PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification S (11) International Publication Number: WO 95/32474
GOGF 13/00 Al . -~

(43) International Publication Date: 30 November 1995 (30.11.95)

(21) International Application Number: PCT/US95/06089 | (81) Designated States: AM, AT, AT (Utility model), AU, BB,

(22) International Filing Date: 16 May 1995 (16.05.95)

(30) Priority Data:

08/247,026 20 May 1994 (20.05.94) US

(71) Applicant: INTEL CORPORATION [US/US}; 2200 Mission
College Boulevard, Santa Clara, CA 95052 (US).

(72) Inventors: BELL, D., Michael; 8160 SW 152nd Avenue,
Beaverton, OR 97007 (US). GONZALES, Mark, A.; 930

BG, BR, BY, CA, CH, CN, CZ, CZ (Utility model), DE,
DE (Utility model), DK, DK (Utility model), EE, ES, FI, FI
(Utility model), GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ,
LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model),
TI, T™M, TT, UA, UZ, VN, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE),
OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,
NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published
With international search report.

NW Front #K6, Portland, OR 97209 (US). MEREDITH,
Susan, S.; 748 SE 21st Court, Hillsboro, OR 97123 (US).

(74) Agents: TAYLOR, Edwin, H. et al; Blakely, Sokoloff,
Taylor & Zafman, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025-1026 (US).

(54) Title: METHOD AND APPARATUS FOR MAINTAINING TRANSACTION ORDERING AND SUPPORTING DEFERRED
REPLIES IN A BUS BRIDGE

(57) Abstract

¢ —FRCERORBRNOT g~

A bus bridge (400) between two buses includes two request queues: I 1----------1 D
outbound (420) and inbound (430). Requests originating on the first bus H PROCESSOR AUS INTERFACE o i
(401) which target a destination on the second bus (402) are placed into the ' o 12 et [
outbound queue (420). If the request can be deferred, decoding circuitry ' aukuE bl '
(415) within the bridge (400) issues a deferred response to the originating | 4o 12 i
agent, indicating the request will be serviced later. Bus control circuitry (425) H e TR E
removes requests from the outbound queue (420) and executes them on the H '
second bus (402). When bus control circuitry (425) receives a response A 1 vis L.,';;‘ i
from the destination agent in response to this execution, it either returns the , oursoun INBOUND QUEUE i
response to the originating agent immediately or after passing it through the : DECODER AtLocRmONUNT E
inbound queue (430). Both queues (420, 430) have associated data buffers : r—r :
(520, 530) for transferring data between the two buses (401, 402). Requests ' g . 5‘°E
are handled similarly in the opposite direction, with the request originating i ng‘mwgg? Reses !
on the second bus (402) for execution on the first bus (401). | worm 0Tt E
i Taore sLoT() '

! [Taore ot 3

vl s |

, S e R 7Y

v [sorm I d wotey 47)

s 5

' 4as . ¥ys)

| el B

E TR SRS e

: B g

H I

3 aoon o 2|

: MAPPING UNIT :

1 '

.......... .r.------..----_-.._----......---n
¢ vopus yo2,

applications under the PCT.

AT
AU

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 95/32474 PCT/US95/06089

-1-

METHOD AND APPARATUS FOR MAINTAINING TRANSACTION
ORDERING AND SUPPORTING DEFERRED REPLIES IN A BUS
BRIDGE

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention pertains to the field of data transfer in a
computer system. More particularly, this invention relates to bus
bridges which transfer information between multiple buses while
maintaining transaction ordering and supporting deferred replies.

Background

Modern computer systems generally include multiple agents,
such as microprocessors, storage devices, display devices, etc. which are
interconnected via a system bus. The system bus operates to transfer
address, data and control signals between these agents. Some modern
computer systems employ multiple buses, in which various agents are
coupled to one or more buses. Typically, each agent is coupled to a
single bus.

Bus bridges are often utilized in multiple-bus systems to connect
the buses and thereby allow agents coupled to one bus to access agents
coupled to another bus. The function of the bridge typically involves
transferring commands between two buses. The commands
transferred by the bus bridge frequently have data associated with them
(e.g., read or write commands).

One problem which frequently arises in computer systems with
multiple agents is the need to preserve transaction ordering. Support
for transaction ordering implies that if an agent writes to location A in
memory followed by a write to location B in memory, another agent
cannot read the new data in location B and stale (i.e., old) data in

WO 95/32474 PCT/US95/06089

-2

location A. A number of software algorithms require a producer-
consumer relationship and thus depend on this support to ensure
proper functionality. For example, in a system comprising multiple
processors, assume that processor P1 is a producer of information and
processor P2 is a consumer of information. P1 performs a write
operation W1 to location 1 followed by a write operation W2 to
location 2. Location 2 contains a flag variable that signals that the data
in location 1 is valid. Processor P2 continuously performs a read
operation R2 on location 2 until the flag becomes valid. After the flag
is observed valid, P2 performs a read operation R1 on location 1 to read
the data. In order for this algorithm to successfully execute in a
multiprocessor system, the order in which W1 and W2 are written by
processor P1 should be the same order in which R1 and R2 appear to be
updated to processor P2.

A bus bridge in a multiple-bus system must address the problem
of transaction ordering. In the example above, processors P1 and P2
may be coupled to one bus while locations 1 and 2 are coupled to a
second bus, and a bus bridge is supporting access between the two
buses. Thus, the bus bridge must ensure that transaction ordering is
maintained. That is, the order in which W1 and W2 are written by an
agent(s) should be maintained by the bus bridge.

One method of maintaining transaction ordering is shown in
Figure 1. A bus bridge 100 is shown which interfaces between two
buses: a first system bus 102 and a second system bus 104. An agent 130
is coupled to system bus 102 and an agent 140 is coupled to system bus
104. In this system, bus bridge 100 contains a first queue 110 which
contains requests issued on system bus 102 which target an agent on
system bus 104. Bus bridge 100 also contains a second queue 115 which
contains requests issued on system bus 104 which target an agent on
system bus 102. A temporary storage buffer 120 may also be contained
in bridge 100.

Bridge 100 transfers commands between buses 102 and 104. For
example, assume agent 130 issues a request targeting agent 140. This
request is received by bridge 100 and placed in queue 110.

WO 95/32474 PCT/US95/06089

-3-

Alternatively, if agent 140 issues a request targeting agent 130, the
request is placed in queue 115.

Data transferred between buses is stored in temporary storage
buffer 120. For example, a read request placed into queue 110 is
executed on system bus 104. When the target agent responds, the read
data is placed in temporary storage buffer 120. The agent issuing the
original request knows to look in temporary storage buffer 120 for the
data to satisfy its request.

In the prior art system shown, both queues 110 and 115 contain
pending requests and transfer the requests onto the appropriate buses.
When a write request is issued by either agent 130 or agent 140, bridge
100 forces transaction ordering by preventing any read transactions
from being placed in the opposite queue until the queue with the write
request is flushed (i.e., the write transaction is executed on the targeted
bus). For example, if a write operation were placed in queue 115, bridge
100 would prevent any read operations from being placed in queue 110
until queue 115 is flushed.

Although this prior art method effectively resolves the
transaction ordering problem, it does not do so efficiently because it
prevents the use of one queue while the other is being flushed. As
described above, transactions are not placed in one queue while the
other queue contains a write operation.

Thus, it would be advantageous to provide a system which
resolves the transaction ordering problem in an effective and efficient
manner. The present invention provides such a solution.

In addition, in many multiple-bus systems, if an agent on a first
bus issues a request which targets an agent on a second bus, then the
agent issuing the request waits for a reply from the agent on the second
bus. During this waiting period, the agent may prevent other
transactions from being issued on the first bus. Preventing other
transactions from being issued on the first bus, however, reduces
system performance because other agents cannot utilize the first bus
during that time. Thus, it would be beneficial to provide a bridge
which supports the requesting agent in waiting for a reply without

WO 95/32474 PCT/US95/06089

-4-

preventing transactions from being issued on the first bus. The present
invention provides such a solution.

WO 95/32474 PCT/US95/06089

-5-

SUMMARY OF THE INVENTION

The present invention comprises a method and apparatus for
maintaining transaction ordering and supporting deferred replies in a
bus bridge. The bus bridge comprises two interfaces for interfacing
between two separate buses. Two queues are contained within the bus
bridge: an outbound request queue and an inbound request queue.
Requests originating on the first bus which target a destination on the
second bus (termed "outbound requests") are input to decoding
circuitry after being received by the interface to the first bus. The
decoding circuitry issues a deferred response if the request can be
deferred. This deferred response is returned to the originating agent
on the first bus, thereby informing the originating agent that the
request will be serviced at a later time. In response to the deferred
response the originating agent releases control of the first bus, thus
allowing other agents to utilize the first bus.

The decoding circuitry then transfers the outbound request into
the outbound request queue. When the outbound request reaches the
top of the outbound request queue, the request is executed on the
second bus. The bus bridge receives a response from the destination
agent on the second bus in response to the execution of the outbound
request, which in turn is returned as a deferred reply to the agent
originating the request on the first bus.

