(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102558510 B
(45) 授权公告日 2015.05.20

(21) 申请号 201110369644.4
(22) 申请日 2007.04.26
(30) 优先权数据
 60/796,197 2006.05.01 US
 60/907,002 2007.03.16 US
(62) 分案原申请数据
 20078001575.3 2007.04.26
(73) 专利权人 DSM IP 财产有限公司
 地址 荷兰海尔伦
(72) 发明人 保卢斯·安东尼厄斯·玛丽亚·斯蒂曼
 贝尔·雅各布斯·克斯特拉
 马尔科·马库斯·马特乌斯·德里森
 德布拉·林恩·菲什·雷普科
 迈尔文·祖斯特曼
(74) 专利代理机构 北京东方亿思知识产权代理有限责任公司 11258
 代理人 李剑

(51) Int. Cl.
 C08G 59/62(2006.01)
 C08F 283/10(2006.01)
 G03F 7/038(2006.01)
 G03F 7/00(2006.01)

(56) 对比文件
 EP 0938026 A1, 1999.08.25,
 CN 1354763 A, 2002.06.19,
 CN 1422394 A, 2003.06.04,
 CN 1316066 A, 2007.10.03,

审查员 项春

(54) 发明名称
 辐射固化树脂组合物及应用其的快速三维成像方法

(57) 摘要
 本发明涉及辐射固化树脂组合物及应用其的快速三维成像方法。辐射固化树脂组合物，包含阳离子聚合成分，阳离子光引发剂，羟基成分，抗冲改性剂，其中，树脂组合物在完全固化后的模量大于 2GPa，屈服应力小于 70MPa，以及 Kc 值大于 1.3MPa(m)^{1/2}或者 Izod 值大于 0.45J/cm。该树脂组合物可优先用于三维物体的制造中。
1. 一种辐射固化树脂组合物，包含：
 a. 阳离子可聚合成分，其包含至少一个环氧基团；
 b. 阳离子光引发剂；
 c. 具有至少 2 个羟基的多元醇，但其羟基个数不为 3；
 d. 抗冲改性剂；
 e. 具有至少一个（甲基）丙烯酸酯基团的自由基可聚合化合物；
 f. 自由基光引发剂。

其中，所述组合物的阳离子可聚合基 / 羟基的摩尔比在 2~5 的范围内，其中于固定所述阳离子可聚合基 / 羟基的摩尔比的羟基的量只考虑所述阳离子可聚合成分中的羟基，所述具有至少 2 个羟基的多元醇中的羟基以及如果所述抗冲改性剂包含固化后分层成橡胶状区域的可湿溶化合物的话，所述固化后分层成橡胶状区域的可湿溶化合物中的羟基。

其中，所述组合物的阳离子可聚合基 / 自由基可聚合基的摩尔比在 4.5~15 的范围内，以及

其中，所述树脂组合物在完全固化后具有 > 2GPa 的 E- 模量；< 70MPa 的屈服应力；以及 > 1.3MPa(m)^1/2 的 K1c 值或者 > 0.45J/cm 的 Izod 值。

2. 根据权利要求 1 所述的组合物，其中，所述具有至少 2 个羟基的多元醇是含有至少一个伯羟基的多元醇。

3. 根据权利要求 1 或 2 所述的组合物，其中，所述具有至少 2 个羟基的多元醇包括 2 个伯羟基。

4. 根据权利要求 1 至 2 中任一项所述的组合物，其中，所述具有至少 2 个羟基的多元醇是烷氧基化的芳香族二醇。

5. 根据权利要求 1 至 2 中任一项所述的组合物，其中，所述具有至少 2 个羟基的多元醇选自以下构成的组：分子量在 200 至 10,000 之间的聚氧化乙烯和聚氧化丙烯二醇；不同分子量的聚四亚甲基二醇；聚 (氧化乙烯 - 氧化丁烯) 无规或嵌段共聚物；羟基封端的聚酯和羟基封端的聚内酯；羟基官能化的聚醚二烯；脂肪族聚碳酸酯多元醇；以及由下面所示的化学结构表示的烷氧基化的芳香族二醇：

 ![化学结构](image)

 其 中 R3 = -CH3 -、- C(CH3)2 -、- C(F3) -、- CC1 -、- O-、- S-、 而 R4 = -CH3CH2 - 或 -CH3CH(CH3) -，n 和 m 是 1 至 10。

6. 根据权利要求 5 所述的组合物，其中，所述羟基官能化的聚醚二烯为羟基官能化的聚丁二烯。

7. 根据权利要求 5 所述的组合物，其中，所述脂肪族聚碳酸酯多元醇为脂肪族聚碳酸酯二醇。

8. 根据权利要求 1 至 2 中任一项所述的组合物，其中，所述具有至少 2 个羟基的多元醇为乙氧基化的双酚 A。

9. 根据权利要求 1 所述的组合物，其中，所述组合物包括 1~30wt% 的抗冲改性剂。

10. 根据权利要求 9 所述的组合物，其中，所述抗冲改性剂选自下列构成的组：基于乙
权利要求书

11. 根据权利要求10所述的组合物，其中所述丙烯酸酯型为聚丙烯酸丁酯。

12. 根据权利要求10所述的组合物，其中所述抗冲改性剂选自苯乙烯/丁二烯/苯乙烯嵌段共聚物（SBS）、苯乙烯/丁二烯嵌段共聚物（SIS）、以及苯乙烯/丁二烯/苯乙烯嵌段共聚物及苯乙烯/丁二烯/苯乙烯嵌段共聚物的氢化形式SEBS及SEPS。

13. 根据权利要求10所述的组合物，其中所述弹性体被修饰以包含包括环氧基、氧化环丁烷基、羧基或巯基的反应性基团。

14. 根据权利要求9所述的组合物，其中，所述抗冲改性剂包含预先制备的弹性体颗粒。

15. 根据权利要求14所述的组合物，其中，所述弹性体颗粒含有交联结构。

16. 根据权利要求15所述的组合物，其中，所述弹性体颗粒是一种包括橡胶核和玻璃状壳的核-壳抗冲改性剂。

17. 根据权利要求16所述的组合物，其中，所述玻璃状壳包括乙烯基芳香化合物、乙烯基氟化物或者（甲基）丙烯酸酯的共聚物的反应产物。

18. 根据权利要求17所述的组合物，其中，所述玻璃状壳包括乙烯基芳香化合物、乙烯基氟化物或者（甲基）丙烯酸酯的接枝共聚物的反应产物。

19. 根据权利要求17所述的组合物，其中，所述玻璃状壳包含反应性基团，所述反应性基团包括环氧基团、氧化环丁烷基、羟基、乙烯基或丙烯酸酯基团。

20. 根据权利要求16至19中任一项所述的组合物，其中，所述橡胶核包括可选交联的聚丁二烯、可选交联的聚异戊二烯、可选交联的丙烯酸橡胶、可选交联的苯乙烯/丁二烯无规共聚物、可选交联的苯乙烯/丁二烯无规共聚物或可选交联的聚硅氧烷。

21. 根据权利要求1,2,9至19中任一项所述的组合物，其中，所述抗冲改性剂包括平均颗粒直径为10nm至10μm的弹性体颗粒。

22. 根据权利要求1,2,9至19中任一项所述的组合物，其中，所述组合物含有1-30wt%的所述自由基可聚合化合物和0.1-15wt%的所述自由基光引发剂。

23. 根据权利要求22所述的组合物，其中，所述自由基可聚合化合物包括多官能团丙烯酸酯。

24. 根据权利要求1,2,9至19中任一项所述的组合物，其中，所述组合物包括1-15wt%的具有至少一个环氧基和至少一个（甲基）丙烯酸酯基的成分。

25. 根据权利要求1,2,9至19中任一项所述的组合物，其中，所述组合物包括0.2至0.6之间的芳香族和脂环族含量，所述芳香族和脂环族含量通过如下计算：将100g所述组合物中的每一成分的重量乘以组合物每一成分的芳香族/脂环族的重量分数后相加。

26. 根据权利要求1,2,9至19中任一项所述的组合物，其中，所述组合物包含填料。

27. 一种辐射固化组合物，包含：
 a. 30-90wt%的阳离子可聚合成分；
 b. 0.1-15wt%的一种或多种阴离子光引发剂；
c. 5-30wt%的具有至少2个羟基的多元醇，但其羟基数不为3；
d. 1-30wt%的抗冲改性剂；
e. 3-35wt%的具有至少一个(甲基)丙烯酸酯基团的自由基可聚合化合物；
f. 0.1-15wt%的一种或多种自由基光引发剂；

其中，所述组合物的阳离子可聚合基/羟基的摩尔比在2-5的范围内，其中用于确定所述阳离子可聚合基/羟基的摩尔比的量只考虑所述阳离子可聚合成分中的羟基，所述具有至少2个羟基的多元醇中的羟基以及如果所述抗冲改性剂包含固化后分层成橡胶状区域的可湿溶化合物的话，所述固化后分层成橡胶状区域的可湿溶化合物中的羟基，

其中，所述组合物的阳离子可聚合基/自由基可聚合基的摩尔比在4.5-15的范围内，以及

其中，所述组合物的芳香族和脂环族含量为0.2至0.6之间，所述芳香族和脂环族含量通过如下计算：将100g所述组合物中的每一分的重量乘以组合物每一成分的芳香族/脂环族的重量分数后相加。

28. 根据权利要求27所述的辐射固化组合物，其中，所述辐射固化组合物包含：
a. 40-80wt%的阳离子可聚合成分；
b. 1-10wt%的一种或多种阳离子光引发剂；
c. 5-25wt%的具有至少2个羟基的多元醇，但其羟基数不为3；
d. 1-30wt%的抗冲改性剂；
e. 3-20wt%的官能度在2至6之间的多官能丙烯酸酯；
f. 1-10wt%的一种或多种自由基光引发剂。

29. 根据权利要求1,2,9-19,27至28中任一项所述的组合物，其中，所述组合物的阳离子可聚合基/羟基的摩尔比在2.4-4.5的范围内，且所述组合物的阳离子可聚合基/自由基可聚合基的摩尔比在5-9的范围内。

30. 一种用于制造三维物件的方法，包括以下步骤：
 (1) 将一薄层的组合物涂覆在表面上；
 (2) 将成像的所述薄层暴露于光化辐射以形成成像的横断面，其中所述辐射的强度和时间足以充分固化暴露区域中的所述薄层；
 (3) 将一薄层的所述组合物涂覆在之前暴露的成像横断面上；
 (4) 将来自步骤(3)的成像的所述薄层暴露于光化辐射以形成另外的成像横断面，其中所述辐射的强度和时间足以充分固化所述暴露区域中的薄层并且使其粘附至所述之前暴露的成像横断面；
 (5) 重复步骤(3)和(4)足够多次以形成所述三维制品，其中所述组合物根据权利要求1,2,9-19,27-28中的任一项来限定。
辐射固化树脂组合物及应用其的快速三维成像方法

[0001] 本申请是如下申请的分案申请：发明专利申请第200780001575.3号，申请日2007年4月26日，发明名称“辐射固化树脂组合物及应用其的快速三维成像方法”

技术领域
[0002] 本发明涉及辐射固化组合物，该组合物特别适用于通过诸如立体平版印刷、3D印刷和数字光处理的逐层成像方法（layerwise imaging method）生产三维形状的物件，本发明还涉及用于生产固化产品的工艺，并且特别涉及从该组合物采用立体平版印刷技术生产具有优异机械性能的三维形状物件的方法。

背景技术
[0003] 采用立体平版印刷技术生产复杂形状的三维物件人们已经知道很多年。在此技术中，借助于循环操作，即两个步骤（a）和（b）的顺序交替，从辐射固化组合物形成希望形状的物体。在步骤（a）中，在对应于要形成的成型物件的希望的横截面积的表面区域内，借助于合适的成像辐射，优选来自计算机控制扫描激光束的成像辐射，来固化一层辐射固化的组合物，其中该组合物的一个边界就是该组合物的表面，在步骤（b）中，该固化的层被覆盖上新的一层辐射固化组合物，随后重复步骤（a）和（b）的顺序，直到完成希望形状的所谓生坯模型（green model）。该生坯模型通常并没有完全固化，因此可以经过后固化，尽管该后固化不是必需的。

[0004] 通过等效的方法，可以用成影像的方式通过喷涂或多种喷墨方法喷射光敏聚合物。在喷涂该光敏聚合物过程中，或在加完该光敏聚合物之后，可以提供光化学暴露以引发聚合。可以喷射或施加多种物质（例如非反应性墨、弱反应性光敏聚合物、不同物理性质的光敏聚合物、具有不同颜色或成色物质的光敏聚合物等）以提供支持（support）或者变换的（alternate）固化性能。一种替换方法是数字光处理，其中借此可以同时辐射固化一个整个的层。

[0005] 生坯模型的机械强度（弹性模量、断裂强度），也称生坯强度，是生坯模型的一个重要属性，其主要由与所用的立体平版印刷装置类型相组合使用的立体平版印刷树脂组合物的性质以及在部件制造过程中提供的暴露（exposure）程度来决定。立体平版印刷树脂组合物的其他重要属性包括：对于固化过程中所采用辐射的高敏感性，以及卷曲或者收缩变形的最小量，允许生坯模型的高的形状精确度（shape definition）。此外，举例来说，在加工过程中应该相对容易地涂覆上一个新层的立体平版印刷树脂组合物。当然，不仅是生坯模型，而且更重要的是，最终的固化物件应该具有满足最终用途的需要的最佳机械特性。

[0006] 这个技术领域正朝着具有更好机械特性以便优化商品材料（例如聚丙烯和工程类聚合物，诸如聚酰胺（PA6、PA66，…）以及聚酯（PET、PBT））的模拟性能的组合物的方向发展。对更快的固化和加工速度也存在需要，以致使缩短构造一个部件的时间。这导致了新的立体平版印刷机的产生，该机器具有能提供高能量输出、快速激光扫描和更快的再涂敷
图示的固体激光器。与老式传统机器的 200-300mW 相比，这些新机器提供一种能量为 800mW
左右或更高的 UV 光。此外，扫描时间也减少 3 至 4 倍。由于在制造过程中树脂和部件的
聚合放热，这些高能量，高扫描速度和短重涂时间导致了更高的温度。典型的温度已经升至 50
至 90°C，这可能导致部件的变形和产生过多的颜色。

