ADJUSTABLE BRACKET FOR BRICK MOULD TRIM

Applicant: Trim Solutions, LLC, East Windsor, CT (US)

Inventor: Daniel J. Cashman, Suffield, CT (US)

Assignee: Trim Solutions, LLC, East Windsor, CT (US)

Appl. No.: 13/947,516

Filed: Jul. 22, 2013

Related U.S. Application Data
Continuation-in-part of application No. 12/932,654, filed on Mar. 2, 2011.

Publication Classification

Int. Cl. E04F 13/22 (2006.01)
U.S. Cl. 52/288.1; 52/747.1

CPC E04F 13/22 (2013.01)
USPC

ABSTRACT
A bracket for a trim unit generally comprising a back plate. The back plate has first and second longitudinal sides, each having an angulated leg projecting transversely at each side. The back plate has first and second back plate portions which extend longitudinally on opposite sides of a longitudinal axis defined intermediate the first and second longitudinal sides. First and second sets of fastening apertures are defined in said first and second portions, respectively. The back plate first portion is detachable from the back plate second portion along the longitudinal axis such that the first portion and the second portion are each separately attachable to a wall in laterally spaced relation with the angulated legs facing each other.
ADJUSTABLE BRACKET FOR BRICK MOULD TRIM

BACKGROUND

[0001] The present invention relates to building construction and in particular to the framing of doors, windows, and other wall penetrations.

SUMMARY

[0002] An object of the invention is to attach a brick mould trim or the like to a wall between two boundaries of other building structures, without penetrating the brick mould or otherwise marring the visible surface after installation.

[0003] In one aspect of the disclosure, a starter bracket is attached to the wall and the trim piece is inserted therein such that a pair of opposed legs on the bracket engage respective longitudinal edges of the trim piece. A back plate of the bracket extends vertically and on one side has a longer L-shaped formation with legs extending forward and laterally, and at the other side, a shorter formation extending with legs forward and laterally. The inner edge of the inner leg of the shorter formation is preferably in the form of a compressible edge. The back plate is nailed to a wall, the longer leg of the bracket is inserted in an slot on one side of the trim piece, and a short slot on the other side of the trim piece is snapped onto the shorter leg to complete the installation.

[0004] Another method is directed to installing a longitudinally extending trim piece having a front face, a back face and opposite sides onto a wall, such as brick moulding or casing, comprising affixing a back portion of a bracket to a wall; manually inserting a front portion of the bracket into an edge of the trim piece whereby the trim piece is retained on the wall by the bracket; affixing the other edge of the trim piece to the wall with a mounting strip; and inserting an edge of at least one wall siding panel into a channel on the second edge, in front of the mounting strip.

[0005] Another method is directed to installing a longitudinally extending trim piece having a front face, a back face and opposite sides onto a wall, such as brick moulding or casing, comprising affixing a back longitudinally extending back portion of a bracket to a wall; inserting a first front portion of the bracket into a first edge of the trim piece; and then pushing the trim piece toward the bracket so a portion of the back face of the trim piece slides over while bending a second front portion of the bracket until the second front portion enters a second longitudinal slot on the trim piece. Preferably, a first front leg of the bracket is inserted into the first side of the trim piece and then the first front leg bends as a pivot while the trim piece is pushed toward the bracket until another front leg on the bracket snaps into a second longitudinal slot on the trim piece.

[0006] From another aspect, the disclosure is directed to an adjustable bracket for a trim unit. The adjustable bracket comprises a back plate having first and second longitudinal sides and first and second back plate portions. Angulated legs project transversely at each longitudinal side. The first and second back plate portions extend on opposite sides of a longitudinal axis intermediate the first and second longitudinal sides. A first set of fastening apertures is defined in the first bracket portion and a second set of fastening apertures is defined in the second bracket portion. The back plate first portion is detachable from the back plate second portion along the longitudinal axis, such that the first and second portions are separately attachable to a wall in laterally spaced relation.

[0007] A significant advantage is that all steps in the installation can be performed without requiring lateral access to the bracket or trim piece, which access would typically be blocked by one or both of a window frame or exterior wall cover such as masonry, yet avoiding use of nails or screws through the front of the trim piece.