The entries in both the outbound request queue and the
inbound request queue contain pointers to data buffers contained in
the bridge. The data buffers contain data which must be passed
between the first bus and the second bus, dependent on the specific
command of the request. In addition, requests may originate on the
second bus which target a device on the first bus (termed "inbound
requests”). These inbound requests are placed in the inbound request
queue and are executed on the first bus when removed from the
inbound request queue.

WO 95/32474 PCT/US95/06089

-6-

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not
limitation in the Figures of the accompanying drawings, in which like
references indicate similar elements and in which:

Figure 1 is a block diagram of a prior art implementation of a bus
bridge in a computer system;

Figure 2 shows an overview of an exemplary multiprocessor
computer system of the present invention;

Figure 3 is a timing diagram of two bus transactions for one
embodiment of the present invention;

Figure 4 is a diagram of the bus bridge of one embodiment of the
present invention;

Figure 5 is a diagram showing an example association between
the queue and data buffers in one embodiment of the present
invention;

Figure 6 is a diagram showing the contents of a slot within the
outbound queue of one embodiment of the present invention;

Figure 7 is a diagram showing the contents of a slot within the
inbound queue of one embodiment of the present invention; and

Figures 8a and 8b show a flowchart describing the steps followed
for a request issued on a bus in one embodiment of the present
invention.

WO 95/32474 PCT/US95/06089

-7-

DETAILED DESCRIPTION

In the following detailed description of the present invention
numerous specific details are set forth in order to provide a thorough
understanding of the present invention. However, it will be
understood by one skilled in the art that the present invention may be
practiced without these specific details. In other instances, well known
methods, procedures, components, and circuits have not been
described in detail so as not to obscure aspects of the present invention.

Some portions of the detailed descriptions which follow are
presented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These algorithmic
descriptions and representations are the means used by those skilled in
the data processing arts to most effectively convey the substance of
their work to others skilled in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of steps leading to
a desired result. The steps are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated. It has
proven convenient at times, principally for reasons of common usage,
to refer to these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physical
quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the following
discussions, it is appreciated that throughout the present invention,
discussions utilizing terms such as "processing” or "computing" or
"calculating” or "determining" or "displaying" or the like, refer to the
action and processes of a computer system, or similar electronic
computing device, that manipulates and transforms data represented
as physical (electronic) quantities within the computer system'’s
registers and memories into other data similarly represented as

WO 95/32474 PCT/US95/06089

-8-

physical quantities within the computer system memories or registers
or other such information storage, transmission or display devices.

Figure 2 shows an overview of an example multiprocessor
computer system of the present invention. The computer system
generally comprises a processor-memory bus or other communication
means 201 for communicating information between one or more
processors 202, 203, 204 and 205. Processor-memory bus 201 includes
address, data and control buses. Processors 202 through 205 may
include a small, extremely fast internal cache memory, commonly
referred to as a level one (L1) cache memory for temporarily storing
data and instructions on-chip. In addition, a bigger, slower level two
(L2) cache memory 206 can be coupled to a processor, such as processor
205, for temporarily storing data and instructions for use by processor
205. In one mode, the present invention includes Intel® architecture
microprocessors as processors 202 through 205; however, the present
invention may utilize any type of microprocessor architecture, or any
of a host of digital signal processors.

Processor 202, 203, or 204 may comprise a parallel processor, such
as a processor similar to or the same as processor 205. Alternatively,
processor 202, 203, or 204 may comprise a co-processor, such as a digital
signal processor. In addition, processors 202 through 205 may include
processors of different types.

The processor-memory bus 201 provides system access to the
memory and input/output (I/O) subsystems. A memory controller 222
is coupled with processor-memory bus 201 for controlling access to a
random access memory (RAM) or other dynamic storage device 221
(commonly referred to as a main memory) for storing information and
instructions for processors 202 through 205. A mass data storage device
225, such as a magnetic disk and disk drive, for storing information
and instructions, and a display device 223, such as a cathode ray tube
(CRT), liquid crystal display (LCD), etc., for displaying information to
the computer user may be coupled to processor-memory bus 201.

An input/output (I/O) bridge 224 may be coupled to processor-
memory bus 201 and system I/O bus 231 to provide a communication
path or gateway for devices on either processor-memory bus 201 or I/O

WO 95/32474 PCT/US95/06089

-9-

bus 231 to access or transfer data between devices on the other bus.
Essentially, bridge 224 is an interface between the system I/O bus 231
and the processor-memory bus 201.

In addition, an I/O bus 242 may be coupled to processor-memory
bus 201 via bridge 240. I/0 bus may be coupled to additional peripheral
devices, such as devices 232 through 236 coupled to system I/O bus 231.

In one embodiment of the present invention I/O bus 246 is
coupled to system I/O bus 231 via bridge 245. 1/0 bus may be coupled
to additional peripheral devices, such as devices 232 through 236
coupled to system I/O bus 231. In one mode, I/O bus 246 operates on a
different standard (e.g., EISA) than system I/O bus 231 (e.g., PCI).

I/0 bus 231 communicates information between peripheral
devices in the computer system. Devices that may be coupled to
system bus 231 include a display device 232, such as a cathode ray tube,
liquid crystal display, etc., an alphanumeric input device 233 including
alphanumeric and other keys, etc., for communicating information
and command selections to other devices in the computer system (e.g.,
processor 202) and a cursor control device 234 for controlling cursor
movement. Moreover, a hard copy'device 235, such as a plotter or
printer, for providing a visual representation of the computer images
and a mass storage device 236, such as a magnetic disk and disk drive,
for storing information and instructions may also be coupled to system
bus 231.

In some implementations, it may not be required to provide a
display device for displaying information. Certain implementations of
the present invention may include additional processors or other
components. Additionally, certain implementations of the present
invention may not require nor include all of the above components.
For example, processors 202 through 204, display device 223, I/O bus
242, or mass storage device 225 may not be coupled to processor-
memory bus 201. Furthermore, some of the peripheral devices shown
coupled to system I/O bus 231 may be coupled to processor-memory
bus 201. '

In the present invention, bus transactions occur on the processor
buses (e.g., processor-memory bus 201 of Figure 2) in the computer

WO 95/32474 PCT/US95/06089

-10-

system in a pipelined manner. That is, multiple bus transactions may
be pending at the same time, wherein each is not fully completed.
Therefore, when a requesting agent begins a bus transaction by driving
an address onto the bus, the bus transaction may be only one of a
number of bus transactions currently pending. Although bus
transactions are pipelined, the bus transactions in the present
invention do not have to be fully completed in order, such that the
present invention performs deferred transactions. Therefore, the
present invention allows for completion replies to requests to be out-
of-order. An example bus protocol for out-of-order replies is described
in U.S. Patent Application Serial No. 07/ , filed June 30, 1993,
entitled "Method and Apparatus for Performing Bus Transactions in a
Computer System".

The present invention accommodates for deferred transactions
by essentially splitting a bus transaction into two independent
transactions. The first transaction involves a request for data (or
completion signals) by a requesting agent and a response by the
responding agent. The request may be comprised of the sending of an
address on the address bus and a first token. The response may include
the sending of the requested data (or completion signals) if the
responding agent is ready to respond. In this case, the bus transaction
ends. However, if the responding agent is not ready to supply the
request (i.e., the data or completion signals), the response may include
the sending of a second token. In this case, the second transaction
comprises the resending of the second token with the requested data
(or completion signals) by the responding agent to the requesting agent,
such that the requesting agent receives the originally requested data to
complete the transaction.

If the responding agent is not ready to complete the bus
transaction, then the responding agent sends a deferred response over
the bus at its appropriate response time. The requesting agent receives
the deferred response. When the responding agent is ready to
complete the deferred bus transaction, the responding agent arbitrates
for ownership of the bus. Once bus ownership is obtained, the
responding agent sends a deferred reply including a second token on

WO 95/32474 PCT/US95/06089

-11-

the bus. The requesting agent monitors the bus and receives the
second token as part of the deferred reply. In the present invention,
the requesting agent latches the second token. The requesting agent
then determines whether the second token sent from the responding
agent matches the first token. If the requesting agent determines that
the second token from the responding agent does not match the first
token (which the requesting agent generated), then the data on the bus
(or the completion signal) is ignored and the requesting agent
continues monitoring the bus. If the requesting agent determines that
the second token from the responding agent does match the first token,
then the data on the bus (or the completion signals) is the data
originally requested by the requesting agent and the requesting agent
latches the data on the data bus.

In one embodiment of the present invention, bus activity is
hierarchically organized into operations, transactions, and phases. An
operation is a bus procedure that appears atomic to software such as
reading a naturally aligned memory location. Executing an operation
usually requires one transaction but may require multiple transactions,
such as in the case of deferred replies in which requests and replies are
different transactions. A transaction is the set of bus activities related
to a single request, from request bus arbitration through response-
initiated data transfers on the data bus. In this embodiment, a
transaction is the set of bus activities related to a single request, from
request bus arbitration through response-initiated data transfers on the
data bus.

