发明名称

铁电液晶在电场下的对准方法

摘要

一种对铁电液晶材料进行对准的方法，其通过安装驱动电路，能够方便地恢复铁电液晶材料的初始对准。该方法包括将第一电压施加于源印刷电路板的 Vcom 端子，并将第二电压施加于源印刷电路板上的 GND 端子，同时将第一电压施加于栅印刷电路板上的 Vcom 端子，将第二电压施加于源印刷电路板上的 GND 端子。
1. 一种在有外加电场的情况下对铁电液晶材料进行对准的方法，包括：
 提供具有多条栅线、多条数据线、以及多个铁电液晶单元的液晶显示板；
 在铁电液晶单元中提供铁电液晶材料；
 对铁电液晶单元施加电场，以向所提供的铁电液晶材料施加初始对准；
 提供数据驱动电路，以驱动所述的多条数据线；
 提供栅驱动电路，以驱动所述的多条栅线；
 提供源印刷电路板，其通过数据驱动电路连接到液晶显示板，其中，源印刷电路板包括公共电压端子和地电压端子；
 提供栅印刷电路板，其通过栅驱动电路连接到液晶显示板，其中，栅印刷电路板包括公共电压端子和地电压端子；以及
 对初始对准的铁电液晶材料进行对准，该对准包括：
 向源印刷电路板上的公共电压端子施加第一电压；
 在向源印刷电路板上的公共电压端子施加第一电压的同时，向源印刷电路板上的地电压端子施加第二电压地电压；
 将第一电压施加给栅印刷电路板上的公共电压端子；以及
 在将第一电压施加给栅印刷电路板上的公共电压端子的同时，将第二电压施加给栅印刷电路板上的地电压端子，
 其中，第一电压和第二电压均为直流电压。

2. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，提供铁电液晶材料包括注入铁电液晶材料。

3. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，提供铁电液晶材料包括分配铁电液晶材料。
4. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，在对初始对准的铁电液晶材料进行对准之前，铁电液晶材料的初始对准受到了破坏。

5. 根据权利要求4的对铁电液晶材料进行对准的方法，其中，所述的对初始对准的铁电液晶材料进行对准基本上恢复了铁电液晶材料的初始对准。

6. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，铁电液晶单元包含半V转换模式铁电液晶材料。

7. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，在冷却到相变温度之下时，在有外加电场的情况下对铁电液晶材料进行初始对准，其中，经过冷却的铁电液晶材料的相态从向列相转变为近晶C相态。

8. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，第一电压大于第二电压。

9. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，第二电压大于第一电压。

10. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，在对初始对准的铁电液晶材料进行对准时，不向栅线施加电压。

11. 根据权利要求1的对铁电液晶材料进行对准的方法，还包括在对初始对准的铁电液晶材料进行对准时，使栅线处于浮动状态。

12. 根据权利要求1的对铁电液晶材料进行对准的方法，其中，在对初始对准的铁电液晶材料进行对准时，不向源印刷电路板施加公共电压。
铁电液晶在电场下的对准方法

本申请是原案申请号为03146722.9的发明专利申请（申请日：2003年7月9日，发明名称：铁电液晶在电场下的对准方法和采用该方法的液晶显示器）的分案申请。

技术领域
本发明涉及液晶显示器（LCD），具体而言，涉及一种通过LCD的正常驱动操作中使用的驱动电路，即有电场存在的情况下，恢复FLC材料的受损初始对准的方法，以及采用该方法的液晶显示器。

背景技术
通常，LCD显示器通过响应于所施加的视频信号，将电场施加到液晶材料层，从而显示图象，其中所施加的电场控制液晶材料中液晶分子的取向，从而控制液晶材料的透光特性。LCD通常包括LCD显示板，其具有由液晶材料层分开的上下玻璃基板；光源（例如，背光单元），用于向液晶显示板发出光；框结构；壳体，用于将LCD显示板和光源固定为一体；以及印刷电路板（PCB），用于向LCD显示板施加驱动信号。

