350）、第二（360）和第三（370）切换位置的三位置切换设备 300 做为参考。可以改变示出的切换位置的相关数目和位置而不背离该设备的发明点。此外如下将结合图 8 讨论，通过能检测电池组系统状况的控制系统或电路可以自动执行切换设备 300 的切换。另外，随后将结合图 9 讨论，还可以添加用于本发明多电池组系统的周期性放电系统。

在结合三位置切换设备 300 显示的实施例中，所述切换设备 300 具有第一或正常工作模式或位置 350。在此位置上，车辆或设备关断主电池组 100 运行，而主电池组 100 在车辆运行时总是接收到来自车辆或设备电气系统的充电并对辅助电池组 200 充电，这些将在随后参考图 3A 和图 3B 讨论。所述切换设备 300 具有第二或辅助位置或工作模式 360，在此位置上辅助电池组 200 是使用作为车辆或设备的唯一电源。这些将在随后参考图 4A 和图 4B 讨论。如下将讨论，第二或辅助切换工作模式或位置 360 是在主电池组 100 无法启动或运行车辆、设备或机器时或者在循环辅助电池组 200 时，在需要启动或操作车辆的情况下用于紧急备份的。最后，第三或存储工作模式或位置 370 是用于在不使用时切换设备 300 断开主正极输出 110 和辅助正极输出 210 与公共正极端子 310 之间连接的。

图 2a 和图 2b 分别示出了本发明一个典型实施例的顶视图和截面图。在描述的典型实施例中，每个电池组包括分别位于主隔间 109 和辅助隔间 209 内的若干电池。主电池组隔间 109 和辅助电池组隔间 209 是一个位于另一个之上的，然而每个隔间的相对位置是可变的。第一组 6 个 2 伏的主电池 101-106 是串联耦合形成主电池组 100 的。第二组 6 个 2 伏的辅助电池 201-206 也是串联耦合形成备用、辅助或备份电池组 200 的。形成主电池组 100 的第一组 6 个主电池 101-106 端接主正极输出 110 和主负极输出 120。类似地，形成辅助电池组 200 的第二组 6 个辅助电池 201-206 端接辅助正极输出 210 和辅助负极输出 220。

为了保持主电池组 100 以及单个电池 101-106 的电解液水平，就需要为主电池组 100 或主电池组 100 的每个电池 101-106 提供至少一个细通道或管，如示出的管
111-116。类似地，为了保持辅助电池组 200 以及单个电池 201-206 的电解液水平，就需要在为主电池组 100 的主电池 101-106 之间点滴作为电解液注入管并作为排气孔的至少一个细通道或管，如描述的管 211-216。可以改变注入管或通道的数量和长度以适应特定的空间和生产限制，但是要保证排气和电解液水平的保持。此外本领域中已知，注入管或通道可以是有盖或无盖的。

图 3a 和图 3b 分别示出了在正常工作模式下的本发明一个典型实施例的顶视图和电路图。图 3A 示出了处于第一切换位置 350 的所述设备。在此第一、主或正常切换位置或模式 350 中，如图 3B 中处于开关位置 S1 的电路图所示，主电池组 100 是电气耦合至电气系统并且电池组 200 是通过单向充电电路 400 电气耦合至电气系统。电气系统（未示出）是与接着耦合至切换设备 300 的公共正极接线柱 310 相耦合的。当处于 S1 位置或正常工作模式 350 时，切换设备 300 是经由单向充电电路 400 将主正极输出 110 和辅助正极输出 210 连接至公共正极接线柱 310，即电气系统（未示出）。而主负极输出 120 和辅助负极输出 220 是与耦合到电气系统（未示出）的公共负极接线柱 320 相耦合以完成连接。

如图 3B 中电路图所示，由领先于辅助电池组 200 的单向充电电路 400 耦合了两个电池组。单向充电电路 400 是允许电流通过车辆的电气系统（未示出）以补充辅助电池组 200 的单向充电电路。在车辆的电气系统（未示出）提供运行所有辅助设备所需的电流的同时，它也通过单向充电电路 400 提供完全充电电压至各份或辅助或备用电池组 200 并且阻止对该配备或辅助电池组 200 的任何放电。实际上，单向充电电路 400 是在主或第一开关位置 350 时允许电流流入辅助电池组 200 的单向电路。

单向充电电路 400 提供用于充电辅助电池组 200 的全部电流。这就与揭示了与低电容二极管串联的可变系数电阻器等的现有系统有了显著的区别，因为这些现有系统只能为各自备用或储电电池组提供很小量的功率。不像进行点滴充电的缓慢充电电流的现有设计，本发明利用了允许全部电流同时流入主电池组和辅助电池组以实现快速恢复两个电池组的充电电路。并且这也不会限制该设备结合电流调节组件以改变电路中通过所述充电电路或送至任一电池组的充电量。

单向充电电路 400 的一个典型实施例是包括了至少一个单向充电二极管 410 的电路。在一个典型实施例中，单向充电二极管 410 可以是但不限于是至少一个硅
整流器。作为至少一个单向充电二极管 410 的至少一个硅整流器允许由车辆电气系统提供的全部电流到达辅助电池组 200 用于再充电，同时生成最小热负载并防止主电池组消耗辅助电池组 200。至少一个硅整流器可以是由应用电气系统的电流和伏特数所命令的任何电流和任何伏特数。例如，其额定电流在 25 至 95 之间的硅整流器可用于 12 伏汽车、轻卡和船舶系统。一个非限制性的实例是传统的 12 伏汽车使用例如带有 45 额定电流的硅整流器作为单向充电电路 400 一部分的单向充电二极管 410 的实施例。类似地，另外的实施例结构可以包括如下将参考图 8C 所述的至少一个可控硅整流器 (SCR)。

