a2 United States Patent

US010656951B2

ao) Patent No.: US 10,656,951 B2

Chen et al. 45) Date of Patent: May 19, 2020
(54) PIPELINE INCLUDING SEPARATE (52) US. CL
HARDWARE DATA PATHS FOR DIFFERENT CPC ... GO6F 9/3851 (2013.01); GOGF 9/3013
INSTRUCTION TYPES (2013.01); GOGF 9/30014 (2013.01);
(71) Applicants: Advanced Micro Devices, Inc., (Continued)
Sunnyvale, CA ([JS)’ Advanced Micro (58) Field of Classification Search
Devices (Shanghai) Co., Ltd., CPC GO6F 9/3851

Shanghai (CN)

(72) Inventors: Jiasheng Chen, Orlando, FL (US);
YunXiao Zou, Shanghai (CN); Bin He,
Orlando, FL (US); Angel E. Socarras,
Orlando, FL (US); QingCheng Wang,
Shanghai (CN); Wei Yuan, Shanghai
(CN); Michael Mantor, Orlando, FL.
(US)

(73) Assignees: ADVANCED MICRO DEVICES,
INC., Santa Clara, CA (US);
ADVANCED MICRO DEVICES
(SHANGHAI) CO., LTD., Shanghai
(CN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 124 days.

(21) Appl. No.: 15/789,318
(22) TFiled: Oct. 20, 2017

(65) Prior Publication Data
US 2018/0113714 Al Apr. 26, 2018

(30) Foreign Application Priority Data
Oct. 21, 2016 (CN) .cocovveeriirrercenee 2016 1 0920423
(51) Imt.CL

GO6F 9/30
GO6F 9/38

(2018.01)
(2018.01)

(Continued)

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,450,607 A * 9/1995 Kowalczyk GOGF 9/3885
708/524
5,471,626 A * 11/1995 Carnevale GOG6F 9/3867
712/219

(Continued)

OTHER PUBLICATIONS

Honarmand, Nima, “Processor Pipeline”, CSE 502—Computer
Architecture Lecture, Spring 2015, Stony Brook University, 52

pages.
Primary Examiner — William B Partridge

(57) ABSTRACT

A processing element is implemented in a stage of a pipeline
and configured to execute an instruction. A first array of
multiplexers is to provide information associated with the
instruction to the processing element in response to the
instruction being in a first set of instructions. A second array
of multiplexers is to provide information associated with the
instruction to the first processing element in response to the
instruction being in a second set of instructions. A control
unit is to gate at least one of power or a clock signal provided
to the first array of multiplexers in response to the instruction
being in the second set.

20 Claims, 5 Drawing Sheets

US 10,656,951 B2

Page 2
(51) Imt. ClL
GO6F 15/80 (2006.01)
GO6F 15/76 (2006.01)
(52) US. CL
CPC GO6F 9/3814 (2013.01); GOGF 9/3836
(2013.01); GO6F 9/3869 (2013.01); GO6F
9/3885 (2013.01); GO6F 15/80 (2013.01);
GO6F 2015/768 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

6,715,023 B1* 3/2004 Abu-Lebdeh GO6F 13/4252

710/310
7,075,542 B1* 7/2006 Leather GO6T 15/005
345/505
8,497,865 B2* 7/2013 Bakalash GO6T 15/005
345/501
8,730,249 B2 5/2014 Danskin et al.
8,743,117 B2 6/2014 Redshaw
9,019,284 B2 4/2015 Meixner
9,202,308 B2 12/2015 Keramidas et al.
2004/0255105 Al* 12/2004 Chung GOG6F 9/3851
713/1
2009/0265528 Al* 10/2009 Ducccoovviiiiiininnne GO6F 8/47
712/220

* cited by examiner

U.S. Patent May 19, 2020 Sheet 1 of 5 US 10,656,951 B2

100

y
CONTROL

FIG. 1

U.S. Patent May 19, 2020 Sheet 2 of 5 US 10,656,951 B2

Y

CONTROL
250

U.S. Patent May 19, 2020 Sheet 3 of 5 US 10,656,951 B2

300
! <
L 4
L 4
My (302
= =
KZKY SERNEITY
301E|> _/ H; ! ib/ IJ |§3°5
P 315 316 330 331 '
& s 38 | ? -
{25 fomm R 5 @ 336
320 N 321 \E 319 | é 338 339
S 5 &1 =
- > E
- 345 '
302§ 350 @ 356 306
g - g

L5 . }-
303 - 307
i wm | .

: 363 —~ } 368 ~ 369 ~ 5
i@ i I o

P N 376N

U.S. Patent May 19, 2020 Sheet 4 of 5 US 10,656,951 B2

400
/
(aa1)y Cai2)
=1 =
\23/ 2/
] Y'Y Y ¥V v
: B 1 B | B | }
‘“Ql #5 46 /m 430/.431 j)‘r’
420 a1 WL LE" """ s~ 439
A B M9 e
—p | }--
. L :
' us ~/ 457 ;
450 454 455 }
40< A\ 451 \ / / : :406
453 ~
P> B
' 460
4({ : |
E c 42~ .
404§ 4—@ 5408
= B f_’%)/ il
t--p | }-

U.S. Patent May 19, 2020 Sheet 5 of 5 US 10,656,951 B2

500

505
K RECEIVE INSTRUCTION AND DATA AT
FIRST AND SECOND INPUT REGISTERS

510 '\

CORE INSTRUCTION?