A transaction contains up to six distinct phases. However,
certain phases are optional based on the transaction and response type.
A phase uses a particular signal group to communicate a particular
type of information. These phases are:

Arbitration Phase
Request Phase
Error Phase
Snoop Phase
Response Phase

WO 95/32474 PCT/US95/06089

192

Data Transfer Phase

In one mode, the Data Transfer Phase is optional and used if a
transaction is transferring data. The data phase is request-initiated, if
the data is available at the time of initiating the request (e.g., for a write
transaction). The data phase is response-initiated, if the data is
available at the time of generating the transaction response (e.g., for a
read transaction). A transaction may contain both a request-initiated
data transfer and a response-initiated data transfer.

Different phases from different transactions can overlap, thereby
pipelining bus usage and improving bus performance. Figure 3 shows
exemplary overlapped request/response phases for two transactions.
Referring to Figure 3, every transaction begins with an Arbitration
Phase, in which a requesting agent becomes the bus owner. The second
phase is the Request Phase in which the bus owner drives a request
and address information on the bus. After the Requesf Phase, a new
transaction enters a first-in-first-out (FIFO) queue, the In-Order Queue.
All bus agents, including the requesting agent, maintain identical In-
Order Queues and add each new request to those queues. In Figure 3
for example, request 1 is driven in CLK3, observed in CLK4, and in the
In-Order Queue beginning in CLK5. The third phase of a transaction is
an Error Phase, three clocks after the Request Phase. The Error Phase
indicates any immediate errors triggered by the request. The fourth
phase of a transaction is a Snoop Phase, four or more clocks from the
Request Phase. The Snoop Phase indicates if the cache line accessed in
a transaction is valid or modified (dirty) in any agent's cache. The
Snoop Phase also indicates whether a transaction will be completed in-
order or may be deferred for possible out-of-order completion.

Transactions proceed through the In-Order Queue in FIFO order.
The topmost transaction in the In-Order Queue enters the Response
Phase. The Response Phase indicates whether the transaction failed or
succeeded, whether the response is immediate or deferred, and
whether the transaction includes data phases.

If a transaction contains a responée-initiated data phase, then it
enters data transfer along with the response phase, the transaction is
removed from the In-Order Queue at the completion of its Response

WO 95/32474 PCT/US95/06089

-13-

Phase and (an optional) response-initiated Data Transfer Phase. As
shown in Figure 3, transaction 1 is removed from the In-Order Queue
effective in CLK15.

Due to the split-transaction nature of the bus described above, it
can be seen that multiple transactions may be outstanding at any given
time. That is, multiple requests may have been issued for which no
replies have been returned. In one embodiment of the present
invention, each agent on the bus can have up to eight transactions
outstanding.

Figure 4 is an exemplary block diagram of the bus bridge of one
embodiment of the present invention. In one mode, bus bridge 400 of
Figure 4 is bridge 224 or 240 of Figure 2. In one embodiment of the
present invention, I/O bus 402 operates according to the well-known
PCI bus standard. However, it should be noted that I/O bus 402 may
operate according to any of a wide variety of standards, such as the
well-known EISA, ISA, or VESA bus standards.

In the discussion to follow, bus bridge 400 is discussed as being
connected to a processor bus and an I/O bus. It should be understood
by those skilled in the art, however, that the examples and
embodiments discussed below apply equally to interconnect any two
buses, not only a processor bus and an I/O bus.

Bus bridge 400 includes processor bus interface 410 coupled to
processor bus 401. Processor bus 401 may be for example, bus 201 of
Figure 2. Processor bus interface 410 is also coupled to an outbound
request decoder 415, an I/O bus master control unit 425, and an
inbound request queue 430. Bus interface 410 receives requests from
processor bus 401 which target either the bridge or agents on I/0O bus
402.

Bus interface 410 includes an arbitration unit 411, In-Order
Queue 414, and configuration registers 412. Arbitration unit 411
controls bus bridge 400's arbitration for access to processor bus 401. The
arbitration for access to processor bus 401 may be performed in any of a
wide variety of conventional manners. Configuration registers 412
provide configuration values for bridge 400's operation within the
computer system. These values include, for example, whether write

WO 95/32474 PCT/US95/06089

-14-

posting is enabled or disabled, whether deferred replies are enabled or
disabled, etc. Enabling of write posting and deferred replies is discussed
in more detail below.

In-Order Queue 414 is used by bridge 400 to monitor a list of
currently pending transactions on the processor bus. As discussed
above, a transaction on the processor bus enters In-Order Queue 414
after the Request Phase and is removed after completion of the
Response Phase (or Data Transfer Phase, if it exists).

In one embodiment of the present invention, bus interface 410
also includes address mapping logic 413. In systems where processor
bus 401 and I/O bus 402 use different standards, the addresses associated
with requests may need to be translated. That is, a request from I/O bus
402 may target an address which is not in the proper format to be
placed on processor bus 401. Address mapping logic 413 performs this
translation. The translation is based on the standards of the two buses
and is performed in a conventional manner.

Requests are issued on processor bus 401 by an originating agent.
The originating agent may generate these requests, or alternatively the
originating agent may be another interface or bridge which is merely
transferring the request to processor bus 401. Regardless of where a
request originates, when bus interface 410 receives the request it
immediately transfers the request to outbound request decoder 415.
Outbound request decoder 415 determines whether the request will be
deferred, as described in more detail below. After making this
determination outbound request decoder 415 issues a signal to bus
interface 410 indicating whether or not the request is deferred. If the
request is deferred, then bus interface 410 returns a response to the
agent which placed the request on processor bus 401; this response
indicates that the request is deferred. If, however, the request is not
deferred, then bus interface 410 stalls processor bus 401 until the
request is completed. By "stalling” it is meant that no transactions are
passed over the bus until the stall is released. In one mode, stalling the
bus is accomplished by sending a signal to all agents on the bus that the
bus should be stalled.

WO 95/32474 PCT/US95/06089

-15-

In one embodiment of the present invention, processor bus 401
is a pipelined bus. Thus, if a request is not deferred, the entire bus does
not necessarily need to be stalled. In one mode, bridge 400 stalls the
Response Phase of the bus when the request is not deferred. By stalling
the Response Phase, other phases of the pipeline bus are allowed to
continue for other transactions while the current request is pending.
For example, other agents can place requests on the bus and some
result signals (e.g., error signals) can be issued, however no responses
are issued until bridge 400 releases the stall on the Response Phase.

In one mode, bus interface 410 completely stalls processor bus
401 if the outbound request queue 420 is filled. That is, when no
remaining slots exist in the outbound request queue 420, bus interface
410 issues a signal on processor bus 401 to completely stall the pipeline.
By completely stalling the bus, no additional transactions can occur on
processor bus 401 in any phase until a slot in the outbound request
queue 420 becomes available. At such a time, bus interface 410 releases
the stall on processor bus 401.

In this mode, bus interface 410 stalls processor bus 401 if all slots
in the outbound request queue 420 are filled. In some situations,
however, the nature of the pipelined bus is such that a second request
could already be on the bus when a prior request is placed in the last
available slot of outbound request queue 420. Thus, a problem arises if
the second request also targets the bridge 400 because no slot in the
outbound request is available. To resolve this problem, bus interface
410 stalls processor bus 401 when only one slot remains in outbound
request queue 420.

In an alternate mode, bus interface 410 issues retry responses
when outbound request queue 420 is full rather than stalling processor
bus 401. Thus, transactions which do not target bridge 400 proceed over
processor bus 401, however transactions which target bridge 400 must
be retried.

In addition to transferring requests from processor bus 401 to
outbound request decoder 415, bus interface 410 also returns responses
from target agents on I/O bus 402 to the originating agent on processor
bus 401. Furthermore, requests originating on I/O bus 402 targeting

WO 95/32474 PCT/US95/06089

-16-

agents on processor bus 401 are placed on processor bus 401 by interface
410.

Processor bus interface 410 receives the reply to a request
targeting an agent on I/O bus 402 through either I/O bus master control
unit 425 or the inbound request queue 430, as described in more detail
below. In addition, requests originating on 1/O bus 402 also pass to bus
interface 410 via inbound request queue 430. Bus interface 410
determines whether a reply will be returned from I/O bus master
control unit 425 or inbound request queue 430 based on the signal
received from outbound request decoder 415 which signaled whether
or not the request was deferred. If the request is not deferred, then the
reply is returned to bus interface 410 via I/O bus master control 425.
Bus interface 410 then executes the reply on processor bus 401 and
releases the stall of the Response Phase. However, if the request is
deferred, or if the request originated on I/O bus 402, then bus interface
410 receives the reply (or request) via inbound request queue 430.

Inbound request queue 430 transfers requests and deferred
replies from I/0O bus 402 to processor bus 401. In one mode, when a
transaction is at the top of inbound request queue 430, queue 430 sends
a signal to processor bus interface 410 indicating so. When processor
bus interface 410 receives this signal it begins arbitration for access to
processor bus 401. When access to processor bus 401 is obtained, bus
interface 410 retrieves transactions from the inbound request queue 430
and executes them on processor bus 401.