另外的充电电路结构包括但不限于至少一个高容量单向二极管 410。它能与至少一个高容量散热装置耦合作为单向充电电路 400。作为典型的可选充电电路结构，对至少一个高容量二极管 410 的结合是需要耦合至能处理由二极管产生的大量热能的合适的散热装置或类似的热耗散设备。使用高容量二极管要求很苛刻，因为如果二极管单独安装或太接近电池组的不挥发组分，则这大量的热量将是不安全的。因为与应用相关的多个参数都会显著影响热耗散的量和速率，所以高容量二极管和散热装置的大小和位置变化很大。与二极管环境相关联的各种设计参数包括但不限于与塑料和挥发性化学药品的接近程度、散热装置的大小、二极管的大小、电池组的位置、电池组的环境以及可用于确定高容量二极管和散热装置组合的大小和额定值以及该组合在电池组外壳内或外位置的其他参数。

图 4a 和图 4b 分别示出了在辅助工作模式下的本发明一个典型实施例的顶视图和电路图。操作者或控制者操作切换设备 300 至位于在图 4b 的电路图中由开关位置 S2 表示的第二或辅助位置或模式 360。这就电气耦合了公共正极端子 310，也就是车辆的电气系统与辅助电池 200 的正极输出 210。此连接隔离了辅助电池组 200 和主电池组 100，因为充电二极管 400 在此工作模式下阻止来自车辆电气系统（未示出）的电流流入主电池组 100。并且该电路与并联储备电池组和放电的主电池组的先锋设备有显著的不同。

先前的尝试都揭示了备用电池组与主电池组并联的应用。由此产生了两部分的问题。首先，如果主电池组中存在短路或干电池，则此类电路会短接各份电池组从而削弱其启动车辆的能力。此外甚至在电气系统和主电池组情况良好时，现有技术的备用电池组也要承受起动的负载和放电电池组的负载。这就通过提取所需的
电力而削弱了备用电池组。通过在辅助模式 360 中隔离辅助电池组 200 和主电池组 100，本发明允许完全充电的辅助电池组 200 独立用于启动车辆或设备。一旦启动，就可操作工作模式回到第一或主工作位置 350，并且车辆电气系统的全部电能都可用于充电主电池组 100 和辅助电池组 200。此外随后将详述，在正常工作模式下的不能继续工作将会是对出现短路或电气系统故障的指示器。

图 5a 和图 5b 分别示出了在存储工作模式下的本发明一个典型实施例的顶视图和电路图。操作者或控制者选择切换设备 300 位于在图 5b 的电路图中由开关位置 S3 表示的第三、关闭或存储位置 370。该位置为用于存储的两个电池组提供了断开连接。S3 的位置断开了主正极输出 110 和辅助正极输出 210 与公共正极端子 310，也就是与车辆或设备的电气系统的连接。这在例如存储车辆或设备或在存储电池组的情况下是有用的。

图 5c 到图 5i 分别示出了本发明又一个典型实施例的电路图。在这又一个典型实施例中，多电池组执行由车辆工作状态所确定的特定目的。在图 5c 所示的实施例中，至少一个附属电池组 100A 运行用于在起动之后为车辆或车辆附属装置提供电力。通过单向充电路 400A，起动器电池组 200A 与至少一个附属电池组 100A 隔离。在所示的实施例中，单向充电电路 400A，至少部分包括耦合至控制器 700 的可控硅整流器 (SCR) 410A。

通过车辆电气系统 (未示出) 将电力提供给多电池组系统。设置控制器 700A 并耦合至至少一个切换设备 300A、单向充电路 400A 和至少一个传感器 7000。电能是从车辆的电气系统 (未示出) 流过由控制器 700A 控制或由操作者选择性地连接多电池组系统的至少一个切换设备 300A。至少一个切换设备 300A 如所示可以包括多个切换设备或单个独立的切换设备。此外，在此做出的参考是具有三个切换位置 S1A、S2A 和 S3A 的单个切换设备，但是也可提供更多或更少的开关位置。

在图 5c 中，示出的典型实施例是处于附属工作位置。在这个由 S1A 标记的位置上，SCR 410A 允许通过单向充电路向起动器电池组 200A 充电，这就防止了在附属电池组 100A 或其他附属装置工作期间这一电池组的放电。控制器 700A 通过至少一个传感器 7000 就能确定起动器电池组 200A 内是否存在热击穿情况。热击穿是由于某些不合理的情况引发的内部热量生成而导致正充电或放电的电池
或电池组过载或自我毁坏的情况。这在持续充电电池或电池或者它们在短时间内接收到过量电荷的情况下通常发生。SCR 410A 允许控制器 700A 一旦检测到热击穿或其他不利情况就可通过关断 SCR 410A 并停止对起动器电池组 200A 的再充电来有效关闭充电电路 400A。

在图 5D 和图 5E 中分别示出了图 5C 实施例的关闭位置和起动位置。图 5D 示出了图 5C 实施例的关闭位置。当车辆停止时，多电池组系统可置于对应于关闭位置的开关位置 S3A，或可选地置于对应起动位置的开关位置 S2A。关闭位置或开关位置 S3A 是完全断开了两个电池组，从而阻止了附属装置的操作并阻止了车辆的起动。这就提供了增强的车辆安全性并且通过保存两个电池组内的电荷还增强了对电荷的附加保存。本系统可在预定时间内保存在附属位置 S1A 或者直到控制器 700A 检测到所有的附属装置都已关闭，并在随后切换至开关位置 S3A。尽管如此，也可省略开关位置 S3A 并可代替地将电池组置于起动位置或位置 S2A。

