This invention relates to improvements in wrapping machines for newspapers, magazines and similar articles, and more particularly to improvements in machines for rolling newspapers, magazines, and the like into a cylindrical roll and then wrapping such a roll with an outer cover which may enclose the rolled material and/or provide a mailing wrapper, etc.

A number of different rolling and wrapping machines have been designed in the past, but none have resulted in a commercially usable machine. Several major problems are encountered in attempting to provide a machine for rolling and wrapping newspapers, magazines and the like. One major problem in the newspaper field is the variable sizes of each edition of the paper which must be rolled and wrapped. The individual units of each issue, for example one edition of a newspaper, one issue of a magazine, etc., results in a series of such items which are of substantially uniform size. However, the next edition or issue is of the same size only as a matter of coincidence, which is especially true in the newspaper field. Another major problem encountered in a rolling and wrapping system is the gluing of the wrapping paper around the rolled article. Whether the article is a newspaper, magazine, etc., the rolled article is live, in other words, the rolled article has a tendency to unroll and any paper wrapped around it is subjected to considerable stress from the rolled article trying to unroll. In gluing the wrapping around such a rolled article, if too fast a setting glue is used it will dry before the wrapping paper is wrapped around the article and the glue will not stick, and if too long a setting glue is used, the pressure of the rolled article trying to unroll will break the glue bond. There are, of course, other problems which result from rolling and wrapping newspapers, and the like, which have not been satisfactorily solved in the prior art.

According to the present invention I have provided a machine which is arranged to roll various thicknesses of newspaper, magazines, etc., and to wrap the rolled article with a wrapping paper, and to provide holding and working of the wrapped paper to permit the glue holding the wrapping paper to dry or set sufficiently to hold the wrapped article during the drying process. The device of the invention provides grippers which grip the sides of an article to be rolled with a uniform pressure, which is maintained uniform regardless of the thickness of the article being rolled. The mechanism includes a pair of gripping jaws or grippers mounted laterally to an article to be rolled. The grippers are arranged to move from an open position beyond the side edges of the article to a gripping position adjacent the front edge of the article fed into the machine. The grippers squeeze the article with sufficient force to hold it while the jaws are rotated to roll the article into a cylinder. The article is rolled against a pair of baffles or pressure members mounted adjacent to the grippers so as to permit the article to be rolled tightly, and to hold the rolled article as the grippers are removed from the paper. A conveyor belt system is arranged adjacent to the rollers to provide additional pressure against the article being rolled, and to discharge the roll from the grippers on release of the gripping jaws. Immediately following the rolling operation, which, also, includes a paper wrapping operation, the rolled and covered article is held under pressure between the belt conveyor and a stationary pressure plate. The belt conveyor rolls the rolled and wrapped article along the plate which wipes the glue joint of the wrapping forming a tighter seal and maintaining the tightness of roll during the glue setting period.

Included among the objects and advantages of the present invention is to provide a gripping device for gripping an article, consisting of stack of sheets, to be rolled, which grippers apply a uniform pressure on the front edges of an article fed to the machine without regard to the thickness of the article being rolled, and which grippers may be released and withdrawn from the rolled article quickly and effectively. A belt conveyor system is provided in the rolling and wrapping machine in a position to hold an article being processed against a compression plate so as to maintain a tightly rolled article and to provide a positive discharge for the rolled and wrapped article. The conveyor rolls the article against a stationary compression plate which continually wipes the glue joint of the wrapping paper against the plate under pressure during the initial setting of the glue. An efficient and effective feed system for a sheet of wrapping paper is provided which correctly feeds the wrapping paper into the article being rolled and completely wraps a rolled article in which it is frictionally held.

These and other objects and advantages of the invention may be readily ascertained by referring to the following description and appended illustrations, in which:

Figure 1 is a side elevational view of the device of the invention showing the major components of the wrapping machine;

Figure 2 is a cross sectional detail of one form of the gripping jaws according to the invention;

Figure 3 is a front elevational view in enlarged detail showing the positioning of the article gripping jaws in partial cross section;

Figure 4 is an enlarged detail of a modified form of the gripping jaws according to the invention;

Figure 5 is an enlarged detail elevational view of a still further modified gripping jaw according to the invention;

Figure 6 is a side elevational schematic view of the wrapping and rolling components of the device of the invention;

Figure 7 is a front elevational detail of the holding and discharge mechanism according to the invention; and

Figure 8 is a front elevational view of a wrapping paper feed for the wrapping and rolling machine according to the invention.