In one embodiment, processor bus interface 410 is a high priority
agent on processor bus 401. Thus, when transactions are pending in
the inbound request queue 430, bus interface 410 is able to quickly
access processor bus 401 and execute the pending transactions on the
bus. In one mode, once bus interface 410 obtains access to processor bus
401 all pending transactions in the inbound request queue are removed
from the queue and executed on the bus. It should be noted that under
certain circumstances, bus interface 410 may not be able to successfully
remove all transactions pending in the inbound request queue 430 and
execute them on processor bus 401 prior to bus interface 410
relinquishing ownership of processor bus 401. That is, a delay time

WO 95/32474 PCT/US95/06089

-17-

may be incurred in moving commands forward in the queue. For
example, if the queue contains four transactions, the first three may be
successfully executed on processor bus 401. However, the fourth
transaction may not propagate to the top of the queue quickly enough,
causing bus interface 410 to mistakenly believe no transactions are
pending in the queue.

In an alternate embodiment, rather than executing all
transactions pending in the inbound request queue 430, bus interface
410 arbitrates for access to processor bus 401 and executes a single
transaction from the inbound request queue 430 on processor bus 401.
If transactions remain pending in the queue, then bus interface 410
again arbitrates for access to processor bus 401.

Outbound request decoder 415 determines whether a request on
processor bus 401 is to be deferred. Outbound request decoder 415 is
coupled to bus interface 410, outbound request queue 420, and inbound
queue allocation unit 435. In order to defer a request, outbound request
decoder 415 determines whether a slot is available in the inbound
request queue 430. If a slot in the inbound request queue 430 is not
available, then issuing a defer response to bus interface 410 could result
in a deadlock situation, as described in more detail below.

Outbound request decoder 415 accesses inbound queue allocation
unit 435 to determine whether a slot in the inbound request queue 430
is available. Inbound queue allocation unit 435 dynamically allocates
inbound request queue slots, as described in more detail below. If
inbound queue allocation unit 435 informs outbound request decoder
415 that a slot in the inbound request queue is available, then decoder
415 reserves the slot and informs allocation unit 435 that it has done
so. By reserving a slot in the inbound request queue 430, decoder 415
guarantees that when the reply comes back from I/O bus 402 a slot in
the inbound request queue exists for the reply to be placed.

Regardless of whether the request has been deferred, decoder 415
places the request into the outbound request queue 420. Decoder 415
tags the outbound request in the outbound request queue if the request
has been deferred. It should be noted that even if a request placed in
the outbound request queue 420 is not deferred, a subsequent request

WO 95/32474 PCT/US95/06089

-18-

may be deferred. That is, a slot in the inbound request queue may not
be available for a deferred response for a particular request, however by
the time a subsequent request arrives at decoder 415 a slot in the
inbound request queue 430 may have been freed; thus, decoder 415 can
issue a deferred reply for the subsequent request.

Outbound request queue 420 receives requests from decoder 415
and transfers these requests to I/O bus master control unit 425. In one
embodiment, outbound request queue 420 is a first.in-first out (FIFO)
buffer which operates in a conventional manner. Thus, requests
placed in outbound request queue 420 are removed from the queue by
I/0 bus master control 425 in a first in-first out manner. By
maintaining a FIFO queue, bridge 400 maintains transaction ordering.
That is, a request placed in the outbound request queue 420 will be
removed from the queue 420 and executed on I/O bus 402 before any
subsequent request are removed.

It will be understood by those skilled in the art that by utilizing
deferred responses, under certain circumstances a read request could
receive a reply on processor bus 401 before prior requests pending in
the inbound request queue 430 are satisfied. For example, if two
deferred read requests are in outbound request queue 420, and a
maximum of two deferred reads can exist in outbound request queue
420, then a subsequent third read request entering bridge 400 will not be
deferred. These first two read requests are executed on I/O bus 402 and
placed in the inbound request queue 430. The third request is then
executed on I/O bus 402 and the reply is immediately returned to bus
interface 410 and executed on processor bus 401. Thus, the third read
request is satisfied before the two prior read requests are satisfied.

From this example it can be seen that transaction ordering is still
maintained. The transactions are executed on I/O bus 402 in the order
they are received by the bridge 400. The responses are not necessarily
in order over processor bus 401, however, as described above.

In one embodiment, outbound request queue 420 is comprised
of multiple slots. In one mode, outbound request queue 420 contains
four of these slots. An exemplary slot is shown in more detail in
Figure 6. The exemplary outbound queue slot 423 is comprised of five

WO 95/32474 PCT/US95/06089

-19-

sections. These sections are: a tag 610, a command portion 615, an
address portion 620, a data pointer 625, and a token portion 628.

In one embodiment of the present invention, tag 610 comprises
1 bit, command portion 615 comprises 4 bits, address portion 620
comprises 32 bits, data pointer 625 comprises 2 bits, and token portion
628 comprises 8 bits. However, it should be understood by those skilled
in the art that these values may be changed. For example, in a bridge
with four data buffers, data pointer 625 may be only 2 bits, however in a
bridge with six data buffers data pointer 625 would be at least 3 bits.

Tag 610 indicates whether the request stored in slot 423 is
deferred. Tag 610 is set by decoder 415 when the request stored in slot
423 is deferred, as described above. Command portion 615 contains the
actual command which was issued by the originating agent on
processor bus 401. In one embodiment, commands in outbound
request queue 420 are as issued on processor bus 401. That is, no
translation of commands is performed by either bus interface 410 or
decoder 415.

Slot 423 also contains an address portion 620. Address portion
620 contains the address of the target agent on I/O bus 402 (or a location
within a target agent on I/O bus 402) which is the target for the
command in command portion 615. Slot 423 also contains a data
pointer 625. If the request requires transferring data from processor bus
401 to I/0 bus 402 then data pointer 625 is a pointer to a data buffer
which contains the data being transferred. In one implementation,
data pointer 625 contains the address of the data buffer associated with
this particular slot.

The use of data buffers in association with outbound request
queue 420 is described in more detail below with respect to Figure 5. It
should be noted that under certain circumstances the request
originating on processor bus 401 has no data associated with it. For
example, the original request may be a special command to an agent on
I/0 bus 402 or a command broadcast to many agents on I/O bus 402; in
such a situation, data pointer 625 would point to no data buffer.

Returning to Figure 4, I/O bus master control 425 takes requests
from the outbound request queue 420 one at a time. After removing a

WO 95/32474 PCT/US95/06089

-20-

request from the queue 420, I/O control 425 transfers the request to I/O
bus interface 450. I/O control 425 does not remove subsequent requests
from outbound request queue 420 until it receives a response from I/O
bus interface 450 for this request.

Upon receiving a reply from I/O bus interface 450, I/O control
425 returns the reply to bus interface 410. This may be done either
directly or via inbound request queue 430. Whether I/O control 425
returns the reply directly to bus interface 410 is dependent on whether
the request is deferred by decoder 415. If the request is deferred, then
I/O bus master control 425 transfers the reply to deferred reply
generator 440. If, however, the request is not deferred, then I/O control
425 returns the reply directly to bus interface 410. It should be noted
that I/O control 425 returns a reply directly to bus interface 410 if the
request is not deferred because, as described above, bus irterface 410
stalled the Response Phase of processor bus 401 in response to the
request not being deferred. By returning the reply immediately,
processor bus 401 is stalled for a minimal amount of time.

It should also be noted that the reply transferred by I/O control
425 may be a "retry" response. That is, if the target agent on I/O bus 402
is unable to complete the request then it issues a retry response to bus
interface 450 which is returned to I/O control 425. This retry response
is returned to the originating agent on processor bus 401, via bus
interface 410, indicating to the originating agent that it must retry the
request again at a later time.

I/0 bus interface 450 is coupled to I/O bus master control unit
425,1/0 bus target control 445, and I/O bus 402. Bus interface 450
receives requests from both I/O control unit 425 and I/O bus 402.
Requests received from I/0 bus master control 425 are those requests
originating on processor bus 401, as described above. Upon receipt of
such a request, bus interface 450 executes the command associated with
the request on I/O bus 402. In one embodiment of the present
invention, processor bus 401 and I/O bus 402 utilize different protocols.
Thus, commands issued on processor bus 401 must first be translated
before being executed on I/O bus 402. In one mode, command decode
452 in I/0 bus interface 450 performs this translation. This translation

WO 95/32474 PCT/US95/06089

-219-

may be performed using any of a wide variety of techniques
understood by those skilled in the art.

I/0 bus interface 450 also includes an arbitration unit 451.
Arbitration unit 451 controls bus bridge 400's arbitration for access to
I/0O bus 402. The arbitration for access to I/O bus 402 may be performed
in any of a wide variety of conventional manners.

In one embodiment of the present invention, I/O bus interface
450 also includes address mapping logic 453. In systems where
processor bus 401 and I/O bus 402 use different standards, the addresses
associated with requests may need to be translated. That is, a request
from processor bus 401 may target an address which is not in the
proper format to be placed on I/O bus 402. Address mapping logic 453
performs this translation. The translation is based on the standards of
the two buses and is performed in a conventional manner.

