0O 02/084485 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 October 2002 (24.10.2002)

PCT

(10) International Publication Number

WO 02/084485 A2

(51) International Patent Classification’: GOG6F 9/45

(21) International Application Number: PCT/US02/11564

(22) International Filing Date: 11 April 2002 (11.04.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/834,770 13 April 2001 (13.04.2001) US

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901
San Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventors: KOSCHE, Nicolai; 725 Fell Street #9, San
Francisco, CA 94117 (US). DOUGLAS, Walls; 1009
Lassen Dr., Belmont, CA 94002 (US). PAGAN, David;
655 Hilltop Dr. #88, Redding, CA 96003 (US).

(74) Agent: PARK, Richard; 508 2nd Street, Suite 201, Davis,
CA 95616 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee METHOD AND APPARATUS FOR DETECTING VIOLATIONS OF TYPE RULES IN A COMPUTER PROGRAM

RECEIVE PROGRAMS
602

LOCATE TYPE
CASTING OPERATION
WITHIN PROGRAM
INVOLVING POINTERS
604

FORALL
TYPE CASTING

OPERATIONS BoTh

STRUCTUR!
POINTERS?

LESS THAN
STRICT.

NG

YES
STRICT
OR HIGHER

YES
STRUCT AND
FROM SCALAR?,

GENERATE
ERROR
610

SAME ALIASN\ NO
GROUP?
608

T0 ERROR

SCALARTO | _

STRUCT
618

CHAR \NO|
EXCEPT?
614

NO YES

WARN
VOID TO
STRUCT

610

o !

FROM "\ YES
voiD?
620

(57) Abstract: One embodiment of the present invention provides a system that detects violations of type rules in a computer pro-
gram. The system operates by locating a type casting operation within the computer program, wherein the type casting operation
involves a first pointer and a second pointer. The system then checks the type casting operation for a violation of a type rule. If a
violation is detected, the system indicates the violation. In one embodiment of the present invention, if the first pointer is defined to
be a structure pointer and the second pointer is not defined to be a structure pointer, the system indicates a violation of a type rule.
In one embodiment of the present invention, if the first pointer is defined to point to a first structure type and the second pointer
is defined to point to a second structure type, the system determines whether the first structure type and the second structure type
belong to the same alias group. If not, the system generates an error to indicate a type violation.

WO 02/084485 PCT/US02/11564

10

15

20

25

30

METHOD AND APPARATUS FOR DETECTING
VIOLATIONS OF TYPE RULES IN A COMPUTER
PROGRAM

Inventors: Nicolai Kosche, Douglas E. Walls and David. D. Pagan

BACKGROUND

Field of the Invention

The present invention relates to the process of developing and debugging
software for computer systems. More specifically, the present invention relates to a

method and an apparatus for detecting violations of type rules in a computer program.

Related Art

Compilers perform many optimizations during the process of translating
computer programs from human-readable source code form into machine-readable
executable code form. Some of these optimizations improve the performance of a
computer program by reorganizing instructions within the computer program so that
the instructions execute more efficiently. For example, it is often advantageous to
initiate a read operation in advance of where the data returned by the read operation is
used in the program so that other instructions can be executed while the read
operation is taking place.

Unfortunately, the problem of “aliasing” greatly restricts the freedom of a
compiler to reorganize instructions to improve the performance of a computer
program. The problem of aliasing arises when two memory references can potentially

access the same location i memory. If this is the case, one of the memory references

WO 02/084485 PCT/US02/11564

10

15

20

25

30

2
must be completed before the other memory reference takes place in order to ensure

that the program executes correctly. For example, an instruction that writes a new
value into a memory location cannot be moved so that it occurs before a preceding
instruction that reads from the memory location without changing the value that is
read from the memory. location.

The problem of aliasing is particularly acute for programs that make extensive
use of memory references through pointers, becauée pointers can be easily modified
during program execution to point to other memory locations. Hence, an optimizer
must typically assume that a pointer can reference any memory location. This
assumption greatly limits the performance improvements that can the achieved by a
code optimizer.