515 \ [520

ROUTE INSTRUCTION AND DATA TO GATE POWER AND CLOCK SIGNALS TO
FIRST ARRAY OF MULTIPLEXERS FIRST ARRAY OF MULTIPLEXERS

525 \ / 530

EXECUTE INSTRUCTION AT SHARED
PROCESSING ELEMENT USING
OUTPUT OF FIRST ARRAY

ROUTE INSTRUCTION AND DATA TO
SECOND ARRAY OF MULTIPLEXERS

535
v [

EXECUTE INSTRUCTION AT SHARED
PROCESSING ELEMENT USING
OUTPUT OF SECOND ARRAY

FIG. 5

US 10,656,951 B2

1
PIPELINE INCLUDING SEPARATE
HARDWARE DATA PATHS FOR DIFFERENT
INSTRUCTION TYPES

BACKGROUND

A pipeline in a computing system includes multiple
processing elements connected in series so that the output of
one processing element is input to the next processing
element in the pipeline. The processing elements in the
pipeline can therefore be operating concurrently on different
instructions as the instructions move through the pipeline. At
least in part to reduce the area cost of fabricating the
integrated circuits that are used to implement the pipeline,
resources of the pipeline are shared by all of the instructions
that are supported by the computing system. In some cases,
the supported instruction set can include hundreds of dif-
ferent types of instructions. The supported instructions
include multiplication (MUL), multiplication-accumulation
(MAD), fused multiplication-accumulation (FMA), addition
(ADD), fraction extraction (FRACT), maximum (MAX),
minimum (MIN), Boolean logic (e.g., AND, OR, XOR, or
NOT operations), format conversion, and the like. The
computing system can support multiple data formats for the
instructions including half-precision floating point, single
precision floating point, double precision floating point,
16-bit integer (or unsigned integer), 24-bit integer (or
unsigned integer), 32-bit integer (or unsigned integer),
64-bit integer (or unsigned integer), bit-level instructions,
and the like. The pipeline can also support transcendental
functions.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings
indicates similar or identical items.

FIG. 1 is a block diagram of a pipeline that is imple-
mented in a computer system.

FIG. 2 is a block diagram of a pipeline that includes two
or more hardware data paths to multiplex data and instruc-
tions for different instruction types onto shared processing
elements in a pipeline according to some embodiments.

FIG. 3 is a block diagram of a pipeline that includes two
hardware data paths that include both shared and dedicated
hardware logic according to some embodiments.

FIG. 4 is a block diagram of a pipeline that includes two
hardware data paths that share hardware logic in the first
hardware data path according to some embodiments.

FIG. 5 is a flow diagram of a method of selectively routing
instruction information to a shared processing element of a
pipeline using different multiplexer arrays according to
some embodiments.

DETAILED DESCRIPTION

Data associated with different instructions are multi-
plexed together using an array of multi-input multiplexers so
that the instructions often share a single hardware data path
used to implement the pipeline. Data for each instruction
type is multiplexed into the pipeline using a separate multi-
input multiplexer. Thus, the number of multiplexers that are
needed to multiplex instructions into the pipeline is approxi-
mately proportional to the total number of instructions that
share the hardware data path. All of the multiplexers are

35

40

45

55

2

toggled in response to performing operations to ensure that
the correct values are at the outputs of the multiplexers so
that the correct values are provided to the processing ele-
ments in the pipeline. The power consumed by the array of
multi-input multiplexers therefore increases approximately
in proportion to the total number of instructions that are
multiplexed into the pipeline by the array. Supporting hun-
dreds of different types of instructions can lead to significant
power dissipation in the array of multi-input multiplexers,
even though most types of instructions are rarely, if ever,
used in programs that are executed on the pipeline. For
example, graphics-intensive programs such as gaming appli-
cations are often implemented with only 5-10 frequently-
used instructions, supplemented by occasional calls to less
frequently used instructions.

The power consumption of a pipeline is significantly
reduced with only a modest increase in area cost by imple-
menting a first array of multiplexers to multiplex data for a
set of instructions to a processing element in the pipeline and
a second array of multiplexers to multiplex data for a subset
of the set of instructions to the processing element. Power
and clock signals to the first array of multiplexers are
selectively gated based on a type of an instruction that is to
be executed by the processing element. The second array of
multiplexers provides data for the instruction that is to be
executed by the processing element in response to gating the
power and clock signals to the first array of multiplexers. For
example, a control unit gates the power and clock signals to
the first array of multiplexers for a first type of instruction,
in which case the second array of multiplexers provides the
data for the first type of instruction to the processing
element. The control unit does not gate power and clock
signals to the first array of multiplexers for a second type of
instruction so that the first array of multiplexers provides the
data for the second type of instruction to the processing
element. In some embodiments, the first type of instruction
includes all the instructions in the set of instructions that is
supported by the processing element except for a subset of
the instructions that is determined based on a usage fre-
quency of the instructions. For example, an instruction is
included in the subset of instructions if it is executed in the
pipeline at a frequency that is above a threshold. Instructions
in the subset are referred to as “core instructions” and other
instructions are referred to as “non-core instructions.”

A first set of input registers provides input to the first array
of multiplexers and the output from the first array of
multiplexers is provided to a first set of output registers. A
second set of registers provides input to the second array of
multiplexers and the output from the second array of mul-
tiplexers is provided to a second set of output registers. The
control unit selectively gates power and clock signals for the
first set of input registers and the first set of output registers
based on the type of the instruction that is to be executed by
the processing element. Some embodiments of the pipeline
include a plurality of stages and each stage includes corre-
sponding first and second arrays of multiplexers that share a
processing element that is implemented in the stage. The
control unit selectively gates power and clock signals for the
first array of multiplexers in each stage of the pipeline based
on the type of instruction that is to be executed by the
corresponding computational unit. The control unit is also
able to selectively gate power and clock signals for input and
output registers for the first array of multiplexers in each
stage based on the type of instruction.

FIG. 1 is a block diagram of a pipeline 100 that is
implemented in a computer system. The pipeline 100
includes one or more stages 101, 102 that are connected in

US 10,656,951 B2

3

series. Each of the stages 101, 102 includes a corresponding
processing element 105, 106 that is configured to perform
operations on input data in accordance with an input instruc-
tion. In an example, the input data includes source operands
and the input instruction is indicated by an opcode. The
operations performed on the input data by the processing
elements 105, 106 include multiplication, addition, round-
ing, and the like. Some embodiments of the pipeline 100
support an instruction set that includes multiplication
(MUL), multiplication-accumulation (MAD), fused multi-
plication-accumulation (FMA), addition (ADD), fraction
extraction (FRACT), maximum (MAX), minimum (MIN),
Boolean logic (e.g., AND, OR, XOR, or NOT operations),
format conversion, and the like. The pipeline 100 supports
multiple data formats for the instructions including half-
precision floating point, single precision floating point,
double precision floating point, 16-bit integer (or unsigned
integer), 24-bit integer (or unsigned integer), 32-bit integer
(or unsigned integer), 64-bit integer (or unsigned integer),
bit-level instructions, and the like. The pipeline 100 can also
support transcendental functions.

