

WO 2014/052092 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/052092 A1

(43) International Publication Date

3 April 2014 (03.04.2014)

(51) International Patent Classification:

C07C 231/12 (2006.01) A61K 49/04 (2006.01)
C07C 237/46 (2006.01)

(74) Agents: JI, Yonggang et al.; GE Healthcare, Inc., 101 Carnegie Center, Princeton, New Jersey 08540 (US).

(21) International Application Number:

PCT/US2013/060092

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:

17 September 2013 (17.09.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

20121103 27 September 2012 (27.09.2012) NO

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

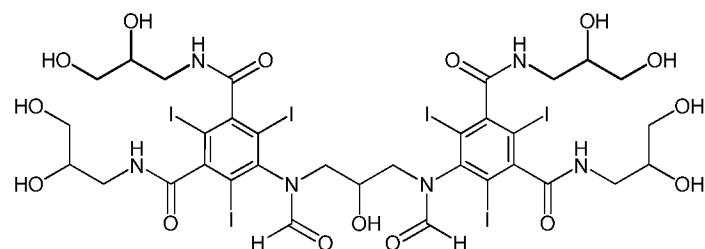
Published:

— with international search report (Art. 21(3))

(54) Title: PREPARATION OF IOFORMINOL, AN X-RAY CONTRAST AGENT

(57) Abstract: The present invention relates to a process for the preparation of Ioforminol, a contrast agent useful in X-ray imaging. More particularly, the invention relates to preparation of Ioforminol from a compound mixture comprising 1-formylamino-3,5-bis(2,3-bis(formyloxy)propan-1-ylcarbamoyl)-2,4,6-trioiodobenzene by a process comprising in situ hydrolysis and a bis-alkylation.

PREPARATION OF IOFORMINOL, AN X-RAY CONTRAST AGENT

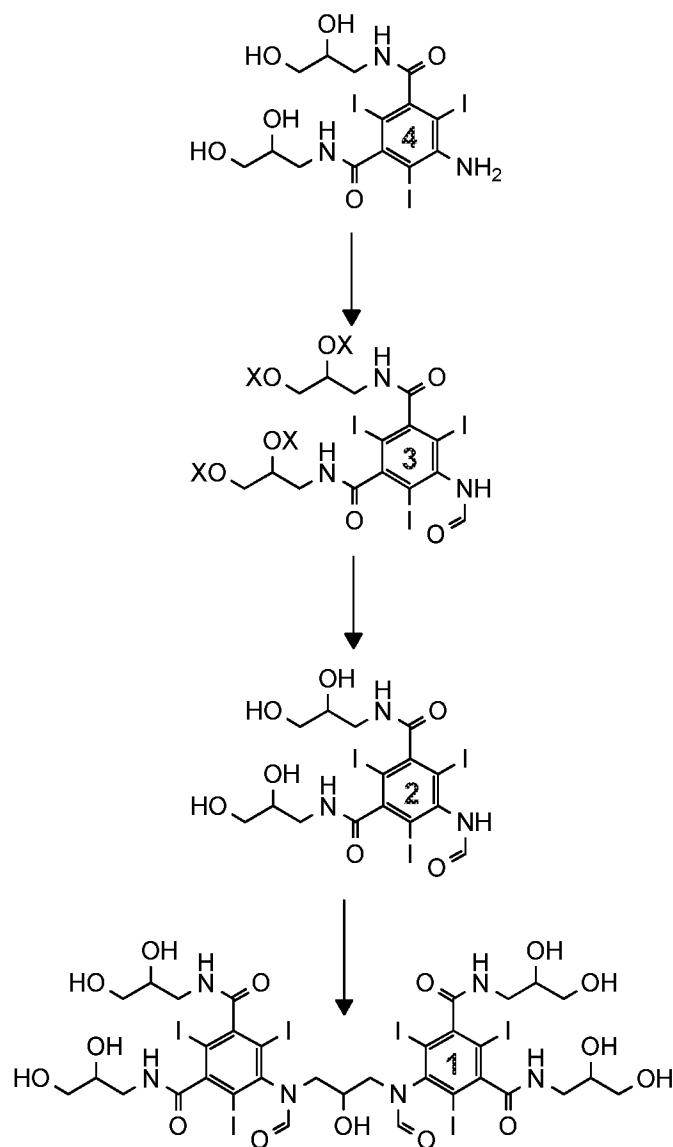

The present invention relates to a process for the preparation of iodinated X-ray contrast agents and in particular to a process for preparing loforminol, a contrast agent useful in X-ray imaging. More particularly, the invention relates to preparation of loforminol from a compound mixture comprising 1-formylamino-3,5-bis(2,3-bis(formyloxy)propan-1-ylcarbamoyl)-2,4,6-trioiodobenzene, a key intermediate in the process for preparing loforminol.