One solution to this problem is to use a strongly typed computer programming
language, such as Pascal, that restricts the way in which pointers can be manipulated.
For example, in a strongly typed language, a pointer to a floating point number cannot
be modified to point to an integer. Hence, an optimizer is able to assume that pointers
to floating pointer numbers cannot be modified to point to integers, and vice versa.
The drawback of using strongly typed languages is that strong type restrictions can
greatly reduce the freedom of the programmer. .

An alternative solution is to construct a code optimizer that detects all of the
aliasing conditions that can arise during program execution. Unfortunately, the task
of detecting all of the aliasing conditions that can potentially arise is computationally
intractable and/or undecidable for all but the most trivial computer programs.

Another solution is to use programming standards. The C programming
language standard imposes type-based restrictions on the way pointers may be used in
standard-conforming programs. Unfortunately, these programming standards are
flagrantly ignored in programs of enormous economic importance, such as major
database applications. Consequently, compilers do not use the restrictions imposed
by programming standards to achieve better performance.

The process of determining whether two memory references alias is known as

alias “disambiguation.” Note that alias disambiguation is typically performed through

WO 02/084485 PCT/US02/11564

10

15

20

25

30

3
inter-procedural pointer analysis, which is intractable in both space and time for large

commercial applications.
What is needed is a method and an apparatus that makes validation of type-

based restrictions tractable for large commercial applications.

SUMMARY

One embodiment of the present invention provides a system that detects
violations of type rules in a computer program. The system operates by locating a
type casting operation within the computer program, wherein the type casting
operation involves a first pointer and a second pointer. The system then checks the
type casting operation for a violation of a type rule. If a violation is detected, the
system indicates the violation.

In one embodiment of the present invention, if the first pointer is defined to be
a structure pointer and the second pointer is not defined to be a structure pointer, the
system indicates a violation of a type rule.

In one embodiment of the present invention, if the first pointer is a structure
pointer and the second pointer is a void or char pointer, the system indicates the
violation of the type rule by generating a warning to warn a programmer of a potential
type violation. On the other hand, if the second pointer is a pointer to a scalar, the
system generates an error to indicate a type violation to the programmer.

In one embodiment of the present invention, if the first pointer is defined to
point to a first structure type and the second pointer is defined to point to a second
structure type, the system determines whether the first structure type and the second
structure type belong to the same alias group. If not, the system generates an error to
indicate a type violation. In a variation on this embodiment, if the system is operating
at a strict alias level or higher, and the first and second pointers are not explicitly
aliased, the system generates an error to indicate a type violation.

In a variation in this embodiment, the system determines whether the first
structure type and the second structure type belong to the same alias group by keeping

track of special program statements that link structure types into alias groups. The

WO 02/084485 PCT/US02/11564

10

15

20

25

4
system then determines that the first structure type and the second structure type

belong to the same alias group if the first structure type and the second structure type
are the same structure type, or if one or more special procedures (such as program
instructions or compilation command line options) link the first structure type and the
second structure type into the same alias group. In a variation in this variation, the
system additionally determines that the first structure type and the second structure
type belong to the same alias group if the first structure type and the second structure
type have all the same basic types in. the same order.

In one embodiment of the present invention, the computer program is received
in source code form, and the system parses the computer program into an intermediate
form prior to locating the type casting operation.

In one embodiment of the present invention, the system is configured to
receive an identifier for a set of constraints on memory references that a programmer
has adhered to in writing the computer program. The system uses the identifier to
select a type casting rule from a set of type casting rules, wherein the selected type
casting rule is associated with the set of constraints, and wherein each type casting
rule is associated with a different set of constraints on memory references.

In one embodiment of the present invention, the system is part of a compiler.

In one embodiment of the present invention, the system is part of an error

checking application, which is not part of a compiler.

BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 illustrates a computer system in accordance with an embodiment of the
present invention.
FIG. 2 illustrates how a filter program is used in accordance with an
embodiment of the present invention.
FIG. 3 illustrates the internal structure of a filter program in accordance with

an embodiment of the present invention.

WO 02/084485 PCT/US02/11564

10

15

20

25

30

5
FIG. 4 illustrates how constraints are used to select a type casting rule in

accordance with an embodiment of the present invention.

FIG. 5 illustrates how special aliasing statements are identified and processed
in accordance with an embodiment of the present invention.

FIG. 6 is a flow chart illustrating the process of validating type casting

operations in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art
to make and use the invention, and is provided in the context of a particular
application and its requirements. Various modifications to the disclosed embodiments
will be readily apparent to those skilled in the art, and the general principles defined
herein may be applied to other embodiments and applications without departing from
the spirit and scope of the present invention. Thus, the present invention is not
intended to be limited to the embodiments shown, but is to be accorded the widest
scope consistent with the principles and features disclosed herein.

The data structures and code described in this detailed description are typically
stored on a computer readable storage medium, which may be any device or medium
that can store code and/or data for use by a computer system. This includes, but is not
limited to, magnetic and optical storage devices such as disk drives, magnetic tape,
CDs (compact discs) and DVDs (digital versatile discs or digital video discs), and
computer instruction signals embodied in a transmission medium (with or without a
carrier wave upon which the signals are modulated). For example, the transmission

medium may include a communications network, such as the Internet.

Computer System
FIG. 1 illustrates a computer system 100 in accordance with an embodiment of

the present invention. Computer system 100 includes central processing unit (CPU)
102, bridge 104, memory 106, disk controller 112 and disk 114. CPU 102 can include

any type of computational circuitry, including, but not limited to, a microprocessor, a

WO 02/084485 PCT/US02/11564

10

15

20

25

30

6
mainframe computer, a digital signal processor, a personal organizer, a device

controller and a computational device within an appliance.

CPU 102 is coupled to memory 106 through bridge 104. Bridge 104 can
include any type of circuitry for coupling CPU 102 with other components in
computer system 100. Memory 106 can include any type of random access memory
that can be used to store code and data for CPU 102.

CPU 102 is coupled to disk 114 through disk controller 112, bridge 104 and
I/O bus 110. I/O bus 110 can include any type of communication channel for
coupling I/0O devices with computer system 100. Disk controller 112 can include any
type of circuitry for controlling the actions of storage devices, such as disk 114. Disk
114 can include any type of non-volatile storage for computer system 100. This
includes, but is not limited to, magnetic storage, flash memory, ROM, EPROM,
EEPROM, and battery-backed-up RAM.

Memory 106 contains a filter program 108, such as the “lint(1)” UNIX
operating system utility, that has been augmented to check type cast operations in
accordance with an embodiment of the present invention. Note that filter program
108 is generally used to detect bugs and irregularities in a program.

Also note that the present invention can generally be used within any type of

computing system, and is not limited to the computing system illustrated in FIG. 1.

Filter Program
FIG. 2 illustrates how a filter program 108 is used in accordance with an

embodiment of the present invention. Filter program 108 analyzes source code 202 to
produce warnings and/or errors 206, which indicate potential bugs and irregularities in
source code 202. This allows a programmer to correct the potential bugs and
irregularities. After these corrections are made, the programmer processes source
code through compiler 208, which converts source code 202 into machine-readable
object code 210 for execution on CPU 102. Note that filter program 108 has been
augmented to additionally validate type casting operations, to ensure that type casting

operations within source code 202 conform to one or more rules specifying legal type

WO 02/084485 PCT/US02/11564

10

15

20

25

casting operations.

In another embodiment of the present invention, the functions of filter
program 108 are embedded within compiler 208, instead of residing in a separate
filter program 108.