The general arrangement of the machine as indicated in Figure 1 where a rolling mechanism indicated in general by numeral 1, described in detail below, is arranged adjacent a feed platform 2. The mechanism is mounted on a suitable framework 3 which is arranged to support all of the members. The framework 3, also, provides a support for the drive motors (not shown) and for the bearings of journaling various shafts of the rotating members in position, details of which are not part of the invention. A paper web 4, from a supply roll not shown, passes between guide and pick-up rollers 6, which may be rubber or other resilient materials to provide a means for pulling the web from the roll. After the paper web 4 passes through the rollers 6 it passes between an in-line roller 7 and a cutting roller 8 which includes a cutting blade 9 for partially cutting the paper web into lengths of wrapping sheets for the article being wrapped. The
cutting roller 8 rotates at a speed sufficient to have the cutter engage the paper web at the correct linear length of the desired wrapping sheet. The feed rollers 6 may be arranged for a variable speed, such as changing their drive sprockets, for changing the length of the sheet cut from the web. The knife 9 may be perforated or shorter than the width of the web 4 to leave a few lands so that the web is not completely cut apart but is easily torn to the correct length. With a perforated knife, the partial cutting leaves a series of spaced connecting lands between the desired lengths but there is a sufficient connection between them so that the web will hold together while passing through the machine to the wrapping section. When the machine is in wrapping operation, the web 4 runs intermittently since the rolling and wrapping is intermittent. After one wrapping piece is pulled off the web and is wrapped around a rolled newspaper or magazine, the web must stop until the next article is in position. By having the grip rollers 6 and the cutting rollers 9 as well as the gluing rollers 10 and 12, described below, rotate intermittently the web moved so as to be threaded or otherwise attached to the article being rolled during the passage of the rollers, and when attached the rollers stop so that the pull of that article on the web breaks the lands severing a wrapping sheet from the web. The web, after being initially cut by rollers 8 and 7, passes between a gluing roller set which includes an anvil or backing roller 11. The gluing roller 11 includes a glue pad 12 which rotates and intermittently touches and deposits glue across the web 4. The glue pad 12 is arranged to normally apply glue adjacent to the web cut. The rotation of the roller 11 is preset so that once the gluing pad 12 contacts the gluing roller 13 which rotates in glue in a glue reservoir 14. The glue pad 12 is discontinuous laterally across the roll, and the breaks or voids in the pad correspond with the web guide Rails, described below, leading to the rolling mechanism. After passing through the gluing rollers, the web passes between a series of pull rollers 15 which are narrow rollers spaced to correspond with the guide rails and the glue voids on the web for pulling the web to pass it into the rolling mechanism. The guide rails include an outer rail set 16 and an inner rail set 17 which guide the paper web into position to engage the paper in the rolling mechanism 1. As illustrated in Figure 8, one form of the invention provides for three inner guide rails 17 and two outer members 16. The guides are directed outwardly and then curved into the rolling mechanism which correctly guides the web into position to be grabbed and held by the article being rolled.

One effective form of the article clamp and rolling mechanism is shown in Figure 3. In this illustration, and also the detailed modified grips of Figures 4 and 5, the left hand clamp is shown in the open position while the right hand clamp is shown in the closed position. This particular scheme of illustration is for simplicity in showing the machine and its operation, it must be realized, however, that the clamps coact together, and move from open outward position to inward clamping position on each side of the web. The paper or magazine placed therein. Each clamp includes upper jaw 20 and lower jaw 21 pivotally opposed on a support 22 which is mounted on a piston rod or plunger 23. The rod supports and jaws are mounted in a housing 24 which is journaled in a bearing housing 24a mounted in the framework 3, and connected for rotation therein. A spur gear 25 is interconnected with the housing 24 and arranged to conjointly rotate therewith. The spur gear 25 is meshed with a larger spur gear 26 which rotates the gear 25 and the head 24. The spur gear 26 is mounted on a shaft 27 which is driven by a chain drive 28 mounted on a gear 29. The chain 28 is driven by a drive gear 30 which is interconnected through a clutch mechanism 31. The clutch may be a common mechani
cal or other type clutch, and detailed description of the same is not deemed necessary. A main drive chain 32 drives gear 30 through the clutch 31.

The piston rod 23 is interconnected with a power cylinder 33 through a rotary connecting thrust bearing assembly 34 which permits rotation of the rod 23 while preventing rotation of the piston rod 35 of the cylinder 33. The cylinders 33 may be air or hydraulic cylinders with the fluid lines 36 providing means for activating the cylinder. The cylinders are well known double action cylinders.