10 For the last 50 years the field of X-ray contrast agents has been dominated by soluble iodine containing compounds. Commercial available contrast media containing iodinated contrast agents are usually classified as ionic monomers such as diatrizoate (GastrografenTM), ionic dimers such as ioxaglate (HexabrixTM), nonionic monomers such as iohexol (OmnipaqueTM), iopamidol (IsovueTM), iomeprol 15 (IomeronTM) and the non-ionic dimer iodixanol (VisipaqueTM). The most widely used commercial non-ionic X-ray contrast agents such as those mentioned above are considered safe. Contrast media containing iodinated contrast agents are used in more than 20 million of X-ray examinations annually in the USA and the number of adverse reactions is considered acceptable. However, since a contrast enhanced X-ray examination will require up to about 200 ml contrast media administered in a 20 total dose, there is a continuous drive to provide improved contrast media.

The part of the patient population considered as high risk patients is increasing. To meet the need for continuous improvement of in vivo X-ray diagnostic agents for the 25 entire patient population, there is a continuous drive in finding X-ray contrast agents that have improved properties, also with regards to contrast induced nephrotoxicity (CIN).

X-ray contrast media containing a chemical compound as the active pharmaceutical 30 ingredient(s) having two triiodinated phenyl groups linked by a linking group are usually referred to as dimeric contrast agents or dimers. During the years a wide variety of iodinated dimers have been proposed. Currently, one contrast medium having an iodinated non-ionic dimer as the active pharmaceutical ingredient is on the market, the product VisipaqueTM containing the compound iodixanol.

In WO2009/008734 of the applicant a novel dimeric contrast agent named loforminol is disclosed. The properties of this is described in more detail in the publications Chai et al. "Predicting cardiotoxicity propensity of the novel iodinated contrast medium GE-145: ventricular fibrillation during left coronary arteriography in pigs", Acta Radiol, 2010, and in Wistrand, L.G., et al "GE-145, a new low-osmolar dimeric radiographic contrast medium", Acta Radiol, 2010. Loforminol (GE-145) is named Compound 1 herein and has the following structure:


10 Compound 1:

5,5'-(2-Hydroxypropane-1,3-diyl)bis(formylazanediyi)bis(N¹,N³-bis(2,3-dihydroxypropyl)-2,4,6-triiodoisophthalamide)

The manufacture of non-ionic X-ray contrast media involves the production of the chemical drug, the active pharmaceutical ingredient (API), i.e. the contrast agent, followed by the formulation into the drug product, herein denoted the X-ray composition. WO2009/008734 of the applicant provides a synthetic route for preparing the API loforminol. Loforminol can e.g., as provided by the general preparation description and Example 1 of WO2009/008734, be synthesized from 5-amino-N,N'-bis-(2,3-dihydroxy-propyl)-2,4,6-triiodo-isophthalamide (compound (4)), which is commercially available. The preparation of this compound is known from the synthesis of both iohexol and iodixanol and can also be prepared from 5-nitroisophthalic acid for instance as described in WO2006/016815, including hydrogenation and subsequent iodination e.g. by iodine chloride, ICl. Alternatively, 5-amino-2,4,6-triiodoisophthalic acid may be used, which is commercially available precursor, e.g. from Sigma-Aldrich. The free amino group of the isophthalamide compound (compound (4)) is then acylated and the hydroxyl groups in the substituents may also be protected by acylation. The protecting groups may be removed for example by hydrolysis to give N¹,N³-bis(2,3-dihydroxypropyl)-5-formylamino-2,4,6-triiodoisophthalamide. In a dimerization step this is reacted e.g.

in a bisalkylation of epichlorohydrin to provide the Iloforminol contrast agent compound.

The state of the art synthesis of Iloforminol, as disclosed in examples 1 and 2 of
5 WO2009/008734, is shown in Scheme 1 below.

Scheme 1.

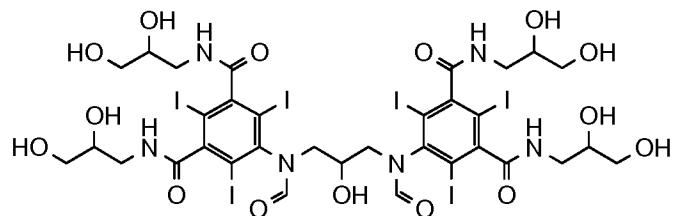
10 As described in WO2009/008734 compound 3 is a mixture comprising 1-formylamino-3,5-bis(2,3-bis(2-hydroxypropyl)amino)propan-1-ylcarbamoyl)-2,4,6-trioiodobenzene, and X is then a formyl group.