FIG. 3 illustrates the internal structure of filter program 108 in accordance
with an embodiment of the present invention. Source code 202 is first processed
through a parser 302 to produce intermediate form 304. This intermediate form 304 is
processed through a first pass 306. First pass 306 generally checks assignment
operations, arguments and expressions as in a normal lint program. First pass 306 has
been additionally augmented to check type casting operations against a set of rules for
type casting operation in accordance with an embodiment of the present invention.
The output of first pass 306 is processed through a second pass 308, which performs
global analysis on the program.

Note that first pass 306 and second pass 308 can generate errors and warnings
310 if any poténtial bugs and irregularities are detected. This allows the programmer

to make corrections to source code 202.

Selection of Type Casting Rules
FIG. 4 illustrates how constraints are used to select a type casting rule in

accordance with an embodiment of the present invention. The system first receives an
identifier for a set of constraints on memory references that the programmer has
adhered to (step 402). This identifier can be received as a command line argument
during the compilation process, or can be received through explicit commands (or
pragmas) within the code.

This identifier is used to select a type casting rule (or set of type casting rules)
to apply (step 404), and this type casting rule is subsequently used to detect

problematic type casting operations.

WO 02/084485 PCT/US02/11564

10

15

20

25

30

Locating Aliasing Statements

FIG. 5 illustrates how special aliasing statements are identified and processed
in accordance with an embodiment of the present invention. The system first locates
a special program statement that expressly aliases two structures (step 502). For
example, the statement, “#pragma alias(struct foo, struct bar)” indicates that the
structure “foo” should alias with the structure “bar.” Next, the system adds the
located alias to a linked list containing pragmas that apply to structures (step 504).
This enables type casting operations to be checked against the aliases in the linked
list.

Note that the process illustrated in FIG. 5 takes place during first pass 306, at
the same time that the type cast operations are being validated. Hence, the linked list
will only contain aliases that have been encountered so far during the first pass.
Therefore, subsequent aliases will not apply to preceding type casting operations. It is
consequently advantageous to define aliases in a global header file to ensure that they

apply to all type cast statements in the code.

Validating Type Casting Operations

FIG. 6 is a flow chart illustrating the process of validating type casting
operations in accordance with an embodiment of the present invention. Note that this
flow chart covers type cast checking for both the “weak” and the “strict” cases that
are described in more detail in a related patent application by inventors Nicolai
Kosche, Milton E. Barber, Peter C. Damron, Douglas Walls and Sidney J. Hummert
filed on April 15, 2000 entitled, “Disambiguating Memory References Based Upon
User-Specified Programming Constraints,” having serial number 09/549,806
(Attorney Docket No. SUN-P4340-JTF). This related application is hereby
incorporated by reference in order to provide additional details of the “weak” and
“strict” cases.

The system first receives the program in parsed form (step 602). Next, the
system locates type casting operations within the program that involve pointers

(step 604). Note that these type casting operations can occur at a number of locations,

WO 02/084485 PCT/US02/11564

10

15

20

25

30

35

9
such as within assignment operations, within function calls and within expressions.

For example, if there are two structures “foo” and “bar” defined, with associated
pointers “fp” and “bp,” a cast can be made between pointers and the structures as

follows.

struct foo {
int f1;
int £2;

} *ip;

struct bar {
intbl;
short b2;
short b3;

} *bp;
fp = (struct foo*) bp;

Next, the system determines if both pointers, fp and bp, involved in the type
casting operation are structure pointers (step 606). If so, and if the type casting rule is
associated a rule that is less than strict, both pointers are assumed to alias, and the
system returns to step 604 (through the dashed line) to validate the next type casting
operation.

If both pointers involved in the type casting operation are structure pointers,
and if the type casting rule is associated with the strict type rule or higher, the system
determines whether they belong to the same alias group (step 608). If not, the system
generates an error (step 610) and returns to step 604. Note that under a strict alias
level, a cast of a struct pointer to a struct pointer requires explicit aliasing,

Otherwise, if they belong to the same alias group, the system takes no action
and returns to step 604 to validate the next type casting operation. Note that the two
pointers belong to the same alias group if, (1) both pointers point to the same type of
structure, (2) both structure types have all the same basic types in the same order, or
(3) if one or more special program instructions link both structure types into the same
alias group. Note that this is not the only way an alias group can be defined. In

general, many other definitions of alias groups can be used.