BRIEF DESCRIPTION OF THE DRAWING

[0008] FIG. 1 is a top view of a bracket for a brick mould;
[0009] FIG. 2 is a front view of the bracket of FIG. 1;
[0010] FIG. 3 is a top view of a #908 brick mould;
[0011] FIG. 4 shows how the brick mould of FIG. 1 is mounted to the bracket of FIGS. 1-3 after the bracket has been affixed to a wall;
[0012] FIG. 5 shows the corner of the exterior of a building where a brick mould has been installed between a window frame and surrounding masonry;
[0013] FIG. 6 shows a variation of the brick mould, wherein a portion of the mounting bracket extends beyond a side edge of the moulding;
[0014] FIG. 7 is a top view of an adjustable bracket for a trim unit;
[0015] FIG. 8 is a front view of the adjustable bracket of FIG. 7;
[0016] FIG. 9 is a top view of an alternate embodiment of the adjustable bracket of FIG. 7;
[0017] FIG. 10 is a front view of the adjustable bracket of FIG. 9;
[0018] FIG. 11 is a top view of the first and second bracket of a trim unit kit, with the longitudinally extending trim piece omitted for clarity;
[0019] FIG. 12 is a front view of the first and second brackets of the trim kit of FIG. 11, the longitudinally extending trim piece has been omitted for clarity; and
[0020] FIG. 13 shows how a longitudinally extending trim piece is mounted to the first and second brackets of FIG. 11 after the brackets have been affixed to a wall.

DETAILED DESCRIPTION

[0021] FIGS. 1-6 show a trim technique, by which a longitudinally extending trim piece such as brick mould or the like (sometimes called "casing") can be attached to a wall W without penetrating the brick mould or otherwise marring the visible surface during installation. Brick moulds are a type of trim which in one instance is provided between the edge of masonry and a window box, especially if the size of the original window is reduced and the margin adjacent to the masonry must be closed off. Even for non-masonry exteriors, most new entry doors for modern construction come stocked with a #908 brick mould as the exterior trim, unless other mould is specified. The present invention provides a hidden fastening system for brick mould applications.

[0022] A brick mould starter bracket 10 is shown in FIG. 1. A longitudinal back plate 12 extends vertically and at one side has an L-shaped formation with one leg extending perpendicularly forward and another leg 16 extending laterally inwardly, and at the other side it has a leg 18 extending perpendicularly forward and a leg 20 extending laterally inwardly. The forward legs 14 and 18 are parallel but offset. Preferably, forward leg 14 is longer than forward leg 18 and
lateral leg 16 is longer than lateral or front leg 20. The inner edge 22 of leg 20 is in the form of a compressible, preferably J-edge. A plurality of nail holes 24 are provided in the back plate 12. Preferably, the nail holes 24 are readily accessible through the open space between the edge 26 of the leg 16 and the J-edge 22.

[0023] For a #908 brick mould, the width of the back plate 12 would be two inches, the leg 14 would extend forward 1/2 inch, the front leg 16 would extend 1/2 inch, the other leg 18 would extend forward 7/8 inch, and the other front leg 20 would extend forward 1/4 inch. A #908 brick mould is shown as item 28 in FIG. 3, with a back face 30, left and right sides 32, 34, and front face 36 which is beveled, fluted, or otherwise would typically carry some decorative profile. This brick mould is conventional except that for present purposes it is kerfed on the left and right sides 32, 34, as shown by slots at 38 and 40. These slots are at locations which correspond to the positions of the front legs 16 and 20 of the bracket 10. Preferably the back corner adjacent slot 40 is rounded 42.

[0024] After the bracket 10 has been attached to the wall with nails 44 through holes 24, the longer slot 38 is urged onto the longer front leg 16, to the position shown in FIG. 4, the installer pushes on the opposite side of the brick mould to pivot about front leg 14 such that the rounded edge 42 bends the front leg 20 and ultimately snaps into the other slot 40, thereby securing the mould against the bracket 10.

[0025] Preferably, the brick mould unit is manufactured with the bracket 10 and brick mould 28 attached via the front legs 16, 20 engaging the slots 38, 40. These units can be provided in standard lengths, such as six, eight or ten feet.

[0026] FIG. 5 shows one of many possible installation configurations for a brick mould 46 surrounding a window frame 48 and filling the space between the window frame 48 and the masonry wall 50. Only portions of top 46A and one vertical 46B unit are shown.