The bearing assembly 34 is shown in detail in Figure 2 where a cup shaped housing 40 is interconnected for conjoinment to the shaft 23 by means of a bolt 41. A non-rotating shaft 35 is interconnected to the housing through ball bearing set 44 which permits rotation of the housing on the shaft. The housing provides a thrust joint for reciprocal movement of the shaft 23 on activation of the cylinder 33, and provides for free rotation of the shaft 23 and grip jaws 20 and 21.

The jaws 20 and 21 are pivoted on pivots 46 and 47, respectively, and are held outwardly by means of a spring 48. The spring 48 is mounted to permit the jaws to move together as they extend outwardly. The upper jaw 20 includes a cam surface 51 which bears on a cam rider or follower 52, which is preferably a roller, while the jaw 21 has a cam surface 53 which rides against a cam follower 54. As the rod 23 advances towards the jaws, the jaws are pushed toward each other and the cam surfaces riding against the followers close the jaws. On withdrawing the rod 23 the springs put the jaws open. The gripping pressure of the jaws on an article is predetermined by adjusting the length of the inward travel of the jaws, or by controlling the fluid pressure to the cylinder. In the first instance the closing of the jaws is stopped at a predetermined distance apart, and in the second instance the distance of travel of the plunger is predetermined by the pressure available to operate the cylinder. When the gripping pressure on a hold article is equivalent to the pressure in the cylinder, further movement and grip of the jaws is prevented.

A tension plate 49 is mounted on a support 49a which is secured to the frame 3 in a position adjacent to and spaced from the two grip jaws. The tension plate 49 secured to the support 49b by means of screws 49b providing an adjustable plate which may be centered in the space between the jaws. A microswitch 50 is interconnected to the tension plate 49 and is mounted on the tension plate 49 and is interconnected to the two fluid motors 33 for activating the same when a paper is moved into position to actuate the switch. A switch tongue 50a protrudes through the tension plate 49 and is contacted by an incoming paper or magazine to trip the switch. The tension plate 49 is positioned to prevent further inward travel of an article into the machine, and to provide a trip for the microswitch so that the grippers may move in and grip the sides of a paper or magazine. Normally the grippers grip the paper or magazine at a point about a half inch or so from its folded, leading edge which permits the article to be tightly rolled. The microswitch 50 is interconnected with a solenoid actuator 55, the circuit diagram not being described in detail as it is a commonly used system, which controls the supply of activating fluid passing through connector block 56. The activating fluid is introduced into the solenoid valve through inlet 57 and ultimately through the connector block 56 to the various cylinder connections. The lines 36 are connected to the block 56 so that fluid may be distributed to either side of the cylinders as desired. Power for the solenoid is provided by a wiring conduit 58. Such systems are common in the art and further detailed description is believed unnecessary.

Each of the rollers of the wrapping web system is mounted on a shaft normally journaled in the frame 3, details of which are not deemed necessary since such mounting is common practice, and each roller of the sys
tem is normally activated by a gear mounted on the shaft. A chain is preferably used to provide the proper rotation for the various rollers and in the correct sequence. A power takeoff gear 60, illustrated in Figure 3, provides a convenient means for rotating the rollers. Any known system of rotating the rollers in their correct sequence may be utilized, however, the chain drive system is a simplified, easily maintained system. By interconnecting the wrapping web roller system to the drive of the rotating mechanism of the gripper jaws, intermittent operation corresponding to the operation of the jaws is obtained. By correctly spacing the rollers and the cutters and controlling the speed of rotation of the rollers, the web may be moved into the paper or magazine being rolled at the proper time to be caught and wrapped completely therearound.

The operation of the clutch 31 is controlled by a microswitch 61 mounted adjacent the right hand cylinder, having a tongue 62 which is tripped by a lobe 63 mounted on the thrust bearing housing 34. As the jaws move inwardly to grip the paper, the lobe 63 trips the tongue 62 activating the microswitch which energizes the clutch 31 so as to rotate the housing 24 rolling the paper or magazine with the accompanying wrapping web. The clutch 31 may be any common type of throw clutch which on activation of the main shaft one complete revolution, then automatically deactivating itself and stopping the rotation of the main shaft 27. The gearing 26 and 25 is arranged with a four to one ratio so that the housing 24 is rotated four times for one revolution of the main shaft 27. By having the grippers hold the paper away from the leading edge, four revolutions completely roll the paper into a tight cylinder. The gearing between the clutch and the gear 29 is a one to one ratio so that the main shaft 27 is rotated one revolution for each revolution of the clutch. These ratios may, of course, be changed to fit the particular operation.