通常，通过基板清洁、基板图案形成、基板粘合、液晶注入和驱动电路安装过程而制作LCD显示板。在基板清洁过程中，使用清洁剂，以去除构成LCD显示板的基板表面上的杂质。基板图案形成过程包括上玻璃基板图案形成过程和下玻璃基板图案形成过程。LCD显示板的上玻璃基板通常支持着滤色层、公共电极、黑色矩阵层等等。LCD显示板的下玻璃基板通常支持着栅线、与栅线交叉的数据线、在栅线和数据线交叉处形成的薄膜晶体管（TFT），以及在栅线和数据线之间的像素区域形成的像素电极。基板粘合和液晶注入过程包括如下步骤：在LCD显示板的上和下玻璃基板上，摩擦涂上一层对准胶，粘合偏振轴彼此垂直交叉的偏振片，使
用密封材料将上玻璃基板粘合到下玻璃基板上，通过液晶注入孔注入液晶材料，对液晶注入孔进行密封。在执行驱动电路安装过程时，使用带式自动键合（tape-automated-bonding，TAB）工艺，将下玻璃基板载带封装（tape carrier package，TCP）连接到下玻璃基板的焊点部位，在下玻璃基板TCP上，安装有诸如栅驱动IC和数据驱动IC的集成电路（IC）。可选的，可以使用玻璃基芯片（Chip On Glass，COG）系统将驱动IC直接安装到下玻璃基板上。

在上述LCD显示板制作过程之后，执行模块构建处理，把LCD显示板、光源和PCB固定在一起。在实现模块构建过程时，将PCB、光源和LCD显示板顺序排列在主框架的下腔中。随后，将上壳安装在主框架上，使主框架的侧面和LCD显示板的边部封闭起来。在某些情况下，可以将下壳安装在主框架上，使其位于主框架和上壳之间。因此，可以将下壳用于封闭主框架的底面。通常，将TCP的输入端连接到PCB的输出焊点，而将TCP的输出级连接到LCD显示板的信号线焊点。光源包括冷阴极荧光灯、光导板和光学片（例如棱镜片，漫射片等等，顺序排列在光导板和LCD显示板之间）。

通常，LCD中的液晶材料为固相和液相之间的中间材料相，此时，液晶分子兼具流动性和弹性。目前，在用于LCD的液晶材料中，最常用的类型为扭曲向列型（TN型）液晶材料。

遗憾的是，TN型液晶材料具有相对较低的响应速度和相对较窄的视角。为了克服上述问题，可以使用铁电液晶（FLC）材料替代TN型液晶材料。与TN型液晶材料相比，FLC材料通常具有较快的响应速度和较大的视角。FLC材料为层状结构，其中，FLC材料的各个层具有相同的电和磁特性。因此，当驱动FLC材料时，响应于所施加的电场，同一层中的FLC材料分子自发地沿着一个虚拟锥体进行旋转（即，极化）。在没有施加电场时，FLC材料中的分子自发地向初始对准方向进行极化。因此，当向FLC材料施加外部电场时，通过外部电场的相互作用，FLC材料中的分子快速旋转，并且进行自发的极化。与其他类型的液晶材料相比，FLC材料的响应速度通常要快一百到一千倍。另外，FLC材料具有固有的同平面转换特
性，因此无需特殊的电极结构或者补偿膜，就能够用于提供具有宽视角的LCD。根据其在所施加电场下的性能，可以将FLC材料分为V转换模式（V-Switching mode）或者半V转换模式。

在降低温度时，V转换模式FLC材料发生下面的热力学相变：各向同性相→近液晶相（SA）→近晶体相（Sm X*）→晶相。在各向同性相时，FLC材料内的分子基本上各向同性地（例如，随机地）取向和分布。在近液晶相（SA）时，FLC材料内的分子分为多个竖直排列分子的对称排列层。在近晶体相（Sm X*）时，FLC材料内的分子根据近晶A相和晶相之间的中间顺序进行排列。