[0027] Upon measuring the dimensions of the areas to be filled by the brick mould around the window frame 48 or against the wall 50, the installer at the site cuts the units to the desired length. For example, as shown in FIG. 5, the installer can cut pieces to length and at 45° angles indicated at 52 to assemble as a square in the field.

[0028] Once the standard length units have been cut to the desired size, the brick mould trim piece is slid out of the bracket lengthwise and the bracket attached to the building. The mould piece is snapped therein as described previously with respect to FIGS. 1-4. The compressive edge 22 provides only a mild bias against the slot 40 and the round surface preferably permits pivotal disengagement as well as engagement per FIG. 4. In the installed condition shown in FIG. 5, the left 54 and right 56 longitudinal sides of the moulding appear to be flat, because the forward legs are substantially flush with the sides after full installation as described with respect to FIGS. 1-4.

[0029] In an alternative embodiment 58 shown in FIG. 6, the front leg 60 that carries the J-edge, is visible as a so-called "reveal" between the right side 62 of the mould and the, e.g., masonry or other interface. The left side 64 is as previously described, i.e., as 54 in FIG. 5. With reference to FIG. 1, this embodiment can be implemented by simply increasing the width of the back plate 12 by e.g., 1/4 inch to 3/4 inch, and likewise increasing the length of the front leg 20 by the same distance. In addition to an aesthetic appeal with this embodiment, the slightly longer front leg 60 bends more easily for the mould to be snapped in.

[0030] It should be understood that the bracket can be made of metal, such as aluminum, or durable and resilient plastic and the moulding made of hard plastic, such as PVC. Preferably, the bracket and the mould are the same color, especially in the embodiment of FIG. 6, having the reveal 60 which is part of the bracket.

[0031] With reference to FIGS. 1-6, the trim piece 28,46 is secured in the bracket 10 by the first front leg 16 extending parallel to the back plate 12 engaged in the first front slot 38 and the second front leg 20 extending parallel to the back plate engaged in the second front slot 40, with the back face 30 of the trim piece substantially against the back plate 12 of the bracket. The first front leg is connected to the back plate by a first forward leg 14 and the second front leg is connected to the back plate by a second forward leg 18. In one embodiment, the forward legs are substantially flush with the sides 32, 34 of the trim piece and, in another embodiment, a portion 60 of the second front leg extends laterally from and is therefore visible with the respective side edge 62 of the trim piece.

[0032] It should further be appreciated that the lengths and distances of the forward legs 14, 18 from the back plate 12 should permit the pivoting of the first front leg 14 whereby the pushing on the trim piece close to the other side will bend the second front leg 20 sufficiently to permit entry of that other front leg 20 into the second slot 40 on the trim piece.

[0033] In the embodiment shown in FIGS. 7-10, an adjustable bracket for a trim unit 100 comprises a back plate 112 having first and second longitudinal sides 102 and 104, respectively. First and second angulated legs 114 and 118 project transversely at said first and second longitudinal sides 102 and 104, respectively. First and second back plate portions, 106 and 108, respectively, extend longitudinally on opposite sides of a longitudinal axis A-A. The first and second portions 106 and 108 each define first and second sets of fastening apertures 124 and 125, respectively.

[0034] A first front leg 116 projects from the first angulated leg 114 towards the second angulated leg 118 and parallel to the back plate 112. A second front leg 120 projects from the second angulated towards the first angulated leg 114 and parallel to the back plate 112. The first angulated leg 114 preferably projects farther from the back plate than the second angulated leg 118, such that the first front leg 116 is farther from the back plate than the second front leg 120. The first front leg 116 is preferably longer than the second front leg 120, and the second front leg has a compressible edge 122. In the embodiment shown in FIGS. 7 and 9, the compressible edge 122 is a J-edge. The first and second sets of fastening apertures 124 and 125 are readily accessible through the open space between an edge 126 of the first front leg 116 and the compressible edge 122.