A microswitch 64 is mounted on the frame 3 adjacent to shaft 27, and a cam follower 65 mounted on the main shaft 27 trips the switch on each revolution of shaft 27. The switch 64 is connected to the solenoid 55 providing means for deactivating the solenoid 55, releasing the power spring from the cylinders, withdrawing the shaft 27 and opening the jaws 20 and 21. The microswitch tongue 50a and the cylinders 51 activated pushing the rod 23 inwardly and the jaws 20 and 21 clamp down on the newspaper along the two side edges. As the rod 23 moves inwardly the lobe 63 trips the microswitch tongue 62 activating the clutch 31 starting rotation of shaft 27. The lobe 63 is located in a position to trip the tongue when the jaws have substantially reached their maximum inward movement. The activated clutch permits rotation of the main shaft 27 one complete revolution while through gearing the housings 24 are rotated four times, rolling the newspaper into a cylinder. On the initial rotation of the main shaft, the wrapping paper system is actuated and the web is moved forward so that the end of the web 4 is pushed into the bight of the rolling paper at the end of one complete revolution thereof. The end of the wrapping paper web is picked up by paper being rolled and is pulled downwardly and wraps with the paper for remaining three revolutions. The increasing circumference of the rolled paper, obviously, increases the speed of travel of the web. Since the web is retained by the web supporting system, the increase in speed ruptures the perforation line and the severed wrapping covers the rolled article. Since the wrapping paper is glued along the cut end 40 and the sheet of wrapping paper is made sufficiently long to completely wrap around the wrapped article, the wrapping paper is sealed on wrapping paper and around the rolled material. While the paper is being rolled, it is held between the pressure bar 74 and the conveyor belts 73. At the end of the revolution of the main shaft 27, the microswitch 64 is tripped by cam 65 releasing the fluid motors and withdrawing the jaws to release the rolled and wrapped newspaper. The conveyor belts 73, which are rotating, pick up the released paper and roll it under the pressure plate 75 maintaining the paper rolled and wiping the glue joint to assure sealing thereof. As the paper rolls out from under the plate 75 it is carried on by the conveyor 73 to a receiver for further distribution.

The housing 24 for the jaws 20 and 21 may be moved inwardly and outwardly by any known means, and one modified form, illustrated in Figure 4, a pair of electric solenoids 65 are used as a motivating power. The solenoids move the rods 23 in the housing 24 inwardly and outwardly to operate the jaws 20 and 21. The system is substantially the same as that described for the fluid motor system except that electric solenoid motors provide the motivation of the grippers. Normally, the solenoid motors are spring-loaded so that on immersion of electric current to the solenoid, the rods are forced outwardly under the spring load opening the jaws and releasing the rolled material. The operation of the mechanism is the
same in this case as with the fluid motors; an electrical switch, not shown, being provided for activating the solenoid 85 instead of the solenoid valve 55 for actuating the hydraulic motors.

The jaws 22, 23, 29, and 41 may, also, be moved inwardly and outwardly by a mechanical movement, operated by a cam system interconnected to the main shaft. Such a system is illustrated in Figure 5 in which a cylindrical cam 90 is mounted on each end of a shaft 91. The shaft 91 is driven by a clutch and chain drive arrangement, not shown, but it is similar to the clutch illustrated in Figure 3. The clutch on the shaft 91 is interconnected with the microswitch 80 so that a paper trips the tongue 80 the clutch engages rotating the shaft 91 and offers 90. A cam follower 92 riding in a cam groove 93 moves the housing inwardly and outwardly by means of a connecting arm 94. Again in this case the left hand jaw system is shown open with the cam follower in the low position in the groove 93, while the right hand side is shown in the closed position with the cam follower 92 in the outermost position in the groove 93 pushing the jaws inwardly and closing the same.

A pin 95 on connecting arm 94 trips a tongue 96 on a microswitch 97 on inward movement which activates the clutch 31 for rotating the main shaft 27. The main shaft 27 rotates to turn the housing 24 to roll the article held in the jaws. The cam 29 is arranged to hold the jaws inwardly for the four revolutions thereof so as to roll the paper, and then to withdraw the jaws. This is accomplished on a single revolution of the cam and simultaneously rotating the jaws four complete revolutions. The arm 94 is interconnected to a clevis 98 in which the rod 23 is rotatably mounted. The rod 23 is spring-loaded in the clevis by means of a spring 99 which prevents a direct connection between the arm 94 and the jaws and permits a certain amount of give so that if the jaws have reached the desired maximum pinching pressure they will not be forced further together as by a direct connection. In this manner a uniform grip can be provided regardless of variation of thicknesses of material being rolled.

