Office de la Propriete Canadian CA 2664041 A1 2008/05/29

Intellectuelle Intellectual Property
du Canada Office (21) 2 664 041
S-FnZL%?QéSQZna " mfgt?yn%yaﬁ; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1
(86) Date de depot PCT/PCT Filing Date: 2007/11/17 (51) ClLInt./Int.Cl. GO6F 9/06 (2006.01)

(87) Date publication PCT/PCT Publication Date: 2008/05/29 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2009/03/19 MICROSOFT CORPORATION, US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2007/085035 ZHANG. LINGLI US

(87) N° publication PCT/PCT Publication No.: 2008/064139 GROVER, VINOD K., US:

(30) Priorité/Priority: 2006/11/17 (US11/601,541) MAGRUDER, MICHAEL M., US;
DETLEFS, DAVID, US:;

DUFFY, JOHN JOSEPH, US;
GRAEFE, GOETZ, US

(74) Agent: SMART & BIGGAR

(54) Titre : ORDRE DE VALIDATION DE TRANSACTIONS BASEES SUR UN LOGICIEL ET GESTION DE CONFLITS
54) Title: SOFTWARE TRANSACTION COMMIT ORDER AND CONFLICT MANAGEMENT

SOF TWARE TRANSACTIONAL MEMORY APPLICATION

200
PROGRAM LOGIC

204
LOGIC FOR PROVIDING A SOFTWARE TRANSACTIONAL MEMORY (STM) SYSTEM 206

LOGIC FOR PROVIDING A COMMIT ARBITRATOR THAT ALLOWS A PRE-DETERMINED COMMIT ORDER TQ BE
SPECIFIED (STATICALLY OR DYNAMICALLY) FOR A PLURALITY OF TRANSACTIONS IN THE STM SYSTEM 208

LOGIC FOR ALLOWING THE COMMIT ARBITRATOR TO USE THE PRE-DETERMINED COMMIT ORDER AT
RUNTIME TO AID IN DETERMINING AN ORDER IN WHICH TO COMMIT THE PLURALITY OF TRANSACTIONS IN
THE SOFTWARE TRANSACTIONAL MEMORY SYSTEM 210

LOGIC FOR PROVIDING A CONTENTION MANAGEMENT PROCESS THAT IS INVOKED WHEN A CONFLICT
OCCURS BETWEEN A FIRST TRANSACTION AND A SECOND TRANSACTION 212

LOGIC FOR USING THE PRE-DETERMINED COMMIT ORDER IN THE CONTENTION MANAGEMENT PROCESS
TOQAID IN DETERMINING WHETHER THE FIRST TRANSACTION OR THE SECOND TRANSACTION SHOULD WIN
THE CONFLICT AND BE ALLOWED TO PROCEED (E.G. DEPENDING ON WHICH ONE HAS THE LOWER COMMIT

ORDER NUMBER OF TWO TRANSACTIONS IN THE SAME TRANSACTION GROUP) 214

LOGIC FOR ALLOWING THE COMMIT ARBITRATOR TO BE OPERABLE TO USE THE PRE-DETERMINED
ORDERING TO TRACK ONE OR MORE ORDERING VALUES (E.G. IN TOTAL ORDERING - A NEXT-TO-COMMIT
FIELD THAT REPRESENTS A NEXT TRANSACTION OF THE PLURALITY OF TRANSACTIONS THAT SHOULD BE

ALLOWED TO COMMIT) AND FOR COMPARING THE ONE OR MORE ORDERING VALUES TO A PARTICULAR
COMMIT ORDER NUMBER QOF A GIVEN TRANSACTION TO SEE IF THE COMMIT OF THE TRANSACTION 1S
PROPER GIVEN THE ORDERING THAT SHOULD BE ENFORCED 216

OTHER LOGIC FOR OPERATING THE APPLICATION 220

(57) Abrégée/Abstract:

Various technologies and techniques are disclosed for applying ordering to transactions in a software transactional memory
system. A software transactional memory system is provided with a feature to allow a pre-determined commit order to be specified

N . .
SEERAN S 1]]] g
i
RO
Rven, PSR 77773
:.n\«.-. NN ,\;..\.- . T
A T e A N

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

CA 2664041 A1 2008/05/29

en 2 664 041
13) A1

(57) Abrege(suite)/Abstract(continued):

for a plurality of transactions. The pre-determined commit order Is used at runtime to aid in determining an order in which to commit
the transactions In the software transactional memory system. A contention management process Is iInvoked when a conflict
occurs between a first transaction and a second transaction. The pre-determined commit order Is used In the contention
management process to aid in determining whether the first transaction or the second transaction should win the conflict and be
allowed to proceed.