The data and instructions are provided as input informa-
tion 107, 108 that is received and stored by corresponding
registers 110, 111. Networking circuitry 113, 114, 115, 116
(collectively referred to herein as “the circuitry 113-116”) is
used to connect the registers 110, 111 to corresponding
arrays 120, 121, 122, 123 of multiplexers 124 (only one
indicated by a reference numeral in the interest of clarity)
that are collectively referred to herein as “the multiplexer
arrays 120-123.” The circuitry 113-116 is implemented
using lines, traces, wires, switches, routers, and the like.
Each multiplexer in the multiplexer arrays 120-123 receives
input information 107, 108 for a different instruction. Con-
sequently, the number of multiplexers in the multiplexer
arrays 120-123 is set by the number of instructions sup-
ported by the pipeline 100. In some embodiments, the
number of supported instructions exceeds one hundred and
is as large as several hundred instructions or more in some
embodiments of the pipeline 100. The multiplexer arrays
120-123 provide output signals to corresponding multiplex-
ers 125,126, 127, 128 (collectively referred to herein as “the
multiplexers 125-128”) that multiplex the information
received from the multiplexer arrays 120-123 to inputs of
the processing elements 105, 106.

A control unit 130 provides control signals to select the
input information 107, 108 that is provided to the processing
element 105 by the multiplexer arrays 120-123 and the
multiplexers 125-128. The input information 107, 108
includes information identifying the instructions such as
opcodes or other instruction identifiers. The control unit 130
generates the control signals based on the information
identifying the instructions and provides these control sig-
nals to the control inputs of the multiplexers in the multi-
plexer arrays 120-123 and the multiplexers 125-128. Output
signals generated by the processing elements 105, 106 are
provided to corresponding output registers 135, 136. Some
embodiments of the output registers 135, 136 also function
as (or are connected to) input registers of a subsequent stage
of the pipeline 100.

As discussed herein, the multiplexers in the multiplexer
arrays 120-123 and the multiplexers 125-128 are toggled to
ensure that the correct values are at the outputs of the
multiplexers in the multiplexer arrays 120-123 and the
multiplexers 125-128 so that the correct values are provided
to the processing elements 105, 106. For example, the
multiplexers in the multiplexer arrays 120-123 and the
multiplexers 125-128 are toggled in response to detecting a

10

15

20

25

30

35

40

45

50

55

60

65

4

rising edge or a falling edge of a clock signal provided to the
stages 101, 102 of the pipeline 100. The power consumed by
the multiplexers in the multiplexer arrays 120-123 increases
approximately in proportion to the total number of instruc-
tions that are multiplexed into the pipeline 100 by the
multiplexers in the multiplexer arrays 120-123. Supporting
hundreds of different types of instructions therefore causes
significant power dissipation by the multiplexers in the
multiplexer arrays 120-123, even though most types of
instructions are rarely, if ever, used in programs that are
executed by the pipeline 100. For example, graphics-inten-
sive programs such as gaming applications are often imple-
mented with 5-10 frequently-used instructions, supple-
mented by occasional calls to less frequently used
instructions.

FIG. 2 is a block diagram of a pipeline 200 that includes
two or more hardware data paths to multiplex data and
instructions for different instruction types onto shared pro-
cessing elements 201, 202 in a pipeline according to some
embodiments. The first hardware data path includes the
stages 205, 206 and the second hardware data path includes
the stages 207, 208. The stages 205, 206 include input
registers 210 that receive input information 211 (such as data
and instructions), networking circuitry 212, multiplexer
arrays 213, multiplexers 214, and output registers 215. In the
interest of clarity, only one of each of these elements of the
stages 205, 206 is indicated by a reference numeral. The
elements 212, 213, 214, 215 of the stages 205. 206 are
configured to operate in a manner similar to the correspond-
ing elements shown in FIG. 1. Some embodiments of the
stages 205, 206 are configured to receive input information
211 for all of the instructions supported by the pipeline 200.
Other embodiments of the stages 205, 206 are configured to
receive input information 211 for all of the instruction
supported by the pipeline 200 except for a subset of the
instructions that are supported by the second hardware data
path, as discussed herein.

The stages 207, 208 in the second hardware data path
include input registers 220, 221 that receive some or all of
the input information 211. For example, the input registers
220, 221 is configured to receive only input information 211
associated with a subset of instructions that are supported by
the second hardware data path. For example, the input
information 211 includes an opcode indicating the instruc-
tion type and source operands that are to be operated on by
the corresponding processing element 201, 202 to carry out
the instruction. The subset of instructions includes instruc-
tions that are frequently executed in the pipeline 200. In
some embodiments, the subset of instructions includes
instructions that are executed at or above a threshold fre-
quency. The instruction set can include at least ten times as
many instructions as are in the subset of instructions. For
example, the subset of instructions can include ten or fewer
instructions from the instruction set supported by the pipe-
line 200. Instructions that are not in the subset of instruc-
tions, e.g., instructions that are executed less frequently than
the threshold frequency, are executed using the stages 205,
206 of the first hardware data path. Instructions in the subset
are referred to as “core instructions” and instructions that are
not in the subset are referred to herein as “non-core instruc-
tions.”

Network circuitry 225, 226, 227, 228 (collectively
referred to herein as “the circuitry 225-228”) provides
interconnections between the input registers 220, 221 and
corresponding arrays 230, 231, 232, 233 of multiplexers
(collectively referred to herein as “the multiplexer arrays
230-233”). The circuitry 225-228 is implemented using

US 10,656,951 B2

5

lines, traces, wires, switches, routers, and the like. Each
multiplexer in the multiplexer arrays 230-233 receives infor-
mation corresponding to a different instruction or instruction
type. The number of multiplexers in the multiplexer arrays
230-233 is therefore determined by the number of instruc-
tions in the subset of instructions that is processed in the
stages 207, 208 of the second hardware data path. For
example, the multiplexer arrays 230-233 includes a number
of multiplexers that is sufficient to multiplex the information
211 associated with ten or less core instructions onto the
corresponding processing elements 201, 202. The number of
multiplexers in the multiplexer arrays 230-233 is therefore
less than the number of multiplexers in the multiplexer
arrays 213 in the stages 205, 206 of the first hardware data
path.