In each synthetic step it is important to optimize the yield, minimize the production of impurities, but also to minimize time and costs spent. The problem to be solved by the present invention may be regarded as the provision of optimizing the process for

5 preparation of loforminol from the compound (3) of scheme 1, i.e. a mixture comprising 1-formylamino-3,5-bis(2,3-bis(formyloxy)propan-1-ylcarbamoyl)-2,4,6-trioiodobenzene. The invention is hence directed to a process comprising a hydrolysis of compound (3) and a dimerization reaction to provide loforminol.

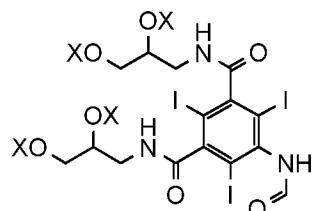
10 In the state of the art process, as disclosed in WO2009/008734, Example 2, procedure B, preparation of Compound (1) (loforminol) from 1-formylamino-3,5-bis(2,3-bis(formyloxy)propan-1-ylcarbamoyl)-2,4,6-trioiodobenzene (compound (3) wherein X is a formyl-group) is performed in a process wherein compound (3) was solved in a mixture of water and methanol, further comprising boric acid, at a pH of

15 11.6-11.7 by addition of potassium hydroxide. When in solution epichlorohydrin was added in several portions. The mixture was left stirring and the pH was adjusted several times by addition of potassium hydroxide at the same time as the temperature was regulated. The whole process for preparation of Compound (1) from Compound (3) was reported to be at least 48 hours.


20

A more cost efficient process has been sought for preparation of loforminol (compound (1)) wherein reaction time is reduced and wherein the yield of Compound (1) is increased. We have now found that preparation of Compound (1) can be done in a cost-efficient and environmentally friendly process involving in situ

25 hydrolysis of the protecting groups of compound (3), followed by a bis-alkylation, also denoted a dimerization, by using water as the only solvent. A process taking considerably shorter time than the state of art process has been identified.


Accordingly, in a first aspect the invention provides a process for preparation of

30 Compound (1)

Compound (1)

from compound (3)

5

Compound (3)

wherein each X individually denotes hydrogen, a formyl group (-CO-H) or an acetyl group (-CO-CH₃);

10 the process comprising a step of in situ hydrolysis of the protecting groups (-OX) of compound (3), wherein compound (3) is suspended in water only.

Compound (3) is a mixture of different compounds with both formyl and acetyl protecting groups. This comes as a result of the earlier formylating step wherein compound (3) is prepared from compound (4) preferably using mixed anhydrides. In 15 one embodiment compound 3 comprises a mixture of compounds wherein all X groups are individually formyl or acetyl. The main component of compound (3) is 1-formylamino-3,5-bis(2,3-bis(formyloxy)propan-1-ylcarbamoyl)-2,4,6-triodobenzene. Hence, in one embodiment all X groups denote formyl.

20 In one embodiment of the invention the process comprises the sequential steps of

- i) suspending compound (3) in water;
- ii) adjusting the pH of the solution of step i) to 10.0-12.5;

before a bis-alkylation reaction.

When compound (3) has been suspended, and the pH has been adjusted, an in situ hydrolysis of the formyl and acetyl protecting groups of compound (3) takes place. In this reaction, compound (2) is prepared, but this is not isolated. At the same time formyl- and acetyl salts are generated as biproducts. This generation of salts may

5 have the effect of accelerating the rate of the bis-alkylation reaction taking place after the in situ hydrolysis, providing a rapid and complete bis-alkylation. An unexpected increase in reaction rate has been seen for the bis-alkylation when suspending the starting material compound (3) in water only and using this in situ hydrolysis procedure. The generated salts are believed to increase the reaction rate

10 by coordinating the dialkylating agent used in the bis-alkylation and/or stabilising the transition state of the reaction. At the same time the process provides a high yield. It has been found that the reaction from compound (3) to compound (1) can be performed in less than 24 hours, such as less than 20 hours, and providing a yield of 90 % or higher, such as 93 % or up to or above 95 %. Surprisingly, the water-

15 only-step of the process of the invention provides about 20 % higher yield and saves about one day in production time, compared to the prior art process as described in Example 2 of WO2009/008734.