/064139 A1 ULV O R D00 0 L A T

0

CA 02664041 2009-03-19

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f%

International Burcau

(43) International Publication Date
29 May 2008 (29.05.2008)

(51) International Patent Classification:
GO6F 9/06 (2006.01)

(21) International Application Number:
PCT/US2007/085035

(22) International Filing Date:
17 November 2007 (17.11.2007)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/601,541 17 November 2006 (17.11.2006) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: ZHANG, Lingli; One Microsoit Way,
Redmond, Washington 98052-6399 (US). GROVER,
Vinod, K.; One Microsoft Way, Redmond, Washington
98052-6399 (US). MAGRUDER, Michael, M.; One
Microsoft Way, Redmond, Washington 98052-6399 (US).
DETLEFS, David; One Microsoft Way, Redmond,
Washington 98052-6399 (US). DUFFY, John, Joseph;
One Microsoft Way, Redmond, Washington 98052-6399
(US). GRAEFE, Goetz, One Microsoft Way, Redmond,
Washington 98052-6399 (US).

(72)

(10) International Publication Number

WO 2008/064139 Al

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
/M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: SOFTWARE TRANSACTION COMMIT ORDER AND CONFLICT MANAGEMENT

SOFTWARE TRANSACTIONAL MEMORY APPLICATION

200

PROGRAM LOGIC
204

LOGIC FOR PROVIDING A SOFTWARE TRANSACTIONAL MEMORY (STM) SYSTEM 206 ‘

LOGIC FOR ALLOWING THE COMMIT ARBITRATOR TO USE THE PRE-DETERMINED COMMIT ORDER AT
RUNTIME TO AID IN DETERMINING AN ORDER IN WHICH TO COMMIT THE PLURALITY OF TRANSACTIONS IN
THE SOFTWARE TRANSACTIONAL MEMORY SYSTEM 210

LOGIC FOR PROVIDING A COMMIT ARBITRATOR THAT ALLOWS A PRE-DETERMINED COMMIT ORDER TO BE
SPECIFIED (STATICALLY OR DYNAMICALLY) FOR A PLURALITY OF TRANSACTIONS IN THE STM SYSTEM 208

LOGIC FOR PROVIDING A CONTENTION MANAGEMENT PROCESS THAT IS INVOKED WHEN A CONFLICT
OCCURS BETWEEN A FIRST TRANSACTION AND A SECOND TRANSACTION 212

LOGIC FOR USING THE PRE-DETERMINED COMMIT ORDER IN THE CONTENTION MANAGEMENT PROCESS
TOAID IN DETERMINING WHETHER THE FIRST TRANSACTION OR THE SECOND TRANSACTION SHOULD WIN
THE CONFLICT AND BE ALLOWED TO PROCEED (E.G. DEPENDING ON WHICH ONE HAS THE LOWER COMMIT

ORDER NUMBER OF TWO TRANSACTIONS IN THE SAME TRANSACTION GROUP) 214

LOGIC FOR ALLOWING THE COMMIT ARBITRATOR TO BE OPERABLE TO USE THE PRE-DETERMINED
ORDERING TO TRACK ONE OR MORE ORDPERING VALUES (E.G. IN TOTAL ORDERING — A NEXT-TO-COMMIT
FIELD THAT REPRESENTS A NEXT TRANSACTION OF THE PLURALITY OF TRANSACTIONS THAT SHOULD BE

