AUTOMATIC TAKEOFF APPARATUS FOR AIRCRAFT, AUTOMATIC LANDING APPARATUS FOR AIRCRAFT, AUTOMATIC TAKEOFF AND LANDING APPARATUS FOR AIRCRAFT, AUTOMATIC TAKEOFF METHOD FOR AIRCRAFT, AUTOMATIC LANDING METHOD FOR AIRCRAFT AND AUTOMATIC TAKEOFF AND LANDING METHOD FOR AIRCRAFT

Inventor: Akihiro Yamane, Tokyo (JP)

Correspondence Address:
SMITH, GAMBRELL & RUSSELL, LLP
1230 PEACHTREE STREET, N.E.
SUITE 3100, PROMENADE II
ATLANTA, GA 30309-3592 (US)

Appl. No.: 11/103,725
Filed: Apr. 11, 2005

Foreign Application Priority Data
Apr. 15, 2004 (JP) 2004-120814

Publication Classification

Int. Cl. ... B64C 15/02
U.S. Cl. 244/183

ABSTRACT

An automatic takeoff apparatus for an aircraft includes: an altitude sensor; an airspeed sensor; an attitude angle sensor; a direction sensor; a takeoff command inputting section; and a control device for controlling a propulsion device and an control surface of the aircraft, wherein the control device includes: a takeoff run control section for realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and the traveling direction constant, in response to the takeoff command; a rotation control section for controlling the control surface to rotate when the airspeed exceeds a predetermined speed; and an ascending flight control section for controlling the propulsion device and the control surface to perform an ascending flight up to a target altitude with a predetermined speed maintained, when the altitude exceeds a predetermined altitude.
FIG 2

1. TAKEOFF RUN
 - ELEVATOR: MAINTAIN RUNNING PITCH
 - AILERON: MAINTAIN BANK ANGLE 0
 - RUDDER: MAINTAIN AIRSTRIP AXIS LINE COURSE
 - THROTTLE: IDLE
 → ACCELERATE UP TO MAXIMUM ROTATING SPEED

2. ROTATION
 - ELEVATOR: ROTATION TO ROTATION PITCH ANGLE
 - AILERON: MAINTAIN BANK ANGLE 0
 - RUDDER: MAINTAIN AIRSTRIP AXIS LINE COURSE
 - THROTTLE: MAINTAIN TAKEOFF ROTATING NUMBER

3. ASCENDING
 - ELEVATOR: MAINTAIN SPEED
 - AILERON: MAINTAIN AIRSTRIP AXIS LINE COURSE
 - RUDDER: TRIM + YAW DAMPER
 - THROTTLE: MAINTAIN TAKEOFF ROTATING NUMBER

 ASCENDING UP TO TARGET ALTITUDE BY CONSTANT SPEED

RUN ON AIRSTRIP CENTER WITH ACCELERATION
AIRBORNE BY ROTATION AND SPEED INCREASE

MODE TRANSITION WHEN PREDETERMINED SPEED IS REACHED
MODE TRANSITION WHEN PREDETERMINED ALTITUDE IS REACHED
FIG 3

1. **GLIDE SLOPE**
 - ELEVATOR: MAINTAIN PATH TO GROUND
 - AILERON: MAINTAIN AIRSTRIP AXIS LINE COURSE
 - RUDDER: TRIM + YAW DAMPER
 - THROTTLE: MAINTAIN SPEED

2. **FLARE**
 - ELEVATOR: FLARE TO FLARE PITCH ANGLE
 - AILERON: MAINTAIN AIRSTRIP AXIS LINE COURSE -> SWITCHED TO MAINTAIN BANK ANGLE
 - RUDDER: TRIM + YAW DAMPER -> SWITCHED TO MAINTAIN AIRSTRIP AXIS LINE COURSE
 - THROTTLE: DECELERATE TO IDLE

3. **LANDING RUN**
 - ELEVATOR: MAINTAIN RUNNING PITCH ANGLE
 - AILERON: MAINTAIN BANK ANGLE 0
 - RUDDER: MAINTAIN AIRSTRIP AXIS LINE COURSE
 - THROTTLE: MAINTAIN IDLE ROTATION

FLARE ALTITUDE

- APPROACHING PATH ANGLE
- LAND ON GROUND BY DIMINISHING RATE OF DECENT ACCORDING TO FLARE + THRUST IDLE

- MODE TRANSITION WHEN FLARE ALTITUDE IS PASSED
- MODE TRANSITION WHEN NOT MORE THAN PREDETERMINED SPEED
FIG. 4

START

TAKEOFF START COMMAND

TAKEOFF RUN MODE

SPEED > ROTATION SPEED

ROTATION MODE

ALTITUDE > TAKEOFF JUDGMENT ALTITUDE

&

ASCENDING RATE > TAKEOFF JUDGMENT ASCENDING RATE

ASCENDING FLIGHT MODE

ALTITUDE > CRUISING ALTITUDE

TO CRUISING FLIGHT MODE
CRUISING FLIGHT MODE

GLIDE SLOPE MODE

ALTITUDE < FLARE START ALTITUDE

FLARE MODE

SPEED < LANDING JUDGMENT SPEED

LANDING RUN MODE

FLIGHT COMPLETION COMMAND

END
FIG. 6A

\[
\begin{align*}
\text{ALTITUDE} & \quad \rightarrow \quad \text{GENERATE PITCH ANGLE COMMAND RATE} \quad \frac{\theta^*}{(\text{deg/s})} \quad \frac{1}{\text{S}} \int \quad \text{INTEGRATOR WITH APACITY RESTRICTION} \\
\text{ALTITUDE CHANGE RATE} & \quad \rightarrow \quad \theta_0 \quad \text{FLARE PITCH ANGLE} \quad \frac{\theta_0}{(\text{deg/s})} \\
& \quad \rightarrow \quad \text{GENERATE FLARE PITCH ANGLE BY INTEGRATION}
\end{align*}
\]