In step i) water is used as the single solvent, and no addition of other solvents or

20 additives, such as e.g. boric acid, has surprisingly been found needed. In the process of the invention the starting material compound (3) is preferably a fine powder with low acid content. The mixture of compound (3) may in one embodiment comprise some rests of antisolvents, such as alcohols, but no alcohol is needed to be added. In a process of making compound (3) a short chain alcohol may be used

25 to optimize the preparation of this in powder form, and it has been found beneficial that the compound (3) as used as the starting material in the currently claimed process is not dried completely, but comprises 0-15 % alcohol, and a rest alcohol content of 0-7 %, and most preferably 2-5 %, is appropriate. The rest alcohol in compound (3) is typically a short chain alcohol being a C1-C6 straight or branched

30 alcohol, or a mixture of such. The alcohol may be monohydroxylated or dihydroxylated. Methanol, ethanol and propanols are preferred alcohols, with propanols, particularly iso-propanol, being most preferred. The amount of water needed for optimal reaction conditions depends on factors like the content of rest alcohol and the temperature.. An appropriate amount of water has been found to be

35 about 0.5-2.0 litre water/kg compound (3), such as about 1 litre water/kg compound (3).

In step ii, hence before the bis-alkylation reaction) the pH is adjusted to 10.0-12.5, and more preferably to 11.0-1.8, and most preferably to 11.0-11.2, by the addition of a base to the compound (3) suspension. The pH adjustment is preferably done
5 stepwise to neutralise acids and to avoid too sudden heat generation. The base is selected from strong water-soluble bases such as sodium hydroxide and potassium hydroxide wherein a sodium hydroxide solution (e.g. 50%) is preferred. The addition of the base provides a base-driven hydrolysis of the protecting ester groups of compound (3), wherein formyl- and acetyl salts, such as sodium formyl- and
10 sodium acetyl salts, are generated as bi products. In addition this pH adjustment provides the optimal pH conditions for the bis-alkylation. In one embodiment, the pH adjustment is performed using a pH-stat system to ensure that the pH is kept stationary. Such pH system includes both an acid and a base, for instance HCl and NaOH solutions.

15

The bis-alkylation (dimerization step) via a 2-hydroxypropane bridge preferably takes place by addition of an appropriate amount of a dialkylating agent to the basic solution of step (ii). Such agent is selected from dihalo-substituted alkanol or halo-substituted heterocycloalkyl, such as 1,3-dichloro-2-propanol, 1-chloro-2,3-propanol,
20 1,3-dibromo-2-hydroxypropane and epichlorohydrin (EPI), wherein EPI is particularly preferred. Accordingly, in a further embodiment of the invention the process further comprises the step of adding a dialkylating agent to the basic solution of step ii). The dialkylating agent is added to the basic aqueous solution in one or more portions, such as in 1 to 5 portions, preferably 3 equal portions. About
25 2 molar equivalents of compound (3) is reacted and bridged with one molar equivalent of the dialkylating agent. A slight molar excess of the dialkylating agent may be used due to a slight consumption of the dialkylating agent by the base. During and after the addition the reaction mixture is kept under stirring for a period needed to run the bis-alkylation reaction to completion. This may take 5-20 hours,
30 preferably 10-15 hours.

Before, during and/or after the hydrolysis, the temperature may also be adjusted, such as being cooled below room temperature, e.g. to 12-16 °C or lower. In a preferred embodiment, the temperature is adjusted to about 15 °C before addition of
35 the dialkylating agent. Particularly preferred, the pH is adjusted to 11.0-11.2 and the

temperature is adjusted to about 15 °C before the addition, and these conditions are kept to the bis-alkylation has run to completion.

The compounds prepared, such as compound (1), may be purified in any convenient manner, e.g. by washing, by preparative chromatography, by 5 recrystallization or ultra/nano-filtration. Optional additional steps are hence purification and drying.

Compound mixture (3) and compound (1) as prepared by the claimed process comprise optical active isomers and will exist in several isomeric forms due to chiral 10 carbon atoms. In addition, the compounds exhibit exo/endo isomerism due to the restricted rotation of the N-CO bond in the formyl function caused by the proximity of the bulk iodine atom. Both preparation of enantiomerically pure products as well as mixtures of optical isomers are encompassed by the process of the invention.