ALLOWED TO COMMIT) AND FOR COMPARING THE ONE OR MORE ORDERING VALUES TO A PARTICULAR
COMMIT ORDER NUMBER OF A GIVEN TRANSACTION TO SEE IF THE COMMIT OF THE TRANSACTION 15
PROPER GIVEN THE ORDERING THAT SHOULD BE ENFORCED 216

OTHER LOGIC FOR OPERATING THE APPLICATION 220

(57) Abstract: Various technologies and techniques are disclosed for applying ordering to transactions in a software transactional
& memory system. A software transactional memory system is provided with a feature to allow a pre-determined commit order to
& be specified for a plurality of transactions. The pre-determined commit order is used at runtime to aid in determining an order in
N\ which to commit the transactions in the software transactional memory system. A contention management process is invoked when
a conflict occurs between a first transaction and a second transaction. The pre-determined commit order is used in the contention
management process to aid in determining whether the first transaction or the second transaction should win the conflict and be

allowed to proceed.

CA 02664041 2009-03-19

WO 2008/064139 A1 [HIHHVA!H FARO AN A AR 1 0 AR RAR SRR A

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

SOFTWARE TRANSACTION COMMIT ORDER

AND CONFLICT MANAGEMENT
BACKGROUND

[001] Software transactional memory (STM) 1s a concurrency control mechanism
analogous to database transactions for controlling access to shared memory 1n
concurrent computing. A transaction in the context of transactional memory 1s a
piece of code that executes a series of reads and writes to shared memory. STM 1s
used as an alternative to traditional locking mechanisms. Programmers put a
declarative annotation (e.g. atomic) around a code block to indicate safety
properties they require and the system automatically guarantees that this block
executes atomically with respect to other protected code regions. The software
transactional memory programming model prevents lock-based priority-inversion
and deadlock problems.

[002] While typical STM systems have many advantages, they still require the
programmer to be careful in avoiding unintended memory access orderings. For
example, the order in which transactions are committed (1.e. commit processing) in
a typical STM environment 1s unconstrained. Transactions race with one another to
commit, meaning that whether transaction 1 commits before transaction 2 or after 1s
often a product of the dynamic scheduling of the program (and often by program-
specific logic too). Moreover, 1f two transactions conflict, such as by trying to
write to the same piece of memory, then their committing order can be arbitrarily
decided based on one of many possible contention management policies. In both of
these scenarios, no particular commait order 1s guaranteed; therefore the burden 1s
on the programmer to make sure that his/her program works correctly with either
order. This makes parallel programming very difficult.

[003] One approach to simplitying parallel programming 1s to automatically
parallelize sequential programs, 1n a manner that guarantees that the semantics of
the program are unchanged. In other words, 1f the sequential program works
correctly, so does the parallelized version. Two (separate) variations of this

concept to parallelize sequential programs have been termed, respectively, safe

futures and speculative loop parallelization. In sate futures, the sequential version

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

of a program might perform “A; B” (that 1s, do A then do B). The programmer can
add an annotation (a “future”) indicating that he or she thinks 1t might be possible
to perform A and B 1n parallel without changing the program semantics — that A
does not read any memory locations that B reads, nor vice-versa. But the system
treats this strictly as a “hint” whose validity must be checked. It executes A and B
as transactions, and 1f they conflict, it prevents B from commiutting 1f 1t would be
serialized before A. This 1s an “undesirable” aspect of undetermined commait order
referred to above.
[004] Speculative loop parallelization 1s a stmilar 1dea, where the actions
performed 1n the sequential program are the successive iterations of a loop. The
programmer (or some static analysis) indicates that 1t may be advantageous to
execute the loop 1n parallel, and the system runs each iteration of the loop as a
parallel transaction, requiring that these transactions commit in the order the
iterations would have committed in the original program.