图1显示了入射光的透射率与施加于V转换模式铁电液晶单元的电压之间的关系。

参考图1，入射到近晶体相（Sm X*）的V转换模式FLC单元中的光的透射率取决于所施加驱动数据电压的极性（例如，+V和-V）。因此，所施加的外部电压可以影响V转换模式FLC材料中的液晶分子的排列。有利的是，V转换模式FLC材料具有较高的响应速度和较宽的视角，但是不利的是，其需要大量的能量以进行驱动，因为V转换模式FLC材料的电容值相对较大。因此，用于保持所施加数据电压的存储电容器的电容值也较大。因此，如果将V转换模式FLC材料用于LCD，则LCD的功耗会比较低，因为增大了LCD的功耗和辅助电容器的电极面积。

半V转换模式FLC材料的优点在于具有较高的响应速度和较宽的视角，并且，具有相对低的电容值。因此，经常将半V转换模式FLC材料用于显示用于图像。

图2显示的是半V转换模式FLC铁电液晶材料的相变。

参考图2，当将温度降低到相变温度（Tni）下时，半V转换模式FLC铁电液晶材料发生从各向同性相到向列相（N*）的相变；在相变温度（Tsn）下时，半V转换模式FLC铁电液晶材料发生从向列相（N*）到近晶C相（Sm C*）的相变；而在相变温度（Tcs）下时，半V转换模式FLC铁电液晶材料发生从近晶C相（Sm C*）到晶相的相变。因此，随着温度降低，半V转换模式FLC铁电液晶材料发生下面的热力学相变：
各向同性相→向列（N*）相→近晶C相（Sm C*）→晶相

图3显示的是包含半V转换模式FLC材料的液晶单元的结构。

参考图3，通常在高于Tni的温度下，将半V转换模式FLC材料注入到液晶单元中。因此，在注入到液晶单元时，FLC材料中的分子基本上是各向同性性（例如，随机地）取向和分布的。在将FLC材料的温度降低到Tni以下时，FLC材料中的分子沿着定向层的摩擦方向所指示的方向，大致平行地排列，并且FLC材料为向列相（N*）。如果在有电场的情况下，将FLC材料的温度进一步降低到低于Tsn，则FLC材料为近晶相（C*），而液晶分子自发地沿着所施加电场的方向极化，呈现出单稳态，其中，液晶分子统一地采取两种可能的分子排列中的一种。另一方面，如果在没有施加电场的情况下，将FLC材料的温度降到低于Tsn，则液晶分子将分为各个层，从而呈现出双稳态，其中，各个层中的液晶分子统一地采取两种可能的分子排列中的一种。另外，各个层中分子排列的分布是随机的。

由于上述原因，与统一地对呈现出单稳态的FLC材料进行控制相比，统一地对呈现出双稳态的FLC材料进行控制要更为困难。因此，通常将小的直流（DC）电压施加到LCD显示板上，从而在所生成的电场下，将低于Tsn的温度下对FLC材料进行冷却，形成单稳态的半V型FLC单元。

仍然参考图3，符号“⊗”指的是所施加电场的方向，其指向图面之外。因此，FLC材料的自发偏振方向也指向图面之外。相应的，在液晶单元的上基板和下基板上有用于生成所施加电场的电极，其延伸到图面之外。另外，在上基板和下基板上有上述的定向层。

在上述的基板粘合和液晶注入处理之后，在所施加的电场中，对V转换模式FLC材料进行对准。在对FLC材料进行对准时，将LCD显示板的数据线公共地连接到第一短接条，施加所述的小电压，在公共地连接至第二短接条的栅线上施加一个大于TFT的门限电压的扫描电压，并且向上玻璃基板的公共电极施加一个公共电压（Vcom）。因此，向FLC材料施加了来自公共电极的公共电压（Vcom）和来自数据线的电压。