FIG. 6B

High Altitude Case

\[
\begin{align*}
\text{HIGH ALTITUDE CASE} \quad \theta^* \quad (\text{deg/s}) \\
\text{DESCENDING} \quad \rightarrow \quad \text{ASCENDING} \quad \text{SIDE} \quad \text{SIDE} \\
\text{ALTITUDE CHANGE RATE} \quad (\text{m/s})
\end{align*}
\]

FIG. 6C

Low Altitude Case

\[
\begin{align*}
\text{LOW ALTITUDE CASE} \quad \theta^* \quad (\text{deg/s}) \\
\text{DESCENDING} \quad \rightarrow \quad \text{ASCENDING} \quad \text{SIDE} \quad \text{SIDE} \\
\text{ALTITUDE CHANGE RATE} \quad (\text{m/s})
\end{align*}
\]
AUTOMATIC TAKEOFF APPARATUS FOR AIRCRAFT, AUTOMATIC LANDING APPARATUS FOR AIRCRAFT, AUTOMATIC TAKEOFF AND LANDING APPARATUS FOR AIRCRAFT, AUTOMATIC TAKEOFF METHOD FOR AIRCRAFT, AUTOMATIC LANDING METHOD FOR AIRCRAFT AND AUTOMATIC TAKEOFF AND LANDING METHOD FOR AIRCRAFT

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to an automatic takeoff apparatus for an aircraft, an automatic landing apparatus for an aircraft, an automatic takeoff and landing apparatus for an aircraft, an automatic takeoff method for an aircraft, an automatic landing method for an aircraft and an automatic takeoff and landing method for an aircraft.

[0004] 2. Description of Related Art

[0005] So far, several technologies for realizing an automatic landing of an aircraft have been proposed. As shown in FIG. 9, what is proposed for example is an automatic landing apparatus (H.S. Instrument Landing System) for making an airframe approach and land on a predetermined airstrip 300 by transmitting a guiding radio wave (a glide slope G, a marker beacon and the like) from a radio wave navigation facility located on the ground and by making a computer in an aircraft 200 control an attitude, a speed and a position of the airframe (see JP-Tokukaihei-8-108899A).

[0006] In a conventional automatic landing apparatus, an automatic approaching flight of the aircraft is realized by the computer that controls a propulsion device and a control surface. However, under a running mode after a landing of the aircraft, it is necessary to switch from an automatic control to a manual control by a pilot. Therefore, in reality, it was difficult to perform a landing under a full automatic control.

[0007] Further, in a conventional automatic takeoff and landing method, a landing gear switch is used for judging of takeoff and landing. Since it is necessary to provide landing gear switches as many as the number of feet, a structure of loaded apparatuses became complicated. Further, since the landing gear switch easily malfunctions, it was necessary to establish a complicated control logic under an assumption of a case of malfunctioning.

SUMMARY OF THE INVENTION

[0008] An object of the present invention is to realize a full automatic takeoff and/or a full automatic landing without using a complicated loaded apparatus or a complicated control logic.

[0009] In accordance with a first aspect of the present invention, an automatic takeoff apparatus for an aircraft comprises: an altitude sensor for measuring an altitude of the aircraft from a ground; an airspeed sensor for measuring an airspeed of the aircraft; an attitude angle sensor for detecting an attitude angle of the aircraft; a direction sensor for detecting a direction of the aircraft; a takeoff command inputting section for inputting a takeoff command; and a control device for controlling a propulsion device and a control surface of the aircraft based on the altitude of the aircraft from the ground, the airspeed of the aircraft, the attitude angle of the aircraft, the direction of the aircraft, the attitude angle sensor and the direction sensor, wherein the control device comprises: a takeoff run control section for realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command; a rotation control section for controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed; and an ascending flight control section for controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined ascending speed maintained, when the attitude of the aircraft from the ground exceeds a predetermined takeoff judgment altitude.

[0010] In accordance with a second aspect of the present invention, an automatic landing apparatus for an aircraft comprises: an altitude sensor for measuring an attitude of the aircraft from a ground; an airspeed sensor for measuring an airspeed of the aircraft; an attitude angle sensor for detecting an attitude angle of the aircraft; a direction sensor for detecting a direction of the aircraft; a position sensor for detecting a position of the aircraft; a landing command inputting section for inputting a landing command; and a control device for controlling a propulsion device and an control surface of the aircraft, based on the attitude of the aircraft from the ground, the airspeed of the aircraft, the attitude angle of the aircraft, the direction of the aircraft, the position of the aircraft and the landing command, wherein the control device comprises: an approaching flight control section for realizing an approaching flight along a predetermined approaching path by controlling the propulsion device and the control surface, in response to the landing command; a flare control section for controlling the propulsion device to provide a minimum output and for controlling the control surface to perform a flare when the attitude of the aircraft from the ground becomes less than a predetermined landing judgment altitude; and a landing run control section for realizing a landing run by controlling the propulsion device to maintain the minimum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant when the airspeed of the aircraft becomes less than a predetermined landing judgment speed.