After executing a transaction on I/0O bus 402, I/O bus interface
450 waits for a response from the target agent. Upon receipt of this
response, bus interface 450 returns the response to bus master control
425. The handling of this response by I/O bus master control 425 is
described above.

I/0 bus interface 450 also receives requests from 1/0 bus 402.
These requests originate from an agent on I/O bus 402 and target an
agent on processor bus 401. In one mode, bus interface 450 translates
the commands received from I/O bus 402 before transferring them to
processor bus 401. These requests are then transferred to I/O bus target
control 445 by bus interface 450. How these requests are handled by bus
target control 445 is described in more detail below.

Deferred reply generator 440 receives deferred replies from 1/0
bus master control 425. Deferred reply generator 440 then transfers
these deferred replies to inbound request queue 430. Figure 4 also
shows a multiplexer 442 which receives input from deferred reply
generator 440 and I/O bus target control 445. Multiplexer 442's output
is input to inbound request queue 430. Multiplexer 442 shows that
inbound request queue 430 receives inputs from multiple sources; it
should be understood by those skilled in the art that other well-known
devices may be used by the present invention in place of a multiplexer.

WO 95/32474 PCT/US95/06089

-290.

I/0 bus target control 445 is coupled to bus interface 450,
inbound request queue 430, and inbound queue allocation unit 435.
I/0 bus target control 445 receives requests from bus interface 450
which originate on I/O bus 402. Upon receipt of such a request, I/O bus
target control 445 accesses inbound allocation unit 435 to determine
whether a slot in inbound request queue 430 is available. If a slot in
inbound request queue 430 is available, then I/O bus target control 445
transfers the request to inbound request queue 430. However, if a slot
is not available, then I/O bus target control 445 issues a response to the
originating agent via bus interface 450 that the request could not be
completed and must be retried at a later time.

Requests placed in inbound request queue 430 may or may not
be successfully completed on processor bus 401. In one embodiment of
the present invention, the execution of a request in inbound request
queue 430 on processor bus 401 results in one of two possible replies.
First, a normal completion reply may be returned from the target agent
on processor bus 401. In this situation, the completion signals (along
with any associated data) are returned to the agent originating the
request on I/O bus 402. The second possible reply is a retry. In this
situation, the target agent on processor bus 401 issues a retry to the
request, indicating it is not ready to service the request and it must
therefore be retried. This retry reply is returned to the originating
agent on I/O bus 402, thereby informing the agent it should retry the
request again at a later time.

Inbound request queue 430 is comprised of multiple slots 433, as
shown. In one embodiment, inbound request queue 430 contains four
such slots. An exemplary slot 433 is shown in Figure 7. The slot 433
contains three portions; a command portion 730, an address portion
735, and a data pointer 740. In one implementation, command portion
730, address portion 735, and data pointer 740 comprise the same
number of bits as the analogous portions of outbound slot 423 in
Figure 6.

Returning to Figure 7, command portion 730 contains the
command which must be executed on processor bus 401. In the event
of a request originating on I/O bus 402, command portion 730 contains

WO 95/32474 PCT/US95/06089

-23-

the command executed by the originating agent (as translated by bus
interface 450). In the event of a request originating on processor bus
401 which was deferred, the command contained in command portion
730 is a command indicating a deferred reply for the original deferred
request.

Address portion 735 contains the address of the target agent on
processor bus 401 (or a location within the target agent on processor bus
401). Note that in the event of a deferred reply, the address in address
portion 735 is replaced by the token from the originating agent. Data
pointer 740 contains a pointer to a data buffer which contains the data
associated with this command, assuming such data exists. The use of
data pointer 740 is as described above with respect to data pointer 625 in
Figure 6.

It should be noted that under certain circumstances, a
transaction from I/O bus 402 to processor bus 401 may contain more
data than can be placed into a data buffer. In such a situation, the
transaction is split according to the size of the data buffer and is placed
into multiple slots within the inbound request queue. In one mode,
I/0 bus target control 445 determines the number of slots required for
the transaction and must determine whether that number is available.
In an alternate mode, I/O bus target control 445 splits the transaction
and places the portions of the transaction into inbound request queue
430 as queue slots become available.

Returning to Figure 4, inbound queue allocation unit 435 is
shown coupled to decoder 415, inbound request queue 430, and I/O bus
target control 445. Inbound queue allocation unit 435 is responsible for
allocating the inbound request queue slots 430 between deferred replies
and transactions originating on I/O bus 402. Allocation unit 435
maintains a count of the number of slots in inbound request queue 430
and dynamically allocates these slots. Thus, inbound queue allocation
unit 435 monitors inbound request queue 430 and updates its count of
available slots when requests (or responses) are removed from the
‘inbound request queue 430. In one mode, inbound queue allocation
unit 435 knows whether the slot was used by a deferred response or a
request given the command in the slot (i.e., whether it is a request or a

WO 95/32474 PCT/US95/06089

-24-

response). In addition, the number of request queue slots which are
available to decoder 415 for deferred replies may be changed by
allocation unit 435 during system operation.

Allocation unit 435 initially allocates one-half of the inbound
request queue slots for deferred replies. That is, when decoder 415
requests an inbound request queue slot from allocation unit 435,
allocation unit 435 allows decoder 415 access to two of the slots
(assuming inbound request queue 430 comprises four slots). This
prevents transactions originating on I/O bus 402 from being starved
off. When allocation unit 435 allocates a slot to decoder 415 for a
deferred reply, allocation unit 435 essentially prohibits any transaction
originating on I/O bus 402, or any other transaction originating on
processor bus 401, from utilizing that slot. Thus, the deferred request is
guaranteed to have a slot in the inbound request queue when deferred
reply generator 440 attempts to place the request's reply into inbound
requestqueue430

Similarly, when I/O bus target control 445 requests a queue slot
from inbound queue allocation unit 435, allocation unit 435 allows bus
target control 445 access to only one-half of the slots. Subsequent
requests for slots by bus target control 445 are denied (and the
corresponding transactions re-tried) until one of the slots which bus
target control 445 placed a request into is freed.

In one embodiment, inbound queue allocation unit 435
dynamically allocates the slots in inbound request queue 430. This
enables allocation unit 435 to allocate additional slots to I/O bus target
control 445 in the event of heavy traffic originating on I/O bus 402.
That is, rather than allowing decoder 415 to defer two transactions,
inbound queue allocation 435 could allow decoder 415 to defer only a
single transaction and allow I/O bus target control 445 access to three of
the slots in the inbound request queue 430. Note that this improves
system performance by not unnecessarily reserving inbound request
queue slots for deferred replies.

When inbound request queue 430 is full, all transactions
originating on I/O bus 402 are retried; in addition, all requests
originating on processor bus 401 are not deferred. When a slot in

WO 95/32474 PCT/US95/06089

-25.

inbound request queue 430 becomes available, by having one of the
transactions pending in the queue being executed on processor bus 401,
inbound queue allocation unit 435 allocates the slot to either decoder
415 or I/O bus target control 445. In one embodiment, allocation unit
435 gives preference for ownership of the newly released slot to
decoder 415. Thus, in the event of simultaneous transactions
originating on processor bus 401 and I/0O bus 402 (i.e., both decoder 415
and I/O bus target control 445 are requesting a slot in the inbound
request queue 430 at the same time), allocation unit 435 gives the slot
to decoder 415. In this embodiment, if decoder 415 does not have a
transaction which currently requests a slot in the inbound request
queue 430, then allocation unit 435 allows I/O bus target control 445 to
have ownership of the slot.

It should be noted that in one embodiment of the present
invention processor bus 401 has a bandwidth of 500 MBytes/sec while
I/0O bus 402 has a bandwidth of 125 MBytes/sec. Thus, in a situation
when many agents on both buses are issuing transactions, requests
arrive at bus interface 410 much more rapidly then requests arrive at
bus interface 450. In such a situation, it is more likely that decoder 415
will have a transaction requesting an inbound request queue slot from
allocation unit 435. However, circumstances may exist where more
requests are being issued by agents on I/O bus 402 than by agents on
processor bus 401. Under these circumstances, it is more likely that I/O
bus target control 445 will have a transaction requesting an inbound
request queue slot from allocation unit 435.

In one embodiment of the present invention, bridge 400 issues a
deferred reply only for read requests targeting I/O bus 402. A write
request received by bridge 400 is either re-tried (if no outbound request
queue slots are available), posted, or attempted on I/O bus 402.
"Posted" refers to the command entering the outbound request queue
and the originating agent receiving a response that the request will be
attempted on'I/O bus 402. When the request is not posted, it may still
be attempted on I/O bus 402. That is, the Response Phase of processor
bus 401 is stalled until the request is retrieved from the top of

WO 95/32474 PCT/US95/06089

-26-

outbound request queue 420, attempted on I/O bus 402, and a reply is
returned to the originating agent.

In one embodiment, write posting can be enabled or disabled. If
write posting is enabled, then bridge 400 posts write requests in
outbound request queue 420 (assuming a slot in outbound request
queue 420 is available). If write posting is not enabled, then bridge 400
attempts the request on I/O bus 402 (when the request is at the top of
outbound request queue 420) while stalling the Response Phase of
processor bus 401.