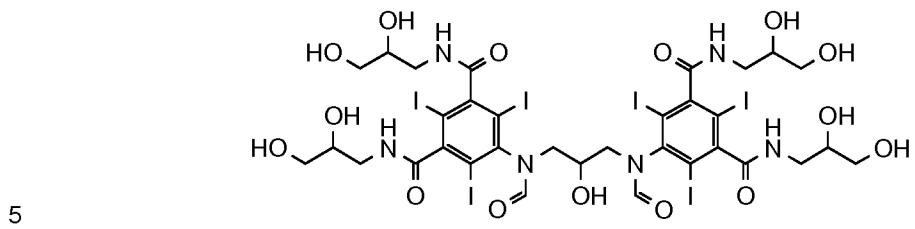
15 The compounds prepared according to the invention may be used as contrast agents and may be formulated with conventional carriers and excipients to produce diagnostic contrast media. Thus viewed from further aspects the invention provides loforminol (compound (1)), and a diagnostic composition comprising loforminol, prepared according to the process of the invention, wherein the composition 20 comprises at least one physiologically tolerable carrier or excipient, e.g. an aqueous solution for injection optionally together with added plasma ions or dissolved oxygen. The contrast agent composition of the invention may be in a ready to use concentration or may be a concentrate form for dilution prior to administration. Hence, the invention further embraces use of loforminol prepared according to the 25 process of preparation, and a diagnostic composition containing such, in X-ray contrast examinations.

The invention is illustrated with reference to the following non-limiting examples.

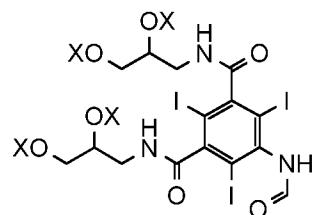
Examples

Example 1: Preparation of compound (1) from compound (3)

5 Compound (3) (1103 kg, 890 mol) was suspended in water (1213 L) using a reactor with overhead mechanical stirring. The suspension was cooled to 10 degrees and aqueous NaOH (50%) was added for 12 h keeping the pH and temperature below 12.5 and 20 degrees, respectively. The solution was cooled to 16 degrees and the pH was set to 11.1 using a pH stat system charged with HCl (30%) and NaOH


10 (50%). The system was left running as long as the temperature was <18 degrees. EPI (41 kg, 445 mol) was added continuously over a period of 2.5 h keeping the temperature between 15-18 degrees. After stirring for 38 h the reaction mixture was quenched by adjusting the pH to 7 using HCl (30%). HPLC showed ~95.5 % UV yield of compound (1).

15


The dialkylation reaction time was prolonged in this example to ensure completion and maximize the yield. The reaction can be quenched considerably earlier, such as 10-12 hours, without significant loss of yield.

Claims

1. A process for preparation of Compound (1)

from compound (3)

10

Compound (3)

wherein each X individually denotes hydrogen, a formyl group (-CO-H) or an acetyl group (-CO-CH₃);

said process comprising a step of in situ hydrolysis of the protecting groups (-OX) of compound (3), wherein compound (3) is suspended in water only.

15

2. The process as claimed in claim 1 comprising the sequential steps of

- i) suspending compound (3) in water;
- ii) adjusting the pH of the solution of step i) to 10.0-12.5;

before a bis-alkylation reaction.

20

3. The process as claimed in claim 1 or 2 wherein the starting material compound (3) is a fine powder with low acid content.

4. The process as claimed in any of the claims 1 to 3 wherein the starting material compound (3) comprises 0-15 % alcohol.

5. The process as claimed by any of the claims 2 to 4, further comprising a bis-
5 alkylation reaction by addition of an appropriate amount of a dialkylating agent to the basic solution of step (ii).

6. The process as claimed in claim 5 wherein the dialkylating agent is epichlorohydrin.

10 7. The process as claimed in any of the claims 2 to 6 comprising a step of regulating the temperature of the solution from step i) or ii) to 12-16 °C.

8. Compound (1) prepared according to the process of any of claims 1 to 7.

15 9. A composition comprising compound (1), prepared according to the process of any of the claims 1 to 7, wherein the composition further comprises at least one physiologically tolerable carrier or excipient.

20

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2013/060092

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07C231/12 C07C237/46 A61K49/04
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07C A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2009/008734 A2 (GE HEALTHCARE AS [NO]; THANING MIKKEL [SE]) 15 January 2009 (2009-01-15) cited in the application page 15; example 1(2b) abstract -----	8,9
A		1-7

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
26 November 2013	03/12/2013

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Lacombe, Céline

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/060092

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2009008734	A2	15-01-2009	AU 2008273037 A1	15-01-2009
			CA 2692646 A1	15-01-2009
			CN 101687051 A	31-03-2010
			CO 6351754 A2	20-12-2011
			EP 2178568 A2	28-04-2010
			JP 2010533172 A	21-10-2010
			JP 2013151533 A	08-08-2013
			KR 20100033405 A	29-03-2010
			NZ 581765 A	30-03-2012
			RU 2009148141 A	20-08-2011
			US 2010322868 A1	23-12-2010
			WO 2009008734 A2	15-01-2009