[0007] 已知有几个专利公开文献披露了可以用于快速原型技术（rapid prototyping）
的，旨在提高三维物件的机械性能的树脂组合物。这些专利公开出版物的例子有EP831127、
WO04113395。有时，制得的物件具有高的（拉伸）模量，但是这些物件具有低的硬度/冲击
强度。其他参考文献提供了具有高冲击强度的物件，但是它们具有很低的模量。现有文献
中没有披露在完全固化后得到既有高模量又有高冲击强度的的物件的树脂组合物。

发明内容

[0008] 本发明的目的之一是提供在完全固化后表现出高的（拉伸）模量和高硬度（由高冲击
强度和/或裂纹扩展高度抗性（断裂韧性）体现）的树脂组合物。

[0009] 本发明的第二个目的是提供用于生产具有复杂几何形状和优异机械性能的三维
部件的光固化树脂组合物。

[0010] 本发明的另一个目的是提供可以用于快速生产耐用的定制（custom）或半定制
(semi-custom) 材件的光固化树脂组合物。

[0011] 本发明的进一步的目的是提供便于用于在立体平版印刷机中的树脂组合物。

[0012] 本发明涉及辐射固化组合物，包含；

[0013] a. 阳离子可聚合成分；

[0014] b. 阳离子光引发剂；

[0015] c. 羟基成分；

[0016] d. 抗冲击性剂；

[0017] 其中，完全固化后的树脂组合物的拉伸模量大于 2GPa；屈服应力小于 70MPa；以及
KIC 值大于 1.3MPa(m)1/2 或者 Izod 值大于 0.45J/cm。

[0018] 本发明的另一种实施方式涉及辐射固化组合物，包含；

[0019] a. 5-90wt%的环氧官能团成分；

[0020] b. 0.1-10wt%的阳离子光引发剂；

[0021] c. 1-35wt%的多醇；

[0022] d. 1-30wt%的核-壳颗粒；

[0023] e. 1-35wt%具有至少一个（甲基）丙烯酸酯基团的化合物；

[0024] f. 0.1-15wt%的自由基型光引发剂（radical photoinitiator）；

[0025] g. 0-25wt%的具有至少一个自由基性可固化基团和一个阳离子可固化基团的化
合物；

[0026] 其中，该组合物的环氧基/羟基比率为 2-5 的范围内，环氧基/（甲基）丙烯酸酯
基比率为 4.5-15 的范围内，芳香族/脂环族含量比在 0.2 至 0.6 之间。
具体实施方式

[0028] (A) 阳离子可聚合成分
[0029] (A1) 环氧化物
[0030] 阳离子可聚合成分优选含有带至少一个环氧基的成分。根据本发明，用于该组合物中的带环氧基成分是分子中具有平均至少一个 1,2-环氧（化物）基团的化合物。“环氧化物”或“环氧基”是指三元环：

\[
\begin{align*}
&\text{C-C}< \\
&\text{\backslash} \\
&\text{O} \\
\end{align*}
\]

[0031] 该带环氧基的成分，也称为环氧物质，是阳离子可固化化的，就是说环氧基的聚合和 / 或交联以及其他反应由阳离子引发。这些物质可以是单体、低聚物或者聚合物，有时被称为“树脂”。这些物质可以具有脂肪族、芳香族、脂环族、芳基脂或者杂环结构；它们包括作为单独基团的环氧基团，或者这些基团构成脂环或杂环系统的一部分。这些类型的环氧树脂一般是一知的并且可商购得到。

[0033] 带环氧基物质 (a) 应该包括至少一种液体成分，以便物质组合后是液体。这样，该带环氧基物质可以是单体液体环氧物质、液体环氧物质的组合，或者液体环氧物质与可溶于该液体的固体环氧物质的组合。

[0034] 适合的环氧物质的例子包括聚羧酸的聚缩水甘油酯和聚甲基缩水甘油酯、或者聚醚的聚环氧乙烷醚。该聚羧酸可以是脂肪族酸，例如，戊二酸、己二酸等；脂环酸，例如，四氢钛酸；或者芳香族酸，例如，酚酸、苯酚酸、偏苯三酸或者苯并四酸。聚醚可以是聚四氢呋喃、聚醚和使用例如偏苯三酸和多醇（例如，甘油或 2,2-二（4-羟基环己基）丙烷）的羧基封端的聚醚。

[0035] 适合的环氧物质还包括聚缩水甘油酯或者聚甲基缩水甘油酯，它们可通过具有至少一个游离醇羟基和 / 或酚羟基的化合物与适合取代的表氯醇（环氧氯丙烷）之间的反应得到。这些醇可以是无环醇，例如，乙二醇、二乙二醇、以及更高级的聚氧乙烯二醇（也称聚乙二醇）；脂环族醇，例如，1,3-或 1,4-二羟基环己烷、2（4-羟基环己基）甲烷、2,2-二（4-羟基环己基）丙烷；或者含有芳环的醇，例如，N,N-二（2-羟乙基）苯胺或者 p,p' 二（2-羟乙基氨基）二苯甲烷。

[0036] 环氧化合物还可以衍生自单体如，例如，衍生自苯酚二苯或苯二甲基，或者它们可以基于多环酚，例如，二（4-羟苯基）甲烷（双酚 F）, 2,2-双（4-羟苯基）丙烷（双酚 A），或者是在酸性条件下酚或甲酚与甲醛的缩合产物，例如，苯酚醛树脂（phenol novolacs）和甲酚醛树脂（ cresol novolacs）

[0037] 适合的环氧物质的例子包括聚（S-缩水甘油基）化合物，它们是衍生自二硫醇，诸如，乙烷-1,2-二硫醇或二（4-巯基甲基苯基）醚的二-S-缩水甘油基衍生物。

[0038] 适宜的环氧物质的其他例子包括二（2,3-环氧环戊基）醚, 2,3-环氧环戊基缩水
甘油醚、1,2-二(2,3-环氧环己基氧)乙烷、二(4-羟基环己基)甲烷二缩水甘油醚、2,2-二(4-羟基环己基)丙烷二缩水甘油醚、3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯、3,4-环氧-6-甲基环己基甲基-3,4-环氧-6-甲基环己烷羧酸酯、二(3,4-环氧环己基甲基)乙二酸酯、乙撑二(3,4-环氧环己烷羧酸酯)、乙烷二醇二(3,4-环氧环己基甲基)醚、二氧化乙烯环己烯、二氧化环戊烯二烯、\(a-\)环氧乙烷甲基-\(\omega-\)环氧乙烷甲基-\(\gamma-\)环氧乙烷甲基-\(\delta-\)环氧乙烷甲基等聚(氧-1,4-丁二烯)、新戊二醇的缩水甘油基醚、或2-(3,4-环氧环己基-5,5-螺-3,4-环氧)-环己烷-1,3-二氧六环，以及它们的组合物。

[0039] 然而，还可以使用将其中1,2-环氧环己基键合至不同杂原子或官能团的环氧树脂。这些化合物包括，例如，4-氨乙基苯酚的\(N,N,N,O\)四缩水甘油基衍生物、缩水甘油基醚、水杨酸的缩水甘油基酯、\(N\)缩水甘油基酯-\(N'\)缩水甘油基丙氧基)5,5-2甲基乙酰胺，或2-缩水甘油基氧-1,3-二(5,5-二甲基-1-缩水甘油基乙酰胺-3-)丙烷。

[0040] 此外，这些环氧树脂与硬化剂的液体预反应的加合物也适合于环氧树脂。

[0041] 当然，也可以使用根据本发明的组合物中的环氧物质的混合物。

[0042] 优选的环氧物质是脂环族双环氧化物。尤其优选的是3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯，以及它们的组合物。其他优选的环氧物质是基于多环烯，诸如，二(4-羟基苯基)甲烷(双酚F)、2,2-二(4-羟基苯基)丙烷(双酚A)，或它们的低聚物。这些环氧物质可以具有变化范围很宽的分子量。一般地，其环氧当量，即，数均分子量除以反应性环氧基团数，优选在44至1000的范围内。(A2)带氧杂环丁烷(环氧丁烷，oxetane)基团成分

[0043] 本发明的组合物还可以含有氧杂环丁烷作为阳离子可聚合成分。氧杂环丁烷化合物具有至少一个由式(1)表示的氧杂环丁烷的环。

![H2C\(\begin{array}{c}C\hline\end{array}\)CH2](1)

[0045] 该氧杂环丁烷化合物可以在阳离子可聚合光引发剂存在下通过光照来聚合或者交联。

[0046] 分子中含有一个氧杂环丁烷环的氧杂环丁烷化合物的例子由下面的式(2)表示：

![R^1ZR^2](2)

[0047] 其中\(Z\)代表氧原子或者硫原子；\(R_1\)代表氢原子，氮原子，具有1-6个碳原子的烷基例如甲基、乙基、丙基和丁基，具有1-6个碳原子的氟烷基，例如三氟甲基、全氟乙基和全氟丙基，具有6-18个碳原子的芳烃例如苯基和苯基，呋喃基，或者嘌呤基；\(R_2\)代表氢原子，具有1-6个碳原子的烷基例如甲基、乙基、丙基和丁基，具有2-6个碳原子的烯基，例如1-丙烯基、2-丙烯基、2-甲基-1-丙烯基、2-甲基-2-丙烯基、1-丁烯基、2-丁烯基和3-丁烯
基，具有 6-18 个碳原子的芳基例如苯基、联苯基、基和苯基，具有 7-18 个碳原子的反应或
未取代的芳香基，例如苯基、氟苯基、甲氧基苯基、苯乙基、苯乙烯基、肉桂基（cinnamyl）、乙
氧基苯基，具有其他芳环的基团例如芳硫烷基（例如苯氧甲基和苯氧乙基），具有 2-6 个碳原
子的烷基基例如乙基烷基、丙基烷基、丁基烷基，具有 2-6 个碳原子的烷基基例如乙酰基烷
基、丙基烷基、丁基烷基，具有 2-6 个碳原子的 N- 烷基氨甲酰基例如乙基氨甲酰基、丙基氨
甲酰基、丁基氨甲酰基、戊基氨甲酰基，或者具有 2-1000 碳原子的聚醚基团。

分子中具有两个氧杂环丁烷环的氧杂环丁烷化合物的例子由下面的式(3) 表示：

![化学式](image)

式 (3)

其中 R1 与上面式 (2) 中的限定相同；R3 代表二价有机基团，例如具有 1-20 个碳
原子的直链或支链亚烷基例如亚乙基、亚丙基和亚丁基，具有 1-120 个碳原子的直链或支
链聚氧烯基（聚亚烷基烯基，poly(alkyleneoxy)）例如聚乙烯氧基 (poly(ethyleneoxy))
和聚丙烯氧基 (poly(propyleneoxy))，直链或支链不饱和烃基例如丙烯基、甲基丙烯基和
丁烯基。

作为分子中具有两个氧杂环丁烷环的化合物的具体例子，可以给出下面式 (9) 和
(10) 表示的化合物。

![化学式](image)

式 (9)

在式 (10) 中，R1 与式在 (2) 中限定的相同。

下面给出氧杂环丁烷化合物的具体例子。

分子中具有一个氧杂环丁烷环的化合物：3- 乙基 -3- 羟甲基氧杂环丁烷、3- (甲
基) 烯丙氧基甲基 -3- 乙基氧杂环丁烷、(3- 乙基 -3- 氧杂环丁烷基甲氧基) 甲基苯、(3- 乙
基 -3- 氧杂环丁烷基甲氧基) 甲基苯、4- 氟- [1-(3- 乙基 -3- 氧杂环丁烷基甲氧基) 甲基] 苯、
4- 甲氧基- [1-(3- 乙基 -3- 氧杂环丁烷基甲氧基) 甲基] 苯、[1-(3- 乙基 -3- 氧杂环丁
烷基甲氧基) 乙基] 苯基醚、异丁氧基甲基 (3- 乙基 -3- 氧杂环丁烷基甲基) 醚、异冰片基乙
氧基 (3- 乙基 -3- 氧杂环丁烷基甲基) 醚、异冰片基 (3- 乙基 -3- 氧杂环丁烷基甲基) 醚、
2- 乙基己基 (3- 乙基 -3- 氧杂环丁烷基甲基) 醚、乙基二乙二醇 (3- 乙基 -3- 氧杂环丁烷
基甲基）醚，二环戊二烯（3-乙基-3-氧杂环丁烷基甲基）醚，二环戊烯基氧基（3-乙基-3-氧杂环丁烷基甲基）醚，二环戊烯基（3-乙基-3-氧杂环丁烷基甲基）醚，四氢糠基（3-乙基-3-氧杂环丁烷基甲基）醚，四溴苯基（3-乙基-3-氧杂环丁烷基甲基）醚，2-四溴苯氧基乙基（3-乙基-3-氧杂环丁烷基甲基）醚，三溴苯基（3-乙基-3-氧杂环丁烷基甲基）醚，五氟苯基（3-乙基-3-氧杂环丁烷基甲基）醚，三溴苯基（3-乙基-3-氧杂环丁烷基甲基）醚，冰片基（3-乙基-3-氧杂环丁烷基甲基）醚。