图4A和4B显示的是光透射率与施加到半V转换模式FLC单元上的电压之间的关系。
参考图4A，半V转换模式FLC单元包含在负极性电压（-V）所生成的外加电场下对准的FLC材料，（即，在负极性的电场下制造），在正极性外加电压（+V）下将光的偏振轴旋转90°，从而透过光。半V转换模式FLC单元的光透射率与由正电压（+V）生成的外加正电场的强度成比例地增大。另外，当外加正电场的强度大于FLC材料的固定阈值时，半V转换模式FLC单元的光透射率达到最大值。在具有负极性的外加电压（-V）下，半V转换模式FLC单元不旋转光的偏振轴。因此，在具有负极性的外加电压下，半V转换模式FLC单元基本上不透光（即，半V转换模式FLC单元对光进行阻截）。

参考图4B，半V转换模式FLC单元包含在正极性电压（+V）所生成的外加电场下对准的FLC材料，（即，在正极性的电场下制造），在负极性（-V）外加电压下透过光。另外，在具有正极性+的外加电压（+V）下，半V转换模式FLC单元不旋转光的偏振轴。因此，在具有正极性的外加电压下，半V转换模式FLC单元对光进行阻截。

图5A和5B显示的是分别在用于制造液晶单元的外加电场下和用于驱动液晶单元的外加电场下，半V转换模式FLC材料的取向。

参考图5A，在负极性电压所生成的外加电场下制造半V转换模式FLC单元时，FLC材料的自发偏振方向（Ps）统一地在负极性（E（-））外加电场的方向上对齐。参考图5B，如果在随后驱动LCD显示板时，将正极性（E（+））的电场（例如，通过将具有正极性的电压施加到LCD显示板上而产生的电场）施加到所制造的半V转换模式FLC单元上，则FLC材料自发地沿着自发偏振方向（Ps）进行极化，该自发偏振方向与正极性的外加电场的方向对齐。因此，通过自发偏振方向（Ps）与正极性外加电场统一对齐的FLC材料，可以对入射到LCD显示板的下基板上的光的偏振状态进行旋转，使其大致与上基板上的上偏振片的偏振方向对齐，从而入射光可以透过上基板。然而，如果在驱动LCD显示板时，由具有负极性的电压生成外加电场（从而，电场本身具有负极性E（-）），或者如果在驱动时没有施加电场，则FLC材料保持为沿着其初始自发偏振方向（Ps）统一地
对齐（其特征为，外加电场具有负极性），入射光不能通过上基板（即，光被液晶单元阻挡）。

在背景技术中，由于FLC单元的单元间隙（即，液晶单元的上和下玻璃基板之间的距离）可以窄到1.2 μm，所以在外加电场下产生的FLC材料的对准很容易会由于外加物理冲击而受到破坏。具体而言，在制造铁电LCD时，在上述的基板粘合和液晶注入处理之后对FLC材料进行初始对准。因此，在上述的模块构建过程中，由于对LCD显示板发生频繁的物理冲击，FLC材料的初始对准易于受到损坏。为了恢复铁电FLC材料受损的初始对准，必须从LCD显示板中脱下TCP，并且必须将用于提供初始电场对准的电压源重新连接到信号线上（例如，公共电极，栅线，和数据线）。然而，上述的对准恢复方法是非常耗时并且非常难于实现的。因此，需要一种能够易于实现的对准恢复方法。

发明内容

因此，本发明致力于一种铁电液晶在电场下的对准方法，以及使用该方法的液晶显示器，其从根本上避免了由于背景技术的限制和缺点所导致的一个或者多个问题。

本发明的一个优点是，提供了一种通过LCD设备的正常驱动操作中使用的驱动电路，在电场下恢复FLC材料的初始对准的方法，以及使用该方法的液晶单元。

下文将阐述本发明的其它特征和优点，其中的部分可从说明书中看出，或者通过实践本发明而体验到。通过说明书，权利要求书及附图中具体指出的结构，可以实现并获得本发明的目标和其它优点。