In one mode, whether write posting is enabled is a 1-bit
configuration value stored in configuration registers 412 in bridge 400.
In one mode, write posting is enabled when the 1-bit configuration
value is "1", and disabled when it is "0". Write posting can be changed
during system operation by altering this configuration value stored in
registers 412.

A bus bridge must guard against the possibility of deadlock
situations. Two important deadlock situations may arise: (1) a
deadlock within the bridge itself, and (2) a deadlock situation between
two bridges. In the first situation, a potential deadlock situation arises
if both the outbound and inbound request queues are full and the
request at the top of the outbound request queue is deferred. Processor
bus 401 is completely stalled when the outbound request queue is full
because any transactions on the bus may target the bridge, which can
not store them. Since processor bus 401 is stalled, the inbound request
queue cannot transfer requests to processor bus 401. Furthermore, the
deferred reply for the request at the top of the outbound request queue
cannot be placed into the inbound request queue because the inbound
request queue is full. Thus, neither the request at the top of the
inbound request queue nor the top of the outbound request queue can
be executed, and the system is deadlocked.

In the second situation, a deadlock situation occurs in a system
with two bridges coupled to the same buses. For example, bridge A
needs to convert a deferred read response into a deferred reply. The
deferred reply needs the inbound request queue. However, the
inbound request queue of bridge A is full and has a posted write at the

WO 95/32474 PCT/US95/06089

-07.

top pointed at bridge B, while the outbound request queue of bridge B
is full and has a deferred response at the top waiting for an inbound
request queue slot for the deferred reply. If the inbound request queue
of bridge B is full and has a posted write at the top pointed at bridge A,
none of the queues can advance and the system is deadlocked.

It can be seen that by maintaining forward progress on processor
bus 401, both deadlock situations are avoided. Forward progress is
ensured by reserving a deferred reply slot in the inbound request queue
at the time the request is placed in the outbound request queue. This
reserved slot is used for the reply to the deferred request, as described
above.

Figure 5 is a diagram showing example data buffers and
corresponding request queues in one embodiment of the present
invention. Outbound data buffers 520 contain outbound data (i.e., data
being transferred from processor bus 401 to I/O bus 402), and inbound
data buffers 530 contain inbound data (i.e., data being transferred from
I/O bus 402 to processor bus 401). In the example shown, outbound
data buffers 520 correspond to outbound request queue 420, and
inbound data buffers 530 correspond to inbound request queue 430.
However, it will be understood by those skilled in the art that
particular slots of inbound request queue 430 could correspond to one
of the outbound data buffers 520 (e.g., in the event of a read request
originating on I/O bus 402, reading data from a target agent on
processor bus 401). Similarly, particular slots of outbound request
queue 420 could correspond to one of the inbound data buffers 530 (e.g.,
in the event of a deferred read request from an agent on processor bus
401 targeting an agent on I/O bus 402). In one mode, the number of
data buffers equals the number of slots in queues 420 and 430.

The data buffers shown in Figure 5 correspond to the queue slots
on a one-to-one basis. That is, a single data buffer exists for each queue
slot. It should be understood by those skilled in the art that these
numbers may be changed. That is, the number of data buffers may be
increased or decreased within the spirit and scope of the present
invention.

WO 95/32474 PCT/US95/06089

-28-

As discussed above with respect to Figures 6 and 7, the data
buffers contain any data corresponding to the commands in the queues
420 and 430. A command in one of the queues 420 or 430 which has
data associated with it (e.g., a write command, or the response to a read
command) will have a data pointer indicating the data buffer
containing this data. In one mode, the data pointer is the address of
the data buffer corresponding to the particular slot in the queue. The
proper address (or other indicator) to place in the data pointer portion
to identify the correct data buffer for a slot in outbound request queue
420 is determined by the outbound request decoder 415. In one mode,
each data buffer always corresponds to the same slot in the queue.
Similarly, the proper indicator to identify the correct data buffer for a
slot in inbound request queue 430 is determined by either deferred
reply generator 440 or I/O bus target control 445, depending on where
the request originated. In an alternate mode, the proper data buffer is
dynamically allocated (by decoder 415, reply generator 440, or target
control 445 as above) based on the next available buffer when the
request is placed into queue 420 or 430.

In one embodiment of the present invention, each data buffer is
capable of storing 32 bytes of data. In one mode, the size of each data
buffer is the same as the size of a cache line in the computer system. It
should be understood by those skilled in the art, however, that the size
of a data buffer may be modified; furthermore, each data buffer may be
of a different size.

In an alternate embodiment, a single set of data buffers exists
which is shared by both queues 420 and 430. In this embodiment,
additional logic is required to properly allocate buffers between
inbound request queue 430 and outbound request queue 420.

Figures 8a and 8b show a flowchart describing the steps followed
for a request issued on the processor bus in one embodiment of the
present invention. The originating agent issues the command
targeting an agent on the I/O bus, step 805. The processor bus interface
of the bus bridge receives the command and immediately transfers it to
the outbound request decoder, which in turn immediately determines
whether a deferred slot is available in the inbound request queue, step

wo .95/32474 PCT/US95/06089

-29.

810. If no deferred slot is available, then the decoder sends a signal to
the bus interface that the request was not deferred, step 815. In
response, the bus interface issues a signal over the processor bus to stall
the Response Phase of the bus, 820.

Returning to step 810, if the decoder determines that a deferred
slot is available, then the inbound queue allocation unit allocates that
slot to the decoder, step 825. In response, the decoder issues a signal to
the bus interface indicating that the request was deferred, step 830.

Regardless of whether a deferred slot was available in step 810,
the decoder places the request into the outbound request queue, step
835. When the request reaches the top of the outbound request queue,
the I/O bus master control unit removes the request from the queue
and transfers it to the I/O bus interface, step 840. The bus interface
executes the command on the I/O bus, and wait for a response from
the target agent, step 845. This response is then returned to the I/O bus
master control.

The I/0 bus master control then determines whether the
original request was deferred, step 850. If the original request was not
deferred than the I/O bus master control returns the response directly
to the processor bus interface, step 855.

If, however, the original request was deferred, then the I/0 bus
master control transfers the reply to the inbound request queue via the
deferred reply generator, step 860. If the inbound request queue had
been previously empty, then the inbound request queue issues a signal
to the processor bus interface indicating that it contains pending
transaction(s), step 865.

Regardless of whether the request was deferred, the processor
bus interface receives the reply, step 870. This may be from either the
inbound request queue (in the case of a deferred reply request) or
directly from the I/O bus master control (in the response phase of the
original request). Upon receiving the reply, or the signal from the
inbound request queue that it contains a pending transaction, the
processor bus interface arbitrates for access to the processor bus. Upon
receiving ownership of the processor bus, the processor bus interface
transfers the reply to the originating agent on the processor bus.

WO 95/32474 PCT/US95/06089

-30-

It should be noted that in an alternate embodiment of the
present invention, deferred responses are an option which can be
enabled or disabled. In this alternate embodiment, a read request
which is placed into the outbound request queue is not deferred. The
Response Phase of the processor bus is stalled until a response to the
read request is received, as described above. In one mode, whether
deferred responses are enabled is a 1-bit configuration value stored in
configuration registers 412 in bridge 400. Thus, deferred responses can
be enabled and disabled during system operation by setting or clearing
this 1-bit configuration value.

Whereas many alterations and modifications of the present
invention will be comprehended by a person skilled in the art after
having read the foregoing description, it is to be understood that the
particular embodiments shown and described by way of illustration are
in no way intended to be considered limiting. Therefore, references to
details of particular embodiments are not intended to limit the scope of
the claims, which in themselves recite only those features regarded as
essential to the invention.

Thus, a method and apparatus for maintaining transaction
ordering and supporting deferred replies in a bus bridge has been
described.

WO 95/32474 PCT/US95/06089

-31-
CLAIMS

What is claimed is:

1. A bus bridge for use in a computer system having a first agent

coupled to a first bus and a second agent coupled to a second bus, the
bus bridge comprising:

(@) a first bus interface coupled to the first bus for receiving
data from and placing data onto the first bus;

(b) asecond bus interface coupled to the second bus for
receiving data from and placing data onto the second bus;

(0 an inbound request queue and an outbound request
queue coupled to the first bus interface and the second bus interface;
and .

(d) decoding circuitry coupled to the inbound request queue
and the outbound request queue for placing requests in the outbound
request queue and for issuing a deferred reply command to the first bus
interface based on the inbound request queue.

2. The bus bridge as defined in Claim 1 further comprising at least
one data buffer coupled to the inbound request queue and the
outbound request queue.

3. The bus bridge as defined in Claim 1 further comprising an
inbound queue allocation unit for determining whether an outbound
request may be given a deferred reply.

4. The bus bridge as defined in Claim 3 wherein the inbound
request queue has a plurality of inbound slots and the inbound queue
allocation unit determines whether an outbound request may be given
the deferred reply slot based on the number of the plurality of inbound
slots, the number of inbound slots in the inbound request queue
currently holding information, and the number of inbound slots in the
inbound request queue currently labeled as deferred reply slots.