[0057] 分子中有两个或更多个氧杂环丁烷环的化合物：3,7-二（3-氧杂环丁烷基）-5-氧杂-壬烷、3,3’-(1,3-(2-亚甲基(methylenyl)丙二基二（氧亚甲基）二-(3-乙基氧杂环丁烷基)、1,4-二[3-(乙基-3-氧杂环丁烷基甲基)甲基]苯、1,2-二[3-(乙基-3-氧杂环丁烷基甲基)甲基]乙烷、1,3-二[3-(乙基-3-氧杂环丁烷基甲基)甲基]丙烷、乙二醇二（3-乙基-3-氧杂环丁烷基甲基）醚，二环戊烯基（3-乙基-3-氧杂环丁烷基甲基）醚，三乙二醇二（3-乙基-3-氧杂环丁烷基甲基）醚，四乙二醇二（3-乙基-3-氧杂环丁烷基甲基）醚，三环癸二基二亚甲基（3-乙基-3-氧杂环丁烷基甲基）醚，三甲基丙烷三（3-乙基-3-氧杂环丁烷基甲基）醚，1,4-二（3-乙基-3-氧杂环丁烷基甲基）丁烷、1,6-二（3-乙基-3-氧杂环丁烷基甲基）己烷、季戊四醇三（3-乙基-3-氧杂环丁烷基甲基）醚，季戊四醇四（3-乙基-3-氧杂环丁烷基甲基）醚，聚乙二醇二（3-乙基-3-氧杂环丁烷基甲基）醚，二季戊四醇六（3-乙基-3-氧杂环丁烷基甲基）醚，二季戊四醇五（3-乙基-3-氧杂环丁烷基甲基）醚，二季戊四醇四（3-乙基-3-氧杂环丁烷基甲基）醚，己内酯修饰的二季戊四醇六（3-乙基-3-氧杂环丁烷基甲基）醚，己内酯修饰的二季戊四醇五（3-乙基-3-氧杂环丁烷基甲基）醚，双三甲基丙烷四（3-乙基-3-氧杂环丁烷基甲基）醚，EO 修饰的双酚 A 二（3-乙基-3-氧杂环丁烷基甲基）醚，PO 修饰的双酚 A 二（3-乙基-3-氧杂环丁烷基甲基）醚，EO 修饰的氢化双酚 A 二（3-乙基-3-氧杂环丁烷基甲基）醚，PO 修饰的氢化双酚 A 二（3-乙基-3-氧杂环丁烷基甲基）醚，EO 修饰的双酚 F（3-乙基-3-氧杂环丁烷基甲基）醚。这些化合物可以单独使用，或者两种或更多种组合使用。

[0058] 优选的氧杂环丁烷化合物选自由式 2 限定的成分构成的组，其中，R‘是 C1-C4 烷基，Z = 氧，而 R“= H, C1-C8 烷基或苯基；3-乙基-3-羟甲基氧杂环丁烷（3-乙基-3-氧杂环丁烷基甲基）甲基苯，3-乙基-3-氧杂环丁烷基甲基苯，2-乙基己基（3-乙基-3-氧杂环丁烷基甲基）苯，1,1,2-二[3-(乙基-3-氧杂环丁烷基甲基)甲基]丙烷，1,3-二[3-(乙基-3-氧杂环丁烷基甲基)甲基]乙烷，1,3-二[3-(乙基-3-氧杂环丁烷基甲基)甲基]丙烷，乙二醇二（3-乙基-3-氧杂环丁烷基甲基）醚和 2,2-(3-乙基-3-氧杂环丁烷基甲基)醚。

[0059] 这些氧杂环丁烷化合物可以单独使用，或者两种或更多种组合使用。

[0060] (A3) 其他阳离子可聚合成分

[0061] 其他可用于本发明组合物中的阳离子可聚合成分包括，例如，环内酯化合物、环状缩醛化合物、环硫醚化合物、环烃衍酸酯化合物、以及烯醚基化合物。

[0062] 当然，还可以根据本发明的组合物中使用阳离子可聚合成分的混合物。
[0063] 在本发明的一种具体实施方式中，本发明的组合物可以包含带有阳离子可固化基团和至少一个羟基的阴离子可聚合成分。优选地，该成分具有一种阳离子可固化基团以及一个或多个羟基。可以认为这样的成分也将有助于形成具有中等交联密度网络的三维物体。

[0064] 优选地，本发明的组合物包括，相对于组合物的总重量，至少 30wt%，更优选至少 40wt%，最优选至少 60wt% 阳离子可固化成分。优选地，本发明的组合物包括，相对于组合物的总重量，少于 90wt%，更优选少于 80wt% 的阳离子可固化成分。

[0065] (B) 阳离子光引发剂

[0066] 在根据本发明的组合物中，可以使用适宜种类的光引发剂，它在暴露于光化辐射后，形成引发阳离子可聚合化合物（例如环氧物质）反应的阳离子。有种类众多的已知并技术上证明可用的适宜的阳离子光引发剂。它们包括例如带有亲核性阴离子的锍盐 (onium salt)。例如有卤锍盐、氟锍盐 (iodosyl salt)、锍盐，它们披露在公开的欧洲专利申请 EP 153904 和 W098/28663 中，氧化锍盐，诸如在公开的欧洲专利申请 EP 35969、44274、54509 和 164314 中公开的，或者偶氮锍盐，诸如披露在欧洲专利 3,708,296 和 5,002,856 中的那些。所有这八个文献的全部内容均以引用形式并入本文。其他的阳离子光引发剂有茂金属盐，诸如披露在欧洲专利申请 EP 94914 和 94915 的那些，这两篇文献的全部内容也以引用形式并入本文。

[0068] 优选的引发剂包括二芳基锍盐、三芳基锍盐等。典型的光聚合引发剂由下面的方式 11 和 12 表示：

[0069]

\[
\begin{align*}
Q_3 & \quad \text{M} \quad \text{Z}_{i+1} \\
& \quad \text{M} \quad \text{Z}_{i+1}
\end{align*}
\]

[0070] 其中，

[0071] Q3 代表氢原子，具有 1 至 18 个碳原子的烷基，具有 1 至 18 个碳原子的烷氧基、苯硫基或由式 (12a) 表示的基团：

[0072]
[0073] M 表示金属原子，优选为锡；
[0074] Z 表示卤原子，优选氟；以及
[0075] t 为金属的化合价数，例如对于锡的情况是 6。
[0076] 优选的阳离子光引发剂包括碘鎓盐光引发剂，例如四（五氟苯基）硼酸碘，因为它们较不易于变黄，尤其是在与例如 n-乙基咔唑的光敏剂联合使用时。
[0077] 为了提高光效率，或者使阳离子光引发剂对特定波长（例如特定的激光器波长或者特定系列的激光器波长）敏感，也可以根据引发剂的类型来使用敏化剂。例如有多环芳烃或者芳香化合物。优选的敏化剂的具体例子在公开的欧洲专利申请 EP 153904 中有所提及。其他优选的敏化剂有苯并芘、1,8-二苯基-1,3,5,7- 十四烷和 1,6-二苯基-1,3,5-己三烯，它们披露在美国专利 5,667,937 中，其全部内容以引用形式并入本发明应认识到，在选择敏化剂时的其他因素是光化辐射源的性质和主波长（primary wavelength）。
[0078] 优选地，本组合物包括，相对于组合物的总重量，0.1-15wt%的一种或多种阳离子光引发剂，更优选 1-10wt%。
[0079] (C) 羟基功能成分
[0080] 本发明的组合物包含至少一种羟基成分，它是具有至少 2 个羟基的多元醇。用于本发明的羟基成分是可以具有伯羟基和/或仲羟基的多元醇。优选那些具有至少一个伯羟基的羟基成分。伯羟基是共价连接至具有 2 或 3 个氢原子的碳原子的羟基。优选地，该羟基成分具有两个伯羟基，在本发明另一种优选的实施方式中，该羟基成分是伯羟基和/或仲羟基位于烷基链或者烷氧基链末端的化合物，其中烷基链或烷氧基链可以具有 1-100 个碳原子，优选具有 2-50 个碳原子，更优选具有 5-40 个碳原子。尽管不希望受理论的束缚，我们相信这些伯羟基和仲羟基优先地在阳离子聚合反应中起链转移剂的作用。还可以使用不同羟基化合物的混合物。
[0081] 羟基成分可以是分子量小于 200 的二醇，其中优选地一个、更优选地 2 个羟基基团都是伯羟基。典型的二元醇的例子包括：乙二醇、1,2-丙二醇、1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,7-庚二醇、1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、二乙二醇、三乙二醇、四乙二醇、二丙二醇和三丙二醇。
[0082] 羟基成分优选是具有中心结构并且该中心结构加有链延伸物（例如环氧乙烷或者环氧丙烷）的分子。优选地，羟基成分是烷氧基化多元醇或者烷基氧化羟基。更优选地，羟基成分是烷氧基化多元醇或者烷氧基化羟基。12
芳二醇：

其中 R3 = -CH2-，-C(CH3)2-，-C(CF3)2-，-CCl2-，-0-，-S-，而 R4 = -CH2CH2- 或 -CH2CH(CH3)-，n 和 m 是 1-10。

在本发明的一种实施方式中，羟基成分优选包括苯氧基化双酚 A。该苯氧基化双酚 A 可以例如每个羟基具有 1 至 30 个之间的乙氧基化部位，优选每个羟基包含 2-20 个乙氧基化部位 (ethoxylation)。在本发明另一种实施方式中，该羟基成分优选包括丙氧基化双酚 A。该丙氧基化双酚 A 可以例如每个羟基具有 1 至 30 个之间的丙氧基化部位，优选每个羟基包含 2-20 个丙氧基化部位。

在本发明的另一种实施方式中，羟基成分优选包括具有混合的乙氧基化部位和丙氧基化部位的双酚 A。该双酚 A 可以例如每个羟基总共具有 1 至 30 个之间的乙氧基化部位和 / 或丙氧基化部位，优选每个羟基包含 2-20 个乙氧基化部位和 / 或丙氧基化部位。

其他优选的羟基成分有聚醚多元醇，其是通过用环醚化合物例如环氧乙烷 (EO)、环氧丙烷 (PO)、氧杂环丁烷或者四氢呋喃修饰带三个或更多羟基的多元醇（例如三羟甲基丙烷、丙三醇、季戊四醇、山梨醇、蔗糖或乙二胺）获得的。具体的例子包括 EO 修饰的三羟甲基丙烷、PO 修饰的三羟甲基丙烷、四氢呋喃修饰的三羟甲基丙烷、EO- 修饰的丙三醇、PO- 修饰的丙三醇、四氢呋喃修饰的丙三醇、EO 修饰的季戊四醇、PO 修饰的季戊四醇、四氢呋喃修饰的季戊四醇、EO 修饰的山梨醇、PO 修饰的山梨醇、EO- 修饰的蔗糖、PO- 修饰的蔗糖，以及 EO- 修饰的乙二胺。当然，EO- 修饰的三羟甲基丙烷、PO- 修修饰的三羟甲基丙烷、EO 修饰的丙三醇，和 PO 修饰的丙三醇是优选的。

羟基成分的分子量优选为 100-1500，更优选 160-1000g/mol。用于本发明液体光固化树脂组合物中的羟基成分的比例通常为 1-35wt %，优选 5-30wt %，特别优选 5-25wt %。

(0) 抗冲改性剂

本发明的组合物包括至少一种抗冲改性剂。适宜的抗冲改性剂的例子有弹性体 (合成橡胶, elastomer)，更优选预先制好的弹性体颗粒。这些弹性体具有低于 0°C 的玻璃转化温度 (Tg)（如 DSC 测得）。

根据本发明的组合物优选含有 1-30wt %的抗冲改性剂。该抗冲改性剂优选包含平均粒径在 10nm 至 10μm 之间的弹性体颗粒。

(0) 弹性体

以举例的形式，可以分散进辐射固化树脂组合物中的抗冲改性剂成分 (D) 是基于乙烯或丙烯与一种或多种 C2-C12 的 α-烯烃单体的共聚物的弹性体。

它们的例子是乙烯 / 丙烯共聚物或者乙烯 / 丙烯共聚物，任选含有另一种可共聚的二烯单体 (EPDM)，例如 1,4-已二烯、二环戊二烯、二环辛二烯、亚甲基降冰片烯 (methylene norbornene)、乙丙降冰片烯和四氢茚; 乙烯 / α-烯烃共聚物，例如乙烯 - 辛烯共聚物和乙烯 / α-烯烃 - 丙烯共聚物。

其他适宜的弹性体有聚丁二烯、聚异戊二烯、苯乙烯 / 丁二烯无规共聚物、苯乙烯
/ 异戊二烯无规共聚物、丙烯酸橡胶（例如聚丙烯酸丁酯）、乙烯／丙烯酸酯无规共聚物和
丙烯酸类嵌段共聚物、苯乙烯／丁二烯／（甲基）丙烯酸酯（SBR）嵌段共聚物、苯乙烯／丁
二烯嵌段共聚物（苯乙烯—丁二烯—苯乙烯嵌段共聚物（SBS）、苯乙烯／异戊二烯—苯乙烯
嵌段共聚物（SIS）以及它们的氢化形式SEBS、SEPS）、和（SIS）以及离子交联聚合物。
[0097] 弹性体的已商品化的例子有 Shell 生产的 Kraton（SBS、SEBS、SIS 和 SEPS）嵌段
共聚物、Lotryl 乙烯／丙烯酸酯无规共聚物（Arkema）和 Surlyn 离子交联聚合物（Dupont，
杜邦）。
[0098] 可选地，该弹性体可以被修饰（改性），以带有诸如环氧基、氧杂环丁烷基、羧基或
醇的反应性基团（反应基）。该修饰可以通过例如反应性接枝或共聚来引入。后者的已商品
化的例子有 Arkema 生产的 Lotader 无规乙烯／丙烯酸酯共聚物 AX8840（甲基丙烯酸缩水
甘油酯／GMA 修饰的）、AX8900 和 AX8930（GMA 和马来酸酐修饰的）/MA）。
[0099] 可选的，弹性体可以在混合进辐射固化树脂组合物之后被交联。该交联结构可以
通过常规方法引入。作为用于这些材料中的交联剂的例子，可以给出过氧化物、硫、可溶性
酚醛树脂等；可选地与多官能团单体例如二乙烯基苯、乙二醇二（甲基）丙烯酸酯、马来酸
二烯丙酯、氯丙酸酯三烯丙酯、异氰酸酯三烯丙酯、钛酸二烯丙酯、三羟甲基丙烷三丙烯酸酯、
甲基丙烯酸烯丙酯等。
[0100] （D2）预先制备的弹性体颗粒
[0101] 更优选的可以分散进辐射固化树脂组合物的抗冲改性剂（D）的例子是预先制备
的弹性体颗粒。弹性体颗粒可以通过多种方法制得，包括通过从乳液聚合制得的乳胶的分
离（isolation）或弹性体块料的研磨或低温研磨，或者在该组合物的另一种成分中的基质合
成所获得的那些。这些弹性体颗粒的平均粒径优选在 10nm 和 10μm 之间。
[0102] 这些预先制备的弹性体颗粒的商业来源的例子有来自不同提供商的不同平均粒
径的 PB（聚丁二烯）或 PBA（聚丙烯酸丁酯）乳胶、或者通过 EPDM、SBS、SIS 或任何其他橡
胶的乳化而获得的乳胶。
[0103] 可选地，弹性体可以具有交联结构。该交联结构可以通过常规方法引入。用于此
类物质中的交联剂的例子有过氧化物、硫、酚醛树脂 A（resol）等，可选地与多官能团单体
例如二乙烯基苯、乙二醇二（甲基）丙烯酸酯、马来酸二烯丙酯、氯丙酸酯三烯丙酯、异氰酸
酯三烯丙酯、钛酸二烯丙酯、三羟甲基丙烷三丙烯酸酯、甲基丙烯酸烯丙酯等结合。
[0104] 可选地，在颗粒表面可以具有壳，该壳可以通过例如接枝或者在乳液聚合的第二
阶段引入。这种颗粒的例子是具有橡胶核和玻璃质壳的壳—壳抗冲改性剂颗粒。核材料的
例子有聚丁二烯／聚异戊二烯／丙烯酸橡胶（例如聚丙烯酸丁酯橡胶）、苯乙烯／丁二烯无规
共聚物、苯乙烯／异戊二烯无规共聚物，或者聚硅氧烷。壳材料或者接枝共聚物的例子有烯
基芳香化合物（例如苯乙烯）和烯基氯化物（例如丙烯氯）或者（甲基）丙烯酸酯（例如
MMA）的聚合物或共聚物。
[0105] 可选地，反应性基团可以通过诸如与甲基丙烯酸缩水甘油酯共聚合的共聚，或者
通过对壳的处理以形成反应性官能团而引入壳中，适宜的反应性基团包括但不限于环氧基
团、氧杂环丁烷基、羟基、羧基、乙烯醚基，和／或或烯酸酯基团（丙烯酸酯，acrylate）。
[0106] 这些核—壳型弹性体颗粒的可商购产品的例子有 Resinous BondRKB（Resinous
Chemical Industries Co., Ltd. 生产的核—壳颗粒在环氧树脂中的分散物）、Durastric...
D400，Durastrength 400R（Arkema集团生产），Paraloid EXL-2300（无官能基的壳）、Paraloid EXL-2314（环氧官能基的壳）、Paraloid EXL-2600，Paraloid EXL-3387 和 Paraloid KM-365（Rohm and Haas生产），Genioperl P53，Genioperl P23，Genioperl P22（Wacker Chemical生产）等。