图 5F 示出了处于起动位置的图 5C 实施例。是由控制器 700A 或由操作者手动操作的起动序列的正极识别来选择起动位置或开关位置 S2A 的。起动序列的正极识别例如可以在插入一钥匙或检测到电子密钥或微芯片时出现。控制器 700A 与至少一个切换设备 300A 通信并且把设备切换至开关位置 S2A。在开关位置 S2A 中，如在此揭示的其他实施例中，至少一个切换设备 300A 以通过在单向充电电路 400A 另一边的某一点上，在此是 SCR 410A 另一边的某一点上连接至所示电气电路来隔离起动器电池组 200A 和附属电池组 100A 的方式来连接所述起动器电池组 200A。

一旦起动车辆，控制器就通过至少一个传感器 7000 检测正常工作条件并且将车辆切换回开关位置 S1A 使车辆与附属电池组 100A 运行。这就允许起动器电池组 200 为起动工作保存 100% 的电量，并且不像其他系统，附属电池组 100A 的状态在起动过程中无关紧要。在本发明中的附属电池组 100A 与先前的设计相反，是根本不与电池组 200A 并联的并且起动电池组 200A 也无需承担降低的附属电池组 100A 的负载。因此，可完全放电附属电池组 100A 并且该系统仍然能够用于起动车辆。

图 5F 至图 5I 示出了本发明的再一个实施例。而在示出的实施例中，多电池组执行由车辆操作状态所确定的特定目的，但类似于图 12A 到 12C，在该典型实施例中提供了一个增强的电荷平衡电池组管理系统 8000A。电荷平衡是监控每一电
池组的情况并且使用电池组管理系统内建立的参数管理该系统放电和再充电的灵活性控制系统。这样，电池组管理系统就能够选择性地控制多个电池组并且通过管理连接的哪个电池组和再充电的哪个电池组来保持各个不同的充电水平。电荷平衡电池组管理系统 8000A 包括例如微处理器的控制器 700A、切换设备 300A 以及至少一个再充电选择机构，在此描述作为再充电平衡继电器 2A。此外应该注意的，再充电选择机构例如可以是但不限于至少一个 MOSFET 器件或提供类似电气路径选择能力的类似固态器件。如结合图 5C 至 5E 的实施例，提供至少一个附属电池组 100A 和起动电池组 200A 用于选择性地耦合车辆电气系统（未示出）。通过添加的电荷平衡继电器 2A，所述多电池组系统就能够选择性地控制对任一电池组的充电，从而阻止了任一电池组的热击穿或过度充电情况。

图 5F 示出了处于第一工作配组的实施例。至少一个传感器 700，在本典型实施例中示出作为两个 VT 传感器 7001 和 7003 以及起动器传感器 7005，为电荷平衡电池组管理系统 8000A 提供关于主电池组和辅助电池组 100A、200A 和/或电气系统状况的输入。取决于检测到的状况，电荷平衡电池组管理系统 8000A 通过控制器 700A 切换至少一个装置 300A 和再充电平衡继电器 2A。电荷平衡电池组管理系统 8000A 是耦合至带有两个开关位置的至少一个切换设备 300A 的。在此实施例中，至少一个切换设备 300A 具有但不限于具有切换位置 S1A、S2A 和 S3A。

来自电荷平衡电池组管理系统 8000A 另外耦合的是单向充电电路 400A。紧接着单向充电电路 400A 的是电荷平衡继电器 2A。电荷平衡继电器 2A 在第一继电器位置 R1A 和第二继电器位置 R2A 之间移动。至少一个切换设备 300A 和至少一个再充电平衡继电器 2A 如图 5F 至 5I 所示通过作为电池组管理系统 8000A 的一部分的控制器 700A 选择性地耦合至主电池组 100A 和辅助电池组 200A。

在图 5F 中，至少一个切换设备 300A 是处于位置 S1A 来使用来自附属电池组 100A 的电能以操作车辆。同时至少一个电荷平衡继电器 2A 处于继电器位置 R1A 以通过单向充电电路 400A 为起动器电池组 200A 提供电荷。这是在已起动车辆时的系统工作模式。

图 5G 示出了图 5F 实施例的第二工作配组。在此位置上，至少一个切换装置 300A 是处于位置 S1A 使用来自附属电池组 100A 的电能以操作车辆。同时至少一个电荷平衡继电器 2A 处于继电器位置 R2A 以将电能从单向充电电路 400A 分流至
附属电池组 100A。这就阻止了电荷到达起动器电池组 200A。如果检测到起动器电池组 200A 内的过充电情况或热击穿情况就可选择这一工作模式。电荷平衡电池组管理系统 8000A 可以通过至少一个传感器 7000 接收信息。控制器 700A 能够分析这些数据并且由切换装置工作模式。此外，可疑车辆的驾驶员可以使用可视警告以告知他们过充电情况和配置中的变化。

图 5H 示出了用于图 5F 实施例的第三工作配置。在图 5H 中，控制器 700 将至少一个切换设备 300A 置于位置 S2A 以连接起动器电池组 200A 起动车辆。控制器 700A 还将至少一个再充电平衡继电器 2A 置于继电器位置 R2A 以耦合至少一个单向充电电路 400A 和附属电池组 100A，这就提供了流入附属电池组 100A 的单向电流。类似地，系统是依靠起动器电池组 200A 运行的。当电荷平衡电池组管理系统 8000A 检测一起动情况时这一工作配置就出现了。一旦检测了成功的起动，电荷平衡电池组管理系统 8000A 就切换回图 5F 中所示的工作配置，这就连接了附属电池组 100A 并且继续允许其再充电。