[0011] In accordance with a third aspect of the present invention, an automatic takeoff and landing apparatus for an aircraft comprises: an attitude sensor for measuring an altitude of the aircraft from a ground; an airspeed sensor for measuring an airspeed of the aircraft; an attitude angle sensor for detecting an attitude angle of the aircraft; a direction sensor for detecting a direction of the aircraft; a takeoff command inputting section for inputting a takeoff command; and a landing command inputting section for inputting a landing command; and a control device for controlling
a propulsion device and a control surface of the aircraft, based on the altitude of the aircraft from the ground, the airspeed of the aircraft, the attitude angle of the aircraft, the direction of the aircraft, the position of the aircraft, the takeoff command and the landing command, wherein the control device comprises: a takeoff run control section for realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command; a rotation control section for controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed; an ascending flight control section for controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined takeoff judgment altitude; an approaching flight control section for realizing an approaching flight along a predetermined approaching path by controlling the propulsion device and the control surface, in response to the landing command; a flare control section for controlling the propulsion device to provide a minimum output and for controlling the control surface to perform a flare when the attitude angle and a traveling direction of the aircraft constant when the airspeed of the aircraft becomes less than a predetermined landing judgment speed.

[0012] In accordance with a fourth aspect of the present invention, an automatic takeoff method for an aircraft comprises: obtaining information relating to an altitude of the aircraft from a ground, an airspeed of the aircraft, an attitude angle of the aircraft and a direction of the aircraft; inputting a takeoff command; and controlling a propulsion device and an control surface of the aircraft based on each of the obtained information and the takeoff command, wherein the controlling includes: realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command; controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed; and controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined takeoff judgment altitude.

[0013] In accordance with a fifth aspect of the present invention, an automatic landing method for an aircraft comprises: obtaining information relating to an altitude of the aircraft from a ground, an airspeed of the aircraft, an attitude angle of the aircraft, a direction of the aircraft and a position of the aircraft; inputting a landing command; and controlling a propulsion device and an control surface of the aircraft, based on each of the obtained information and the landing command, wherein the controlling includes: realizing an approaching flight along a predetermined approaching path by controlling the propulsion device and the control surface, in response to the landing command; controlling the propulsion device to provide a minimum output and controlling the control surface to perform a flare when the altitude of the aircraft from the ground becomes less than a predetermined landing judgment altitude; and realizing a landing run by controlling the propulsion device to maintain the minimum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant when the airspeed of the aircraft becomes less than a predetermined landing judgment speed.

[0014] In accordance with a sixth aspect of the present invention, an automatic takeoff and landing method for an aircraft comprises: obtaining information relating to an altitude of the aircraft from a ground, an airspeed of the aircraft, an attitude angle of the aircraft, a direction of the aircraft and a position of the aircraft; inputting a takeoff command; inputting a landing command; and controlling a propulsion device and an control surface based on each of the obtained information and one of the takeoff command and the landing command, wherein the controlling includes: realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command; controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed; controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined target altitude with a predetermined takeoff judgment altitude; realizing an approaching flight along a predetermined approaching path by controlling the propulsion device and the control surface, in response to the landing command; controlling the propulsion device to provide a minimum output and controlling the control surface to perform a flare when the attitude angle and a traveling direction of the aircraft constant, for realizing a takeoff run. Next, the control device (in the control step) controls the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined landing judgment speed.

[0015] According to the first, third, fourth and sixth aspects of the present invention, the control device (in the control step), in response to the takeoff command, controls the propulsion device of the aircraft to provide a maximum output and controls the control surface to maintain the attitude angle and the traveling direction of the aircraft constant, for realizing a takeoff run. Next, the control device (in the control step) controls the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined takeoff judgment altitude.

[0016] In other words, whether shifting from the takeoff run control to the rotation control should be done is judged by referring to “airspeed” of the aircraft, and whether
shifting from the rotation control to the ascending flight control should be done is judged by referring to "altitude from the ground" (above ground level) of the aircraft. Thereby, it is possible to realize a full automatic takeoff from a ground run to an ascending flight. Furthermore, at this time, since judgment of takeoff (whether a takeoff is completed and it is possible to shift to the ascending flight) is done by referring to "altitude from the ground" of the aircraft, it is not necessary to use a landing gear for judging the takeoff. Therefore, it is possible to realize the full automatic takeoff without using a complicated loaded device or a complicated control logic.

[0017] According to the second, third, fifth and sixth aspects of the present invention, the control device (in the control step), in response to the landing command, controls the propulsion device and the control surface to make the aircraft realize an approaching flight along a predetermined approaching path. Next, the control device (in the control step) controls the propulsion device to provide a minimum output and controls the control surface to perform a rotation, when the altitude of the aircraft from the ground becomes less than a predetermined landing judgment altitude. Continuously, the control device (in the control step) controls the propulsion device to maintain the minimum output and controls the control surface to maintain the attitude angle and the traveling direction of the aircraft constant, when the airspeed of the aircraft becomes less than a predetermined landing judgment speed, for realizing a landing run.

[0018] In other words, whether shifting from the approaching flight control to the flare control should be done is judged by referring to "altitude from the ground" of the aircraft, and whether shifting from the flare control to the landing run control should be done is judged by referring to "airspeed" of the aircraft. Thereby, it is possible to realize a full automatic landing from the approaching flight to the run after the landing.

[0019] In accordance with the present invention, whether shifting from the takeoff run control to the rotation control should be done is judged by referring to "airspeed" of the aircraft, and whether shifting from the rotation control to the ascending flight control should be done is judged by referring to "altitude from the ground" of the aircraft. Thereby, it is possible to realize a full automatic takeoff from a ground run to an ascending flight. Further, whether shifting from the approaching flight control to the flare control should be done is judged by referring to "altitude from the ground" of the aircraft, and whether shifting from the flare control to the landing run control should be done is judged by referring to "airspeed" of the aircraft. Thereby, it is possible to realize a full automatic landing from the approaching flight to the run after the landing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The present invention will become more fully understood from the detailed description given hereinafter and the accompanying drawings given by way of illustration only, and thus are not intended as a definition of the limits of the present invention, and wherein:

[0021] FIG. 1 is a block diagram for explaining a functional structure of an automatic takeoff and landing apparatus relating to an embodiment of the present invention,