【0107】这种弹性体颗粒的另一个例子是联机的聚有机硅氧烷橡胶，可以包括二烷基硅氧烷重复单元，其中烷基是C₁-C₆烷基。这种颗粒可以用授予Block的美国专利第4,853,434中披露的方法制备，其全部内容被以引用形式并入本文。可以修饰这些颗粒以引入反应性基团，例如环氧乙烯、缩水甘油基、氧杂环丁烷、羟基、乙烯酰基、乙烯醚基、或（甲基）丙烯酸酯基（丙烯酰氧基），或者它们的组合，优选地在颗粒的表面。

【0110】该核-壳颗粒可以包括一个以上的核和/或一个以上的壳。此外，可以使用带有弹性体颗粒的核-壳颗粒的混合物。

【0111】弹性体颗粒，或者核-壳颗粒的弹性核优选具有0℃以下的Tg（用DSC测得）。

【0112】（D3）固化后分层成（demix into）橡胶状区域的可湿溶化合物

【0113】根据本发明的组合物还可以含有一种或多种溶解的在固化后分层成橡胶状区域的成分。这些成分通常含有至少一种Tg在0℃以下，聚集成弹性体区域的弹性体块（elastomeric block）。这些成分可以含有官能团，例如环氧基、羟基、（甲基）丙烯酸酯（盐）、乙烯基酯等。（D3）成分的分子量通常高于1500g/mol。

【0114】它们的例子是环氧基或者羧基封端的丁腈橡胶（ETBN，CTBN）。其他例子有环氧、羟基、（甲基）丙烯酸酯官能化的低Tg低聚物。在该低聚物是羟基官能化的情况下，该抗冲改性剂还可以起链转移剂的作用，并需要被包括在下一段描述的羟基含量的计算中。在这方面，优选地在本组合物中存在一种也是低分子量的羟基成分。

【0115】CTBN的商品化例子有EPON树脂58000，例如58003，58005，58006，58042，58901和58034。分子量大于1500g/mol的环氧或者羟基官能化的低Tg低聚物的例子有具有不同分子量的丙二醇的Acclaim系列（Bayer）、聚丁二醇的Terathane系列（Dupont）；聚（氧乙烯-氧丙烯）无规或嵌段共聚物；Hodogaya Chemical Co.,Ltd的pTGL系列和羟基-封
端的聚酯和羟基 - 封端的聚内酯，例如 Daicel 的 Placel 220 系列；羟基 - 官能化的聚
链二烯，例如聚丁二烯 ; 脂肪族聚碳酸酯多元醇，例如脂肪族聚碳酸酯二醇 ; 羟基封端的聚
醚或者可商购的环氧化合物 / 脂肪族多元醇混合物，例如 Uvacer 1530, 1531, 1532, 1533 和
1534 (UCB Chemicals)。其他例子有 Arkema 生产的 Nanostrength 的块 (block) 聚物 E20、
E40 (SBM 型) 和 M22（完全丙烯酸酯基的）。

[0116] 阳离子可聚合 (基) / 羟基比率
[0117] 本发明组合物优选具有 2.0 和 5.0 之间的阳离子可聚合 (基) / 羟基比率。该阳
离子可聚合 (基) / 羟基比率 (Cat. Poly. / Hydroxy) 是阳离子可聚合官能团的量除以组
合物中存在的羟基官能团的量所得的值。阳离子可聚合基的量是通过测定在 100g 组合物
中阳离子可聚合基团的量 (mmole) 而计算得到。阳离子可聚合基团包括环氧基、氟环环丁
烷、四氢呋喃、环己酮、环缩醛、环硫醚、螺环环氧酯，以及乙烯醚基团。羟基的量（或羟基
值）是通过测定 100g 组合物中存在的羟基的量 (mmol) 来计算的。在计算羟基值时，只有
在阳离子聚合成分 (A) 和在羟基成分 (C) 以及可选的含羟基成分 (D3) 中的羟基才被
考虑在内。其他成分也可含有羟基（例如一些 (甲基) 丙烯酸酯化合物以及自由基光引发
剂），但是它们被认为对阳离子聚合不具有强的链转移效果，因为这个原因，并且考虑到计
算的简单性，它们在计算时未予考虑。

[0118] 如果阳离子可聚合基团是环氧基团，还可以将阳离子可聚合基 / 羟基比率称为环
氧 / 羟基比。

[0119] 阳离子可聚合基 / 羟基比优选在 2.2 至 4.75，最小在 2.4 至 4.5 的范围内。

[0120] (E) 自由基 (radically) 可聚合化合物

[0121] 本发明的组合物还可以含有自由基可聚合化合物。适合的自由基可聚合化合物的
例子有具有一个或多个乙烯不饱和基团的化合物，例如具有丙烯酸酯或甲基丙烯酸酯基团
的化合物。

[0122] 单官能团乙烯不饱和化合物的例子包括 (甲基) 丙烯酸异冰片基氧乙酯、(甲基)
丙烯酸异冰片酯、(甲基) 丙烯酸 -2 - 乙基己基酯、乙基二乙二醇 (甲基) 丙烯酸酯、(甲
基) 丙烯酸月桂酯、二环戊二烯 (甲基) 丙烯酸酯、二环戊烯基氧乙基 (甲基) 丙烯酸酯、
二环戊烯基 (甲基) 丙烯酸酯、2 - 四氟苯氧乙基 (甲基) 丙烯酸酯、四氢糠基 (甲基) 丙
烯酸酯、四溴苯基 (甲基) 丙烯酸酯、2 - 四溴苯氧乙基 (甲基) 丙烯酸酯、2 - 三氯苯氧乙基
(甲基) 丙烯酸酯、二溴苯基 (甲基) 丙烯酸酯、2 - 三溴苯氧乙基 (甲基) 丙烯酸酯、2 - 羟
乙基 (甲基) 丙烯酸酯、2 - 甲基丙烯酸酯、2 - 丁氧乙烯基 (甲基) 丙烯酸酯、丁氧乙
基 (甲基) 丙烯酸酯、五氟苯基 (甲基) 丙烯酸酯、五溴苯基 (甲基) 丙烯酸酯、聚乙二醇
单 (甲基) 丙烯酸酯、聚丙二醇单 (甲基) 丙烯酸酯、(甲基) 丙烯酸酯、(甲基) 丙烯酸酯
基丁基酯以及甲基三乙二醇 (甲基) 丙烯酸酯。

[0123] 多官能团自由基可聚合化合物的例子包括乙二醇二 (甲基) 丙烯酸酯、二环
戊基二 (甲基) 丙烯酸酯、三乙二醇二丙烯酸酯、四乙二醇二 (甲基) 丙烯酸酯、三
环癸二基三亚甲基二 (甲基) 丙烯酸酯 (二 (甲基) 丙烯酸三环癸二甲二亚甲酯，
tricyclo[2.2.1.0\(^1\)16]heptane-5,9-diol di(acrylate) 、三羟甲基丙烷三 (甲基) 丙烯酸酯、环氧丙烷
(下文简称为 “ EO ”) 修饰的三羟甲基丙烷三 (甲基) 丙烯酸酯、环氧丙烷
(下文简称为 “ PO ”) 修饰的三羟甲基丙烷三 (甲基) 丙烯酸酯、三丙二醇二 (甲基) 丙
烯酸酯、新戊二醇乙二醇（甲基）丙烯酸酯、甘油基聚二醇酯的两端（甲基）丙烯酸加合物。1,4-丁二醇二乙醇（甲基）丙烯酸酯、1,6-己二醇二乙醇（甲基）丙烯酸酯、季戊四醇三（甲基）丙烯酸酯、季戊四醇四（甲基）丙烯酸酯、聚乙二醇二乙氧基（甲基）丙烯酸酯、二季戊四醇六（甲基）丙烯酸酯、二季戊四醇五（甲基）丙烯酸酯、二季戊四醇四（甲基）丙烯酸酯、双三乙基丙烯酸酯、丙烯酸酯、EO-修饰的双酚A二（甲基）丙烯酸酯、PO-修饰的双酚A二（甲基）丙烯酸酯、EO-修饰的氢化双酚A二（甲基）丙烯酸酯、PO-修饰的氢化双酚A二（甲基）丙烯酸酯、EO-修饰的双酚F二（甲基）丙烯酸酯、线性酚醛树脂聚缩水甘油基酯的（甲基）丙烯酸酯等等。

[0124] 优选的自由基聚合化合物由下列构成的组：双酚A二缩水甘油醚二丙烯酸酯和单丙烯酸酯，二季戊四醇六丙烯酸酯和五丙烯酸酯，三甲基丙烯酸三丙烯酸酯，新戊二醇丙氧基化二丙烯酸酯和丙烯酸异冰片酯。

[0125] 上述每一种自由基聚合化合物均可以单独使用，也可以两种或更多种组合使用，或者是以至少一种单官能团单体与至少一种多官能团单体的组合形式。

[0126] 可用于本发明光固化树脂组合物的自由基聚合化合物的用量通常为0-45wt%，优选3-35wt%。对于混合配方（制剂）的情况，作为优选，将官能度在2至6之间的多官能团丙烯酸酯以相对于整个组合物1-30wt%，优选2-20wt%，最优选3-15wt%之间的量用于本发明的组合物中。

[0127] (F) 自由基光引发剂

[0128] 本发明的组合物可以使用一种或多种自由基光引发剂。光引发剂的例子包括安息香类，诸如苯乙烯酮（安息香）；安息香醚，例如安息香甲醚，安息香乙醚和安息香丙醚；安息香苯醚以及安息香乙酸酯；苯乙醚类，例如苯乙醚、2,2-二甲氧基苯乙醚、4-(苯硫基)苯乙酮和1,1-二氯乙酮，苯偶酰（二苯基乙酮），苯偶酰缩酮类，例如苯偶酰二氯苯基缩酮（benzil dimethyl ketal）和苯偶酰二乙基缩酮；蒽酮类，例如2-甲基蒽酮、2-乙基蒽酮、2-叔丁基蒽酮、1-氟蒽酮和2-戊基蒽酮，以及三苯基膦；苯酰基氧化膦，例如，2,4,6-三甲基苯酰基二苯基氧化膦（Lucirin TPO）；苯甲酮类，例如苯甲酮、二甲氧基苯甲酮、二苯氧基苯甲酮和4,4’-二(N,N'-二甲氨基）苯甲酮，噻吨酮类和氧杂蒽酮类，咔唑衍生物，吩嗪（phenazine）衍生物，喹喔啉衍生物或1-苯基-1,2-丙烷二酮-2-O-苯甲酮肟；1-氨基苯甲酰基酮类或1-羟基苯甲酰基酮类，例如1-羟基环己基苯甲酰基酮、苯基(1-羟基异丙基)酮和4-异丙基苯基(1-羟基异丙基)酮，或三嗪化合物，例如，4’-甲基环己基甲基-1-二(三氯甲基)-3,5-S-三嗪、S-三嗪-2’-氯-4,6-二三氯甲基，以及对甲氧基苯乙酰基三嗪，所有这些都是已知化合物。

[0129] 自由基光引发剂通常与作为辐射源的He/Cd激光器(在例如325nm下工作)、Argon-ion激光器(在例如351nm或351和364nm，或333,351和364nm下工作)，或者三倍频率的YAG固体激光器（具有351或355nm的输出）联合使用，尤其适宜的自由基光引发剂是苯乙酮类，例如2,2-二氯苯甲酮和1-羟基苯乙酮，例如1-羟基环己基苯甲酰基酮，2-羟基-1-(4-(2-羟基乙氧基)苯基)-2-甲基-1-丙酮，苯甲酮，或2-羟基异丙基苯甲酸(也称2-羟基-2-二甲基苯乙酮)，但优选1-羟基环己基苯甲酮。另一类自由基光引发剂包括苯偶酰缩酮，例如，苯偶酰二甲基缩酮，尤其是α-羟基苯甲酰基酮，苯偶酰二甲基缩酮，或2,4,6-三甲基苯酰基二苯基氧化膦可以用作光引发剂。
另一类适宜的自由基光引发剂包括离子染料抗衡离子化合物，它们能吸收光化射线并产生自由基，该自由基可以引发（甲基）丙烯酸酯的聚合。根据本发明的包括离子染料抗衡离子化合物的组合物因此可以以更多不同的方式用 400 至 700nm 可调波长范围内的可见光来固化。离子染料抗衡离子化合物以及它们的作用方式是已知的，例如可以从公开的欧洲专利申请 EP223587 和美国专利 4,751,102, 4,772, 530 和 4, 772, 541 中找到说明。作为举例，适宜的离子染料抗衡离子化合物有阴离子染料－碘离子复合物、阴离子染料－吡喃离子复合物以及，尤其是下式（10）的阳离子染料－硼酸盐例子化合物：