图 5I 示出了用于图 5F 实施例的第四工作配置。在这又一个工作配置中，至少一个切换设备 300A 又设于开关位置 S2A。至少一个再充电平衡继电器 2A 是位于继电器位置 R1A 以直接耦合至少一个单向充电电路 400A 至起动器电池组 200A，有效地隔离了附属电池组 100A。在此配置中，车辆依靠起动器电池组 200A 运行而不充电附属电池组 100A。该配置是一紧急备用配置，是在附属电池组 100A 损坏并无法保持电荷的情况下使用的。在此情况下，起动器电池组 200A 被连接并且用于在工作配置下运行车辆直到能够找到用于附属电池组 100A 的服务。此配置可包括对驾驶员的警告，例如类似于此将参考图 11A 和 11B 描述的警告的声音或视觉警告 7050。此外，电荷平衡电池组管理系统 8000A 可以限制此配置中在车辆中运行的附属装置的种类和数量。

图 6 和图 7 示出了作为用于现有主电池组的辅助电池组附属装置的本发明典型实施例的立体图。在图 6 中描述的又一个典型实施例中，提供了切换设备 300 和辅助电池组 200 以作为“背包”式电池组附属系统。

传统的主电池组 1000 不与辅助电池组 200 共享公共外壳，而是代替地通过正极耦合 330 和负极耦合 340 以及公共电路外壳 509 来耦合这两者。电路外壳 509 由传统的主电池组 1000 及其现有的正极输出 1100 和负极输出 1200 悬挂。这就允
许本发明应用于现有的传统电池组。

图 6 中示出的附带设备的典型实施例是通过断开来自车辆或机器的电导线（未示出）并且将这些导线应用于位于描述实施例中公共电路外壳 509 外壳的所述典型实施例的公共负极端子 320 和公共正极端子 310 的耦合至现有的主电池组 1000。在图 6 和图 7 中描述的典型实施例具有如以上典型实施例所述的相同的切换设备 300，但是在电路外壳 509 内仅由 6 个电池组成了辅助电池组 200。辅助正极输出 210 和辅助负极输出 220 也包括在电路外壳内，并且与上述典型实施例中类似的方式电气耦合至公共正极端子 310 和公共负极端子 320。提供电路外壳 509、单向充电电路 400 和切换设备 300 来执行先前所述本发明典型实施例及其变体的所有相同功能。

示出的典型实施例参考如图 3b、4b 和 5b 所述可以包括类似的单向充电电路 400，该电路可包括至少一个单向充电二极管 400 以及带有位置 S1、S2 和 S3 的类似的切换电路配置。在附属系统的典型实施例中可以为各种应用利用类似的额定电流和电压。这就为本发明的附属系统实施例提供了类似的功能。这些位置可以包括车辆或设备从主电池组 1000 中获取动力的第一、主或正常工作模式或位置 350，其中所述主电池组 1000 总是接收来自车辆或设备电气系统的充电并且为辅助电池组 200 充电；第二或辅助位置 360，其中辅助电池组 200 被连接作为车辆或设备的唯一电源；以及第三或存储位置 370。第二或辅助开关位置 360 可用于在主电池组 1000 无法起动或操作车辆、设备或机器时却需要起动或操作车辆的情况下的紧急备份。这一附属设备提供了本发明的更新版本，无需请求现有车辆或机器电气系统的修改或替换，并同时提供了多电池组系统的典型实施例的等同性能。

附属系统典型实施例的形状和配置可以变化以适应各种应用的特定空间限制。例如图 7 的又一个实施例是水平取向的，所以适于放置在主电池组 1000 的顶部而并非悬于其侧面。图 7 中示出的附带设备的典型实施例的元件类似于图 6 中示出的本发明的典型实施例。传统的主电池组 1000 并未与辅助电池组 200 共享公共外壳，而两者是通过公共电路外壳 509 以及耦合 330 和 340 耦合的。主要的不同是辅助电池组 200 以及耦合 330 和 340 是位于主电池组 1000 顶部的。此外如上所述，公共正极和负极端子 310 和 320、辅助输出 210 和 220 的位置以及就现有的传统电池组来说，主电池组输出 1100 和 1200、切换设备 300 的类型和辅助电池组 200 的
额定电压都可改变而不背离本发明的精神。

图 8A 示出了结合有自动化控制器的本发明一个典型实施例的电路图。除了切换设备 300 和先前揭示的电路，还设置了附加控制系统应用了本发明的自动控制。提供的控制器 700 例如可以是但不限于微处理器。控制器 700 借合至电池组系统内至少一个传感器以通过这些连接检测至少一个电池组的情况。

控制器 700 通过至少一个传感器监控并探测电池组各方面的运行情况。至少一个传感器可包括但不限于任何至少一个主电池组、至少一个辅助电池组和至少一个开关传感器或者任何适合的附加传感器。控制器 700 能够使用至少一个主、辅助或开关传感器以连续地或选择性地监控诸如（但不限于）如下的参数：辅助电池组的电压、主电池组的电压、辅助电池组的电流、主电池组的电流、温度、振动、电流、开关状态、开关位置以及系统内各种标志和各种定时器的情况或者类似的参数。

在图 8A 的典型实施例中，示出了至少一个主电池组传感器作为两个主电池组传感器。它们通过主电池组传感器 710 测量主电池组 100 的电压并且通过主电池组传感器 720 测量主电池组 100 的电流。同样在示出的典型实施例中，提供了至少一个辅助传感器。示出的至少一个辅助传感器是辅助传感器 730 和 740。通过辅助电池组 200 的辅助传感器 730 测量电压并通过辅助传感器 740 测量电流。此外在图 8 的典型实施例中，可以提供至少一个开关位置传感器 750 以检测切换设备 300 的位置和情况。

在每一情况下，传感器 710 至 750 与控制器 700 通信以提供各种参数输入。一旦检测到匹配预先编程条件的参数输入，则通过标志、触发器、定时器或其它公共控制元件的设置，控制器 700 发送信号给切换设备 300 以改变切换设备 300 的状态。控制器 700 随后验证状态改变的结果。切换传感器 750 连接至控制器 700 以中继切换设备上的相关数据。