Output signals from the multiplexer arrays 230-233 are
provided to corresponding multiplexers 235, 236, 237, 238
(collectively referred to herein as “the multiplexers 235-
238”) in the stages 205, 206 of the first hardware data path.
The multiplexers 235-238 also receive input from the mul-
tiplexer arrays 214 in the stages 205, 206 of the first
hardware data path. The multiplexers 235-238 are config-
ured to selectively provide the inputs received from the
multiplexer arrays 230-233 or the multiplexer arrays 214 to
the processing elements 201, 202 based on the type of
instruction that is to be executed by the processing elements
201, 202. For example, the multiplexer 235 provides the
inputs received from the multiplexer array 230 to the pro-
cessing element 201 if the type of instruction indicates that
the instruction is a core instruction that is being processed
using the stages 207, 208 in the second hardware data path.
For another example, the multiplexer 235 provides the
inputs received from the multiplexer 214 if the type of
instruction indicates that the instruction is a non-core
instruction that is being processed using the stages 205, 206
and the first hardware data path.

The stages 207, 208 in the second hardware data path
include output registers 240, 241. The processing elements
201, 202 provide output signals to the output registers 215
in the stages 205, 206 of the first hardware data path and the
output registers 240, 241 in the stages 207, 208 of the second
hardware data path. Information stored in the output regis-
ters 215 in the stage 205 in the first hardware data path and
the output register 240 in the second hardware data path are
available for access by a subsequent stage in the first and
second hardware data paths, respectively. Information stored
in the output registers of the stage 206 and the output register
241 in the second hardware data path are provided to a
multiplexer 245 that is configured to selectively provide the
input provided by the output registers of the stage 206 or the
input provided by the output registers 241 of the stage 208
in response to a selection signal. The value of the selection
signal is determined based on the type of instruction. For
example, the multiplexer 245 provides the input provided by
the output registers 241 in response to the instruction type
indicating that the instruction is a core instruction that is
processed using the second hardware data path.

A control unit 250 is configured to provide signaling to the
stages 205, 206 in the first hardware data path, the stages
207, 208 in the second hardware data path, and the multi-
plexer 245. The control unit 250 determines the provided
signaling based on the instruction types of the instructions
received by the pipeline 200. For example, in response to
receiving core instruction processed using the second hard-
ware data path, the control unit 250 provides control sig-
naling to the multiplexer arrays 230-233 and the multiplex-
ers 235-238 to route the input information 211 from the input

10

15

20

25

30

35

40

45

50

55

60

65

6

registers 220, 221 to the processing elements 201, 202. The
control unit 250 also provides control signaling to a control
input of the multiplexer 245 to indicate that the multiplexer
245 is to provide information stored in the output register
241 as an output of the pipeline 200.

The control unit 250 is also configured to selectively gate
power or clock signals to the multiplexer arrays 213 in the
stages 205, 206 of the first hardware data path based on the
type of instruction received by the pipeline 200. For
example, the control unit 250 does not gate power or clock
signals to the multiplexer arrays 213 in the stages 205, 206
in response to determining that an instruction received by
the pipeline 200 is a non-core instruction. Instead, power
and clock signals are provided to the multiplexer arrays 213
so that the multiplexer arrays 213 are toggled to provide
information to the processing elements 201, 202 for execut-
ing the non-core instruction, as discussed herein. For another
example, the control unit 250 gates power or clock signals
to the multiplexer arrays 213 in the stages 205, 206 in
response to determining that an instruction received by the
pipeline 200 is a core instruction that is to be processed
using the stages 207, 208 in the second hardware data path.
In that circumstance, the multiplexer arrays 230-233 provide
signaling to the corresponding processing elements 201,
202. Gating the power or clock signals to the multiplexer
arrays 213 prevents the multiplexer arrays 213 from being
toggled, thereby reducing the power dissipated in the pipe-
line 200 are processing core instructions.

Although not shown in FIG. 2, some embodiments of the
pipeline 200 include additional hardware data paths that are
structured in a manner similar to the second hardware data
path and are used to execute instructions in a corresponding
subset. For example, the pipeline 200 can be configured to
support execution of a first subset of core instructions using
the second hardware data path and one or more second
subsets of core instructions using one or more third hard-
ware data paths. If the pipeline 200 is configured to include
more than two hardware data paths, the multiplexer 245 is
configured to selectively provide the outputs from the first
hardware data path, the second hardware data path, or the
one or more third hardware data paths in response to
signaling from the control unit 250. In some embodiments,
different numbers of stages are implemented in the different
hardware data paths to support execution of different subsets
of core instructions and non-core instructions.

FIG. 3 is a block diagram of a pipeline 300 that includes
two hardware data paths that include both shared and
dedicated hardware logic according to some embodiments.
The first hardware data path includes the stages 301, 302,
303, 304 (collectively referred to herein as “the stages
301-304”") and the second hardware data path includes the
stages 305, 306, 307, 308 (collectively referred to herein as
“the stages 305-308”). The pipeline 300 also includes a
multiplexer 310 that is configured to receive output from the
stages 304, 308 and selectively provide the output as the
output of the pipeline 300. For example, the multiplexer 310
provides output from the stage 304 in response to the
instruction being a non-core instruction and the multiplexer
310 provides output from the stage 308 in response to the
instruction being a core instruction. As discussed herein, the
multiplexer 310 receives control signals from a control unit
(not shown in FIG. 3 in the interest of clarity) and selectively
provides the output responsive to the control signals.
Although not shown in FIG. 3, some embodiments of the
pipeline 300 include more than two hardware data paths to
execute different subsets of core instructions or non-core
instructions.

US 10,656,951 B2

7

The stage 301 in the first hardware data path includes
input registers 315, 316, networking circuitry 317, multi-
plexer arrays 318, multiplexers 319, and output registers
320, 321. The stage 301 also includes a processing element
325 such as a multiplier unit. The multiplexers 319 are
configured to provide signals to the inputs of the processing
element 325, as discussed herein. In the interest of clarity,
the specific interconnections between the elements of the
stage 301 are not shown in FIG. 3. In the illustrated
embodiment, the input register 315 receives data represent-
ing numbers that are to be multiplied together by the
processing element 325. The input register 316 receives
source inputs that include other data to be processed in the
pipeline 300.