SUMMARY
[005] Various technologies and techniques are disclosed for applying ordering to
transactions 1n a software transactional memory system. A software transactional
memory system 1s provided with a feature to allow a pre-determined commit order
to be specified for a plurality of transactions. The pre-determined commit order 1s
used at runtime to aid 1in determining an order in which to commit the transactions
in the software transactional memory system. In one implementation, the pre-
determined commit order can be either total ordering or partial ordering. In the
case of total ordering, the transactions are forced to commit 1n a linear order. In the
case of partial ordering, the transactions are allowed to commit 1n one of multiple
acceptable scenarios. In one implementation, a commit arbitrator keeps track of the
next-to-commit value representing the transaction that should be allowed to commiat
next, and when a particular transaction 1s ready to commut, 1t 1s allowed to do so 1f
1ts commit order number matches the next-to-commit value of the commut
arbitrator.
[006] A contention management process 1s invoked when a conflict occurs

between a first transaction and a second transaction. The pre-determined commit

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

order 1s used 1n the contention management process to aid in determining whether
the first transaction or the second transaction should win the conflict and be
allowed to proceed.
[007] This Summary was provided to introduce a selection of concepts 1n a
simplified form that are further described below 1n the Detailed Description. This
Summary 1s not intended to 1dentify key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid 1n determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[008] Figure 1 1s a diagrammatic view of a computer system of one
implementation.
[009] Figure 2 1s a diagrammatic view of a software transactional memory
application of one implementation operating on the computer system of Figure 1.
[010] Figure 3 1s a high-level process flow diagram for one implementation of the
system of Figure 1.
[011] Figure 4 1s a process flow diagram for one implementation of the system of
Figure 1 1llustrating the stages involved 1n using a commit arbitrator to enforce a
pre-determined commuit order.
[012] Figure 5 1s a process tlow diagram for one implementation of the system of
Figure 1 illustrating the stages involved 1n using a commit arbitrator to enforce a
total ordering of a plurality of transactions.
[013] Figure 6 1s a process flow diagram for one implementation of the system of
Figure 1 1llustrating the stages involved 1n using a commit arbitrator to enforce a
partial ordering of a plurality of transactions.
[014] Figure 7 1s a process flow for one implementation of the system of Figure 1
that 1llustrates the stages involved 1n providing a contention management process
that manages contlicts using the pre-determined commit order information.
[015] Figure & 1s a process flow for one implementation of the system of Figure 1
that 1llustrates the stages involved 1n providing a contention management process
that manages conflicts with nested transactions using the pre-determined commit

order information.

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

[016] Figure 9 1s a logical diagram 1llustrating an exemplary ancestor tree with top
level ancestors that have a common ancestor.
[017] Figure 10 1s a logical diagram 1illustrating an exemplary ancestor tree with
top level ancestors that do not have a common ancestor.
[018] Figure 11 1s a process tflow diagram for one implementation of the system of
Figure 1 that 1llustrates the stages involved in reducing an amount of wasted work
by using a commit arbitrator 1n a software transactional memory system.
[019] Figure 12 1s a process flow diagram for one implementation of the system of
Figure 1 that 1llustrates the stages involved 1n analyzing an entire ancestor chain 1n
a contention management process to determine the proper contlict resolution.
DETAILED DESCRIPTION
[020] For the purposes of promoting an understanding of the principles of the
invention, reterence will now be made to the embodiments 1llustrated 1n the
drawings and specific language will be used to describe the same. It will
nevertheless be understood that no limitation of the scope 1s thereby intended. Any
alterations and further modifications 1n the described embodiments, and any further
applications of the principles as described herein are contemplated as would
normally occur to one skilled 1n the art.
[021] The system may be described in the general context as a software
transactional memory system, but the system also serves other purposes in addition
to these. In one implementation, one or more of the techniques described herein
can be implemented as features within a framework program such as
MICROSOFT® .NET Framework, or from any other type of program or service
that provides platforms for developers to develop software applications. In another
implementation, one or more of the techniques described herein are implemented as
features with other applications that deal with developing applications that execute
1In concurrent environments.
[022] A feature 1s provided 1n the software transactional memory system to allow a
pre-determined commit order to be specified for a plurality of transactions. The
pre-determined commit order 1s used to aid 1n determining an order in which to

commit the transactions. In one implementation, a contention management process

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

1s invoked when a conflict occurs between a first transaction and a second
transaction. The pre-determined commit order 1s then used 1n the contention
management process to aid in determining whether the first transaction or the
second transaction should win the contlict and be allowed to proceed.