为了获得本发明的这些和其他优点，根据本发明的目的，如所实施并广泛描述的，提供了一种恢复FLC材料的初始对准的方法，例如，包括如下步骤：将第一电压施加到源印刷电路板（PCB）的公共电压（Vcom）端子上，同时将第二电压施加到源PCB的接地（GND）端上；将第一电压施加到栅PCB的Vcom端子上，同时将第二电压施加到栅PCB的GND端上。
在本发明的一个方面，可以在相变温度以下进行冷却的同时，在有外加电场的情况下对FLC材料进行初始对准。其中，经过冷却的FLC材料的相态从向列相转变为近晶C相（Sm C*）。

在本发明的另外一个方面，第一电压的电压电平与第二电压的电压电平不同。

在本发明的另外一个方面，第一电压和第二电压之间的差别为几伏特。

在本发明的另外一个方面，在恢复FLC材料的初始对准时，不向栅线施加电压。

在本发明的另外一个方面，在恢复FLC材料的初始对准时，栅线可以处于浮动状态。

在本发明的另外一个方面，不向源PCB施加Vcc电压。

应当理解的是，上述的一般性描述和下面的详细描述都是示例性和解释性的，用于为权利要求所限定的本发明提供进一步的解释。

附图说明

作为本申请一部分的附图帮助进一步理解本发明，阐述本发明的实施例，并与文字叙述一起来解释本发明的原理。附图中：

图1显示的是入射光的透射率与施加于V转换模式铁电液晶单元上的驱动电压之间的关系；

图2显示的是半V转换模式FLC铁电液晶材料的相变；

图3显示的是包含半V转换模式FLC材料的液晶单元的制造过程；

图4A和4B显示的是入射光的透射率与施加到相反极性的电场下对准的V转换模式铁电液晶单元上的数据驱动电压之间的关系；

图5A和5B显示的是在外加电场下对准的半V转换模式铁电液晶材料的取向，以及极性与对准时施加的电场极性大致相同但存在差别的电场下驱动的半V转换模式铁电液晶材料的取向；

图6显示的是根据本发明的液晶显示器的框图；

图7显示的是图6所示伽玛电路芯片中的伽玛电路的等效电路图；
图8显示的是从图6所示伽玛电路芯片输出的伽玛电压；
图9显示的是图6所示数据驱动芯片的数模转换器的框图。

具体实施方式
现在对本发明的具体实施方式进行详细的说明，在附图中说明了其实例。

参考图6，根据本发明第一个方面的铁电液晶显示器（LCD）包括，例如，液晶显示板62，其中注入有铁电液晶（FLC）材料；源带载封装（TCP）63，其连接在LCD显示板62所包含的数据线DL1到DLn和LCD显示板62的源印刷电路板（PCB）65之间，以及栅TCP 66，其连接在栅极GL1到GLn以及LCD显示板62的栅PCB 68之间。

LCD显示板62包括下玻璃基板71和上玻璃基板72，在其间注入FLC材料。偏振片可以位于下玻璃基板71的光入射表面上和上玻璃基板72的光显示表面上，其中，两个偏振片的偏振轴彼此垂直。数据线DL1到DLn和栅线GL1到GLn可以位于下玻璃基板71上，彼此垂直交叉。薄膜晶体管（TFT）位于栅线和数据线的交叉处，同时栅线和数据线的交叉处限定了液晶单元（Clc）。每一个TFT可以包括栅极，其连接到相应的栅线GL1到GLn；源极，其连接到相应的数据线DL1到DLn；以及漏极，其连接到相应的液晶单元（Clc）的像素电极。另外，多个存储电容（Cst）位于下玻璃基板71上，用于保持施加到相应液晶单元（Clc）上的电压。各个存储电容位于连接到栅线GL1到GLn中后一个的液晶单元（Clc）和连接到栅线GL1到GLn-1中前一个的液晶单元（Clc）之间，也可以位于连接到栅线GL1到GLn中后一个的液晶单元（Clc）和特定的公共线路之间。黑色矩阵层、滤色层和公共电极73顺序位于LCD显示板62的上玻璃基板72上。公共电极73可以由ITO、IZO等等的透明、导电材料材料制成，从而光可以通过公共电极73。可以通过下玻璃基板72上的银（Ag）点74将公共电压（Vcom）施加到公共电极73上。另外，上下玻璃基板71和72上分别可以有对准方向大致平行的对准膜（未显示）。
根据本发明的原理，可以在源PCB 65上安装定时控制器芯片60和伽玛电路芯片61。