WO 95/32474 PCT/US95/06089

-32.

5. The bus bridge as defined in Claim 1 further comprising bus
control circuitry coupled to the first bus interface and the second bus
interface, the bus control circuitry for determining whether an
outbound request has been deferred, transferring the request
information to the second bus interface, receiving response
information from the second bus interface generated in response to the
request information, and
returning the response information to the first bus
interface if the outbound slot has not been deferred, and
transferring the response information to the inbound
request queue if the outbound slot has been deferred.

6. The bus bridge as defined in Claim 5 further comprising a
deferred reply generator for receiving response information from the
bus control circuitry and transferring the response information to the
inbound request queue.

7. The bus bridge as defined in Claim 1 further comprising bus
target circuitry for receiving inbound requests from the second bus
interface and transferring the requests to the inbound request queue.

8. The bus bridge as defined in Claim 1 wherein the outbound
request queue has a plurality of outbound slots, each slot of the
plurality of outbound slots for holding information corresponding to
requests issued by agents coupled to the first bus.

9. The bus bridge as defined in Claim 1 wherein the inbound
request queue has a plurality of inbound slots, each slot of the plurality
of inbound slots for holding information corresponding to requests
issued by agents coupled to the first bus or the second bus.

10. The bus bridge as defined in Claim 9 wherein at least one of the
plurality of inbound slots is a deferred reply slot.

11. The bus bridge as defined in Claim 1, wherein

WO 95/32474 PCT/US95/06089

-33-

(@) the first bus has a first command protocol;

(b) the second bus has a second command protocol; and

() the second bus interface is for translating commands
between the first command protocol and the second command
protocol.

12. The bus bridge as defined in Claim 8, wherein each slot of the
plurality of outbound slots comprises a tag portion, a command
portion, an address portion, and a data pointer portion, the data
pointer for denoting a data buffer.

13. The bus bridge as defined in Claim 9 wherein each slot of the
plurality of inbound slots comprises a command portion, an address
portion, and a data pointer portion, the data pointer for denoting a data
buffer.

14. The bus bridge as defined in Claim 9 wherein the decoding
circuitry determines whether to issue a deferred reply command to the
CPU bus interface based on whether each inbound slot of the plurality
of inbound slots contains information, the decoding circuitry issuing a
deferred reply command to the CPU bus interface if an inbound slot
does not contain information.

15. The bus bridge as defined in Claim 12 wherein the bus control
circuitry determines whether the request has been deferred based on
the contents of the tag portion.

16. A method for transferring a command between a first bus and a
second bus comprising the steps of: |

(a) transferring a first outbound request from a source agent
on the first bus to an outbound request queue;

(b) determining whether the first outbound request is to be
deferred;

WO 95/32474 PCT/US95/06089

-34-

() issuing a deferred reply to the source agent and reserving
a slot in an inbound request queue when the first outbound request is
deferred;

(d) transferring the first outbound request from the outbound
request queue to a target agent on the second bus; and

(e) returning response information from the target agent to
the source agent if the first outbound request is not deferred, and
placing the response information from the target agent into the
inbound request queue if the first outbound request is deferred.

17. The method of Claim 16 wherein the step (d) comprises
removing the first outbound request from the outbound request queue
and transferring the first outbound request to a second bus interface.

18. The method of Claim 16 wherein the step (c) comprises:
determining the number of slots in the inbound request queue;
determining the number of slots in the inbound request queue
which are not currently in use;
determining the number of slots in the inbound request queue
which are currently labeled as deferred reply slots; and

issuing a deferred reply if an inbound slot exists which is not in
use and fewer than a predetermined number of inbound slots are
labeled as deferred reply slots.

19. The method of Claim 16 wherein the step (d) comprises
translating the first outbound request from a first command protocol to
a second command protocol.

20. The method of Claim 16 further comprising transferring a
second outbound request from the outbound request queue to a second
target agent on the second bus and transferring response information
for the second outbound request to the source agent before the
response information for the first outbound request is transferred to
the inbound request queue.

WO 95/32474 PCT/US95/06089

-35-

21. The method of Claim 16 wherein the step (e) comprises placing
response data in a data buffer if the target agent returns response data,
the inbound request queue containing an indicator denoting the
location of the data buffer.

22, The method of Claim 16 wherein the step (c) comprises
determining whether a deferred reply slot in the inbound request
queue is available and issuing a deferred reply if a deferred reply slot in
the inbound request queue is available.

23. A computer system comprising:
(a) a bus bridge coupled to a first bus and a second bus;
(b) the first bus for transferring data between a first agent
coupled to the first bus and the bus bridge;
() the second bus for transferring data between a second
agent coupled to the second bus and the bus bridge; and
(d) the bus bridge including,
a first bus interface coupled to the first bus for
receiving data from and placing data onto the first bus,
a second bus interface coupled to the second bus for
receiving data from and placing data onto the second bus,
an inbound request queue and an outbound request
queue coupled to the first bus interface and the second bus
interface, and
decoding circuitry coupled to the inbound request
queue and the outbound request queue for placing
requests in the outbound request queue and for issuing a
deferred reply command to the first bus interface in
response to inputs from the inbound request queue.

24. The computer system as defined in Claim 23 wherein the bus
bridge further comprises an inbound queue allocation unit for
determining whether an outbound request may be given a deferred

reply.

WO 95/32474 PCT/US95/06089

-36-

25. The computer system as defined in Claim 24 wherein the
inbound request queue has a plurality of inbound slots and the
inbound queue allocation unit determines whether an outbound
request may be given the deferred reply based on the number of the
plurality of inbound slots, the number of inbound slots in the inbound
request queue currently holding information, and the number of
inbound slots in the inbound request queue currently labeled as
deferred reply slots.

26. The computer system as defined in Claim 23 wherein the bus
bridge further comprises bus control circuitry coupled to the first bus
interface and the second bus interface, the bus control circuitry being
for determining whether an outbound request has been deferred,
transferring the request information to the second bus interface,
receiving response information from the second bus interface
generated in response to the request information, and
returning the response information to the first bus
interface if the outbound slot has not been deferred, and
transferring the response information to the inbound
request queue if the outbound slot has been deferred.

27. The computer system as defined in Claim 23 wherein the bus
bridge further comprises bus target circuitry for receiving inbound
requests from the second bus interface and transferring the requests to
the inbound request queue.

28. The computer system as defined in Claim 23 wherein the
outbound request queue has a plurality of outbound slots, each slot of
the plurality of outbound slots for holding information corresponding
to requests issued by agents coupled to the first bus.

29. The computer system as defined in Claim 28, wherein each slot
of the plurality of outbound slots comprises a tag portion, a command
portion, an address portion, and a data pointer portion, the data
pointer for denoting a data buffer of the at least one data buffer.

WO 95/32474 PCT/US95/06089

-37-

30. The computer system as defined in Claim 23 wherein the
inbound request queue has a plurality of inbound slots, each slot of the
plurality of inbound slots for holding information corresponding to
requests issued by agents coupled to the first bus or the second bus.

31. The computer system as defined in Claim 30 wherein each slot
of the plurality of inbound slots comprises a command portion, an
address portion, and a data pointer portion, the data pointer for
denoting a data buffer of the at least one data buffer.

32. The computer system as defined in Claim 30 wherein the
decoding circuitry determines whether to issue a deferred reply
command to the CPU bus interface based on whether each inbound
slot of the plurality of inbound slots contains information, the
decoding circuitry issuing a deferred reply command to the CPU bus
interface if an inbound slot does not contain information.

33. An apparatus for transferring commands between a first bus and
a second bus comprising:

(@) means for transferring a first outbound request from a
source agent on the first bus to an outbound request queue;

(b) means for determining whether the first outbound
request is to be deferred;

() means for issuing a deferred reply to the source agent and
reserving a slot in an inbound request queue when the first outbound
request is deferred;

(d) means for transferring the first outbound request from
the outbound request queue to a target agent on the second bus; and

(e) means for returning response information from the target
agent to the source agent if the first outbound request is not deferred,
and placing the response information from the target agent into the
inbound request queue if the first outbound request is deferred.

WO 95/32474 PCT/US95/06089

-38-

34. The apparatus as defined in Claim 33 wherein the means for
transferring comprises means for removing the first outbound request
from the outbound request queue and transferring the first outbound
request to a second bus interface.

35. The apparatus as defined in Claim 33 wherein the means for
issuing a deferred reply comprises:

means for determining the number of slots in the inbound
request queue;

means for determining the number of slots in the inbound
request queue which are not currently in use;

means for determining the number of slots in the inbound
request queue which are currently labeled as deferred reply slots; and

means for issuing a deferred reply if an inbound slot exists
which is not in use and fewer than a predetermined number of
inbound slots are labeled as deferred reply slots.

36. The apparatus as defined in Claim 33 wherein the means for
transferring the first outbound request from the outbound request
queue to a target agent on the second bus comprises means for
translating the first outbound request from a first command protocol to
a second command protocol.