![Chemical Structure](image)

（10）

其中 D' 是阳离子染料，R_{12}、R_{13}、R_{14} 和 R_{15} 都彼此独立地是烷基、芳基、烷基、烯丙基、芳烷基、烯基、炔基、脂环基或饱和或未饱和的杂环基团。对 R_{12} 至 R_{15} 的优选的限定可以在例如欧洲专利申请 EP223587 中找到。

优选的自由基光引发剂包括 1-羟基环己基苯酚、2-羟基-2-甲基-1-苯基丙－1-酮、2,2-二甲氧基苯乙酮、苯甲酮和 2,4,6-三甲基苯甲酰基二苯基氧化膦。这些单独使用或彼此联合使用的光引发剂倾向于较不易变黄。

优选地，相对于组合物的总量，本发明的组合物包括 0.1-15wt% 的一种或多种自由基光引发剂，更优选 1-10wt%。

（10） 阳离子可聚合（基）/ 自由基可聚合（基）比率

由自由基可聚合成分和阳离子可聚合成分组成的组合物优选具有 4-20 之间的阳离子可聚合基 / 自由基可聚合基。该阳离子可聚合基 / 自由基可聚合基是存在于该组合物中的阳离子可聚合官能团的量除以自由基可聚合官能团的量的比值。阳离子可聚合基的量是通过测定在 100g 组合物中阳离子可聚合基的量（mmol）而计算得到。自由基可聚合基的量是通过测定在 100g 组合物中存在的（甲基）丙烯酸酯和其他自由基可聚合基的量（mmol）来计算。阳离子可聚合基 / 自由基可聚合基（Cat. Poly. / Rad. Poly）通过仅仅将阳离子可聚合基除以自由基可聚合基而计算得到。

如果阳离子可聚合基是环氧化基，并且自由基可聚合基是（甲基）丙烯酸基团，本领域技术人员还可以将阳离子可聚合基 / 自由基可聚合基以环氧化（甲基）丙烯酸酯比表示。

阳离子可聚合基 / 自由基可聚合基优选在 4.5 至 15，或者优选在 5 至 10，或者最优选在 5 至 9 之间的范围。

（10） 既有阳离子可聚合基又有自由基可聚合基的成分

本发明的组合物还可以含有具有一种以上类型的反应性官能团的分子，且至少一种类型的官能团能够阳离子均聚合。而同一分子中的第二种类型的官能团能够自由基聚合。将这些化合物加到本发明的组合物中取得了增大会坯部件强度和提高断面伸长率的意想不到的效果。阳离子可聚合基包括环氧化基、氧杂环丁烷、四氢呋喃、环内酯、环缩醛、环硫
酰、螺环原酸酯、以及乙烯基酯。可作为链转移剂参与阳离子聚合的羟基不包括在阳离子可聚合基团中，因为羟基在阳离子条件下不能被均聚合。况且，可以存在于这些分子中的羟基被认为是阳离子聚合没有强的链转移效应，出于这个原因，也是为了使计算简化，这些羟基在阳离子可聚合基/羟基比的计算中未考虑到内。自由基可聚合基团包括（甲基）丙烯酸酯、乙烯基、亚乙烯基基团。

[0142] 既有阳离子可聚合基团又有自由基可聚合基团的成分通常以0-25wt%、优选1-20wt%、更优选3-15wt%的量存在。

[0143] 上述既有阳离子可聚合基团又有自由基可聚合基团的成分被包括在阳离子可聚合基/羟基比和阳离子可聚合基/自由基可聚合基的计算中。

[0144] (IV) 添加剂/其他成分

[0145] 也可以在本发明的组合物中存在一些添加剂。为了防止粘度的增加（例如在用于固体成像工艺时粘度的增加），常规向组合物中加入稳定剂。优选的稳定剂包括美国专利第5,665,792号中描述的那些，其全部内容以引用形式并入本文。这些稳定剂通常是IA族和IIA族金属的烃基羧酸盐。这些盐的最优选的例子是碳酸氢钠、碳酸氢钾和碳酸钠。碳酸钠在本发明的配方中是优选的，推用量在组合物的0.0015至0.005wt%之间。可以替换的稳定剂有聚乙烯基吡咯烷酮和聚丙烯胺。其他可能的添加剂/其他成分包括染料、颜料、填料（例如，二氧化硅颗粒，优选圆柱状或球形二氧化硅颗粒，滑石，玻璃粉，氧化铝，水合氧化铝，氧化镁，碳酸镁，氢氧化镁，硫酸钡，硫酸钙，碳酸钙，硅酸盐，硅藻土，硅砂，石英粉，氧化钛，铝粉，钛粉，锌粉，铁粉，铅粉，金粉，银粉（silver dust），玻璃纤维，钛酸钾晶须，碳化硅晶须，氧化铝晶须，碳化硅晶须，氮化硅晶须，玻璃珠，空心玻璃球，金属氧化物以及钛酸钾晶须），抗氧剂，湿润剂，用于自由基光引发剂的光敏剂，自由基链转移剂，流平剂，脱泡剂，表面活性剂等等。

[0146] 芳香族和脂环族含量

[0147] 本发明的组合物优选具有相当高含量的芳基和/或脂环基。已经发现高含量的这些基团提高了固化物的模量，而不需要高交联密度，同时将 Izod 和/或 Kc值维持在高值，尤其是在与2.5至5.0之间的阳离子可聚合基/羟基比相衔接时。

[0148] 配方中芳香族和脂环族的含量可以通过计数出含在组合物的每一成分中的芳香族和脂环族基团的数目来确定。对于每一个芳香族基团，独立于取代，使用76g/mol的平均分子量。脂环族基团分子量被定义为脂环族的脂环片段部分的重量。如果一个脂环族基团是环己基，则分子量被认为是82g/mol（可能的取代基的重量未被算成环己基重量的一部分）。

[0149] 对于配方中的每一成分，芳香族和脂环族含量可以通过将成分的芳香族和脂环族基团的重量相加并除以该成分的分子量来计算。这是一种成分的芳香族/脂环族的重量分数。

[0150] 接下来，整个组合物的芳香族和脂环族含量可以将100g组合物中的每一成分的
重量乘以组合物每一成分的芳香族／脂环族的重量分数后相加来计算。
[0151] 优选地，该配方的芳香族和脂环族含量在 0.2 和 0.6 之间，更优选在 0.25 至 0.5 之间，甚至更优选在 0.3 至 0.45 之间，最优选在 0.32 至 0.40 之间。
[0152] 交联密度
[0153] 该组合物优选具有中等的交联密度。已经发现，高的交联密度会导致组合物变脆。交联密度的测量可以通过检测 200°C 的储能模量值 E’来方便地计算，后者是用 1Hz 频率的受拉伸动态机械分析来测量的。优选地，该 200°C 的储能模量值 E’在 2 至 35MPa 之间，更优选在 4 至 30MPa 之间，甚至更优选在 6 至 25MPa 之间，最优选在 8 至 20MPa 之间。
[0154] 根据本发明的配方
[0155] 本申请要求保护含有特定成分、在完全固化后得到具有独特性质的物件的树脂组合物。本发明用很多实施例来举例说明，这些实施例不应理解为对本发明范围的限制。本领域技术人员可以配制出不同于所披露的实施例但落在权利要求范围内的替代组合物。设计替代组合物的一种途径是采用下面的设计程序。本领域技术人员可以利用两步设计步骤，其中，首先设计一种基质材料（其含有该组合物的除抗冲改性剂 d 之外的成分）。在这一设计步骤中，产生易对抗冲改性剂敏感的基质材料。这包括选择一种成分组合（除抗冲改性剂 d 之外的所有成分）以确保获得一种在固化时在室温下具有至少 2GPa，优选高于 2.5GPa，更有选高于 3GPa 的拉伸模量和低于 85MPa，优选低于 80MPa，更优选低于 75MPa 的屈服应力的基质材料。
[0156] 这样的基质的产生可以通过选择成分 a、b 和 c 的组合来指导，以致
[0157] 1，阳离子可聚合基团和羟基的摩尔比优选在 2.0 至 5.0 之间，更优选在 2.2 至 4.75 之间，最优选在 2.4 至 4.5 之间。
[0158] 2，芳香族和脂环族含量优选在 0.2 至 0.6 之间，优选在 0.25 至 0.5 之间，更优选在 0.3 至 0.45 之间，最优选在 0.32 至 0.40 之间。
[0159] 如果设计一种混杂型制剂，例如为了立体平版印刷应用，可以有其他的设计指导原则：
[0160] 3，阳离子可聚合基团和自由基可聚合基团的摩尔比优选在 4.5 至 15 之间，更优选在 5 至 10 之间，最优选在 5 至 9 之间。
[0161] 当根据这些原则配制时，可以获得一方面具有合适的硬度平衡，另一方面具有足够低的屈服应力以在拉伸测试过程中表现出屈服行为的基质材料。在具有中等交联密度的网络固化之后，获得了以下的指导原则的进一步结论（尤其是阳离子可聚合基团和羟基的目标比率）。如上所述，这一点可以从用 1Hz 频率的受拉伸动态机械分析来测量的 200°C 下储能模量值 E’中看出来，该 200°C 的储能模量优选在 2 至 35MPa 之间，更优选在 4 至 30MPa 之间，甚至更优选在 6 至 25MPa 之间，最优选在 8 至 20MPa 之间。作为优选，要遵循芳香族和脂环族含量的原则，以通过防止玻璃转化温度降至低于室温而获得足够的模量。
[0162] 在第二步骤中，材料的断裂韧性和／或耐冲击性通过向配方中以获得预期性能的量和适宜的类型加入成分 d 而得以提高。
[0163] 本专利申请中的比较例显示，当阳离子可聚合基团和羟基的摩尔比太高，或阳离子可聚合基团和自由基可聚合基团的摩尔比太低时，可以得到过低韧性（这是低 K’或者 Izod 值）的部件。其他的比较试验显示，当芳香族和脂环族含量过低和／或阳离子可聚合
基团和羟基的摩尔比过低时，所获得的部件显示出完全固化材料在室温下的橡胶状特征。最后，在没有使用抗冲改性剂的实例中，也得到具有过低 K_1c 或 / 或 Izod 值的部件。

[0164] 适用

[0165] 本组合物适于广泛种类的用途，例如，该组合物可以用来通过快速原型技术以制备三维部件。快速原型技术有时也叫“固态成像”或者“立体平版印刷”，是一种在一表面上涂覆一薄层的可成像组合物，并且成像地暴露于光化辐射以使该组合物固化成影像的工艺。如果该组合物在室温下是液体，则涂覆最容易进行，但是也可以将固体组合物熔融以形成一个层，或者可以涂覆固态或糊状组合物，如果其显示出剪切变稀特征。然后，将新薄层的可成像组合物涂覆在以前层的暴露（曝光）和暴露（未曝光）的组合物上。然后，将新层暴露成像以固化（solidify）成影像部分并且促使新硬化区域部分和之前硬化区域的部分之间的粘着。每一次成像的暴露都以这样的形式进行，其与光硬化物件的相应的横断面的形状有关，以致当所有的层被涂覆且完成所有的暴露之后，整体的光固化物件可以从周围的组合物中取出。

[0166] 因此，快速原型技术可以例如被描述成：

[0167] (1) 在一表面上涂覆一薄层的组合物；

[0168] (2) 将成像的该薄层暴露于光化辐射，以形成成像的横断面，其中该辐射的强度和时间足以充分固化该暴露区域的薄层；

[0169] (3) 在该之前暴露的成像横断面上涂覆一薄层的组合物；

[0170] (4) 将步骤 (3) 中的成像的所述薄层暴露于光化辐射，以形成另外的一层成像横断面，其中该辐射的强度和时间足以充分固化该暴露区域的薄层并且使其粘附于之前暴露的成像横断面；

[0171] (5) 重复步骤 (3) 和 (4) 足够次数以形成该三维物件。

[0172] 一般地，如上所述，通过暴露于光化辐射形成的该三维物件尚未完全固化，就是说并不是组合物中的所有反应性物质已经反应。因此，经常需要一额外的步骤来使该物件更充分地固化。这可以通过进一一步的光化辐射照射、加热或者光化细化来完成。暴露于光化辐射可以用任何方便的辐射源来实现，通常是 UV 光，时间为约 10 分钟至超过 60 分钟。加热通常在约 75-150°C 的温度进行约 10 分钟至超过 60 分钟。

[0173] 在本发明中，后固化是在 UV- 后固化装置中不用另外加热进行 60 分钟而进行，以获得完全固化的物件，除非另有专门说明（参见实施例 1-3）。

[0174] K_1c 和 Izod 值

[0175] 制备自本发明树脂组合物的固化物件，在完全固化后具有高的韧性，并有高的 E-模量。韧性可以用很多不同的方法测定，其中 Izod (冲击强度或称抗冲击性) 是最好的已知方法。根据本发明的固化物件具有至少 0.45 J/cm，优选至少 0.5 J/cm，更优选至少 0.55 J/cm，更优选至少 0.6 J/cm，甚至更优选至少 0.8 J/cm 的 Izod 值。

[0176] 韧度的可替代测量方法是对裂纹扩展的耐性，这可以通过测量 K_1c 值来测定。现有技术中披露的固化物件的 K_1c 值总是低于 1MPa (m)^{1/2}，而测得 2GPa (2000MPa) 或者更大的 E-模量。制备自本发明的树脂组合物的物件具有至少 1.3MPa (m)^{1/2}，优选至少 1.6MPa (m)^{1/2}，更优选至少 1.9MPa (m)^{1/2}，最优选至少 2.5MPa (m)^{1/2} 的 K_1c 值。