[0022] FIG. 2 is an explanatory view for explaining an automatic takeoff method of an aircraft using the automatic takeoff and landing apparatus relating to the embodiment of the present invention,

[0023] FIG. 3 is an explanatory view for explaining an automatic landing method of the aircraft using the automatic takeoff and landing apparatus relating to the embodiment of the present invention,

[0024] FIG. 4 is a flowchart for explaining the automatic takeoff method of the aircraft using the automatic takeoff and landing apparatus relating to the embodiment of the present invention,

[0025] FIG. 5 is a flowchart for explaining the automatic landing method of the aircraft using the automatic takeoff and landing apparatus relating to the embodiment of the present invention,

[0026] FIGS. 6A to 6C are explanatory views for explaining a procedure for determining a flare pitch angle used under a flare mode of the automatic landing method of the aircraft using the automatic takeoff and landing apparatus relating to the embodiment of the present invention,

[0027] FIG. 7 is another explanatory view for explaining the procedure for determining a flare pitch angle used under the flare mode of the automatic landing method of the aircraft using the automatic takeoff and landing apparatus relating to the embodiment of the present invention,

[0028] FIG. 8 is an explanatory view for explaining an outline of the automatic takeoff and landing apparatus relating to the embodiment of the present invention, and

[0029] FIG. 9 is an explanatory view for explaining a conventional automatic landing apparatus (ILS: Instrument Landing System).

PREFERRED EMBODIMENTS OF THE INVENTION

[0030] Hereinafter, an embodiment of the present invention will be described with reference to drawings.

[0031] First, with reference to FIG. 1 to FIG. 8, a structure of an automatic takeoff and landing apparatus relating to the present embodiment will be described. Here, the automatic takeoff and landing apparatus relating to the present embodiment is to realize a full automatic takeoff and landing of a fixed wing aircraft (hereafter, it is referred to as "aircraft") 1.

[0032] As shown in FIG. 1, the automatic takeoff and landing apparatus comprises a radio altimeter 2, an ADS (Air Data Sensor) 3, an attitude angle sensor 4, a magnetic bearing sensor 5, a highly accurate DGPS (Differential Global Positioning System) 6, a takeoff-landing command inputting section 7, control surface (an elevator 8, an aileron 9 and a rudder 10), a throttle 11, a control device 12, a ground facility 20 and the like.

[0033] The radio altimeter 2 is an altitude sensor in the present invention. The radio altimeter 2 measures a time period from when an electric wave is emitted to a ground from the airframe 1 to when the reflected electric wave returns, for measuring an altitude from the ground. Here, instead of the radio altimeter 2, it is possible to adopt a laser altimeter or the like as the altitude sensor.
The ADS 3 is an airspeed sensor in the present invention. The ADS 3 measures an airspeed of the aircraft 1 by a Pitot tube loaded on the airframe 1 or based on a static pressure, a dynamic pressure, an outside air temperature or the like. The attitude angle sensor 4 detects an attitude angle of the aircraft 1 (a roll angle, a pitch angle and a yaw angle). In the present embodiment, a gyro is used as the attitude angle sensor. The magnetic bearing sensor 5 is a bearing sensor in the present invention. The magnetic bearing sensor 5 detects a direction of the aircraft 1.

The highly accurate DGPS 6 detects a three-dimensional position of the aircraft 1 by receiving an information transmitted from GPS satellites 30 shown in FIG. 8 at a GPS receiver (not shown) loaded on the aircraft 1. Further, by receiving a correction information transmitted from the ground facility 20 at a correction signal receiver 13, the highly accurate DGPS 6 is capable of obtaining a highly accurate positional information by correcting the position detected through the GPS receiver. In other words, the highly accurate DGPS 6 and the correction signal receiver 13 constitute a position sensor in the present invention.

The takeoff and landing command inputting section 7 is a takeoff command inputting section and a landing command inputting section in the present invention. The takeoff and landing command inputting section 7 is used for inputting a takeoff command and a landing command to the control device 12. As the takeoff and landing command inputting section 7, when a person is on the aircraft 1, it is possible to use a group of various switches that can be operated by the person, and when a person is not on the aircraft 1, it is possible to use a receiver for receiving an inputting command from the ground.

The elevator 8, the aileron 9 and the rudder 10 constitute an control surface in the present invention. The control device 12 controls the elevator, the aileron 9 and the rudder 10 through actuators 14, the pitch angle, the roll angle and the yaw angle of the aircraft 1 are changed and a flight and a ground run are realized in a desired path.

The throttle 11 is used for operating an output of a propulsion device (an engine; not shown). The throttle 11 is controlled by the control device 12 through an actuator 14. The engine as the propulsion device is controlled by the control device 12 through the actuator 14 and the throttle 11.

The control device 12 is a microcomputer comprising a processing circuit, a memory for storing various control programs that are necessary for a flight control, various information and the like. The control device 12 controls the control surface and the propulsion device based on the information relating to the aircraft 1 (the altitude from the ground, the airspeed, the attitude angle, the direction, the position and the like). The takeoff command and the landing command.

Concretely, when the landing command is inputted at the takeoff and landing command inputting section 7, the control device 12 generates a control command for maximizing an output of the propulsion device. By controlling the throttle 11 according to the control command, the output of the propulsion device smoothly increases, and the output of the propulsion device is fixed at the maximum output. Further, in response to an input of the takeoff command, the control device 12 controls the control surface (the elevator 8, the aileron 9 and the rudder 10) to maintain the attitude angle and a traveling direction of the aircraft 1 constant. By controlling the propulsion device and the control surface in this way, it is possible to realize a takeoff run. In other words, the control device 12 comprises a takeoff run control section in the present invention.