[023] As shown 1n Figure 1, an exemplary computer system to use for
implementing one or more parts of the system includes a computing device, such as
computing device 100. In i1ts most basic configuration, computing device 100
typically includes at least one processing unit 102 and memory 104. Depending on
the exact configuration and type of computing device, memory 104 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory, etc.) or some
combination of the two. This most basic configuration 1s illustrated in Figure 1 by
dashed line 106.

[024] Additionally, device 100 may also have additional features/functionality.
For example, device 100 may also include additional storage (removable and/or
non-removable) including, but not limited to, magnetic or optical disks or tape.
Such additional storage 1s illustrated in Figure 1 by removable storage 108 and non-
removable storage 110. Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented 1n any method or technology for
storage of information such as computer readable instructions, data structures,
program modules or other data. Memory 104, removable storage 108 and non-
removable storage 110 are all examples of computer storage media. Computer
storage media includes, but 1s not limited to, RAM, ROM, EEPROM, flash memory
or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by device 100. Any such computer
storage media may be part of device 100.

[025] Computing device 100 includes one or more communication connections
114 that allow computing device 100 to communicate with other
computers/applications 115. Device 100 may also have mput device(s) 112 such as

keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s)

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

111 such as a display, speakers, printer, etc. may also be included. These devices
are well known 1n the art and need not be discussed at length here. In one
implementation, computing device 100 includes software transactional memory
application 200. Software transactional memory application 200 will be described
in further detail in Figure 2.

[026] Turning now to Figure 2 with continued reference to Figure 1, a software
transactional memory application 200 operating on computing device 100 1s
1llustrated. Software transactional memory application 200 1s one of the application
programs that reside on computing device 100. However, 1t will be understood that
software transactional memory application 200 can alternatively or additionally be
embodied as computer-executable instructions on one or more computers and/or 1n
different variations than shown on Figure 1. Alternatively or additionally, one or
more parts of software transactional memory application 200 can be part of system
memory 104, on other computers and/or applications 113, or other such variations
as would occur to one 1n the computer software art.

[027] Software transactional memory application 200 includes program logic 204,
which 1s responsible for carrying out some or all of the techniques described
hereimn. Program logic 204 includes logic for providing a software transactional
memory (STM) system 206; logic for providing a commit arbitrator that allows a
pre-determined commuit order to be specified, statically or dynamically, for a
plurality of transactions in the STM system 208; logic for allowing the commit
arbitrator to use the pre-determined commit order at runtime to aid in determining
an order 1n which to commit the plurality of transactions 1n the software
transactional memory system 210; logic for providing a contention management
process that 1s invoked when a contlict occurs between a first transaction and a
second transaction 212; logic for using the pre-determined commit order in the
contention management process to aid in determining whether the first transaction
or the second transaction should win the conflict and be allowed to proceed (e.g.
depending on which one has the lower commit order number of two transaction in
the same transaction group) 214; logic for allowing the commuit arbitrator to be

operable to use the pre-determined commit ordering to track one or more ordering

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

values (e.g. 1n total ordering — a next-to-commut field that represents a next
transaction of the plurality of transaction that should be allowed to commit) and for
comparing the one or more ordering values to a particular commait order number of
a given transaction to see 1f the commuit of the given transaction 1s proper given the
ordering that should be enforced) 216; and other logic for operating the application
220. In one implementation, program logic 204 1s operable to be called
programmatically from another program, such as using a single call to a procedure
in program logic 204.

[028] Turning now to Figures 3-10 with continued reference to Figures 1-2, the
stages for implementing one or more implementations of software transactional
memory application 200 are described 1n further detail. Figure 3 1s a high level
process flow diagram for software transactional memory application 200. In one
form, the process of Figure 3 1s at least partially implemented 1n the operating logic
of computing device 100. The procedure begins at start point 240 with providing a
software transactional memory system (stage 242). A feature 1s provided to allow a
pre-determined commit order (e.g. a total ordering or partial ordering) to be
specified for a plurality of transactions (e.g. assigned dynamically or statically)
(stage 244). The term “pre-determined commit order” as used herein 1s meant to
include a specific order in which a particular group of related transactions should
be committed, as determined at any point in time before the transactions start
running. The term “group” of transactions as used herein includes a particular set
of (e.g. plurality of) transactions managed by the same commit arbitrator, as well as
nested children of those transactions.