定时控制器芯片60可以接收垂直/水平同步信号和时钟信号，生成用于控制源TCP 63和栅TCP 66的定时控制信号，并且可以将所生成的定时控制信号施加给源TCP 63和栅TCP 66。在本发明的一个方面，定时控制器芯片60可以通过PCB 65上的多个数据总线将数字视频数据施加到源TCP 63上。

通过对高电势电源电压 (Vdd) 和低电势电源电压 (Vss) 进行划分，伽玛电路芯片61可以生成对应于六个伽玛校正灰度值的伽玛参考电压。另外，通过对生成的各个伽玛参考电压进行划分，伽玛电路芯片61可以生成按照各个灰度值细分的具有正极性或者负极性的模拟伽玛电压。可以将伽玛电路芯片61生成的模拟伽玛电压施加给源TCP 63。

另外，可以使用公共电压 (Vcom) 端子65a，通过源PCB 65上的源TCP 63，将公共电压 (Vcom) 施加给LCD显示板62。另外，可以使用接地 (GND) 端子65b，将地电压 (GND) 施加给定时控制器芯片60、伽玛电路芯片61和源PCB 65上的源TCP 63。可以将公共电压 (Vcom) 端子65a连接到下玻璃基板72上的银 (Ag) 点74，并且通过源PCB 65和源TCP 63上的线路，将公共电压 (Vcom) 施加给公共电极73。在本发明的一个方面，可以将一个连接器 (未显示) 连接到源PCB 65的公共电源 (Vcc) 供应输入端，以将大约3.3V的公共电源电压 (Vcc) 施加给LCD显示板。在本发明的另外一方面，可以将一个电源供应电路69安装在源PCB 65上。可以施加公共电源电压 (Vcc) 用于驱动定时控制器芯片60。另外，可以施加公共电源电压 (Vcc) 用于驱动电源供应电路69。

电源供应电路69可以包括AC/DC转换器、脉宽控制器、脉冲频率控制器等等，并且，使用公共电源 (Vcc) 的电压，可以生成大于6V的高电势电源电压 (Vdd)，大约在2.5V到3.3V之间的公共电压 (Vcom)，低电势电源电压 (Vss)，大于约15V的扫描脉冲栅高逻辑电压 (VGH)，低于约-4V的扫描脉冲栅低逻辑电压 (VGL)。
根据本发明的原理，可以将数据驱动芯片64安装在相应的一个源TCP 63上。可以将源TCP 63的输入线连接到源PCB 65的相应输出焊点，而通过各向异性导电膜（ACF），将源TCP 63的输出线连接到下玻璃基板72上的相应数据焊点。根据伽玛电路芯片61，数据驱动芯片64可以将定时控制器芯片60输出的数字视频数据转换为正的或者负的模拟伽玛电压，并且可以同时将模拟伽玛电压施加给所有的数据线DL1到DLm。

在本发明的一个方面，可以将定时控制信号从源PCB 65施加到栅PCB 68，以控制公共电压（Vcom）、地电压（GND）、VGH电压、VGL电压和栅TCP 66。与源PCB 65类似，栅PCB 68可以具有公共电压（Vcom）端子68a和地电压（GND）端子68b。栅TCP 66可以连接在栅PCB 68的输出线和下玻璃基板72上的相应栅焊点之间。