Further, when the airspeed of the aircraft 1 exceeds a predetermined takeoff judgment speed, the control device 12 controls the control surface (the elevator 8) to perform a rotation. By controlling the control device in this way, it is possible to shift from a takeoff run mode to a rotation mode for starting a takeoff of the aircraft 1. In other words, the control device 12 comprises a rotation control section in the present invention.

Further, when a landing command is inputted at the takeoff and landing command inputting section 7, by controlling the propulsion device and the (the elevator 8, the aileron 9 and the rudder 10) based on the information relating to the aircraft 1 (the altitude from the ground, the airspeed, the attitude angle, the direction, the position and the like), an approaching flight along a predetermined approaching path is realized. In other words, the control device 12 comprises an approaching flight control section in the present invention.

Further, when the attitude of the aircraft 1 from the ground becomes less than a predetermined landing judgment altitude, the control device 12 generates a control command for minimizing the output of the propulsion device (to an idling state), and by operating the throttle 11 according to the control command, the propulsion device is put in the idling state to be fixed. Further, when the attitude of the aircraft 1 from the ground becomes less than the predetermined landing judgment altitude, the control device 12 controls the control surface (the elevator 8) to perform a flare. By controlling the propulsion device and the control surface in this way, it is possible to shift from an approaching flight mode to a flare mode and start the flare of the aircraft 1. In other words, the control device 12 comprises a flare control section in the present invention.

Further, when the airspeed of the aircraft 1 becomes less than a predetermined landing judgment speed, the control device 12 generates a control command for maintaining the output of the propulsion device minimum (the idling state), and by operating the throttle 11 according to the control command, the propulsion device is maintained in the idling state. Further, when the airspeed of the aircraft 1 becomes the predetermined landing judgment speed, the control device 12 controls the control surface (the elevator 8, the aileron 9 and the rudder 10) to maintain the attitude angle and the traveling direction of the aircraft 1 constant. By controlling the propulsion device and the control surface in this way, it is possible to realize a landing run. In other words, the control device 12 comprises a landing run control section in the present invention.

Upon a start of the takeoff run or a completion of the landing run, when the airspeed of the aircraft 1 becomes not more than a predetermined minimum threshold, the control device 12 controls the control surface and the propulsion device by regarding an input of the airspeed as zero.

As shown in FIG. 1 and FIG. 8, the ground facility 20 comprises a DGPS ground station 21 for generating the
correction information of a GPS, and a correction signal transmitter 22 for transmitting the generated correction information to the aircraft 1. The correction signal transmitter 22 transmits the correction information generated in the DGPS ground station 21 to the aircraft 1, the correction signal receiver 13 receives the correction information, and the positional information detected by the GPS receiver of the aircraft 1 is corrected based on the correction information. Thereby, it is possible to obtain a highly accurate positional information.

[0047] Next, with reference to FIG. 2 to FIG. 7, an automatic takeoff and landing method of the aircraft 1 using the automatic takeoff and landing apparatus relating to the present embodiment will be described.

[0048] [Automatic Takeoff Method]

[0049] First, with reference to FIG. 2 to FIG. 4, an automatic takeoff method of the aircraft 1 using the automatic takeoff and landing apparatus relating to the present embodiment will be described.

[0050] First, the propulsion device of the aircraft 1 is actuated, and various loaded devices such as the control device 12 and the like are actuated by turning the devices on. Then, by using the radio altimeter 2, the ADS 3, the attitude angle sensor 4, the magnetic bearing sensor 5 and the highly accurate DGPS 6, the altitude from the ground, the airspeed, the attitude angle, the direction and the position of the aircraft 1 are started (aircraft information obtaining step). Then, after the aircraft is moved to a predetermined airstrip, the takeoff command is inputted from the takeoff and landing command inputting section of the aircraft 1 (takeoff command inputting step). In response to the takeoff command, the control device 12 of the aircraft 1 controls the propulsion device and the control surface based on each information obtained in the aircraft information obtaining step (control step).

[0051] Hereinafter, contents of the control step will be described concretely.

[0052] (1) Takeoff Run Mode

[0053] In response to the takeoff command, the control device 12 of the aircraft 1 generates the control command for maximizing the output of the propulsion device. By operating the throttle 11 according to the control command, the output of the propulsion device is maximized and fixed to the maximum output, and the control surface is controlled to maintain the attitude angle and the traveling direction of the aircraft 1 constant (takeoff run control step).

[0054] Concretely, the control device 12 controls the elevator 8 and the aileron 9 for fixing the pitch angle to a predetermined running pitch angle and fixing a bank angle to 0 degree, and further the control device 12 controls the rudder 10 for regulating a running direction of the aircraft 1. By controlling the propulsion device and the control surface in this way, the aircraft 1 performs a straight takeoff run along an center line on the airstrip.

[0055] Next, the control device 12 of the aircraft 1 judges whether the airspeed of the aircraft 1 exceeds the predetermined takeoff judgment speed (rotation speed) or not (takeoff judgment step). When the control device 12 judges that the airspeed of the aircraft 1 is not more than the predetermined takeoff judgment speed in the takeoff speed judgment step, the control device 12 continues a control of the takeoff run control step.

[0056] (2) Rotation Mode

[0057] On the other hand, when the control device 12 judges that the airspeed of the aircraft 1 exceeds the predetermined takeoff judgment speed, the control device 12 controls the control surface to perform the rotation (rotation control step).

[0058] Concretely, when the airspeed of the aircraft 1 exceeds the takeoff judgment speed, the control device 12 controls the elevator 8 to change the pitch angle to a predetermined rotation pitch angle. Further, the control device 12 controls the aileron 9 and the rudder 10 in the same way as the takeoff run control step, and maintains the output of the propulsion device maximum. By controlling the propulsion device and the control surface in this way, the aircraft 1 performs the rotation and starts taking off.