[029] The pre-determined commit order 1s used at runtime to aid in determining an
order 1n which to commit the plurality of transactions 1n the software transactional
memory system (stage 246). The pre-determined commit order 1s used to aid 1n
resolving contlicts occurring between two or more of the plurality of transactions
(stage 248). The process ends at end point 250.

[030] Figure 4 1llustrates one implementation of the stages involved 1n using a
commit arbitrator to enforce a pre-determined commit order. In one form, the

process of Figure 4 1s at least partially implemented 1in the operating logic of

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

computing device 100. The procedure begins at start point 270 with providing one
or more commit arbitrators for a software transaction memory system, the commut
arbitrator being operable to allow a pre-determined commuit order to be specified for
a plurality of transactions (stage 272). The term “commit arbitrator” as used herein
1s meant to include any type of program, feature, or process that 1s responsible for
managing one or more groups of transactions that should be ordered with respect to
one another. In one implementation, there can be one or more commit arbitrators
active within a program at any given time. For example, as many commit
arbitrators as are needed can be created to manage the different groups of
transactions. The commiat arbitrator tracks and updates one or more ordering values
that are used to determine the proper ordering of transactions with respect to one
another (stage 274). In the case of total ordering, a next-to-commut field can be
used to represent a next transaction of a plurality of transactions that should be
committed next) (stage 274). In the case of partial ordering, a directed graph of
different possible orders 1s tracked using the ordering values. As appropriate, the
commit arbitrator uses the pre-determined commit order to provide a commit order
number for each of the plurality of transactions (stage 276).

[031] When a particular transaction of the plurality of transactions prepares to
commit, 1f the commit order number for the particular transaction when compared
to the one or more ordering values reveals that the commit 1s proper, then the
commit arbitrator allows the transaction to commit (stage 278). In the case of total
ordering, this scenario occurs when the next-to-commit field and the commit order
number for the particular transaction have the same value. In such a scenario, the
commuit arbitrator allows the transaction to commit and then increments the next-to-
commit field to a next number 1n a sequence (e.g. next higher number) 1f the
commit 1s successful (stage 278). When the particular transaction of the plurality
of transactions prepares to commit, 1f the commit order number for the particular
transaction when compared to the ordering values reveals that the commiat 1s not
proper, then the particular transaction 1s placed 1n a hold mode until 1t 1s awakened

at a later point 1n time after a predecessor transaction commits (stage 280). In the

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

case of total ordering, this hold mode 1s entered when the next-to-commat field and
the order number for the particular transaction do not have the same value.

[032] In one implementation, the system may wake a transaction after 1ts
immediate predecessor has committed, in which case 1t may try to commit right
away. Alternatively, the system may choose to wake a transaction after some non-
immediate predecessor has committed, even though 1ts immediate predecessor may
not yet have committed. After being awakened, the system checks to see 1f 1t 1s
appropriate for the transaction to really commit. If so, the transaction 1s commutted.
The process ends at end point 282.

[033] Figure 5 1llustrates one implementation of the stages involved 1n using a
commit arbitrator to enforce a total ordering of a plurality of transactions. In one
form, the process of Figure 5 1s at least partially implemented 1n the operating logic
of computing device 100. The procedure begins at start point 290 with providing
one or more commit arbitrators operable to allow a pre-determined total ordering to
be specified for a plurality of transactions (e.g. one specifying an exact order in
which the plurality of transactions should be commutted) (stage 292). When a
particular transaction of the plurality of transactions reaches its commit point, to
enforce the commit order, the commit order of the particular transaction 1s
compared with a next-to-commit field of the commit arbitrator (stage 296). In one
implementation, if the system determines that enforcement of the total ordering 1s
not necessary (e.g. such as because there 1s definitely no conftlict), then the total
ordering requirement can be broken as appropriate (stage 294), then the process
ends at end point 302.