根据本发明的原理，可以将栅驱动芯片67安装到相应的一个栅TCP 66上。可以将栅TCP 66的输入线连接到栅PCB 68的相应输出焊点，并且可以通过各向异性导电膜（ACF），将栅TCP 66的输出线连接到下玻璃基板72上的栅焊点。响应于定时控制器芯片60输出的定时控制信号，栅驱动芯片67可以顺序地将扫描脉冲施加给栅线GL1到GLn。

下面，对在本发明的铁电液晶显示器内对FLC材料进行初始对准的方法进行更为详尽的描述。

根据本发明的原理，FLC材料可以是关V转换模式FLC材料。在本发明的一个方面，可以在FLC材料处于各向同性相的温度时注入FLC材料。可以把所注入的各向同性相FLC材料的温度降低为低于第一相变温度（Tni），从而冷却下来的注入FLC材料变成向列相（N*）。下一步，把经过冷却的向列相（N*）FLC材料的温度降低为低于第二相变温度（Tsn），同时向LCD显示板施加足够的电场，以激发FLC材料的自发偏振。因此，随着FLC材料冷却而成为近晶C相（Sm C*），FLC材料会根据所施加的电场而对准。结合冷却和外加电场，可以获得单稳态的FLC材料。在本发明的一个方面，注入温度为大约100°C。在本发明的另外一个方面，第一相变温度（Tni）为大约90°C到100°C。在本发明的另外一个方面，第二相变温度（Tsn）为大约60°C到80°C。根据所注入FLC材料的类型不同，第一和
第二相变温度（分别为Tni和Tsn）也有所不同。在本发明的另外一方面，可以通过向LCD显示板的上下电极施加直流电压而生成外加电场。在本发明的另外一方面，FLC材料的自发偏振方向可以与外加电场的方向相同。在本发明的另外一方面，可以在液晶材料为向列（N*）相的温度下，将FLC材料注入到LCD显示板的液晶单元中。在本发明的另外一方面，可以将FLC材料分配到一个基板上，而不是注入到两个基板之间。因此，在将FLC材料分配到一个基板上之后，将未分配FLC材料的另一个基板粘合到分配了FLC材料的基板上。

如果在对FLC材料进行初始对准之后，初始对准受到破坏，则可以运用本发明的原理来恢复FLC材料的初始对准。因此，可以将本发明的原理进行扩展，以提供一种对FLC材料进行对准的方法。相应的，可以在没有将公共电源电压（Vcc）施加给源TCP 63的情况下，对FLC材料进行对准。然而，通过将大约几伏的DC电压施加给公共电压（Vcom）端子65a和68a和接地（GND）端子65b和68b，它们分别位于各个源PCB 65和栅PCB 68上，可以对FLC材料进行对准。由于没有将公共电源电压（Vcc）施加给定时控制器芯片60或者电荷电压电路69，所以未向伽玛电路芯片61施加高电势电源电压（Vdd）和低电势电源电压（Vss）。