[0059] Next, the control device 12 of the aircraft 1 judges whether the attitude of the aircraft 1 from the ground exceeds the predetermined takeoff judgment altitude or not, and judges whether an altitude change rate (ascending rate) of the aircraft 1 exceeds a predetermined takeoff judgment ascending rate or not (takeoff altitude judgment step). In the takeoff altitude judgment step, when the control device 12 judges that the attitude of the aircraft 1 from the ground is not more than the predetermined takeoff judgment altitude or when the control device 12 judges that the ascending rate of the aircraft 1 is not more than the predetermined takeoff judgment ascending rate, the control device 12 continues a control of the rotation control step.

[0060] (3) Ascending Flight Mode

[0061] On the other hand, in the takeoff altitude judgment step, when the control device 12 judges that the attitude of the aircraft 1 from the ground exceeds the predetermined takeoff judgment altitude and also judges that the ascending rate of the aircraft 1 exceeds the predetermined takeoff judgment ascending rate, the control device 12 controls the propulsion device and the control surface to make the aircraft 1 perform an ascending flight up to a predetermined target altitude with a predetermined ascending rate maintained (ascending flight control step).

[0062] Concretely, the control device 12 controls the elevator 8 for maintaining the predetermined ascending rate and controls the aileron 9 for making the aircraft 1 perform a straight flight along the center line on the airstrip, and further the control device 12 controls the rudder 10 for correcting aircraft heading, and maintains the output of the propulsion device maximum. By controlling the propulsion device and the control surface in this way, it is possible to complete a takeoff of the aircraft 1 and start a cruising flight at the target altitude.

[0063] [Automatic Landing Method]

[0064] Next, with reference to FIG. 3 and FIG. 5 to FIG. 7, an automatic landing method of the aircraft 1 using the automatic takeoff and landing apparatus relating to the present embodiment will be described.

[0065] First, during the predetermined cruising flight, the control device 12 of the aircraft 1 detects the altitude from
the ground, the airspeed, the attitude angle, the flight direction and the position of the aircraft 1, by using the radio altimeter 2, the ADS 3, the attitude angle sensor 4, the magnetic bearing sensor 5 and the highly accurate DGPS 6 (aircraft information obtaining step). Then, the landing command is inputted from the takeoff and landing command inputting section 7 (landing command inputting step). In response to the landing command, the control device 12 of the aircraft 1 controls the propulsion device and the control surface based on each information obtained in the aircraft information obtaining step (control step).

[0066] Hereinafter, contents of the control step will be described.

[0067] (1) Glide Slope Mode

[0068] In response to the landing command, the control device 12 of the aircraft 1 realizes the approaching flight along the predetermined approaching path by controlling the propulsion device and the control surface (approaching flight control step). Concretely, the control device 12 controls the aileron 9 to make the aircraft 1 perform the straight flight along the center line on the airstrip, controls the rudder 10 to correct the aircraft heading, and controls the elevator 8 to realize the approaching flight along the approaching path shown in FIG. 3 (path taking a predetermined approaching path angle from an approaching target point). At this time, the control device 12 maintains the output of the propulsion device equal to the output in the cruising flight.

[0069] Next, the control device 12 of the aircraft 1 judges whether the altitude of the aircraft 1 from the ground becomes less than the landing judgment altitude (flare start altitude) or not (landing altitude judgment step). In the landing altitude judgment step, when the control device 12 judges that the altitude of the aircraft 1 from the ground is not less than the predetermined landing judgment altitude, the control device 12 continues a control of the approaching flight control step.

[0070] (2) Flare Mode

[0071] On the other hand, in the landing altitude judgment step, when the control device 12 judges that the altitude of the aircraft 1 from the ground is less than the predetermined landing judgment altitude, the control device 12 controls the propulsion device to provide the minimum output and controls the control surface to perform the flare (flare control step).

[0072] Concretely, the control device 12 generates the control command for minimizing the output of the propulsion device (idling state), and by operating the throttle according to the control command, the propulsion device is put in the idling state to be fixed, and the control device 12 controls the elevator 8 to change the pitch angle to a predetermined flare pitch angle. By controlling the propulsion device and the control surface in this way, the aircraft 1 starts the flare. Here, in the flare control step, the control device 12 controls the aileron 9 to fix the bank angle to 0 degree, and controls the rudder 10 to regulate a flying direction of the aircraft 1.

[0073] Further, in the flare step, as shown in FIG. 6A, a pitch angle command rate is generated based on the altitude of the aircraft 1 from the ground and an altitude change rate of the aircraft 1, and the flare pitch angle is calculated by integrating the pitch angle command rate.

[0074] For example, when the altitude of the aircraft 1 from the ground is a comparatively high altitude, it is possible to generate the pitch angle command rate according to a graph shown in FIG. 6B. When the altitude change rate is negative, the pitch angle command rate is set to a comparatively large value to enhance a flare effect, and when the altitude change rate is within a range where the value is changed from negative to positive, the pitch angle command rate is set to an approximately medium value. Further, when the altitude change rate is positive, the pitch angle command rate is set to zero for suppressing a flare.

[0075] Further, when the altitude of the aircraft 1 from the ground is a low altitude, it is possible to generate the pitch angle command rate based on a graph shown in FIG. 6C. When the altitude from the ground is comparatively low and the altitude change rate is negative, a large value is set to the pitch angle command rate for making the aircraft 1 perform the flare immediately. Further, when the altitude change rate is positive (or negative but approximate to positive), the pitch angle command rate is set to zero for suppressing the flare.

[0076] Further, it is also possible to generate the pitch angle command rate according to a graph shown in FIG. 7. When the altitude of the aircraft 1 from the ground is a low altitude and the altitude change rate is negative, a large value is set to the pitch angle command rate for making the aircraft 1 perform the flare immediately. On the other hand, when the altitude of the aircraft 1 from the ground is a high altitude and the altitude change rate is negative, a comparatively low value is set to the pitch angle command rate for making the aircraft 1 perform the flare moderately. Then, while the altitude change rate is changed from negative to positive, the pitch angle command rate is decreased, and when the altitude change rate becomes positive, the pitch angle command rate is set to zero for suppressing the flare.