WO 02/084485 PCT/US02/11564

10

15

20

10
If both pointers involved in the type casting operation are not structure

pointers, the system determines if the “to” pointer is a struct pointer and the “from”

pointer is a scalar pointer (step 612). If not, the system returns to step 604 to validate

~ the next type casting operation.

Otherwise, the system determines if there is a char exception (step 614). If
not, the system generates an error to alert the programmer that there could be a cast of
a scalar pointer to a struct pointer (step 618) before returning to step 604 to process
the next type casting operation.

If there is a char exception, the system determines if the from pointer is a void
pointer (step 620). If not, the system next returns to step 604 to process the next type
casting operation. If so, the system generates a warning indicating that there is a cast
of a void pointer to a struct pointer (step 610) before returning to step 604 to process
the next type casting operation. Otherwise, the system returns to step 604 directly.

Note that casting is not in general a transitive operation. For example, casting
from any structure to a void is typically allowed, whereas casting from a void to other
structures may create problems. Hence, type checking may have to be performed.

The foregoing descriptions of embodiments of the present invention have been
presented for purposes of illustration and description only. They are not intended to
be exhaustive or to limit the present invention to the forms disclosed. Accordingly,
many modifications and variations will be apparent to practitioners skilled in the art.
Additionally, the above disclosure is not intended to limit the present invention. The

scope of the present invention is defined by the appended claims.

WO 02/084485 PCT/US02/11564

10

15

20

25

11
What Is Claimed Is:
1. A method for detecting violations of type rules in a computer program,
comprising:

receiving the computer program;

locating a type casting operation within the computer program, wherein the
type casting operation involves a first pointer and a second pointer;

checking the type casting operation for a violation of a type rule; and

if a violation is detected, indicating the violation.

2. The method of claim 1, wherein checking the type casting operation
involves determining if the first pointer is defined to be a structure pointer and the
second pointer is not defined to be a structure pointer, and if so, indicating a violation
if no char exception applies.

3. The method of claim 2, wherein indicating the violation involves:

generating a warning to warn a programmer of a potential type violation if the
second pointer is a void or char pointer; and

generating an error to indicate a type violation to the programmer if the second

pointer is a pointer to a scalar.

4. The method of claim 1, wherein if the first pointer is defined to point
to a first structure type and the second pointer is defined to point to a second structure
type, the method further comprises:

determining whether the first structure type and the second structure type
belong to the same alias group; and

if the first structure type and the second structure type do not belong to the

same alias group, generating an error to indicate a type violation.

WO 02/084485 PCT/US02/11564

10

15

20

25

12
5. The method of claim 4, wherein determining whether the first structure

type and the second structure type belong to the same alias group involves:

keeping track of special program statements that link structure types into alias
groups;

determining that the first structure type and the second structure type belong to
the same alias group if the first structure type and the second structure type are the
same structure type, or if one or more special procedures link the first structure type

and the second structure type into the same alias group.

6. The method of claim 5, further comprising determining that the first
structure type and the second structure type belong to the same alias group if the first
structure type and the second structure type have all the same basic types in the same

order.

7. The method of claim 1, wherein the computer program is received in
source code form, and wherein the method further comprises parsing the computer

program into an intermediate form prior to locating the type casting operation.

8. The method of claim 1, further comprising:

receiving an identifier for a set of constraints on memory references that a
programmer has adhered to in writing the compﬁter program; and

using the identifier to select a type casting rule from a set of type casting rules,
the selected type casting rule being associated with the set of constraints;

wherein each type casting rule in the set of type casting rules is associated

with a different set of constraints on memory references.