[0035] The back plate first portion 106 is detachable from the back plate second portion 108 along the longitudinal axis A-A. In one embodiment the first portion 106 is detachable from the second portion 108 at a portion of weakened material formed in the back plate 112 along the axis A-A. The portion of weakened material is preferably a series of perforations in the back plate 112, though any method may be used to weaken the back plate 112 so that the back plate first portion 106 is detachable form the back plate second portion 108. The bracket 100 is attachable to a wall W as an entire unit 100 as shown in FIGS. 7 and 8. Alternatively, the installer may separate and attach the back plate first and second portions 106 and 108 laterally spaced from one another, such that the first and second angulated legs 114 and 118 are facing each
other as shown in FIGS. 9 and 10. Accordingly, one of ordinary skill in the art will appreciate that the adjustable bracket 100 is usable with any number of trim units (not shown) having different lateral widths.

Referring to FIGS. 11-13, the present disclosure is also directed to a trim unit kit 200. The kit comprises a first bracket 202 a second bracket 204, and a longitudinally extending trim piece 206 (FIG. 13). The first bracket 202 has a back plate 208 and first and second longitudinal sides 210 and 212, respectively. The back plate 208 defines a plurality of fastening apertures 224 sized to receive a plurality of fasteners 226. The second bracket 204 also has a back plate 214, which also has first and second longitudinal sides 216 and 218, respectively. The second bracket back plate 214 also defines a plurality of fastening apertures 224. In an alternative embodiment, the first and second brackets 202 and 204 are provided as a unitary adjustable bracket, such as discussed above with respect to FIGS. 7-10.

An angled leg 220 extends from the first longitudinal side 210 of the first bracket 202, while an angled leg 222 extends from the second longitudinal side 218 of the second bracket 204. In the embodiment shown in FIGS. 11 and 13, the first bracket angled leg 220 has a first front leg 228, and said second bracket angulated leg has a second front leg 230. The first bracket angled leg 220 may also be longer than the second bracket angulated leg 222, and the first front leg 228 may be longer than the second front leg 230. In one embodiment shown in FIGS. 11 and 13, the second front leg 230 has a compressible "J" edge 231.

Referring to FIG. 13, the longitudinally extending trim piece 206 is configured for installation into the first and second brackets 202 and 204. The configuration of the first and second brackets 202 and 204 allow for a multitude of possible trim options, as the distance between the first and second angled legs 220 and 222 may be enlarged to accommodate a trim piece having a lateral width h along a broad range.

To ensure that the trim unit 206 (FIG. 13) is receivable in the first and second brackets 202 and 204, first and second longitudinal sides 232 and 234 have first and second longitudinal slots 236 and 238, respectively. In the embodiment shown in FIG. 13, the first longitudinal slot 236 is defined at a depth d₁, and the second longitudinal slot 238 is defined at a depth d₂, as measured from a back face 240 of the trim piece 206. While a lateral width h of the trim piece 206 is widely variable, d₁ and d₂ must be shallower than the distance between the back plates 208 and 214 and the first and second front legs 228 and 230.

The trim piece 206 is installed by affixing first and second brackets 202 and 204 to a wall W via fasteners 226, such that the first and second angulated legs 220 and 222 are separated a distance slightly larger than the lateral width h of the trim piece 206. The front edge 228 is manually inserted into the first longitudinal slot 236. The trim piece 206 is angularly rotated about a longitudinal pivot provided by the first angulated leg 220 and the front edge 228. The trim piece 206 may be kerfed on the right and left sides, as shown in FIG. 13, and the trim piece 206 is angularly rotated toward the second back plate 214. The trim piece 206 is angularly rotated into engagement with the second angulated leg 222 and deflects the J edge 231, until the second angulated leg 222 engages the second slot 238.

While a preferred embodiment has been set forth for purposes of illustration, the foregoing description should not be deemed a limitation of the invention herein. Accordingly, various modifications, adaptations and alternatives may occur to one skilled in the art without departing from the spirit of the invention and scope of the claimed coverage.

What is claimed:

1. An adjustable bracket for a trim unit comprising:
 a back plate having first and second longitudinal sides with an angulated leg projecting transversely at said first longitudinal side;
 said back plate having first and second back plate portions extending longitudinally on opposite sides of a longitudinal axis intermediate said first and second longitudinal sides, respectively;
 a first set of fastening apertures in said first portion and a second set of fastening apertures in said second portion, wherein said back plate first portion is detachable from said back plate second portion along said longitudinal axis such that said first portion and said second portion are each separately attachable to a wall in laterally spaced relation with the angulated legs facing each other.

2. The bracket for a trim unit of claim 1, wherein a portion of weakened material is formed in said back plate at said longitudinal axis.