图 8B 示出了结合有自动化控制器和指示元件的本发明一个典型实施例的电路图。在本发明这又一个实施例中，对指示元件 775 的利用结合了为本发明的切换提供完全自动功能的自动控制器 700。在此实施例中，所述至少一个传感器包括用于分别检测两个电池组情况的主电池组传感器 710 和辅助电池组 740。在所述典型实施例中，自动控制器 700 通过主电池组传感器 710 来查询主电池组 100 以确定它的状态。也可对辅助电池组或同时对任一电池组进行查询。如果自动控制器 700
确定存在异常放电状态，就激活指示元件 775 以指示该异常状态。控制器 700 自动切
换切换设备元件 300，使其从主电池组 100 耦合至电气系统并且辅助电池组 200
通过单向充电二极管 400 耦合至电气系统的第一工作位置 S1 切换至主电池组 100
未耦合至电气系统而辅助电池组 200 以旁路单向充电二极管 400 的方式耦合至电
气系统的第二工作位置 S2。

在示出的典型实施例中，控制器 700 随后就通过例如图 8B 中的辅助电池组传感
器 740 的至少一个传感器来监控辅助电池组 200 的情况。一旦辅助电池组传感器
740 检测到再充电的主电池组 100 已经带有足够的电量，其中这些电量可来自例如
交流发电机或电气系统内的其它设备，则自动控制器 700 切换该系统回到其第
一工作模式 S1 并且同时对两个电池组充电。作为至少一个传感器的部分，附加的
传感器或者在电气系统其它部分内的传感器能够监控并控制控制器报告。这些帮助
确认了正常操作的恢复。

在示出的典型实施例中，如果检测到电气系统的故障/未充电状态，则辅助电
池组传感器 740 就把该信息发送到自动控制器 700 并在随后控制器 700 就提供一个
指示器警告给操作者，例如可以通过至少一个指示元件 775。所述指示元件 775 可
以是基于视觉、基于听觉或是包括这两者的。它可以包括但不限于汽笛、喇叭、灯、
多盏灯、LCD 面板、模拟人类语音、人类语音、发光二极管、多个发光二极管或
其它合适的指示器。能够激活至少一个指示元件 775 以提供警报和/或提供对任何
或所有电池组状态、电气系统故障或对电气系统和/或本发明的任何其它情况或状
态的通知。下文将结合所述方法进行解释，在故障情况下存在的情况下，该警报允
许为寻求帮助采取恰当的行动。

图 8C 示出了本发明又一个典型实施例的电路图。在图 8C 的实施例中，充电
电路包括至少一个可控硅整流器（SCR）4000 用于为辅助电池组 200 提供额外的
安全保障和使用期限。除了使用 SCR 4000 之外，该实施例的配置类似于图 8B 的。
SCR 4000 与控制器 700 通信。至少一个传感器包括辅助传感器 740。如果辅助电
池组充电过度，则基于辅助传感器 740 的输入，可通过控制器 700 有效切断到辅助
电池组 2000 的电路路径，能够关闭作为充电电路一部分的 SCR 4000。这就以可控
的方式解除了辅助电池组 200 与系统的耦合。而在此揭示的典型实施例中，通过防
止对辅助电池组 200 的过度充电也就提供了额外的安全因素。在过度充电存在的情
情况下允许关闭也能延长辅助电池组 200 的使用寿命。

图 9 示出了结合有辅助电池组放电循环系统的本发明再一个典型实施例的电路图。提供的本发明再一个实施例包括了辅助电池组放电循环系统 800。该放电循环系统如图 9 的典型电路图所示，可被包括作为自动辅助电池组放电循环系统。在各典型实施例的其它非限制性实例中，该放电循环系统可以结合作为图 8 中示出的控制器 700 的一部分或者作为分开的手动放电单元，或者通过对操作者的简单指令而使车辆在较短的时间周期内周期性地运行于辅助设置的第二或辅助工作设置。

辅助电池组放电循环系统 800 可以通过周期性地连接辅助电池组 200 用于起动和/或操作车辆或设备来运行以确保辅助电池组 200 的使用寿命。这一系统可以包括耦合至切换设备 300 的定时器 820，该定时器 820 周期性地激活切换设备 300，如以上参考图 4a 和图 4b 所述接着把系统切换至辅助工作模式 360 并持续一个较短的时间周期。能够运行该系统以周期性地提供在辅助-工作模式 350 下使辅助电池组 200 轻微放电。通过提供轻微放电，辅助电池组 200 会低于其峰值电压并在随后需要如上所述由处于第一或正常工作模式下的电池组系统对其进行再充电。通过维持电极的状况并保持电解溶液活性就能够延长辅助电池组的使用寿命。本实施例利用的辅助电池组放电循环系统 800 的工作形成都只能在较短的时间周期内运行，从而避免了意外地使辅助电池组 200 流失大量电能。

本发明还可作为放电状态指示器。如果操作者打算利用辅助电池组 200 来起动车辆或机器，则切换至电路图中的辅助电路位置 360 或 S2。一旦车辆起动，用户就把切换设备 300 调回正常或主工作位置 350，接通正常工作位置的电路，从而使两个电池组充电。如果在将切换设备 300 调回至正常工作位置 350 而引擎停止运行时，这就指示了电气系统中的一个普通的操作故障，例如坏的交流发电机或发电机。由此操作者就可把切换设备 300 调回辅助位置 360 并且接上辅助电池组 200，就可依据应用允许由辅助电池组 200 在一定的工作时间内提供起动和运行车辆或设备的所需能量以获取服务。这样，本系统就为旅行者改善了安全保障，例如为车辆驶离功率公路和家里或到达服务站给了充足的时间。