The stage 305 in the second hardware data path includes
input registers 330, 331, half-precision logic 335 for execut-
ing half-precision instructions, multiplexers 336, 337, and
output registers 338, 339. The input register 330 receives
data representing numbers that are to be multiplied together
and the input register 331 receives source inputs that include
the other data to be processed in the pipeline 300. The
multiplexers 336 are used to route information associated
with half-precision instructions from the input registers 330,
331 to the half-precision logic 335 and the multiplexers 337
are used to route information from the half-precision logic
335 to the output registers 338, 339. In the interest of clarity,
interconnections between the entities in the stage 305 are not
shown in FIG. 3.

The half-precision logic 335 in the stage 305 is only
configured to perform operations on half-precision instruc-
tions and is not configured to perform multiplication on
single precision or double precision numbers. Thus, in the
case of core instructions that operate on single precision or
double precision numbers, input information representative
of the numbers to be multiplied is also multiplexed into the
register 315 in the first hardware data path so that the
processing element 325 can be shared. For example, net-
working circuitry 341, 342 and multiplexer arrays 343, 344
can be used to multiplex information associated with core
instructions on to the first hardware data path to share the
processing element 325. Information stored in the output
register 320 can therefore be provided to the second hard-
ware data path, as indicated by the arrow 345.

The stage 302 in the first hardware data path includes a
shift right unit 350 and an adder 351. The shift right unit 350
is used to perform shift right operations to align mantissas of
floating point instructions prior to performing addition of the
floating-point instructions using the adder 351. For example,
the shift right unit 350 is used to align mantissas for
instructions such as 32-bit float add and 32-bit FMA (fused
multiply-accumulate) that can be performed by the adder
351. The stage 302 in the first hardware data path also
includes output registers 353 that receive the results of the
instructions executed by the adder 351. The output registers
320, 321 function as input registers for the stage 302.
Although not shown in FIG. 3 in the interest of clarity, the
stage 302 also includes arrays of multiplexers to multiplex
instruction information to the shift right unit 350 and the
adder 351.

The stage 306 in the second hardware data path includes
half-precision logic unit 355, a shift right unit 356, and an
adder 357. These elements function in a manner similar to
the corresponding elements in the stages 302, 305. The
registers 338, 339 function as input registers to the stage
306, which also includes output registers 358, 359. In the
illustrated embodiment, the stages 302, 306 do not share
hardware elements between the first and second hardware

10

15

20

25

30

35

40

45

50

55

60

65

8

data path because the stages 302, 306 implement similar
hardware elements. Although not shown in FIG. 3 in the
interest of clarity, the stage 306 also includes arrays of
multiplexers to multiplex instruction information to the
half-precision logic unit 355, the shift right unit 356, and the
adder 357.

The stage 303 in the first hardware data path implements
a leading zero detector 360 and a shift left unit 361.
Following addition of two operands in the adder 351, the
most significant bits of the mantissa of the results could be
zero if the two operands have different signs. The leading
zero detector 360 determines a number of leading zeros in
the mantissa and provide this information to the shift left
unit 361, which performs a corresponding number of shift
left operations to normalize the mantissa. The stage 303 also
includes an output register 363. The output register 353 of
the stage 302 functions as an input register to the stage 303.
Although not shown in FIG. 3 in the interest of clarity, the
stage 303 also includes arrays of multiplexers to multiplex
instruction information to the leading zero detector 360 and
the shift left unit 361.

The stage 307 in the second hardware data path includes
half-precision logic unit 365, a leading zero detector 366 and
a shift left unit 367. These elements function in a manner
similar to the corresponding elements in the stages 303, 306.
The registers 358, 359 function as input registers to the stage
307, which also includes output registers 368, 369. In the
illustrated embodiment, the stages 303, 307 do not share
hardware elements between the first and second hardware
data path because the stages 303, 307 implement similar
hardware elements. Although not shown in FIG. 3 in the
interest of clarity, the stage 307 also includes arrays of
multiplexers to multiplex instruction information to the
half-precision logic unit 365, the leading zero detector 366,
and the shift left unit 367.

The stage 304 includes a rounding element 370 that is
used to perform rounding on input operands. The stage 304
also includes an output register 371. The output register 363
of the stage 303 functions as an input register to the stage
304. Although not shown in FIG. 3 in the interest of clarity,
the stage 304 also includes arrays of multiplexers to multi-
plex instruction information to the rounding element 370.

The stage 308 includes half-precision logic 375 and a
rounding element 376. The stage 308 also includes output
registers 377, 378. The output registers 368, 369 function as
the input registers for the stage 308. In the illustrated
embodiment, the stages 304, 308 do not share hardware
elements between the first and second hardware data path
because the stages 304, 308 implement similar hardware
elements. Although not shown in FIG. 3 in the interest of
clarity, the stage 308 also includes arrays of multiplexers to
multiplex instruction information to the half-precision logic
375 and the rounding element 376.

FIG. 4 is a block diagram of a pipeline 400 that includes
two hardware data paths that share hardware logic in the first
hardware data path according to some embodiments. The
first hardware data path includes the stages 401, 402, 403,
404 (collectively referred to herein as “the stages 401-404”)
and the second hardware data path includes the stages 405,
406, 407, 408 (collectively referred to herein as “the stages
405-408"). The pipeline 400 also includes a multiplexer 410
that is configured to receive output from the stages 404, 408
and selectively provide the output as the output of the
pipeline 400. For example, the multiplexer 410 provides
output from the stage 404 in response to the instruction
being a non-core instruction and the multiplexer 410 pro-
vides output from the stage 408 in response to the instruction

US 10,656,951 B2

9

being a core instruction. As discussed herein, the multiplexer
410 receives control signals from a control unit (not shown
in FIG. 3 in the interest of clarity) and selectively provide the
output responsive to the control signals. Although not shown
in FIG. 4, some embodiments of the pipeline 400 implement
more than two hardware data paths to execute different
subsets of core instructions or non-core instructions.