[0077] While such a flare control step is being implemented, the control device 12 of the aircraft 1 judges whether the airspeed of the aircraft 1 becomes less than the predetermined landing judgment speed or not (landing speed judgment step). In the landing speed judgment step, when the control device 12 judges that the airspeed of the aircraft 1 is not less than the predetermined landing judgment speed, the control device 12 continues a control of the flare control step.

[0078] (3) Landing Run Mode

[0079] On the other hand, in the landing speed judgment step, when the control device 12 judges that the airspeed of the aircraft 1 is less than the predetermined landing judgment speed, the control device 12 controls the propulsion device to maintain the minimum output, and controls the control surface to maintain the attitude angle of the aircraft 1 constant (landing run control step).

[0080] Concretely, the control device 12 generates the control command for maintaining the output of the propulsion device minimum (idling state), and by operating the throttle according to the control command, the propulsion device is maintained in the idling state. Further, the control device 12 controls the elevator 8 and the aileron 9 to fix the pitch angle to a predetermined running pitch angle and to fix
the bank angle to zero, and further the control device 12 controls the rudder 10 to regulate the flying direction and the running direction of the aircraft 1. By controlling the propulsion device and the control surface in this way, after the aircraft 1 lands on the airstrip, the aircraft 1 performs the straight landing run along the center line on the airstrip.

[0081] As described above, in the automatic takeoff and landing apparatus relating to the present embodiment, in response to the takeoff command, the control device 12 of the aircraft 1 controls the propulsion device of the aircraft 1 to provide the maximum output, and controls the control surface to maintain the altitude angle and the traveling direction of the aircraft 1 constant, for realizing the takeoff run. Next, when the airspeed of the aircraft 1 exceeds the predetermined takeoff judgment speed (rotation speed), the control device 12 controls the control surface to perform the rotation. Continuously, when the altitude of the aircraft 1 from the ground exceeds the predetermined takeoff judgment altitude and the ascending rate of the aircraft 1 exceeds the predetermined takeoff judgment ascending rate, the control device 12 controls the propulsion device and the control surface to make the aircraft 1 perform the ascending flight up to the predetermined target altitude with the predetermined ascending speed maintained.

[0082] In other words, whether shifting from the takeoff run mode to the rotation mode should be done is judged by referring to “airspeed” of the aircraft 1, and whether shifting from the rotation mode to the ascending flight mode should be done is judged by referring to “altitude from ground” of the aircraft 1. Thereby, it is possible to realize a full automatic takeoff from a ground run to an ascending flight. Furthermore, at this time, since a judgment of a takeoff (whether a takeoff is completed and it is possible to shift to the ascending flight) is done by referring to “altitude from ground” of the aircraft 1, it is not necessary to use a landing gear switch for the judgment of the takeoff. Therefore, it is possible to realize the full automatic takeoff without using a complicated loaded device or a complicated control logic.

[0083] Further, in the automatic takeoff and landing apparatus relating to the present embodiment as described above, in response to the landing command, the control device 12 of the aircraft 1 controls the propulsion device and the control surface to realize the approaching flight along the predetermined approaching path. Next, when the altitude of the aircraft 1 from the ground is less than the predetermined landing judgment altitude (flare start altitude), the control device 12 controls the propulsion device to provide the minimum output and controls the control surface to perform the flare. Continuously, when the airspeed of the aircraft 1 becomes less than the predetermined landing judgment speed, the control device 12 controls the propulsion device to maintain the minimum output and controls the control surface to maintain the altitude angle and the traveling direction of the aircraft 1 constant, for realizing the landing run.

[0084] In other words, whether shifting from the approaching flight mode to the flare mode should be done is judged by referring to “altitude from ground” of the aircraft 1, and whether shifting from the flare mode to the landing run mode should be done is judged by referring to “airspeed” of the aircraft 1. Thereby, it is possible to realize a full automatic landing from the approaching flight to the run after the landing.

[0085] Further, in the automatic takeoff and landing apparatus relating to the present embodiment as described above, the highly accurate DGPS 6 is used as the position sensor. Therefore, it is possible to detect a position of the aircraft 1 highly accurately and it is possible to control the attitude and the speed of the aircraft based on the highly accurate positional information. Thereby, it is not necessary to have a conventional radio navigation facility as shown in FIG. 9.

[0086] Here, values of the takeoff judgment speed (rotation speed), the takeoff judgment altitude, the takeoff judgment change rate, the landing judgment altitude (flare start altitude) and the landing judgment airspeed used in the above-described embodiment may be suitably changed according to a size of the airframe of the aircraft 1 and flight properties of the aircraft 1.

[0087] Further, in the above-described embodiment, as shown in FIG. 6A to FIG. 7, described is the case that the pitch angle command rate is generated based on the altitude of the aircraft 1 from the ground and the altitude change rate, and the flare pitch angle is calculated by integrating the pitch angle command rate. However, the procedure for calculating (determining) the flare pitch angle is not limited to this case.

[0088] Further, the present invention can be applied to not only the automatic takeoff and landing apparatus of a manned fixed wing aircraft, but to an automatic takeoff and landing apparatus of an unmanned fixed wing aircraft.