图 10A 示出了结合有无线电接口和位线控制输入的本发明又一个典型实施例的组件图。除了切换设备 300 和在前述任何实施例中都揭示的电路之外，该实施例中还提供了附加的无线电控制系统 1500。无线电控制系统 1500 包括但不限于如下所述的
一个或多个装置：至少一个微处理器、信号发射机、信号接收机、安全协议/加密元件、指示元件或其它典型的控制元件。无线控制系统 1500 软合至带有微处理器可控并有至少两个工作位置的切换设备 7000 的电气控制电路并且包括至少一个传感器来检测至少一个电池组的情况。

在图 10A 的典型实施例中，无线控制系统 1500 通过至少一个传感器监控并检测电池组的各种工作情况。至少一个传感器包括但不限于至少一个主电池组、至少一个辅助电池组和至少一个开关传感器和/或任何附加传感器中的任何一个。至少一个传感器还能够包括先前揭示的任何传感器以及耦合至电气系统（未示出）用来检测电气系统情况的其它传感器。无线控制系统 1500 通过至少一个传感器监控本发明和电池组系统的情况。无线控制系统 1500 例如能够持续的监控但不限于至少一个传感器的如下的任何参数：辅助电池组电压、主电池组电压、辅助电池组电流、主电池组电流、温度、振动、电流、开关状态、开关位置以及系统内各种标识和各种定时器的情况。

在图 10A 的典型实施例中，至少一个传感器示出作为为各自的电池组提供监控的主电池组传感器 710 和辅助电池组传感器 740。这些传感器例如可以是但不限于 VI 传感器。微处理器可控开关 7000 以及主和辅助电池组传感器 710 和 740 通过输入/输出 (I/O) 总线 7100 耦合至无线控制器 1500。如下将详述，自动微处理器可控开关 7000 响应于无线输入设备 1550 的输入由无线控制器系统 1500 驱动。

在示出的典型实施例中，一旦无线控制器系统 1500 检测到低于要求的主电池组参数，就无线地或经由传统电气耦合将一信号发送给至少一个指示元件 775，例如一个发光二极管 (LED)。至少一个指示元件 775 可以经由诸如通过导线的陆上耦合而耦合至车辆仪表盘内的 LED。另外如图 10A 所示，指示元件 775 可以无线耦合至控制系统 1500，例如通过提供如图 10A 典型实施例中所示的无线输入设备 1550 中的收发机，其中指示元件 775 是安装在密钥卡 (key fob) 外壳上的 LED。在图 10A 的实施例中，使用带有收发机的无线输入设备 1510，信号从无线控制系统 1500 发送至无线输入设备 1510，安装在无线输入设备 1550 内的输入设备收发机（这里是密钥卡）就打开指示元件 775 (LED 灯)。虽然特别提到 LED 灯，但是也可以使用任何前述的指示元件或其它合适的指示设备。这样就提供一个警报并在随后采取恰当的行动来节省电力直到辅助电池组 200 被需要。
能够立即或在请求电能时接上辅助电池组 200。在图 10A 的典型实施例中，这可以通过无线输入设备 1510 内被激活的收发机来完成，在此情况下所带有的密钥卡也具有一个按下单就发送信号给所述无线电控制系统 1500 的按钮。无线电控制器 1500 发信号给微处理器可控切换设备 7000 以从正常工作模式 S1 切换至隔离主电池组 100 并接上辅助电池组 200 的辅助工作模式 S2。

在用于辅助电池组 200 的请求通过后，无线控制器 1500 继续通过至少一个传感器中的一个监控该系统，在此实例中是辅助电池组传感器 740。它监控辅助电池组 200 的情况以检测其是否被再充电。如果检测到了再充电情况，无线电控制器系统 1500 就命令微处理器可控切换设备 7000 切换回正常工作模式 S1 并发送一信号给指示元件 775 以将其关闭。如果检测到异常再充电情况或未在再充电，则无线控制器 1500 就激活至少一个指示元件 775 以提供指示电路故障情况的第二警报。随后就切换至辅助模式并且允许为系统获取必需的服务。

图 10B 显示了结合有网络接口控制器和网络的本发明再一个典型实施例的组件图。参考该典型实施例和其它典型实施例，“控制器”或“网络可接口控制器”指的是能够接收被构造输入、根据规则处理被构造输入并且生成处理结果作为输出的任何装置。该输出可以影响或不改变其他设备的工作。控制器的实例包括：微处理器、可编程逻辑芯片、数字信号处理器、微控制器、计算机、通用计算机、超级计算机、大型机、小型机、工作站、微型计算机、服务器、交互式电视以及计算机和交互式电视的任何混合组合。计算机也指经由在计算机之间发送或接收信息的网络连接在一起的两个或多台计算机。该网络可接口控制器的实例包括用于经由网络连接的计算机处理信息的分布式控制系统。

“网络”指的是由通信系统和通信设施连接以允许通信的多个控制器、计算机、可编程逻辑设备和/或网络控制器以及相关设备。网络可以包括诸如电缆或其它陆上组件的永久连接或者临时连接，诸如通过电话、卫星、蜂窝电话、射频收发机或其它无线通信链路所做出的那些连接。网络实例包括：蜂窝通信网络、射频网络、无线数据网络、诸如因特网、内联网、局域网（LAN）、广域网（WAN）、控制器域网（CAN）、本地内联网（LIN）之类的互联网以及诸如互联网和内连网的网络组合。这包括了专用数据监控网络，诸如 ONSTAR™ 以及类似的服务。
图 10B 示出了使用网络接口的本发明再一个典型实施例的组件图。网络可接口控制器 3510 查询其传感器的情况。网络可接口控制器 3510 是经由 I/O 端口 7100
耦合至电池组系统的。I/O 端口 7100 是稳固的，具有足够的承载能量以提供来自
和送至所有传感器的全部数据流。网络可接口控制器 3510 能够经由例如卫星网络
或陆上蜂窝网络的网络 5000 向网络操作中心（NOC）5010 有规律地或选择性地报告
c情况。NOC 5010 监控网络接口 3510 所检测参数的情况。包括所述电池组系统
的情况。如果由任何恰当的参数度量的并由至少一个传感器检测的主电池组 100
的情况低于设置的参数时，就会触发指示器警报/或将其经由网络 5000 发送至 NOC
5010。