[0177] 实施例
<table>
<thead>
<tr>
<th>物质名称</th>
<th>物质说明</th>
<th>供应商</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epon 825</td>
<td>双酚 A 二缩水甘油醚环氧树脂</td>
<td>Resolution Performance Products</td>
</tr>
<tr>
<td>Cyracure UVR-6105</td>
<td>甲基-3,4-环氧环己基羧酸-3,4-环氧环己酯</td>
<td>Dow Chemical</td>
</tr>
<tr>
<td>Ebeeryl 3605</td>
<td>部分丙烯酸化的双酚-A 环氧树脂</td>
<td>UCB/Cytec</td>
</tr>
</tbody>
</table>

[0180]
<table>
<thead>
<tr>
<th>北京出胶剂</th>
<th>3-乙基-3-羟甲基-氧杂环丁烷</th>
<th>Toagosei</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙烯醚丙烯酸乙酯</td>
<td>己烯酸-2-(2-乙烯氧基乙氧基)</td>
<td>Nippon Shokubai Co.Ltd.</td>
</tr>
<tr>
<td>Ebecryl 3700</td>
<td>双酚-A环氧二丙烯酸酯</td>
<td>UCB/Cytec</td>
</tr>
<tr>
<td>SR-399</td>
<td>二季戊四醇二丙烯酸酯</td>
<td>Sartomer</td>
</tr>
<tr>
<td>SR-349</td>
<td>双酚-A乙氧基化二丙烯酸酯</td>
<td>Sartomer</td>
</tr>
<tr>
<td>SynFac 8025U</td>
<td>聚烷氧基化双酚A</td>
<td>Milliken Chemical</td>
</tr>
<tr>
<td>SynFac 8009</td>
<td>聚烷氧基化双酚A</td>
<td>Milliken Chemical</td>
</tr>
<tr>
<td>Stepanpol PS2002</td>
<td>二(二乙二醇)邻位酰酸二酯</td>
<td>Stepan Company</td>
</tr>
<tr>
<td>Emulgen BPA-5</td>
<td>聚烷氧基化双酚A</td>
<td>Kao Specialties Americas</td>
</tr>
<tr>
<td>BisphenolA</td>
<td>聚烷氧基化双酚A</td>
<td>Aldrich</td>
</tr>
<tr>
<td>EO(4)BPA</td>
<td>平均 Mn=404 g/mol</td>
<td>Aldrich</td>
</tr>
<tr>
<td>三乙二醇</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluracol TP440</td>
<td>丙基化三羟甲基丙烷</td>
<td>BASF</td>
</tr>
<tr>
<td>Terathane 1000</td>
<td>聚亚甲基醚二醇</td>
<td>Invista</td>
</tr>
<tr>
<td>Placcel 220EB</td>
<td>聚六亚甲基碳酸酯二醇</td>
<td>Daicel</td>
</tr>
<tr>
<td></td>
<td>CAS#616-98-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平均 Mn=2000 g/mol</td>
<td></td>
</tr>
<tr>
<td>碳酸亚丙酯</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>BYK A 501</td>
<td>防泡沫溶剂，无硅酮</td>
<td>BYK Chemie</td>
</tr>
<tr>
<td>Silwet L7600</td>
<td>聚环氧烷改性的聚二甲基硅氧烷</td>
<td>GESilicones-OSISpecialties</td>
</tr>
<tr>
<td>Chivacure 1176</td>
<td>六氟磷酸芳基硫酯</td>
<td>Chitec</td>
</tr>
<tr>
<td>Rhodorsil 2074</td>
<td>四个五氟苯基硼酸芳基磺酸</td>
<td>Rhodia</td>
</tr>
<tr>
<td>Chivacure BMS</td>
<td>4-苯甲酰-4'-氨基二苯硫</td>
<td>Chitec</td>
</tr>
<tr>
<td>Irgacure 184</td>
<td>1-羟基环己基苯酮</td>
<td>Ciba Additives</td>
</tr>
<tr>
<td>Paraloid EXL-2314</td>
<td>丙烯酸酷-壳聚合物</td>
<td>Rohm and Hass</td>
</tr>
<tr>
<td>Paraloid EXL-2600</td>
<td>丙烯酸酷-壳聚合物</td>
<td>Rohm and Hass</td>
</tr>
<tr>
<td>Durastrength D400</td>
<td>丙烯酸酷-壳聚合物</td>
<td>Arkema</td>
</tr>
<tr>
<td>SR-9003</td>
<td>丙基化化新戊二醇二丙烯酸酯</td>
<td>Sartomer</td>
</tr>
<tr>
<td>Paraloid KM-365</td>
<td>丙烯酸酷-壳聚合物</td>
<td>Rohm and Hass</td>
</tr>
<tr>
<td>Albidur EP 2240</td>
<td>在环氧树脂中的聚硅氧烷颗粒</td>
<td>Hanse Chemie</td>
</tr>
<tr>
<td>Terathane 250</td>
<td>聚四亚甲基醚二醇</td>
<td>Invista</td>
</tr>
<tr>
<td>DPHA</td>
<td>二季戊四醇六丙烯酸酯</td>
<td>Sartomer</td>
</tr>
</tbody>
</table>

[0181] 环氧化剂的制备：（表4），实施例1-3
[0182] 将环氧化物和多元醇成分的混合物加热至约60℃并磁搅拌5分钟。在下一步，在持续搅拌下缓慢加入抗冲改性剂。加工后，将制备加热至100℃并持续搅拌过夜以获得良好的分散物。用Ultra-TurraxT25分散仪处理以进一步优化分散质量，处理3次，每次20秒。处理后，将液体树脂冷却至70℃，然后加入光引发剂，并用磁搅拌器搅拌5分钟完成
制备。最后将液体树脂冷却至室温。

[0183] 整体模塑 (bulk molding): (实施例 1-3)

[0184] 使用具有预先形成样品形状的橡胶模具通过整体模塑制得厚部件（拉伸和 K_i 断裂韧度棒 (bar))。制成尺寸为 60×10×4 mm 和 150×30×4 mm (长 × 宽 × 厚) 的条，这些条分别加工自 K_i 和拉伸棒。

[0185] 为了制得厚部件，将该液体树脂制剂以四次相称的充装倒入模具中，每一次装入层的厚度约为 1 mm，立即进行紫外光固化。通过使模具在室温下三次敞口地经过一个自制的 (homebuilt) 的紫外操作台 (UV-rig) 附有 400 瓦中压 Hg 灯泡) 来进行固化。对每一层施加 61/cm² 的总 UV 剂量。该剂量用 International Light IL390 Light Bug 测定。

[0186] 后烘烤：(实施例 1-3)

[0187] 通过将样品在 80℃的干烤箱中放置约 20 小时来进行后固化。后固化后，在测试之前将样品在室温 (23℃) 和 50% 的相对湿度下放置至少一周。这些样品的 K_i 和拉伸测试是在相同的环境条件下进行的。

[0188] 混杂制剂的制备 - 实施例 4-10: 比较试验 A-D

[0189] 分散物的制备（表 4 和表 5a, 5b 和 5c）

[0190] 在轻轻地搅拌下将核 - 壳粉末加入到环氧树脂中，继续搅拌直到粉末被湿润。将浆料转移至 Charles Ross & Sons 生产的三杆 Versamixhe 的混合罐中。用锥式搅拌器以 60rpm 搅拌该浆料，同时用装有热水的热水套加热。当浆料温度升至 35℃时，分散器的速度设置为 5000rpm，并且停止向水套中流入水。当浆料温度升至 45℃时，分散器的速度升至 6500rpm，并且乳化器的速度设为 5500rpm。当温度升至 60℃时即刻将混合罐抽空至 948mbar。当温度达到 80-82℃时，关闭分散器和乳化器，用通过水套的流动冷水冷却混合物。一旦温度降至 50℃以下，关掉锥式搅拌器，让空气重新进入混合罐。

[0191] 表 2 核 - 壳分散物的例子

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVR 6105 (%)</td>
<td>62.7</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>52.6</td>
</tr>
<tr>
<td>Epon 825 (%)</td>
<td>20.2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>27.4</td>
</tr>
<tr>
<td>EXL-2314 (%)</td>
<td>17.1</td>
<td>4.7, B, C</td>
<td>5.7, 8</td>
<td>5.7, 8</td>
<td>4.7, B, C</td>
<td>10</td>
</tr>
<tr>
<td>KM-365 (%)</td>
<td>4.7, B, C</td>
<td>5.7, 8</td>
<td>5.7, 8</td>
<td>4.7, B, C</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

[0192] 制剂的制备

[0193] 称出各个成分并加到适宜的容器中。在称量和混合之前将几种成分（核 - 壳 / 环氧物分散物，Ebcril 3605 和 Stepanpol）加热到 55℃。用驱动型混合杆在室温下搅拌 6-16 小时完成混合。通过将制剂浸入 30-40℃的超声浴中进行脱气。实施例和比较试验制剂的组合物列于表 5 和 6 中。

[0194] 工作曲线测量

[0195] 用 20g 样品制剂在置于 30℃和 30% RH, 100mm 直径的 Petri 盘中测试每一制剂的
暴露反应。制剂的表面被暴露于激光器的光束，可以使用工作波长 333.351. 和 364nm 的激光器或者工作波长 354nm 的固态激光器。暴露是在 0.5 英寸见方的区域进行，通过在给 Petri 盘的液体表面画出连续的相隔约 50.8 μm 的平行线来扫描输出该区域。在该液体表面的圆点直径约为 0.0127cm(在直径上 (1/cm²))。在为了使暴露的面板 (panel) 硬化而等待至少 15 分钟之后，将面板从 Petri 盘中取出，采用 Kimwipe EX-L (Kimberly Clark) 吸干来去除多余的未固化的树脂。用 Mitutoyo Model-ID-C12CE Indicator Micrometer 测量膜厚度。膜的厚度是暴露能量的对数的线性函数;回归斜率 (slope) 为 Dp(单位为 μm)，截距为 Ec (单位为 mJ/cm²)。

[0197] 形成部件

[0198] 用 Somos Solid State Imager(SSI) 或 3D Systems SLA-250 立体平版印刷机，用扫描激光束选择性地照射测试制剂以形成希望的横断面层。通过激光器的功率、扫描速度、激光器脉冲频率和扫描线间距来确定曝光能量。基于该树脂确定的 Ec 和 Dp 值来调节曝光能量以产生目标固化层厚度 (固化厚度)。将暴露的层浸没在一层未聚合的树脂之下并且重复该暴露步骤。重复这些暴露和重涂步骤，直到获得具有期望部件厚度的固化部件。表 5 和表 6 列出了激光器波长、涂层厚度以及为所制得的机械测试部件计算的固化深度。将完成的部件从制件槽中提出并从它们的构建平台中移出。用 TPM (三乙二醇单甲醚) 将粘附在部件上的未固化树脂洗去。部件用异丙醇溶剂干燥。然后将该部件置于后固化装置 (3-D Systems 出售的 “PCA”)，用 Phillips TLK/0540W 灯泡中的 10 个灯泡单元中并在室温下接受 60 分钟的紫外照射。

[0199] 拉伸试验

[0200] 通过多层暴露构建出狗骨形拉伸测试样本。这些样本一般为 150mm 长，在窄区域中为 10.15mm 宽，3.8mm 厚。从每种制件构建出至少 3 个样本。样本经清洁、干燥并接受上述的 UV 后固化。将样本在 50% RH 和 20-23°C 的环境中放置 7 天。样品经从该控制的环境中取出就立即进行测试。用卡规测量每个样本的宽度和厚度。用一个 MTS Sintech 拉伸测试器按照 ASTM D638 的程序测试样本。将样本保持在一组带锯齿状的模紧作用夹中;夹子分开 105mm。用 28.913kN 的测力仪 (测力传感器) 测应力，用初始标距 (标距长度, gauge length) 设定为 25.4mm 的伸长计 (延伸仪) 测应变。应力和应变是在 5.08mm/min 的夹分离速度下记录。对每一样本记录杨氏模量、屈服伸长率 (%)、屈服应力、断裂伸长率 (%) 以及断裂应力。表 5 和 6 中报告了对这三个样本的平均值。杨氏模量取自应力应变曲线在 0.05 和 0.25% 伸长之间的斜率。屈服应力取自应力应变曲线的最大值 (即屈服点)，其通常是在 2-8% 伸长之间。如果样品的伸长不在 0-10% 之间，没有显示出应力应变曲线的最大值，该最大应力即看作是屈服应力的近似值。屈服伸长率 (%) 是在屈服点的应变 (伸长)，断裂伸长率 (%) 和断裂应力取自样品失效之前的最后一个数据点。

[0201] 表面应力强度因数 Kc 的测定

[0202] 线性方法测量是用为测量材料的 Kc 和 Gc 的线弹性断裂力学标准 (Linear Elastic Fracture Mechanics standard, LEFM) 进行的。该标准由 European Group of Fracture (EGF, 现称 ESIS) 制定;J.G. Williams, ESIS;Testing protocol, October 1989; 制定用于确定材料的 Kc 和 Gc 的线弹性断裂力学 (linear elastic fracture mechanics, LEFM)。
Kc是在裂缝扩展处的临界应力强度因数。当以拉伸模式（称为模式 1）测量时，该韧度参数标记为 Kc。该测量用单边切口梁 (Single Edge Notch Bend, SENB) 样本进行。SENB 样本的几何形状在图 1 中示出。

由于 Kc 是测量材料对裂缝扩展抗性的参数，因此必须预先破该样品。该预破裂应该优选是直的和陡的 (sharp)。不充分陡的预破裂切口将导致太高的 Kc 值。对于 SENB 样品，通过将一刃片轻敲进该切口（缺口，notch）而使机械加工出的切口进一步变尖锐（有棱角，sharpen）。通常，会得到一个陡的预破裂切口，因为该预破裂长度是在刀片尖端之前的至少几毫米。

注意，样品的尺寸要与表 3 中说明的 ESIS 要求一致

<table>
<thead>
<tr>
<th>说明</th>
<th>ESIS 几何形状要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>样品厚度，B</td>
<td>B</td>
</tr>
<tr>
<td>线宽，W</td>
<td>4B > W > 2B</td>
</tr>
<tr>
<td>样品长度，L</td>
<td>L ≥ 4.4W</td>
</tr>
<tr>
<td>支持和装载直径，D</td>
<td>W/4 < D < W</td>
</tr>
<tr>
<td>支持长度，S</td>
<td>S = 4W</td>
</tr>
<tr>
<td>切槽长度，a</td>
<td>a/W = 0.3</td>
</tr>
<tr>
<td>预破裂切口长度</td>
<td>a/W = 0.4~0.6</td>
</tr>
</tbody>
</table>