参考图7，伽玛电路芯片61可以包含电压划分电路，其包括多个电压划分电阻器R1到R5。在没有施加公共电源电压（Vcc）时，没有高电势电源电压（Vdd）和低电势电源电压（Vss）施加给伽玛电路芯片61。因此，电压划分电路的输入端处于浮动状态，而电流不会通过电压划分电阻器R1到R5。相应的，对于各个伽玛参考电压，可以将从GND端子65b和68b输入的等于高或者低电势直流（DC）电压（分别为VH或者VL）的电压施加给电压划分电阻器R1到R5之间的输出节点GMA1到GMA5。另外，也可以将从GND端子65b和68b输入的等于高或者低电势直流（DC）电压（分别为VH或者VL）的电压施加给电压划分电路的各个输出端子，以通过重新划分各个伽玛电压而生成细分的伽玛电压。因此，如图8所示，从伽玛电路芯片61施加给数据驱动芯片64的模拟伽玛电压变得均匀，或者恒定，并且可以独立于提供给数据驱动芯片64的数字视频数据信号灰度值。
根据发明的原理，通过将高电势DC电压（VH）施加给Vcom端子65a和68a，同时将低电势DC电压（VL）施加给GND端子65b和68b，可以在有电场的情况下恢复FLC材料的初始对准（例如，可以对准FLC材料）。在本发明的另外一个方面，通过将低电势DC电压（VL）施加给Vcom端子65a和68a，同时将高电势DC电压（VH）施加给GND端子65b和68b，可以在有电场的情况下恢复FLC材料的初始对准。在本发明的另外一个方面，高电势DC电压（VH）和低电势DC电压（VL）之间的差异可以高达几伏特，从而能够在有电场的情况下对FLC材料进行合适的对准。

如果将高电势DC电压（VH）施加给Vcom端子65a和68a，同时将低电势DC电压（VL）施加给GND端子65b和68b，则除银（Ag）点74之外，还可以通过Vcom端子65a和68a将高电势DC电压（VH）施加给上玻璃基板71上的公共电极73，同时将低电势DC电压（VL）施加给各个液晶单元（Clc）的像素电极（未显示）。在本发明的一个方面，像素电极正对公共电极73，并且通过FLC材料与公共电极73分开。

由于定时控制器芯片69不驱动数据驱动芯片64，从而，或者可以不将数据电压施加给数据线DL1到DLm，或者随机地施加给数据线DL1到DLm。因此，施加给数据驱动芯片64的数据电压可以是‘000000’（或者‘00000000’），或者表示某些随机选择的灰度值。如图9所示，数据驱动芯片64的数据转换器（DAC）91可以将数字视频数据转换成为模拟伽玛电压，并且，如图8所示，将从GND端子65b和68b传输而来的低电势DC电压（VL）施加给数据线DL1到DLm，而与数字视频数据的灰度值无关。

如果将低电势DC电压（VL）施加给Vcom端子65a和68a，同时将高电势DC电压（VH）施加给GND端子65b和68b，则除银（Ag）点74之外，还可以通过Vcom端子65a和68a将低电势DC电压（VL）施加给上玻璃基板71上的公共电极73，同时将高电势DC电压（VH）施加给各个液晶单元（Clc）的像素电极（未显示）。在本发明的一个方面，像素电极正对公共电极73，并且通过FLC材料与公共电极73分开。

在恢复FLC材料的初始对准时，由于没有将公共电源电压（Vcc）施加给定时控制器芯片60或者施加给电源供应电路69，所以施加了外加电
场时，电源供应电路69既不会生成栅高逻辑电压（VGH），也不会生成栅低逻辑电压（VGL）。在没有施加任何栅逻辑电压的情况下，栅线GL1到GLn保持为浮动状态（即，栅线施加了大致0伏特）。因此，在有外加电场的情况下对FLC材料进行对准时，可以将由数据线DL1到DLM传输而来的数据电压施加给LCD显示板各个液晶单元（Clc）的像素电极，作为TFT的泄露电流。

对于本领域的技术人员，很明显，在不脱离本发明的精神或范围的情况下，能对本发明进行多种改进和变化。因此，如果这些改进和变化落在所附权利要求及其等同物的范围内，则本发明涵盖这些改进和变化。

本申请要求2002年12月12日提交的韩国专利申请No. P2002-79345的优先权，该申请在此引入作为参考。
图 1
背景技术

图 2
背景技术
图3 背景技术

无DC电场
N*→S*->N

小DC电场作用下
N*→S*→N

摩擦方向
液晶
0000
0000
0000
0000
向列[N*]
图 4A
背景技术

图 4B
背景技术
图 5A
背景技术

图 5B
背景技术
图 6
图 9