3. The bracket for a trim unit of claim 1, wherein said angulated legs at said first and second longitudinal sides include respective first and second front legs extending toward each other, parallel to said back plate.

4. The bracket for a trim unit of claim 3, wherein said first front leg is farther than said back plate than said second front leg, said first front leg is longer than said second front leg and said second front leg has a compressible edge.

5. The trim unit of claim 4, wherein said compressible edge is a "J" edge.

6. The trim unit of claim 1, wherein said first and second back plate portions are attachable to said wall between two longitudinally extending boundaries of other building structures.

7. A trim unit kit comprising:
 a first bracket having a back plate defining a plurality of fastening apertures, first and second longitudinal sides and an angulated leg projecting transversely at said first longitudinal side;
 a second bracket having a back plate defining a plurality of fastening apertures, first and second longitudinal sides and an angulated leg projecting transversely at said second longitudinal side;
 a longitudinally extending trim piece for installation into said first and second brackets having a front face and a back face having a lateral width h, and first and second longitudinal sides having respective first and second longitudinal slots configured to receive angulated legs of said first and second brackets; wherein said angulated legs of said first and second brackets are configured such that upon installing said first and second brackets on a wall with said first and second bracket angulated legs separated by a distance, said first bracket angulated leg receives said first longitudinal slot and provides a longitudinal pivot upon which said trim piece is angularly rotated toward said second longitudinal side of said second bracket during installation, whereby said trim piece angularly deflects said second bracket angulated leg toward said second bracket back plate until said second longitudinal slot engages said second bracket angulated leg during installation.
8. The trim unit kit of claim 7, wherein said angulated leg of said first bracket has a first front leg, said angulated leg of said second bracket has a second front leg, said first front leg is farther from the back plate of said first bracket than said second front leg is from the back plate of said second bracket, said first front leg is longer than said second front leg, and said second front leg has a compressible edge.

9. The trim unit kit of claim 8, wherein the first front leg is farther from the back plate than the second front leg, the first front leg is longer than the second front leg and the second front leg has a compressible edge.

10. The trim unit kit of claim 8, wherein the second front leg has a compressible edge.

11. The trim unit kit of claim 10, wherein the compressible edge is a “J” edge.

12. The trim unit kit of claim 7, wherein the first and second back plate portions are attachable to said wall between two longitudinally extending boundaries of other building structure.

13. A method for installing a longitudinally extending trim piece having a front face, a back face, a lateral width (h) and opposite first and second longitudinal sides having respective first and second longitudinal slots defined at depths d_1 and d_2 onto a wall, the method comprising:

 - providing first and second back plate portions each having at least one set of fastening apertures and first and second longitudinal sides, respectively;
 - affixing said first and second portions of said back plate to a wall such that said first and second longitudinal sides are separated from one another by a distance slightly larger than the lateral width (h);
 - manually inserting a first angulated leg located at said first longitudinal side of said first back plate portion into the first longitudinal slot of the bracket; and
 - angularly rotating the trim piece toward the bracket, said longitudinally extending first front portion providing a longitudinal pivot so a portion of the back face of the trim piece slides over while deflecting a second angulated leg located at said second longitudinal side of said second back plate portion until said second angulated leg engages the second slot on the trim piece.

14. The method of claim 13, wherein said first and second back plate portions are provided as first and second back plates.

15. The method of claim 13, wherein said first and second back plate portions are provided as a unitary adjustable bracket joined at a longitudinal axis defined intermediate said first and second longitudinal sides, and said method further comprises detaching said first back plate portion of said bracket from said second back plate portion before said affixing step along a separation line intermediate first and second sets of fastening apertures and coaxial with said longitudinal axis.

16. The method of claim 13, wherein a first front leg projecting transversely a distance generally equal to or greater than d_1 at said first longitudinal side of said back plate, said first portion is inserted into the first longitudinal slot of the trim piece and the first front leg pivots as the trim piece is pushed toward the bracket until a second front leg projecting transversely at a distance generally equal to or greater than d_2 at said second longitudinal side of said back plate second portion is received in said second longitudinal slot.

17. The method of claim 13, wherein the first and second back plate portions are provided as a unitary structure, and said first back plate is detached from said second back plate along a separation line before affixing said first and second back plate portions to said wall.

* * * * *