What is claimed is:

1. An automatic takeoff apparatus for an aircraft comprising:
 - an altitude sensor for measuring an altitude of the aircraft from a ground;
 - an airspeed sensor for measuring an airspeed of the aircraft;
 - an attitude angle sensor for detecting an attitude angle of the aircraft;
 - a direction sensor for detecting a direction of the aircraft;
 - a takeoff command inputting section for inputting a takeoff command; and
 - a control device for controlling a propulsion device and a control surface of the aircraft based on the altitude of the aircraft from the ground, the airspeed of the aircraft, the attitude angle of the aircraft, the direction of the aircraft and the takeoff command, wherein the control device comprises:
 - a takeoff run control section for realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command;
 - a rotation control section for controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed; and
 - an ascending flight control section for controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predeter-
mined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined takeoff judgment altitude.

2. An automatic landing apparatus for an aircraft comprising:

an altitude sensor for measuring an altitude of the aircraft from a ground;
an airspeed sensor for measuring an airspeed of the aircraft;
an attitude angle sensor for detecting an attitude angle of the aircraft;
a direction sensor for detecting a direction of the aircraft;
a position sensor for detecting a position of the aircraft;
a landing command inputting section for inputting a landing command; and

a control device for controlling a propulsion device and an control surface of the aircraft, based on the altitude of the aircraft from the ground, the airspeed of the aircraft, the attitude angle of the aircraft, the direction of the aircraft, the position of the aircraft, the takeoff command and the landing command,

wherein the control device comprises:

takeoff run control section for realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command;

a rotation control section for controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed;

an ascending flight control section for controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined takeoff judgment altitude;

an approaching flight control section for realizing an approaching flight along a predetermined approaching path by controlling the propulsion device and the control surface, in response to the landing command;

takeoff command inputting section for inputting a takeoff command;

a flare control section for controlling the propulsion device to provide a minimum output and for controlling the control surface to perform a flare when the altitude of the aircraft from the ground becomes less than a predetermined landing judgment altitude; and

a landing run control section for realizing a landing run by controlling the propulsion device to maintain the minimum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant when the airspeed of the aircraft becomes less than a predetermined landing judgment speed.

3. An automatic takeoff and landing apparatus for an aircraft comprising:

an altitude sensor for measuring an altitude of the aircraft from a ground;
an airspeed sensor for measuring an airspeed of the aircraft;
an attitude angle sensor for detecting an attitude angle of the aircraft;
a direction sensor for detecting a direction of the aircraft;
a position sensor for detecting a position of the aircraft;
takeoff command inputting section for inputting a takeoff command;

a landing command inputting section for inputting a landing command; and

a control device for controlling a propulsion device and an control surface of the aircraft, based on the altitude of the aircraft from the ground, the airspeed of the aircraft, the attitude angle of the aircraft, the direction of the aircraft, the position of the aircraft, the takeoff command and the landing command,

wherein the control device comprises:

takeoff run control section for realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command;

a rotation control section for controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed;

an ascending flight control section for controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined takeoff judgment altitude;

an approaching flight control section for realizing an approaching flight along a predetermined approaching path by controlling the propulsion device and the control surface, in response to the landing command;

a flare control section for controlling the propulsion device to provide a minimum output and for controlling the control surface to perform a flare when the altitude of the aircraft from the ground becomes less than a predetermined landing judgment altitude; and

a landing run control section for realizing a landing run by controlling the propulsion device to maintain the minimum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant when the airspeed of the aircraft becomes less than a predetermined landing judgment speed.

4. An automatic takeoff method for an aircraft comprising:

obtaining information relating to an altitude of the aircraft from a ground, an airspeed of the aircraft, an attitude angle of the aircraft and a direction of the aircraft;

inputting a takeoff command; and

to control a propulsion device and a control surface of the aircraft based on each of the obtained information and the takeoff command,

wherein the controlling includes:

realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command;

controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed; and

controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to
a predetermined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined take-off judgment altitude.

5. An automatic landing method for an aircraft comprising:

obtaining information relating to an altitude of the aircraft from a ground, an airspeed of the aircraft, an attitude angle of the aircraft, a direction of the aircraft and a position of the aircraft;

inputting a landing command; and

controlling a propulsion device and an control surface of the aircraft, based on each of the obtained information and the landing command,

wherein the controlling includes:

realizing an approaching flight along a predetermined approaching path by controlling the propulsion device and the control surface, in response to the landing command;

controlling the propulsion device to provide a minimum output and controlling the control surface to perform a flare when the altitude of the aircraft from the ground becomes less than a predetermined landing judgment altitude; and

realizing a landing run by controlling the propulsion device to maintain the minimum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant when the airspeed of the aircraft becomes less than a predetermined landing judgment speed.

6. An automatic takeoff and landing method for an aircraft comprising:

obtaining information relating to an altitude of the aircraft from a ground, an airspeed of the aircraft, an attitude angle of the aircraft, a direction of the aircraft and a position of the aircraft;

inputting a takeoff command;

inputting a landing command; and

controlling a propulsion device and an control surface based on each of the obtained information and one of the takeoff command and the landing command,

wherein the controlling includes:

realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant, in response to the takeoff command;

controlling the control surface to perform a rotation when the airspeed of the aircraft exceeds a predetermined takeoff judgment speed;

controlling the propulsion device and the control surface to make the aircraft perform an ascending flight up to a predetermined target altitude with a predetermined ascending speed maintained, when the altitude of the aircraft from the ground exceeds a predetermined takeoff judgment altitude;

realizing an approaching flight along a predetermined approaching path by controlling the propulsion device and the control surface, in response to the landing command;

controlling the propulsion device to provide a minimum output and controlling the control surface to perform a flare when the altitude of the aircraft from the ground becomes less than a predetermined landing judgment altitude; and

realizing a landing run by controlling the propulsion device to maintain the minimum output and by controlling the control surface to maintain the attitude angle and a traveling direction of the aircraft constant when the airspeed of the aircraft becomes less than a predetermined landing judgment speed.

* * * * *