The stage 401 in the first hardware data path includes
input registers 415, 416, networking circuitry 417, multi-
plexer arrays 418, multiplexers 419, and output registers
420, 421. The stage 401 also includes a processing element
425 such as a multiplier unit. The multiplexers 419 are
configured to provide signals to the inputs of the processing
element 425, as discussed herein. In the interest of clarity,
the specific interconnections between the elements of the
stage 401 are not shown in FIG. 4. In the illustrated
embodiment, the input register 415 receives data represent-
ing numbers that are to be multiplied together by the
processing element 425. The input register 416 receives
source inputs that include other data to be processed in the
pipeline 400.

The stage 405 in the second hardware data path includes
input registers 430, 431, half-precision logic 435 for execut-
ing half-precision instructions, multiplexers 436, 437, and
output registers 438, 439. The input register 430 receives
data representing numbers that are to be multiplied together
and the input register 431 receives source inputs that include
the other data to be processed in the pipeline 400. The
multiplexers 436 are used to route information associated
with half-precision instructions from the input registers 430,
431 to the half-precision logic 435 and the multiplexers 437
are used to route information from the half-precision logic
435 to the output registers 438, 439. In the interest of clarity,
interconnections between the entities in the stage 405 are not
shown in FIG. 4.

The half-precision logic 435 in the stage 405 is only
configured to perform operations on half-precision floating
point instructions and is not configured to perform multi-
plication on single precision or double precision numbers.
Thus, in the case of core instructions that operate on single
precision or double precision numbers, input information
representative of the numbers to be multiplied is also
multiplexed into the register 415 in the first hardware data
path so that the processing element 425 can be shared. For
example, networking circuitry 441, 442 and multiplexer
arrays 443, 444 can be used to multiplex information asso-
ciated with core instructions on to the first hardware data
path to share the processing element 425. Information stored
in the output register 420 can therefore be provided to the
second hardware data path, as indicated by the arrow 445.

The stage 402 in the first hardware data path includes a
shift right unit 450 and an adder 451. The shift right unit 450
is used to perform shift right operations to align mantissas of
floating point instructions prior to performing addition of the
floating-point instructions using the adder 451. For example,
the shift right unit 450 is used to align mantissas for
instructions such as 32-bit float add and 32-bit FMA (fused
multiply-accumulate) that can be performed by the adder
451. The stage 402 in the first hardware data path also
includes output registers 453 that receive the results of the
instructions executed by the adder 451. The output registers
420, 421 function as input registers for the stage 402.
Although not shown in FIG. 4 in the interest of clarity, the
stage 402 also includes arrays of multiplexers to multiplex
instruction information to the shift right unit 450 and the
adder 451.

20

25

40

45

55

10

The stage 406 in the second hardware data path includes
half-precision logic 454 and multiplexer arrays 455, 456 that
have a number of multiplexers that correspond to the num-
ber of core instructions. The stage 406 does not include
hardware for implementing shift right operations or addition
operations. The multiplexer array 455 in the stage 406
therefore routes information (such as data or opcodes)
associated with core instructions to the shift right unit 450
and the adder 451 in the stage 402 in the first hardware data
path, as indicated by the arrow 457. Results of operations
performed by the adder 451 are provided as input to the
multiplexer array 456. The registers 438, 439 function as
input registers to the stage 406, which also includes output
registers 458, 459. As discussed herein, selection of inputs
to the multiplexer arrays 455, 456 for provision to the
outputs of the multiplexer arrays 455, 456 is controlled by
signaling provided by a control unit (not shown in FIG. 4 in
the interest of clarity).

The stage 403 in the first hardware data path implements
a leading zero detector 460 and a shift left unit 461.
Following addition of two operands in the adder 451, the
most significant bits of the mantissa of the results could be
zero if the two operands have different signs. The leading
zero detector 460 determines a number of leading zeros in
the mantissa and provide this information to the shift left
unit 461, which performs a corresponding number of shift
left operations to normalize the mantissa. The stage 403 also
includes an output register 462. The output register 453 of
the stage 402 functions as an input register to the stage 403.
Although not shown in FIG. 4 in the interest of clarity, the
stage 403 also includes arrays of multiplexers to multiplex
instruction information to the leading zero detector 460 and
the shift left unit 461.

The stage 407 in the second hardware data path includes
half-precision logic 464 and multiplexer arrays 465, 466 that
have a number of multiplexers that correspond to the num-
ber of core instructions. The stage 407 does not include
hardware for implementing leading zero detection or shift
left operations. The multiplexer array 465 in the stage 407
therefore routes information (such as data or opcodes)
associated with core instructions to the leading zero detector
460 and the shift left unit 461 in the stage 403 in the first
hardware data path, as indicated by the arrow 467. Results
of operations performed by the shift left unit 461 are
provided as input to the multiplexer array 466. The registers
458, 459 function as input registers to the stage 407, which
also includes output registers 468, 469. As discussed herein,
selection of inputs to the multiplexer arrays 465, 466 for
provision to the outputs of the multiplexer arrays 465, 466
is controlled by signaling provided by a control unit (not
shown in FIG. 4 in the interest of clarity).

The stage 404 in the first hardware data path implements
a rounding element 470. The stage 404 also includes an
output register 471. The output register 462 of the stage 403
functions as an input register to the stage 404. Although not
shown in FIG. 4 in the interest of clarity, the stage 403 also
includes arrays of multiplexers to multiplex instruction
information to the rounding element 470.

The stage 408 in the second hardware data path includes
half-precision logic 474 and multiplexer arrays 475, 476 that
have a number of multiplexers that correspond to the num-
ber of core instructions. The stage 408 does not include
hardware for implementing rounding operations. The mul-
tiplexer array 475 in the stage 408 therefore routes infor-
mation (such as data or opcodes) associated with core
instructions to the rounding element 470 in the stage 404 in
the first hardware data path, as indicated by the arrow 477.

US 10,656,951 B2

11

Results of operations performed by the rounding element
470 are provided as input to the multiplexer array 476. The
registers 468, 469 function as input registers to the stage
408, which also includes output registers 478, 479. As
discussed herein, selection of inputs to the multiplexer
arrays 475, 476 for provision to the outputs of the multi-
plexer arrays 475, 476 is controlled by signaling provided by
a control unit (not shown in FIG. 4 in the interest of clarity).