37. The apparatus as defined in Claim 33 further comprising means
for transferring a second outbound request from the outbound request
queue to a second target agent on the second bus, and transferring
response information for the second outbound request to the source
agent before the response information for the first outbound request is
transferred to the inbound request queue.

38. The apparatus as defined in Claim 33 wherein the means for
returning further comprises means for placing response data in a data
buffer if the target agent returns response data, the inbound request
queue containing an indicator denoting the location of the data buffer.

WO 95/32474 PCT/US95/06089

-39-

39. The apparatus as defined in Claim 33 wherein the means for
issuing a deferred reply comprises means for determining whether a
deferred reply slot in the inbound request queue is available and
issuing a deferred reply if a deferred reply slot in the inbound request
queue is available.

PCT/US95/06089

WO 95/32474

1/8

1HV HOIdd
IN3IDV
Ved A
ovl
A Y
A 0L
snd W3LSAS
A
00}
3oqiyg
3OVHOLS
AHVHOJWAL an3ano an3ano
el - ~
0zt SLk 0kl
A
A Y
A c0L
snd W3LSAS
Y
IN3IOV
\

(0148

PCT/US95/06089

WO 95/32474

2/8

¢ 34NOId

< ave '\ v
snaon |
3oqaiug
.\
Sve A
391A30
30IA30 TOHINOD 301A30
LS AdOD GHVH HOSHND QHVO8AIN Avidsia
e ~ X ~ X ~ Iy - 4 ~]
¢ sna on V me Y yS€¢ 4 vee | €€z | zee | N
T) LEZ
Y Y SNA O/l N3LSAS
301A3Q
39VHOLS
SSYI 35al4g 3onaiua
mw\M 1 N 102 ~ ¥
ove - ¥ A
A.T‘ | SNE AHOW3W-HOSS3IO0Hd ! N R T
A A Ar A A ” AHOW3W NIVIN
\ Y Y Y / P Pl
zze 122
m%J_Dmm_ (N) HOSS3IOOHd | ++« | (2) HOSS300Hd | | (1) HOSS300Hd | | (0) HOSS3D0Hd
~ - A - Ve Ve
£22 502 1 y02Z £02 zoz
AHOWIW
_| 3wovo
902

PCT/US95/06089

WO 95/32474

3/8

£ 3HNOI4

*saseyd jualajjip Usamiaq pamol|e ale
$8]942 %200 eioW 10 U0 S3)BI|PU| JBq |BOJLISA Papeys eyl 310N,

c z2lZ |z N&HN.- A E AT AR Y 3 }
7
NIK \rll/ “
[, (L [\
“yﬂu (D
e
_ et
m PN
JLJL.EJLJL&JL.EJLJLH*EQMLJL.QNIL

LZL 9L SE ¢vL €L 2L LL OL 6 8 L 9 S ¥ € 2T I

3ININD HIGHO-NI
HIJISNVHL VL1Va
3SNOJS3H
dOONS

HOHH3
1s3anoay
NOILVHLIGHY
%10

WO 95/32474

PCT/US95/06089
4/8
PROCESSORBUSHoI -
| m e m e e e e e e e o T
|
| PROCESSOR BUS INTERFACE g0 1
1 41y 4/1 — :
: IN-ORDER [ARBITRATION— |
[" QUEUE UNIT :
|
I
: 413 412 |
, ADDRESS [~ CONFIGURATION [|
| MAPPING REGISTERS !
|
|
|
!
| A A 1 |
| Y Z/-f Y35 :
|
OUTBOUND !
! INBOUND QUEUE
REQUEST [«———» !
| DEconen ALLOCATION UNIT !
] A !
| :
429 30 !
: Y z ‘ 4 |
! OUTBOUND INBOUND !
| REQUEST REQUEST !
| QUEUE QUEUE 1
i
: SLOT (1) SLOT (1) |
1
|
| SLOT (2) SLOT (2) !
|
: SLOT (3) SLOT (3) |
1 i
| ° e !
| [J L] 1
| ® - 423 * 433 1
l SLOT(N) 4~ storyy 47 |
|
! L 442 |
|
! v 425 : 445,
i - Yyo v
. o2t o —| e L s
ER CON —> > !
: MASTER CONTROL GENERATOR CONTROL |
.] A !
| Y y !
| /O BUS INTERFACE ¥50
| 452 7
| COMMAND [. !
| DECODE !
. |
" 453 i
: ys) !
ADDRESS ARBITRATION |— |
: MAPPING UNIT |
! !
S S !
Y VO BUS Y02

FIGURE 4

PCT/US95/06089

WO 95/32474
5/8
PROCESSOR BUS
< Yo/ >
A
470
PROCESSOR o
> BUS INTERFACE
A
415
[/
DECODER
520 420 30 530
¥ P, Y o z; &
< - - - -
| - - -
- — - -
- - -
A A
' 425
e Sy
I/0 BUS
MASTER CONTROL
VO BUS
< A 4O >

FIGURE 5

WO 95/32474

423

433

6/8
6lo
|/
TAG 1
COMMAND {
60
ADDRESS |
25
DATA POINTER ,/
— 628
TOKEN |
730
f/
COMMAND
735
ADDRESS OR TOKEN 1
740
DATA POINTER ,/

FIGURE 7

PCT/US95/06089

WO 95/32474

PCT/US95/06089
7/8
805
|
BUS AGENT
ISSUES COMMAND
1S
DEFERRED NO
SLOT AVAILABLE
?
825
P , 815
GET SLOT FROM SEND SIGNAL TO
INBOUND QUEUE BUS INTERFACE THAT
ALLOCATION UNIT NOT DEFERRED
4 830 ﬁzo
ISSUE DEFERRED y/ BUS INTERFACE STALLS
SIGNAL TO BUS AGENT RESPONSE PHASE
VIA BUS INTERFACE OF BUS

Y Y 835
| —
PLACE REQUEST IN
OUTBOUND REQUEST
QUEUE
840
|~
/0 BUS MASTER CONTROL
REMOVES REQUEST FROM
OUTBOUND REQUEST
QUEUE AND TRANSFERS
IT TO VO BUS INTERFACE
! 845
RESPONSE FROM -
TARGET ON VO BUS TO

VO BUS INTERFACE

FIGURE 8a

WO 95/32474

8/8

WAS

REQUEST NO

PCT/US95/06089

DEFERRED
? -

860
=

PLACE RESPONSE
IN INBOUND
REQUEST QUEUE

A 865
SIGNAL ISSUED TO -
PROCESSOR BUS
INTERFACE IF INBOUND
REQUEST QUEUE
PREVIOUSLY EMPTY

Y

855
_

RETURN RESPONSE
TO PROCESSOR BUS
INTERFACE

Y 870
L

PROCESSOR BUS
INTERFACE GETS
ACCESS TO PROCESSOR
BUS AND ISSUES
RESPONSE TO ORIGINAL
REQUESTING AGENT
ON PROCESSOR BUS

FIGURE 8b

INTERNATIONAL SEARCH REPORT International application No.
PCT/US95/06089

A. CLASSIFICATION OF SUBJECT MATTER
IPC(5) ":GOGF 13/00
US CL :395/306, 325-

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/325

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

P,X US, A, 5,327,570 (FOSTER ET AL) 05 July 1994, col 8,| 1-2,5-10,
----- lines 45-62, col. 10 lines 33-56, col. 11 line 66 - col. 12| 12-13,15,

Y line 13, col. 12 lines 35-42, col.36 lines 28-51, and Figs 3, | 23,26-31
5, 6.] e
3-4,11,14,
16-22,24-
25,32-39
P,Y US, A, 5,333,276 (SOLARI) 26 July 1994, col. 4 lines 25-{ 11,19,36
68.
Y US, A, 5,124,981 (GOLDING) 23 June 1992, col. 1 line 42 -} 3-4,14,16-
col. 2 line 22, and Figs. 3,6 18,20-22,
24-25,32-
35,37-39
D Further documents are listed in the continuation of Box C. D See patent family annex.
. Special categories of cited documents: T later document published after the intemational filing date orpnomy
At d defining the general state of the art which s not considered date and ot in conflict with the spplication but cited 1o und
1o be part of s principle or ry underlying the inveation
o f] .) -~ 4 £ carticular rel e
E earlier document published on or afier the international filing date mﬂud:ovclotmbewmnnemdmmohemmv:::::t:
L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the ion date of or other
special reason (as specified) °y* docu_ment of plmcuhr relevance; the claimed invention cannot be
. an step when the document is
0 document referring to an oral disclosure, usc, exhibition or other combined wnhonc or more other such d such combi
means being obvious to a person skilled in the art
P mﬁ;ﬁmrwwmwﬁoﬂﬂﬁhl datcbutlaterthan *g" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report

22 JUNE 1995 2 9 AUG 1995

Name and mailing address of the ISA/US Authorized officer 6
Commissioner of Patents and Trademarks
Box PCT JOHN TRAVIS " /

Washington, D.C. 20231
Facsimile No. (703) 305-3230 Telephone No. (703) 308-5212

Form PCT/ISA/210 (second sheet)(July 1992)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