9. The method of claim 1, wherein the method is performed by a

compiler.

WO 02/084485 PCT/US02/11564

10

15

20

25

13
10. The method of claim 1, wherein the method is performed by an error

checking application, which is not part of a compiler.

11. A computer-readable storage medium storing instructions that when
executed by a computer cause the computer to perform a method for detecting
violations of type rules in a computer program, the method comprising:

receiving the computer program;

locating a type casting operation within the computer program, wherein the
type casting operation involves a first pointer and a second pointer;

checking the type casting operation for a violation of a type rule; and

if a violation is detected, indicating the violation.

12. The computer-readable storage medium of claim 11, wherein checking
the type casting operation involves determining if the first pointer is defined to be a
structure pointer and the second pointer is not defined to be a structure pointer, and if

so, indicating a violation if no char exception applies.

13. The computer-readable storage medium of claim 12, wherein
indicating the violation involves:

generating a warning to warn a programmer of a potential type violation if the
second pointer is a void or char pointer; and

genérating an error to indicate a type violation to the programmer if the second

pointer is a pointer to a scalar.

14. The computer-readable storage medium of claim 11, wherein if the
first pointer is defined to point to a first structure type and the second pointer is
defined to point to a second structure type, the method further comprises:

determining whether the first structure type and the second structure type

belong to the same alias group; and

WO 02/084485 PCT/US02/11564

10

15

20

25

14
if the first structure type and the second structure type do not belong to the

same alias group, generating an error to indicate a type violation.

15. The computer-readable storage medium of claim 14, wherein
determining whether the first structure type and the second structure type belong to
the same alias group involves:

keeping track of special program statements that link structure types into alias
groups;

determining that the first structure type and the second structure type belong to
the same alias group if the first structure type and the second structure type are the
same structure type, or if one or more special procedures link the first structure type

and the second structure type into the same alias group.

16. The computer-readable storage medium of claim 15, wherein the
method further comprises determining that the first structure type and the second
structure type belong to the same alias group if the first structure type and the second

structure type have all the same basic types in the same order.

17. The computer-readable storage medium of claim 11, wherein the
computer program is received in source code form, and wherein the method further
comprises parsing the computer program into an intermediate form prior to locating

the type casting operation.

18. The computer-readable storage medium of claim 11, wherein the
method further comprises:

receiving an identifier for a set of constraints on memory references that a
programmer has adhered to in writing the computer program; and

using the identifier to select a type casting rule from a set of type casting rules,

the selected type casting rule being associated with the set of constraints;

WO 02/084485 PCT/US02/11564

10

15

20

25

30

15
wherein each type casting rule in the set of type casting rules is associated

with a different set of constraints on memory references.

19. The computer-readable storage medium of claim 11, wherein the

method is performed by a compiler.

20. The computer-readable storage medium of claim 11, wherein the

method is performed by an error checking application, which is not part of a compiler.

21. An apparatus that detects violations of type rules in a computer
program, comprising:

a receiving mechanism that is configured to receive the computer program;

a locating mechanism that is configured to locate a type casting operation
within the computer program, wherein the type casting operation involves a first
pointer and a second pointer; and

a type rule checking mechanism that is configured check the type casting
operation for a violation of a type rule, and if a violation is detected, to indicate the

violation.

22. The apparatus of claim 1, wherein the type rule checking mechanism is
configured to determine if the first pointer is defined to be a structure pointer and the
second pointer is not defined to be a structure pointer, and if so, to indicate a violation

if no char exception applies.

23. The apparatus of claim 22, wherein the type rule checking mechanism
is configured to:

generate a warning to warn a programmer of a potential type violation if the
second pointer is a void or char pointer; and to

generate an error to indicate a type violation to the programmer if the second

pointer is a pointer to a scalar.