实际中，样品的厚度 B、宽度 W 和长度 L 可依样品到而有所不同，只要满足 ESIS 几何形状要求即可。对于本发明的材料，优选的 B 范围是 2.5~15mm，同时 W 的范围优选为 8~30mm。对于 Kc 大于 3.5MPa*√m 的样品，需要较大尺寸。样品长度优选为样品宽 W 的 4.5~6 倍。

在开始测试时将支持长度（support length）S 精确地调节至样品宽 W 的 4 倍。用标准锯做出一个长度为 a，等于样品宽 W 的 0.3 倍的切口，然后如前所述用刀片制出该预破裂切口。

这些测量是用 Zwick Z1455 拉伸试验机上进行，用 Zwick Test Xpert 软件（5.43 版）控制。用一个 2kN 的测力传感器记录下力。用一个位移传感器（分辨率为 0.0025mm/步的 Zwick 长冲程伸长计测量该射束（beam）的中间偏向（mid-deflection）。用标准的 3-点弯曲机支撑并加载机器中的样品。使用的测试速度是 1mm/min。将支撑和加载直径（support & load diameter）固定至 6mm。

应力强度因数 Kp 的计算

利用对于 SENB 测试件的 ESIS 测试规程的方程计算应力强度因数 (Kp)：

\[K_p = f \times (F/B) \times \sqrt{W} \]
说明书

[0214] 其中:
[0215] \[f = 6 \times \sqrt{(a/W) \times (1.99 - a/W(1-a/W) \times (2.15 - 3.93 \times a/W + 27 \times (a/W)^2) / (1+2 \times a/W)^{3/2}} \]
[0216] 其中:
[0217] f: 释放/几何形状因数, 取决于 a/W 比
[0218] F: 在开始裂纹扩展时的最大力
[0219] B: 样品的厚度
[0220] W: 样品的线宽
[0221] \(K_{Ib} \): 临界应力强度因数的测试和测定的有效性
[0222] 对于应力强度因数 \(K_{Ib} \), 临界值, 即临界应力强度因数 \(K_{Ib} \) 的有效测定, 要求测试样本的尺寸大于塑性区(plastic zone) 的尺寸, 以致可以忽略塑性区尺寸对应力强度分析的影响并获得主要是平面的应变状态。如果满足尺寸规范 B, a, (W-a) > 2.5 (K_{Ib} / \sigma_y)^2 就可以确保这一点, 其中 \(\sigma_y \) 是前述用拉伸测试测定的材料的屈服应力。当满足这些条件时, 样本厚度 B 足以确保平面应变, 同时宽度 W 足以避免带(ligament) 中的过度塑性。
[0223] 典型地, 用相同的尺寸在 3-5 个样本上进行测试。报告这些测试结果的平均值。
[0224] Izod 值
[0225] Izod 冲击试验提供对材料承受快速施加的力, 例如承受下落物体、碰撞、掉落等的能力的评价。该测试并不提供给定材料的工程数据, 而是最佳地用来在相同的测试条件下比较被制成既定样本形状的材料的抗冲击性。
[0226] 当比较塑料的抗冲击性时, 广泛使用 ASTM D 256 中描述的带缺口悬臂梁式冲击试验 (notched Izod test, 埃尔德冲击试验)。在该试验中, 样本被制造成精确的几何形状并在样本的表面加工有缺口。该缺口模拟在一个部件上存在锐角转角、相交面或者已加工的轮廓(feature) (例如螺纹孔)。
[0227] 为了带缺口悬臂梁式冲击试验, 将样本垂直保持在钳口(vise) 中, 缺口平行于钳口的顶端。具有规定的冲击边的摆锤被从规定的高度释放, 并以在缺口上以确定的距离摆入样本带缺口的面。锤在剪切样本后所达到的高度与锤的剩余能量相对应。锤对样本失去的能量是用于在缺口尖端产生裂缝, 扩展该裂缝以及将样本断开的块推出冲击区域的能量。该冲击能量被确定为摆锤失去的能量减去将样本断开的块推出样本所需的能量。只有当保持不变的几何形状、开缺口技术、缺口半径和试验条件(装样, 温度等) 时才可以比较不同材料的测试结果。
[0228] Izod 冲击测试
[0229] 通过多层曝光制成测试样本。这些样品通常 63.5mm 长, 12.7mm 宽, 6.35mm 厚, 与 ASTM D-256A 相一致。每一种树脂制备至少五个样本。样本经清洁、干燥并接受上述的 UV 曝光。在开槽口(缺口) 之前将样本放置在环境条件下 2 天。按照 ASTM D-256A, 使用一个来自 CS 的 CS-93M 样品开槽机 (Sample Notcher) 给样品开槽。将样本放置在控制为 50% RH 和 20-23°C 的环境中 2 天。将样本从该控制的环境中取出之后立即进行测试。用配有一个 2.75J 的摆的 Zwischk110 型冲击试验机测试 Izod 冲击值。
[0230] 在 200°C 下动态存储模量 E’ 的测定
[0231] 本发明的材料的动态存储模量是根据 ASTM D5026-95a “Standard Test Method
for Measuring the Dynamical Properties of Plastics in Tension" 通过在以下的条件
在拉紧状态下的 DMTA 来测定的，采用以下的条件以用于本发明的涂覆。

0232] 在以下条件下进行温度扫描测量 (temperature sweep measurement):
0233] 测试件： 矩形条
0234] 夹子之间的长度：18-22mm
0235] 宽度： 4mm
0236] 厚度： 在约 50 至 1000 μ m 之间
0237] 设备： 在 TA 仪器 RSA3 型的 DMTA 机上进行测试
0238] 频率： 1Hz
0239] 初始应变： 0.15%
0240] 温度范围： 开始于 -130℃ 加热至 250℃
0241] 爬坡速度 (ramp speed); 5℃ /min
0242] 自动拉力 (autotension):
0243] 静态力跟踪动态力 (Static Force Tracking Dynamic Force)
0244] 初始静态力：0.9N
0245] 静态力>动态力：10%
0246] 自动应变 (autostrain); 施加的最大应变：2%
0247] 允许的最小力：0.05N
0248] 允许的最大力：1.4N
0249] 应变调节：10%（当前应变）
0250] 尺寸测试件：厚度: 用分辨率为 1 μ m 的 MT 30B 型电子 Heidenhain 厚度测量装置
测量。
0251] 宽度: 用分辨率为 1 μ m 的 MITUTOYO 显微镜测量。
0252] 所有的设备均按 ISO9001 校准。在开始测量前, 每一个矩形条在室温的氮气气氛中
干燥 5 分钟。
0253] 在 DMTA 测量中 (是一种动态测量), 按照以下关系式测量以下模量: 储能模量 E’、
损耗模量 E”以及动态模量 E*:
0254] $E^* = (E'^2 + E''^2)^{1/2}$
0255] 取 DMTA 曲线中 200℃ 时的储能模量 E’值, 该值是在前面详细描述的条件下以 1Hz
的频率测得的。

0256] 表 4. 环氧制剂的实施例

<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPON 825(%)</td>
<td>58.8</td>
<td>58.8</td>
<td>58.8</td>
</tr>
<tr>
<td>Emulgen(%)</td>
<td>31.7</td>
<td>31.7</td>
<td>31.7</td>
</tr>
<tr>
<td>EXL2600(%)</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
说明书

<table>
<thead>
<tr>
<th>EXL2314(%)</th>
<th>9.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albidur EP 2240(%)</td>
<td>9.0*</td>
</tr>
<tr>
<td>Chivacure(%)</td>
<td>0.5</td>
</tr>
<tr>
<td>阳离子可聚合基 / 羟基</td>
<td>2.34</td>
</tr>
<tr>
<td>芳香族和脂肪族环含含量</td>
<td>0.36</td>
</tr>
<tr>
<td>E [GPa]</td>
<td>2.2</td>
</tr>
<tr>
<td>屈服 [MPa]</td>
<td>44</td>
</tr>
<tr>
<td>K_{IQ} [MPa * m$^{1/2}$]</td>
<td>1.43</td>
</tr>
<tr>
<td>样本宽度 W [mm]</td>
<td>8.9</td>
</tr>
<tr>
<td>样本厚度 b [mm]</td>
<td>3.34</td>
</tr>
<tr>
<td>K_{IC} [MPa * m$^{1/2}$]</td>
<td>1.43</td>
</tr>
</tbody>
</table>

[0258] *表示来自 Albidur EP 2240 的硅烷化颗粒的重量%。Albidur 的环氧物部分包括在 Epon 825 的重量%中。

[0259] **实施例 2 和 3 的样本厚度小于为有效 K_{IC} 测定的下限。因此，临界值预计小于 K_{IQ} 的值。对于 K_{IC}，给定了材料的屈服应力水平，我们因此规定了用该样品厚度可以测定的最大有效值。该值作为材料 K_{IC} 的下限。

[0260] 表 5a，混杂制剂的实施例

[0261]
<table>
<thead>
<tr>
<th>实施例</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVR 6105 (%)</td>
<td>40.87</td>
<td>30.70</td>
<td>40.87</td>
<td>31.69</td>
<td>20.00</td>
<td>37.81</td>
<td>30.70</td>
</tr>
<tr>
<td>Epon 826 (%)</td>
<td>10.22</td>
<td>16.00</td>
<td>20.44</td>
<td>18.39</td>
<td>29.00</td>
<td>12.17</td>
<td>16.01</td>
</tr>
<tr>
<td>Chivacure 1176 (%)</td>
<td>2.26</td>
<td>3.32</td>
<td>2.26</td>
<td>2.26</td>
<td>3.30</td>
<td>3.29</td>
<td>3.30</td>
</tr>
<tr>
<td>SynFac 8025U (%)</td>
<td>15.33</td>
<td>13.00</td>
<td>15.33</td>
<td>9.50</td>
<td>6.70</td>
<td>8.44</td>
<td>13.00</td>
</tr>
<tr>
<td>Stepanpol PS2002 (%)</td>
<td>10.22</td>
<td>5.40</td>
<td>6.34</td>
<td>10.00</td>
<td>4.15</td>
<td>5.40</td>
<td></td>
</tr>
<tr>
<td>三乙二醇 (%)</td>
<td>4.34</td>
<td>4.25</td>
<td>4.34</td>
<td>4.25</td>
<td>4.22</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>EXL-2314 (%)</td>
<td>5.11</td>
<td>9.00</td>
<td>5.11</td>
<td>7.15</td>
<td>8.00</td>
<td>10.34</td>
<td></td>
</tr>
<tr>
<td>KM-365 (%)</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR399 (%)</td>
<td>4.34</td>
<td>4.25</td>
<td>4.34</td>
<td>4.25</td>
<td>4.13</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>SR-9003 (%)</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irgacure 184 (%)</td>
<td>1.99</td>
<td>2.30</td>
<td>1.99</td>
<td>2.30</td>
<td>2.26</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>Ebecryl 3605 (%)</td>
<td>5.11</td>
<td>11.6</td>
<td>5.11</td>
<td>13.80</td>
<td>12.00</td>
<td>10.98</td>
<td>11.60</td>
</tr>
<tr>
<td>Silwet 7600 (%)</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>BYK 501 (%)</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>

阳离子可聚合基/烯基	2.82	3.14	4.35	3.56	3.13	4.10	3.15
阳离子可聚合基 / 自由基可聚合基	7.46	5.43	8.55	5.36	5.19	6.17	5.43
芳香族和脂肪族环含量	0.38	0.35	0.40	0.36	0.33	0.36	0.35

构造信息

<table>
<thead>
<tr>
<th>仪器</th>
<th>SSI</th>
<th>SLA 250</th>
<th>SSI</th>
<th>SSI</th>
<th>SSI</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>激光器类型 / 波长 (nm)</td>
<td>Ar+/351</td>
<td>固态/354.7</td>
<td>固态/354.7</td>
<td>Ar+/351</td>
<td>固态/354.7</td>
<td>固态/354.7</td>
</tr>
<tr>
<td>固化深度 (µm)</td>
<td>304.8</td>
<td>254</td>
<td>304.8</td>
<td>304.8</td>
<td>304.8</td>
<td>254</td>
</tr>
<tr>
<td>层厚度 (µm)</td>
<td>152.4</td>
<td>101.6</td>
<td>152.4</td>
<td>152.4</td>
<td>127</td>
<td>152.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>模量 (MPa)</th>
<th>2200</th>
<th>2549</th>
<th>2900</th>
<th>2700</th>
<th>2200</th>
<th>2170</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>屈服应力 (MPa)</td>
<td>35</td>
<td>48</td>
<td>56</td>
<td>50</td>
<td>41</td>
<td>41</td>
<td>34</td>
</tr>
<tr>
<td>断裂拉伸 %</td>
<td>14</td>
<td>12.6</td>
<td>7</td>
<td>9.4</td>
<td>24</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Izod (J/cm)</td>
<td>0.59</td>
<td>0.54</td>
<td>0.47</td>
<td>0.48</td>
<td>0.51</td>
<td>0.49</td>
<td>0.94</td>
</tr>
<tr>
<td>K\textsubscript{10} (MPa*m1/2)</td>
<td>2.9</td>
<td>2.3</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>样本宽度 W(µm)</td>
<td>21.3</td>
<td>12.2</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>样本厚度 B(µm)</td>
<td>10.4</td>
<td>5.87</td>
<td>5.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K\textsubscript{1c} (MPa*m1/2)</td>
<td>2.9</td>
<td>2.3</td>
<td>>2.0*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0262] *实施例 9 的样本厚度小于有效 K\textsubscript{1c} 测定的下限。因此，临界值预计小于 K\textsubscript{1c} 的值。对于 K\textsubscript{1c}，给出了材料的屈服应力水平，我们因此规定了用该样品厚度可以测定的最大有效值。该值作为材料 K\textsubscript{1c} 的下限。