A dowel pin 95 is mounted on arm 94 and is arranged to trip a microswitch tongue 96 which is interconnected with a microswitch 97 which activates the clutch 31 for rotating the main shaft 27. The microswitch 29, also, includes a microswitch 64 with a trip 65 for deactivating the clutch and preventing further rotation after the single complete rotation thereof.

In each case, whether the grippers are activated by fluid motors, mechanical or otherwise, the belt conveyor adjacent the jaws and the pressure arm, or a similar pressure mechanism, holds the rolled paper or magazine during rolling and permits a tight roll. Also, the belt conveyor and the pressure arms hold the rolled and wrapped article so as to provide a positive holding mechanism to permit the withdrawal of both of the gripping jaws.

While the invention has been illustrated with reference to specific embodiments, there is no intent to limit the scope or spirit of the invention to the precise details so set forth, except as shown in the following claims.

1. A rolling and wrapping machine for newspapers and the like comprising a pair of opposed cam operated grippers arranged to move from an open to a closed position on opposed sides of an article to be rolled and adjusted one end thereof, means for rotating said grippers from open outer to closed inner position, means for preselecting the gripping pressure of said grippers on a held object, means for rotating said grippers after closing the same so as to roll a held article into a cylinder, upper holding means arranged to bear against an article being rolled, a lower conveyor arranged to bear against an article being rolled, said conveyor extending beyond said grippers and arranged to remove a rolled article from the grippers after it is released therefrom, a plate arranged adjacent said conveyor in position to squeeze a rolled article thereof, said conveyor arranged to move a rolled article from said grippers to and under said plate, and means for feeding wrapping paper into an article being rolled so as to encompass the same.

2. A rolling and wrapping machine according to claim 1 in which said means for moving said grippers includes a fluid motor interconnected with each said plunger for reciprocally moving said grippers.

3. A rolling and wrapping machine according to claim 1 in which the means for feeding wrapping paper includes a chute for guiding a web of wrapping paper, and means for activating said means for feeding wrapping paper to insert the leading edge of the web into the article being rolled after one complete revolution of the grippers.

4. A rolling and wrapping machine for newspapers and the like comprising a pair of opposed cam operated grippers arranged to move from an open to a closed position on opposed sides of an article to be wrapped and adjacent one edge thereof, means inclusive of a plunger for moving said grippers from open to closed position, means inclusive of means for limiting plunger travel for preselecting the gripping pressure of said grippers on a held object, a lower conveyor extending substantially across the width of the article being rolled and arranged to bear against the same and as it is being rolled, said conveyor belt extending in both directions horizontally beyond said grippers and arranged to remove a rolled article from the grippers after it is released therefrom, a plate arranged above and adjacent said belt conveyor in position to squeeze a rolled article therebetween, and means for feeding wrapping paper into an article being rolled so as to encompass the same.

5. A rolling and wrapping machine for newspapers and the like the improvement which comprises a pair of opposed grippers arranged to ride on an article to be rolled and adjacent one edge thereof, each gripper including coating upper and lower jaws, means for reciprocally moving said coating jaws along said followers whereby inward movement of the coating jaws along said followers closes said jaws, means for reciprocally moving said plunger means, means for opening said jaws on outward movement thereof, and means inclusive of means for limiting plunger travel and interconnected said means for reciprocally moving said plunger means and said plunger means for maintaining a predetermined force on said plunger means so as to provide a uniform gripping on an article being held at the particular width of jaw opening on the article.

6. In a rolling and wrapping machine for newspapers and the like the improvement which comprises a pair of opposed grippers arranged to grip an article to be rolled on opposite sides and adjacent an edge thereof, each gripper including coating upper and lower jaws, means for reciprocally moving said coating jaws along said followers whereby inward movement of the coating jaws along said followers closes said jaws, means for reciprocally moving said plunger means, means for opening said jaws on outward move-
ment thereof, and means inclusive of means for limiting plunger travel and interconnecting said means for reciprocably moving said plunger means and said plunger means for maintaining a predetermined force on said plunger means in closed position so as to provide a uniform gripping on an article being held at the particular width of jaw opening on the article.