FIG. 5 is a flow diagram of a method 500 of selectively
routing instruction information to a shared processing ele-
ment of a pipeline using different multiplexer arrays accord-
ing to some embodiments. The method is implemented in
some embodiments of the pipeline 200 shown in FIG. 2, the
pipeline 300 shown in FIG. 3, and the pipeline 400 shown
in FIG. 4.

At block 505, the pipeline receives instruction informa-
tion such as an instruction identifier and associated data at
first and second sets of input registers. The instruction
information includes an opcode identifying the instruction or
a type of the instruction. The associated data includes values
of source operands utilized by processing elements in the
pipeline. The first set of input registers stores information
that is provided to a first multiplexer array and the second set
of input registers stores information that is provided to a
second multiplexer array. The first multiplexer array
receives instruction information for instructions supported
by the pipeline and the second multiplexer array receives
instruction information for a subset of the instructions
supported by the pipeline. The subset of instructions
includes instructions (or instruction types) that are fre-
quently used by programs executing on the pipeline. As
discussed herein, the number of instructions in the subset is
less than the number of instructions supported by the pipe-
line and so the number of multiplexers in the first multi-
plexer array is less than the number of multiplexers in the
second multiplexer array.

At decision block 510, a controller (such as the control
unit 250 shown in FIG. 2) determines whether the instruc-
tion is a core instruction or a non-core instruction. The
controller determines the type of instruction based on the
instruction information received by the pipeline. For
example, the controller determines the type of instruction
based on an opcode of the instruction stored in the first or
second sets of registers. If the instruction is a non-core
instruction, the method 500 flows to block 515. If the
instruction is a core instruction, the method flows to block
520.

At block 515, the instruction information including the
instruction and associated data are routed to the first array of
multiplexers. The instruction information is then selectively
provided to the shared processing element, e.g., based on
control signaling provided by the controller, as discussed
herein. At block 525, the shared processing element executes
the instruction using instruction information output from the
first array of multiplexers.

At block 520, the controller gates power and clock signals
to the first array of multiplexers so that the first array of
multiplexers do not dissipate power and are not toggled in
response to the clock signals. Gating of the power or clock
signals can be performed by opening one or more switches
or circuits, e.g., using switching transistors. At block 530,
the instruction information including the instruction identi-
fier and associated data are routed to the second array of
multiplexers. The instruction information is then selectively
provided to the shared processing element, e.g., based on
control signaling provided by the controller, as discussed

25

40

45

12

herein. At block 535, the shared processing element executes
the instruction using instruction information output from the
second array of multiplexers.

In some embodiments, the apparatus and techniques
described above are implemented in a system comprising
one or more integrated circuit (IC) devices (also referred to
as integrated circuit packages or microchips), such as the
pipeline described above with reference to FIGS. 1-5. Elec-
tronic design automation (EDA) and computer aided design
(CAD) software tools may be used in the design and
fabrication of these IC devices. These design tools typically
are represented as one or more software programs. The one
or more software programs comprise code executable by a
computer system to manipulate the computer system to
operate on code representative of circuitry of one or more IC
devices so as to perform at least a portion of a process to
design or adapt a manufacturing system to fabricate the
circuitry. This code can include instructions, data, or a
combination of instructions and data. The software instruc-
tions representing a design tool or fabrication tool typically
are stored in a computer readable storage medium accessible
to the computing system. Likewise, the code representative
of one or more phases of the design or fabrication of an IC
device may be stored in and accessed from the same
computer readable storage medium or a different computer
readable storage medium.

A computer readable storage medium may include any
non-transitory storage medium, or combination of non-
transitory storage media, accessible by a computer system
during use to provide instructions and/or data to the com-
puter system. Such storage media can include, but is not
limited to, optical media (e.g., compact disc (CD), digital
versatile disc (DVD), Blu-Ray disc), magnetic media (e.g.,
floppy disc, magnetic tape, or magnetic hard drive), volatile
memory (e.g., random access memory (RAM) or cache),
non-volatile memory (e.g., read-only memory (ROM) or
Flash memory), or microelectromechanical systems
(MEMS)-based storage media. The computer readable stor-
age medium may be embedded in the computing system
(e.g., system RAM or ROM), fixedly attached to the com-
puting system (e.g., a magnetic hard drive), removably
attached to the computing system (e.g., an optical disc or
Universal Serial Bus (USB)-based Flash memory), or
coupled to the computer system via a wired or wireless
network (e.g., network accessible storage (NAS)).

In some embodiments, certain aspects of the techniques
described above may implemented by one or more proces-
sors of a processing system executing software. The soft-
ware comprises one or more sets of executable instructions
stored or otherwise tangibly embodied on a non-transitory
computer readable storage medium. The software can
include the instructions and certain data that, when executed
by the one or more processors, manipulate the one or more
processors to perform one or more aspects of the techniques
described above. The non-transitory computer readable stor-
age medium can include, for example, a magnetic or optical
disk storage device, solid state storage devices such as Flash
memory, a cache, random access memory (RAM) or other
non-volatile memory device or devices, and the like. The
executable instructions stored on the non-transitory com-
puter readable storage medium may be in source code,
assembly language code, object code, or other instruction
format that is interpreted or otherwise executable by one or
more processors.

Note that not all of the activities or elements described
above in the general description are required, that a portion
of a specific activity or device may not be required, and that

US 10,656,951 B2

13

one or more further activities may be performed, or elements
included, in addition to those described. Still further, the
order in which activities are listed are not necessarily the
order in which they are performed. Also, the concepts have
been described with reference to specific embodiments.
However, one of ordinary skill in the art appreciates that
various modifications and changes can be made without
departing from the scope of the present disclosure as set
forth in the claims below. Accordingly, the specification and
figures are to be regarded in an illustrative rather than a
restrictive sense, and all such modifications are intended to
be included within the scope of the present disclosure.