可以采取恰当的动作来保存电能并且通知操作者所采取的步骤。例如所有
非关键的辅助电气设备都可由 NOC 5010 关闭。在来自操作者的响应之后或者
根据其自身的取舍，NOC 5010 能够通过开关位置 S2 将电池组切换至辅助电池
组 200 以便于电气系统的电能请求。操作者或 NOC 5010 然后就能够确认一个
令人满意的电池组系统情况。此外，如果在诸如太阳能发电系统的切换电池组
网络中使用，验证可用于设置系统的充电状态或确定该应用所需的恰当服务。

在示出的典型实施例中，当通过至少一个传感器检测来自诸如交流发电机
的再充电设备（未示出）送至切换控制器 5010 的输出时，NOC 5010 或网络可
接口控制器 3510 允许辅助电池组 200 继续放电。基于来自再充电设备的被检
测的输出，随后 NOC 5010 就能够把电池组切换至正常工作位置 S1 并且允许正
常工作 S1 或者在交流发电机输出异常情况下，NOC 5010 能够警告操作者电气
系统内的电能故障情况并且返回到辅助工作位置 S2。

图 11A 示出了本发明中所述控制器的一个典型实施例的操作步骤的流程图。
在步骤 2000，控制器、无线控制器或者网络接口控制器查询至少一个传感器以确
定主电池组的情况。在步骤 2100，经由处理逻辑做出是否在主电池组上报告异常
操作参数的决定。如果没有出现异常操作参数，随后步骤就跟随决策环的否定分支
返回到步骤 2000。该重复可以包括连续的查询步骤 2000 或附加传感器的附加检测
步骤之间的延迟。在图 11A 描述的带有网络接口控制器的本发明典型实施例的操
作中，网络接口控制器可以立即报告或周期性地报告作为经由网络至 NOC 的查询
步骤 2000 的结果的正常工作状态。然而要是识别了异常操作参数，则该进程就沿
着决策环的肯定分支移动至步骤 2200。在步骤 2200 处，控制器发信号给操作者或者发送给 NOC 以告知已经检测到例如电池组电压低的异常电池组情况。

在步骤 2300，控制器接收一返回的确认信号并且该控制器、NOC 或者操作者起动能量保存步骤。例如，若将本发明应用于带有前灯或类似照明装置的车辆，则该照明装置可由操作者或由网络遥控关闭。本发明能够立即或者在操作者到达系统站点时将这些保存步骤报告给操作者。

在步骤 2400 中，控制器、网络接口控制器或无线控制器激活诸如微处理器可按开关的切换设备用以将系统从由电气系统连接的主电池组的第一工作模式切换至由电气系统连接的辅助电池组并隔离主电池组的辅助工作模式。

随后在步骤 2500 中系统确认正常操作。而在步骤 2600 中，控制器随后就监控系统的电力生成。在步骤 2700 中控制器分析生成的输出并做出决定。如果生成参数正常，则在步骤 2800 中控制器可将切换设备切换回主工作模式并连接主电池组。如果检测到异常的生成参数，则在步骤 2900 中就发送警报给操作者和/或 NOC 5010 以指示电气故障的情况。

图 11B 显示了用于本发明中控制器的并包括了用于循环辅助电池组的自动循环方法的操作步骤流程图。在所示的操作方法中，自动控制器提供循环例行操作以保持辅助电池组处于较好的情况。步骤 2000 至 2900 与先前结合图 11A 讨论的那些步骤相同，除了如果正常操作参数导致查询步骤 2000，随后就做出附加的决策步骤 6000 用于循环方法步骤的触发事件。该触发事件可以基于电气系统的操作参数或者基于英里数或基于服务时间。

如果没有出现触发事件，随后就跟随否定分支并且控制器回路就返回到步骤 2000。如果找到触发事件，则在步骤 6100，控制器就如前所述把切换设备切换至辅助工作模式 S2 并且切换至辅助电池组。在步骤 6200，控制器随后就监控辅助电池组的充满充电和操作。该系统随后行进至步骤 6400，在辅助电池组上运行电气系统。在方法步骤 6500，该系统检查辅助电池组的放电水平。在检查放电之后，控制器在步骤 6500 中就检查辅助电池组的再充电。通过控制器设定预定时间或电能量就可设定再充电的量。在步骤 6500 再充电电池组之后，该系统就在步骤 6600 切换回正常操作位置。控制器随后就返回查询步骤 2000 并且再次开始本方法。

图 12A 显示了本发明的又一个实施例。图 12A 的实施例示示出了增强电池组管
理系统的第一工作位置。电荷平衡电池组管理系统 8000 通过允许多电池组系统选择性地连接或再充电任一电池组来提供额外的灵活性，从而管理系统的电荷平衡。这样，电荷平衡电池组管理系统就具有了超越先前设计的显著优点。