7. A device according to claim 6 in which the means for maintaining a predetermined force on said plunger means is a fluid motor constructed and arranged to reciprocally move said plunger means under a predetermined force.

8. A device according to claim 6 in which the means for moving said plunger means includes a solenoid for reciprocally moving the same.

10. A device according to claim 6 in which the plunger means includes a cam and follower arm for moving said plunger and a spring-loaded connection between said plunger means and said follower arm arranged to limit maximum gripping force of the grippers to that exerted by said spring-loaded connection.

11. In a rolling and wrapping machine for newspapers and the like which includes a pair of opposed grippers for gripping and then rolling such an article into a cylinder, the improvement which comprises upper holding means inclusive of a bar and extending arms therefrom arranged to engage and bear downwardly against an article being rolled, and to bear against and hold the rolled article against lateral movement during disengagement of the grippers.

12. In a rolling and wrapping machine for newspapers and the like which includes a pair of opposed grippers for gripping and then rolling such an article into a cylinder, the improvement which comprises upper holding means inclusive of a mount having a pair of extending arms each mounted in position adjacent each end of an article being rolled and arranged to bear downwardly against each end thereof, and to bear against and hold the rolled article against lateral movement during disengagement of the grippers.

13. In a device according to claim 12, in which the upper holding means includes a pivoted extending arm mounted adjacent each end of the rolled article and each arranged to rest its free end on a rolled article.

14. In a rolling and wrapping machine for newspapers and the like which includes a pair of opposed grippers for gripping and then rolling such an article into a cylinder, the improvement which comprises a belt conveyor positioned below and adjacent the grippers and extending in both directions substantially horizontally therefrom, said belt conveyor being arranged for continuous operation during rolling and to bear against an article being rolled by the grippers, a plate arranged above the rearward stretch of said belt conveyor in position to squeeze a rolled article therebetween, and means for operating said belt conveyor so as to discharge rolled articles released from the grippers rearwardly toward and under said plate.

15. In a rolling and wrapping machine for newspapers and the like which includes a pair of opposed grippers for gripping and then rolling such an article into a cylinder, the improvement which comprises a multiple strand belt conveyor positioned below and adjacent the grippers and extending in both directions substantially horizontally therefrom, said belt conveyor being arranged for continuous operation during rolling and to bear substantially across the width an article being rolled by the grippers, a plate arranged above the rearward stretch of said belt conveyor in position to squeeze a rolled article therebetween, and means for operating said belt conveyor so as to discharge rolled articles released from the grippers rearwardly toward and under said plate.

16. In a rolling and wrapping machine for newspapers and the like which includes a pair of opposed grippers for gripping and then rolling such an article into a cylinder, the improvement which comprises means for passing a web of wrapping paper through cutters and gluing rollers so as to partially cut the web into predetermined lengths of wrapping paper and to glue the trailing edge thereof, and a feed chute for said web extending from a point adjacent to and above the opposed grippers outwardly away and then inwardly toward said grippers at a point below a vertical axis through the grippers and having its discharge opening in position to feed the web paper into the bight of a partially rolled article with the end of the wrapping paper directed axially of the partially rolled article, whereby further rolling of the partially rolled article grips the wrapping paper and rolls it with and around the article.

17. In a rolling and wrapping machine for newspapers and the like which includes a pair of opposed grippers for gripping and then rolling such an article into a cylinder, the improvement which comprises means for passing a web of wrapping paper through cutters and gluing rollers so as to partially cut the web laterally to form predetermined lengths of wrapping paper and to glue the trailing edge thereof, and a feed chute for said web extending from a point adjacent to and above the opposed grippers outwardly away and away therefrom and then curved inwardly toward said gripper and having its discharge opening in position to feed the web paper into the bight in a lower portion of an upper quadrant of a partially rolled article with the end of the wrapping paper directed axially of the partially rolled article, whereby further rolling of the partially rolled article, grips the wrapping paper, and the increasing diameter of the rolled article increases tension on said web, tears it from the web and rolls it with and around the article.

References Cited in the file of this patent

UNITED STATES PATENTS
486,090 Crowell Nov. 15, 1892
529,848 Bartholomew Nov. 27, 1894
593,959 Clark Nov. 16, 1897
1,079,012 Kempf Nov. 18, 1913
1,166,737 Baird Jan. 4, 1916
1,882,695 Aldrich Oct. 18, 1932
2,213,100 Spievak Aug. 27, 1940
2,434,617 Hoppe Jan. 13, 1948

FOREIGN PATENTS
153,740 Australia Oct. 21, 1953