Benefits, other advantages, and solutions to problems
have been described above problems, and any feature(s) that
may cause any benefit, advantage, or solution to occur or
become more pronounced are not to be construed as a
critical, required, or essential feature of any or all the claims.
Moreover, the particular embodiments disclosed above are
illustrative only, as the disclosed subject matter may be
modified and practiced in different but equivalent manners
apparent to those skilled in the art having the benefit of the
teachings herein. No limitations are intended to the details of
construction or design herein shown, other than as described
in the claims below. It is therefore evident that the particular
embodiments disclosed above may be altered or modified
and all such variations are considered within the scope of the
disclosed subject matter. Accordingly, the protection sought
herein is as set forth in the claims below.

What is claimed is:

1. An apparatus comprising:

a first processing element implemented in a first stage of

a pipeline and configured to execute an instruction;

a first array of multiplexers to provide information asso-
ciated with the instruction to the first processing ele-
ment in response to the instruction being in a first set of
instructions;

a second array of multiplexers to provide information
associated with the instruction to the first processing
element in response to the instruction being in a second
set of instructions; and

a control unit to gate at least one of power or a clock
signal provided to the first array of multiplexers in
response to the instruction being in the second set.

2. The apparatus of claim 1, wherein the second set of

instructions is a subset of the first set of instructions.

3. The apparatus of claim 1, wherein:

the second set of instructions includes instructions
executed by the pipeline at or above a threshold fre-
quency; and

the first set of instructions includes instructions executed
by the pipeline below the threshold frequency.

4. The apparatus of claim 1, wherein the first set of
instructions includes at least ten times as many instructions
as the second set of instructions.

5. The apparatus of claim 1, wherein the control unit
determines that the received instruction is in the second set
based on an opcode of the first instruction received by the
first stage of the pipeline.

6. The apparatus of claim 1, further comprising:

at least one third multiplexer to receive output from the
first array of multiplexers and the second array of
multiplexers and to selectively provide an output from
the first array of multiplexers or the second array of
multiplexers to the first processing element based on
signaling from the control unit.

7. The apparatus of claim 6, wherein the at least one third

multiplexer provides the output from the second array of

20

25

30

40

45

50

55

65

14

multiplexers to the first processing element in response to
the control unit gating the at least one of the power or the
clock signal provided to the first array of multiplexers.

8. The apparatus of claim 1, further comprising:

first input registers to store information associated with
the instruction and provide the information to inputs of
the first array of multiplexers; and

second input registers to store the information associated
with the instruction and provide the information to the
inputs of the second array of multiplexers.

9. The apparatus of claim 8, further comprising:

a second processing element implemented in a second
stage of the pipeline and configured to execute the
instruction;

first output registers to receive information generated by
the first processing element;

a third array of multiplexers to receive information stored
in the first output registers and to provide output to the
second processing element;

second output registers to receive the information gener-
ated by the first processing element;

a fourth array of multiplexers to receive information
stored in the second output registers and to provide
output to the second processing element; and

wherein the control unit is configured to gate at least one
of power or a clock signal provided to the third array of
multiplexers in response to the instruction being in the
second set.

10. A method comprising:

receiving an instruction at a first stage of a pipeline of a
processing device;

providing information associated with the instruction
from a first array of multiplexers of the processing
device to a first processing element implemented in the
first stage in response to the instruction being in a first
set of instructions;

providing information associated with the instruction
from a second array of multiplexers of the processing
device to the first processing element in response to the
instruction being in a second set of instructions; and

gating at least one of power or a clock signal provided to
the first array of multiplexers in response to the instruc-
tion being in the second set.

11. The method of claim 10, further comprising:

determining that the received instruction is in the second
set based on an opcode of the received instruction
received by the first stage of the pipeline.

12. The method of claim 10, further comprising:

selectively providing output from the first array of mul-
tiplexers or the second array of multiplexers to the first
processing element based on signaling from a control
unit.

13. The method of claim 12, wherein providing the output
comprises providing the output from the second array of
multiplexers to the first processing element in response to
the control unit gating the at least one of the power or the
clock signal provided to the first array of multiplexers.

14. The method of claim 13, further comprising:

receiving the instruction at a second stage of the pipeline
that includes a second processing element configured to
execute the instruction;

receiving information generated by the first processing
element;

providing information associated with the instruction
from a third array of multiplexers of the processing
device to the second processing element in response to
the instruction being in the first set;

US 10,656,951 B2

15

providing the information associated with the instruction
from a fourth array of multiplexers of the processing
device to the second processing element in response to
the instruction being in the second set; and

gating at least one of power or a clock signal provided to
the third array of multiplexers in response to the
instruction being in the second set.

15. An apparatus comprising:

a first hardware data path including:

a first processing element implemented in a first stage
of a pipeline and configured to execute an instruc-
tion; and

a first array of multiplexers to provide information
associated with the instruction to the first processing
element in response to the instruction being in a first
set of instructions;

a second hardware data path configured to execute half-
precision floating-point instructions and to receive
information generated by the first processing element in
the first hardware data path;

a second array of multiplexers to provide information
associated with the instruction to the first processing
element in response to the instruction being in a second
set of instructions; and

a control unit to gate at least one of power or a clock
signal provided to the first array of multiplexers in
response to the instruction being in the second set.

16. The apparatus of claim 15, wherein the second set of

instructions includes instructions that are executed by the

15

16

pipeline more frequently than a threshold frequency, and
wherein the first set of instructions includes instructions that
are executed by the pipeline less frequently than the thresh-
old frequency.

17. The apparatus of claim 15, wherein the control unit
determines that the received instruction is in the second set
based on an opcode of the instruction received by the first
stage of the pipeline.

18. The apparatus of claim 15, wherein the second hard-
ware data path comprises a third array of multiplexers
implemented in a second stage of the pipeline to provide
information to a second processing element implemented on
the first hardware data path in the second stage of the
pipeline in response to the instruction being in the second
set.

19. The apparatus of claim 18, wherein the control unit is
configured to gate at least one of power or a clock signal
provided to a fourth array of multiplexers implemented on
the first hardware data path in the second stage of the
pipeline in response to the instruction being in the second
set.

20. The apparatus of claim 15, further comprising:

a fifth array of multiplexers to selectively provide output
from the first hardware data path or the second hard-
ware data path based on control signaling from the
control unit.