电荷平衡电池组管理系统 8000 结合了上述参考图 9 讨论的辅助电池组放电系统的相同特性中的某些特性，但是扩展了管理电池组情况的方式和灵活性。电池组管理系统 8000 类似于辅助电池组放电系统，能够选择性地控制任一电池组的放电，此外电荷平衡电池组管理系统 8000 还能够控制每一电池组的充电，以通过多电池组系统维持电荷平衡。因此电荷平衡电池组管理系统 8000 能够在检测时防止放电和热击穿情况或类似的不利操作情况，但是电荷平衡电池组管理系统 8000 是在检测到多电池组系统的着电池组的任一组的情况下允许这样做的。

在此示出为两个 VI 传感器的 7001 和 7003 的至少一个传感器 7000 耦合至电荷平衡电池组管理系统 8000 以提供关于电池组、车辆和/或电气系统状况的信息。电荷平衡电池组管理系统 8000 耦合至至少一个带有至少两个开关组件的切换设备 300。在此实例中，至少一个切换设备 300 具有但不限于具有切换位置 S1、S2 和 S3。另外耦合至电荷平衡电池组管理系统 8000 的是单向充电电路 400。虽然至少一个再充电选择机构在此被描述再充电平衡继电器 2，但是应该注意到再充电选择机构例如也可以是但不限于至少一个 MOSFET 器件或提供类似电网路径选择能力的类似的固态器件。至少一个电荷平衡继电器 2 可在至少两个继电位置之间移动，在此描述的典型实施例中是但不限于第一继电位置 R1 和第二继电位置 R2。如图 12A 到 12D 所示，至少一个切换设备 300 和至少一个再充电平衡继电器 2 可由作为电池组管理系统 8000 一部分的控制器 700 选择性地耦合至主电池组 100 和辅助电池组 200。

在图 12A 示出的配置中，这里典型实施例中示出作为 VI 传感器 7001 和 7003 的至少一个传感器 7000 提供送入电荷平衡电池组管理系统 8000 的关于主电池组和辅助电池组 100 和 200 情况的输入。虽然描述了单个辅助电池组，也可提供多个辅助电池组而不背离本发明的精神。类似地，虽然示出的至少一个切换设备 300 是单个切换设备而示出的至少一个再充电平衡继电器 2 是单个再充电平衡继电器，但是也可提供多个切换设备和继电器而不背离本发明的精神。此外，虽然做出了切换位
置 S1 和 S2 以及继电位置 R1 和 R2 的参考，但提供的这些仅作为非限制性的实例。

依据检测情况，电荷平衡电池组管理系统 8000 通过控制器 700 切换至少一个切换设备 300 和至少一个再充电平衡继电器 2。在图 12A 中描述的操作配置中，切换设备 300 位于主电池组 100 运行电气系统的位置 S1。同时至少一个再充电平衡继电器 2 是在提供了通过单向充电电路 400 向辅助电池组 200 充电的继电位置 R1。在此配置中，主电池组 100 操作电气系统而辅助电池组 200 被充电。

图 12B 示出了图 12A 中典型实施例的第二操作配置。在此配置中，至少一个切换设备 300 是仍位于主电池组 100 运行电气系统的切换位置 S1。然而至少一个再充电平衡继电器 2 是位于关闭单向充电电路 400 和主电池组 100 之间的电路的继电位置 R2。通过关闭至少一个再充电平衡继电器 2 至继电位置 R2 就可阻止流入辅助电池组 200 的电流。在检测到过充或热击穿或类似不利情况时会发生此种情况。这有效地阻止了电荷进入辅助电池组 200 从而防止了电池组的毁坏。本系统还能以类似于上述参考图 9 讨论的辅助电池组放电系统的方式，切换操作配置以放电辅助电池组 200。

图 12C 示出了图 12A 中揭示实施例的又一个操作配置。在图 12C 中，电荷平衡电池组管理系统 8000 通过控制器 700 设置至少一个切换设备 300 位于连接辅助电池组 200 来操作电气系统的位置 S2。控制器 700 还将至少一个再充电平衡继电器 2 设置在继电位置 R2，以耦合至少一个充电电路 40 至与主电池组 100 并为主电池组 100 提单向充电。同时示出了电气系统正由辅助电池组 200 操作并对其充电。

图 12D 示出了图 12A 中典型实施例的另一个操作配置。在此配置中，至少一个切换设备 300 是仍位于开关位置 S2。至少一个再充电平衡继电器 2 是位于耦合至少一个充电电路 400 至辅助电池组 200 的继电位置 R1。这也将主电池组 100 隔离出多电池组系统。在此配置中，电气系统是由辅助电池组 200 提供电力的，并且没有充电主电池组 100。如果电荷平衡电池组管理系统 8000 检测到主电池组 100 内的热击穿或类似的不利情况或者如果主电池组 100 受损无法保持电荷，则多电池组系统就会进入该配置。此操作模式可由类似于参考图 11 描述的音频或视觉警告来完成。

在此讨论的实施例和实例是非限制性的实例。本发明的讨论是参考了这些典型实施例的，并且从上述对本领域普通技术人员显而易见的是可以做出改变和修改。
而不背离本发明的更宽方面，因此由所附权利要求限定的本发明旨在覆盖所有这些改变和修改，它们都位于本发明的真正精神范围之内。
图 1

1. 来自辅肋
2. 关
3. 来自电池组

主电池组

辅助电池组
图 2A
图 3B

图 3A
图 5D
图 5E
图 5F
图 5I
图 8A
图 8B
图 9
网络接口收发机/控制器查询
包括了主电池组情况传感器的传感器

否

主电池组上存在异常操作参数？

是

与操作者通信和/或发信号给NOC
以通知电池组电压低

接收操作者输入/NOC信号，起动能量保存步骤

一旦要求，就从主电池组切换至辅助电池组

确认操作

监控电力生成

生成信号正常？

是

切换回正常工作模式

否

警告操作者和/或NOC电气故障的情况

图 11A
图 12B
图 12C