WO 02/084485 PCT/US02/11564

10

15

20

25

30

16

24. The apparatus of claim 21, wherein if the first pointer is defined to
point to a first structure type and the second pointer is defined to point to a second
structure type, the type rule checking mechanism is configured to:

determine whether the first structure type and the second structure type belong
to the same alias group; and to

generate an error to indicate a type violation if the first structure type and the

second structure type do not belong to the same alias group.

25. The apparatus of claim 24, wherein in determining whether the first
structure type and the second structure type belong to the same alias group, the type
rule checking mechanism is configured:

keep track of special program statements that link structure types into alias
groups; and to

determine that the first structure type and the second structure type belong to
the same alias group if the first structure type and the second structure type are the
same structure type, or if one or more special procedures link the first structure type

and the second structure type into the same alias group.

26. The apparatus of claim 25, wherein the type rule checking mechanism
is configured to determine that the first structure type and the second structure type
belong to the same alias group if the first structure type and the second structure type

have all the same basic types in the same order.

27. The apparatus of claim 21,

wherein the receiving mechanism is configured to receive the computer
program in source code form; and '

wherein the apparatus further comprises a parsing mechanism that is
configured to parse the computer program into an intermediate form prior to locating

the type casting operation.

WO 02/084485 PCT/US02/11564

10

15

17

28. The apparatus of claim 21, wherein the receiving mechanism is
configured to receive an identifier for a set of constraints on memory references that a
programmer has adhered to in writing the computer program, and further comprising:

a selection mechanism that is configured to use the identifier to select a type
casting rule from a set of type casting rules, the selected type casting rule being
associated with the set of constraints;

wherein each type casting rule in the set of type casting rules is associated

with a different set of constraints on memory references.

29. The apparatus of claim 21, further comprising a compiler that contains
the receiving mechanism, the locating mechanism and the type rule checking

mechanism.

30. The apparatus of claim 21, further comprising an error checking
application, which is not part of a compiler;
wherein the error checking application contains the receiving mechanism, the

locating mechanism and the type rule checking mechanism.

WO 02/084485 PCT/US02/11564
1/3
COMPUTER
CPU SYSTEM
102 100
BRIDGE
104 MEMORY
1/O BUS 106
110 \
FILTER
PROGRAM
‘ (WITH TYPE
CAST
DISK
CONTROLLER CHECKING)
SOURCE FILTER PROGRAM ERRORS
CODE |L——p! (WITHTYPE CAST |—»/ AND
202 CHECKING) WARNINGS
108 206
TO EXECUTE
OBJECT
COI\SSELLER CODE ON CPU
') ' 102
210
oo FILTER PROGRAM 7777
108
SOURCE | | DARSER INTERMEDIATE FIRST PASS SECOND
> a2 [FORM ! (WITHTYPE | PASS
304 CAST 308
CHECKING)
| 306
SN ISRV S
ERRORS
AND
FIG. 3 » WARNINGS
310

WO 02/084485 PCT/US02/11564
2/3

START
400

RECEIVE IDENTIFIER FOR
CONSTRAINTS ON MEMORY
REFERENCES
402

USE IDENTIFIER TO SELECT
TYPE CASTING RULE TO APPLY
(WEAK, STRICT, ETC.)

404

END
406

FIG. 4

START
500

LOCATE SPECIAL PROGRAM
STATEMENT ALIASING
STRUCTURES
502

FOR ALL
PROGRAM
STATEMENTS

ADD ALIAS TO LIST OF ALIASES
504

FIG. 5

PCT/US02/11564

WO 02/084485

3/3

9 'Old

ﬁ

019
10NY1S
oL aion | 019
JLVHANTD
S3A OIS
=5 NVHL SS3T
10NH1S
OL ¥VIvOS
HOYN3

SNOILYH3dO
ONILSVYOD 3dAL
TIV d04

709

SHALNIOd ONIATOANI

WVHOOHUd NIHLIM | |

NOILVH3dO ONILSYD
ddAl 31vO01

1

¢09
SWVHO0Yd IAIFO3H

009
IR\ ARS)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