[0263] 表 5b。混杂制剂的实施例

[0264]
<table>
<thead>
<tr>
<th>实施例</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVR 6105 (%)</td>
<td>30.7</td>
<td>27.2</td>
<td>30.7</td>
<td>30.8</td>
<td>30.7</td>
</tr>
<tr>
<td>Epon 825 (%)</td>
<td>16</td>
<td>16</td>
<td>21</td>
<td>16.05</td>
<td>15</td>
</tr>
<tr>
<td>Oxetane OXT 101 (%)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinylether ethyl acrylate (%)</td>
<td></td>
<td></td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chivacure 1176 (%)</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Rhodorsil 2074 (%)</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chivacure BMS (%)</td>
<td></td>
<td></td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>碳酸丙烯酯 (%)</td>
<td></td>
<td></td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SynFac 8025U (%)</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>11.5</td>
</tr>
<tr>
<td>Synfac 8009 (%)</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stepanpol PS2002 (%)</td>
<td>5.4</td>
<td>5.4</td>
<td>6</td>
<td>5.42</td>
<td>5.1</td>
</tr>
<tr>
<td>三乙二醇 (%)</td>
<td>4.25</td>
<td>4.25</td>
<td>4.85</td>
<td>4.26</td>
<td></td>
</tr>
<tr>
<td>丙氧化三羟甲基丙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluracol TP440 (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.55</td>
</tr>
<tr>
<td>EXL-2314 (%)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>SR399 (%)</td>
<td>4.25</td>
<td>4.25</td>
<td>4.5</td>
<td>4.26</td>
<td>4.25</td>
</tr>
<tr>
<td>Irgacure 184 (%)</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
<td>2.31</td>
<td>2.30</td>
</tr>
<tr>
<td>Ebecryl 3605 (%)</td>
<td>11.6</td>
<td>11.6</td>
<td>11.64</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>Silwet L7600 (%)</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>BYK A501 (%)</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

阳离子可聚合基 / 羟基	2.8	2.4	3.2	3.1	3.2
阳离子可聚合基 / 自由基可聚合基	5.43	5.46	5.65	5.43	5.42
芳香族和脂肪族环含量	0.36	0.33	0.33	0.35	0.34

<table>
<thead>
<tr>
<th>构造信息</th>
<th>SSI</th>
<th>SSI</th>
<th>SSI</th>
<th>SSI</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>激光器类型 / 波长 (nm)</td>
<td>固态 / 354.7</td>
</tr>
<tr>
<td>固化深度 (µm)</td>
<td>254</td>
<td>254</td>
<td>254</td>
<td>254</td>
<td>254</td>
</tr>
<tr>
<td>层厚度 (µm)</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>模量 (MPa)</td>
<td>2596</td>
<td>2498</td>
<td>2071</td>
<td>2353</td>
<td>2787</td>
</tr>
<tr>
<td>屈服应力 (MPa)</td>
<td>38</td>
<td>45</td>
<td>34</td>
<td>41</td>
<td>47</td>
</tr>
<tr>
<td>断裂拉伸 (%)</td>
<td>10.7</td>
<td>31</td>
<td>48</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>Izod (J/cm)</td>
<td>0.56</td>
<td>0.79</td>
<td>0.84</td>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>K_{1C} (MPa·m$^{1/2}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>样本宽度 W (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>样本厚度 B (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{1C} (MPa·m$^{1/2}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
实施例

<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVR 6105 (%)</td>
<td>27.05</td>
<td>22.1</td>
<td>35</td>
</tr>
<tr>
<td>Epon 825 (%)</td>
<td>18.56</td>
<td>22.1</td>
<td>18</td>
</tr>
<tr>
<td>Oxetane OXT 101 (%)</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chivacure 1176 (%)</td>
<td>3.37</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>SR 349 (%)；BPA(EO)3DA</td>
<td>1.17</td>
<td>9.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Placcel 220EB (%)</td>
<td>4.25</td>
<td>13.5</td>
<td>10</td>
</tr>
<tr>
<td>BPA (EO)4 (%)</td>
<td>4.69</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>SynFac 8025U (%)</td>
<td>9.75</td>
<td></td>
<td>10.7</td>
</tr>
<tr>
<td>Stepanpol PS2002 (%)</td>
<td>4.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三乙烯醇 (%)</td>
<td>3.19</td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>EXL-2314 (%)</td>
<td>6.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR399 (%)</td>
<td>3.77</td>
<td>4.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Irgacure 184 (%)</td>
<td>2.32</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Ebecryl 3605 (%)</td>
<td>8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silwet L7600 (%)</td>
<td>0.1</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>BYK A501 (%)</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

阳离子可聚合基 / 羧基

<table>
<thead>
<tr>
<th></th>
<th>2.7</th>
<th>2.4</th>
<th>4</th>
</tr>
</thead>
</table>

阳离子可聚合基 / 自由基可聚合基

<table>
<thead>
<tr>
<th></th>
<th>5.95</th>
<th>5.1</th>
<th>5.6</th>
</tr>
</thead>
</table>

芳香族和脂肪族环含量

<table>
<thead>
<tr>
<th></th>
<th>0.34</th>
<th>0.35</th>
<th>0.37</th>
</tr>
</thead>
</table>

构造信息

<table>
<thead>
<tr>
<th>仪器</th>
<th>SSI</th>
<th>3D-systems Viper</th>
<th>3D-systems Viper</th>
</tr>
</thead>
<tbody>
<tr>
<td>激光器类型 / 波长 (nm)</td>
<td>固态/354.7</td>
<td>固态/354.7</td>
<td>固态/354.7</td>
</tr>
<tr>
<td>固化深度 (μm)</td>
<td>254</td>
<td>254</td>
<td>254</td>
</tr>
<tr>
<td>层厚度 (μm)</td>
<td>127</td>
<td>152.4</td>
<td>152.4</td>
</tr>
<tr>
<td>模量 (MPa)</td>
<td>2041</td>
<td>2030</td>
<td>2300</td>
</tr>
<tr>
<td>屈服应力 (MPa)</td>
<td>41.2</td>
<td>43.7</td>
<td>56.0</td>
</tr>
<tr>
<td>断裂拉伸 (%)</td>
<td>16.2</td>
<td>18.3</td>
<td>13.0</td>
</tr>
<tr>
<td>Izod (J/cm)</td>
<td>0.66</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>K_{1C} (MPa·m$^{1/2}$)</td>
<td>3.0</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>样本宽度 W (mm)</td>
<td>21.3</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>样本厚度 B (mm)</td>
<td>10.7</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>K_{1C} (MPa·m$^{1/2}$)</td>
<td>>2.85</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

[0267] 实施例 17 和 18 在 UV 后固化之后的 24 小时中已经在 80℃经过后烘烤。
[0268] 表 6a．比较试验：混杂制剂
[0269]
<table>
<thead>
<tr>
<th>比较实验</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epon 825 (%)</td>
<td>14.25</td>
<td>20.44</td>
<td>14.70</td>
<td>1.80</td>
</tr>
<tr>
<td>UV R 6105 (%)</td>
<td>44.26</td>
<td>40.87</td>
<td>43.29</td>
<td>56.90</td>
</tr>
<tr>
<td>Chivacure 1176 (%)</td>
<td>3.85</td>
<td>2.26</td>
<td>3.67</td>
<td>4.94</td>
</tr>
<tr>
<td>Stepanpol PS2002 (%)</td>
<td>4.85</td>
<td>0.00</td>
<td>4.62</td>
<td></td>
</tr>
<tr>
<td>SynFac 8025U (%)</td>
<td>4.94</td>
<td>5.11</td>
<td>9.42</td>
<td></td>
</tr>
<tr>
<td>Terathane 1000 (%)</td>
<td></td>
<td></td>
<td></td>
<td>14.97</td>
</tr>
<tr>
<td>三乙二醇 (%)</td>
<td>4.94</td>
<td>4.34</td>
<td>4.71</td>
<td></td>
</tr>
<tr>
<td>EXL-2314 (%)</td>
<td></td>
<td>5.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albudur EP 2240 (%)</td>
<td></td>
<td></td>
<td></td>
<td>1.20*</td>
</tr>
<tr>
<td>SR399 (%)</td>
<td>4.84</td>
<td>4.34</td>
<td>4.61</td>
<td></td>
</tr>
<tr>
<td>SR-9003 (%)</td>
<td>2.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ebecryl 3700 (%)</td>
<td></td>
<td></td>
<td></td>
<td>17.97</td>
</tr>
<tr>
<td>Ebecryl 3605 (%)</td>
<td>12.85</td>
<td>15.33</td>
<td>12.24</td>
<td></td>
</tr>
<tr>
<td>Irgacure 184 (%)</td>
<td>2.65</td>
<td>1.99</td>
<td>2.53</td>
<td>2.00</td>
</tr>
<tr>
<td>BYK 501 (%)</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Silwet 7600 (%)</td>
<td>0.16</td>
<td>0.13</td>
<td>0.15</td>
<td>0.20</td>
</tr>
</tbody>
</table>

阳离子可聚合基/羟基

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>阳离子可聚合基/羟基</td>
<td>4.72</td>
<td>6.47</td>
<td>4.23</td>
<td>15.42</td>
</tr>
<tr>
<td>阳离子可聚合基/</td>
<td>6.16</td>
<td>6.28</td>
<td>6.38</td>
<td>6.73</td>
</tr>
<tr>
<td>自由基可聚合基</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>芳香族和脂肪族环含量</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.37</td>
</tr>
</tbody>
</table>

构造信息

<table>
<thead>
<tr>
<th>仪器</th>
<th>SSI</th>
<th>SSI</th>
<th>SSI</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>激光器类型 / 波长</td>
<td>固态/ 354.7</td>
<td>Ar+/ 351</td>
<td>固态/ 354.7</td>
<td>固态/ 354.7</td>
</tr>
<tr>
<td>固化深度 (μm)</td>
<td>304.8</td>
<td>304.8</td>
<td>304.8</td>
<td>330.2</td>
</tr>
<tr>
<td>层厚度 (μm)</td>
<td>152.4</td>
<td>152.4</td>
<td>152.4</td>
<td>152.4</td>
</tr>
</tbody>
</table>

RT, 7天

<table>
<thead>
<tr>
<th>模量 (MPa)</th>
<th>3526</th>
<th>3045</th>
<th>3087</th>
<th>2604</th>
</tr>
</thead>
<tbody>
<tr>
<td>屈服应力 (MPa)</td>
<td>69</td>
<td>58</td>
<td>58</td>
<td>54</td>
</tr>
<tr>
<td>断裂拉伸 %</td>
<td>5.7</td>
<td>4.1</td>
<td>11.2</td>
<td>7.6</td>
</tr>
<tr>
<td>Izod冲击强度 (J/cm)</td>
<td>0.175</td>
<td>0.225</td>
<td>0.21</td>
<td>0.24</td>
</tr>
</tbody>
</table>

| 无抗冲改性剂 | 阳离子可聚合基 / 羟基比高 | 无抗冲改性剂 | 阳离子可聚合基 / 羟基比高 |

[0270] 表 6b. 比较试验：混杂制剂
[0271]
<table>
<thead>
<tr>
<th>比较试验</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>文献中的例子</td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>UVR 6110 (%)</td>
<td>30</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>UVR 6199 (%)</td>
<td>5</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>Epolite 1600 (%)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMPTA (%)</td>
<td>25</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>Sunnix GP-400 (%)</td>
<td>15</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>RKB橡胶颗粒</td>
<td>16</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Epolite 1500 NP (%)</td>
<td>10</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>光引发剂</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>阳离子可聚合基/羟基</th>
<th>2.4</th>
<th>4.3</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>阳离子可聚合基/自由基可聚合基</td>
<td>1.1</td>
<td>3.1</td>
<td>1.1</td>
</tr>
<tr>
<td>芳香族和脂肪族环含量</td>
<td>0.19</td>
<td>0.25</td>
<td>0.11</td>
</tr>
</tbody>
</table>

性能

<table>
<thead>
<tr>
<th>性能</th>
<th>模量 (MPa)</th>
<th>Izod冲击强度 (J/cm)</th>
<th>评价</th>
<th>原因</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1580</td>
<td>0.52</td>
<td>模量太低</td>
<td>芳族 / 脂族环含量低</td>
</tr>
<tr>
<td></td>
<td>1800</td>
<td>0.48</td>
<td>模量太低</td>
<td>阳离子可聚合基/自由基可聚合基比低</td>
</tr>
<tr>
<td></td>
<td>1420</td>
<td>0.52</td>
<td>模量太低</td>
<td>芳族 / 脂族环含量低</td>
</tr>
</tbody>
</table>

[0272] 表 6c. 比较试验：混杂制剂
[0273]
<table>
<thead>
<tr>
<th>比较实验</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>现有技术文献</td>
<td>US2004013977</td>
<td>US2004013977</td>
</tr>
<tr>
<td>现有技术的例子</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>UVR 8110 (%)</td>
<td>47.8</td>
<td>56.9</td>
</tr>
<tr>
<td>Araldyte DY-T (%)</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Sumisol BPRE (%)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TMP (%)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ebecryl 3700 (%)</td>
<td>16.5</td>
<td>13.5</td>
</tr>
<tr>
<td>光引发剂</td>
<td>3.5</td>
<td>2.6</td>
</tr>
<tr>
<td>添加剂</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>阳离子可聚合基 / 羟基</th>
<th>7.1</th>
<th>7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>阳离子可聚合基 / 自由基可聚合基</td>
<td>8.1</td>
<td>10.4</td>
</tr>
<tr>
<td>芳香族和脂肪族环含量</td>
<td>0.35</td>
<td>0.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>性能</th>
<th>1900</th>
<th>1600-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izod冲击强度 (J/cm)</td>
<td>0.4</td>
<td>0.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>评价</th>
<th>模量及冲击强度太低</th>
<th>冲击强度太低</th>
</tr>
</thead>
<tbody>
<tr>
<td>原因</td>
<td>阳离子可聚合基 / 羟基比高 + 无抗冲改性质剂 d</td>
<td>阳离子可聚合基 / 羟基比高 + 无抗冲改性质剂 d</td>
</tr>
</tbody>
</table>

[0274] PI’s、添加剂以及橡胶颗粒阳离子可聚合基 / 羟基比、阳离子可聚合基 / 辐射可聚合基比以及芳基和脂环族基团含量的计算中。

[0275] 表6b和6c示出了现有技术的文献所披露的树脂组合物，然而，它们没有产生具有本发明所述的理想性能的的物件。
图 1