[034] If commit ordering 1s to be enforced, and 1f the commit order of the
particular transaction has a same value as the next-to-commit field of the commiat
arbitrator (decision point 296), then the particular transaction 1s commaitted, and 1f
the commuit 1s successtul, the next-to-commiat field 1s incremented and the next
successor 1s awakened, 1f any exist (stage 298). If the commit order of the
particular transaction does not have the same value as the next-to-commat field of
the commut arbitrator (decision point 296), then the particular transaction 1s put in a

hold/sleep mode until 1t 1s awakened at a later point in time after a predecessor

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

transaction commuits (stage 300). In one implementation, at that later point 1n time,
1f a conflict occurs with a predecessor, that particular transaction may be asked to
abort and rollback such that a predecessor may make forward progress. Otherwise,
1f no such conflict has occurred, that particular transaction should be able to
commit once the commit order requirements described herein are met. The process
then ends at end point 302.

[035] Figure 6 1llustrates one implementation of the stages involved 1n using a
commit arbitrator to enforce a partial ordering of a plurality of transactions. In one
form, the process of Figure 6 1s at least partially implemented 1n the operating logic
of computing device 100. The procedure begins at start point 310 with providing
one or more commit arbitrators operable to allow a pre-determined partial ordering
to be specified for a plurality of transactions (e.g. one specitying a plurality of
acceptable orders 1n which the plurality of transactions should be committed — e.g.
1in the form of a directed graph) (stage 312). When a particular transaction of the
plurality of transactions reaches i1ts commit point, to enforce the commit order, the
state of the predecessor transactions (e.g. one or more ordering values) are
consulted for the particular committing transaction (e.g. as tracked by the commiut
arbitrator) (stage 314). If all predecessors to the particular transaction have
committed (decision point 316), then the particular transaction 1s committed (stage
318). If the commut 1s successtul, one or more values tracked by the commut
arbitrator are updated as appropriate, and all possible next successors are
awakened, 1f any exist (stage 318).

[036] If all predecessors to the particular transaction have not committed (decision
point 316), then the particular transaction 1s put in a hold/sleep mode until 1t 1s
awakened at a later point 1n time after a predecessor transaction commits (stage
320). The process ends at end point 322.

[037] Figure 7 illustrates one implementation of the stages involved 1n providing a
contention management process that manages conflicts using the pre-determined
commit order information. In one form, the process of Figure 7 1s at least partially
implemented 1n the operating logic of computing device 100. The procedure

begins at start point 340 with providing a software transactional memory system

10

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

that supports a pre-determined commit order for one or more groups of transactions
(stage 342). A contention management process 1s provided that 1s invoked when a
conflict occurs between a first transaction and a second transaction (stage 344).
The pre-determined commit order 1s used 1n the contention management process to
aid 1n determining whether the first transaction or the second transaction should
win the contlict and be allowed to proceed (stage 346). If the first transaction and
second transaction are not part of the same transaction group (decision point 348),
then a pre-determined commuit order 1s not enforced between these two transactions
(because none existed) (stage 350). In such a scenario, since the two transactions
are not 1n a same transaction group, the ordering factor 1s not used to help resolve
the conflict (stage 350).

[038] If the first transaction and the second transaction are part of the same
transaction group (decision point 348), then the system compares the first order
number of the first transaction and the second order number of the second
transaction (stage 352). The transaction with the lower order number 1s allowed to
proceed (or with another suitable priority ordering) (stage 354). The process ends
at end point 356.

[039] Figure 8 1llustrates one implementation of the stages involved 1n providing a
contention management process that manages conflicts with nested transactions
using the pre-determined commit order information. In one form, the process of
Figure 8 1s at least partially implemented 1n the operating logic of computing
device 100. In one implementation, the entire ancestor chain 1s considered for each
transaction before committing the particular transaction, so that any ordering
present 1n that chain 1s enforced. The procedure begins at start point 370 with
providing a contention management process that 1s invoked when a contlict occurs
between a first transaction and a second transaction (stage 372). A pre-determined
commit order 1s used 1n the contention management process to aid in determining
whether the first transaction or the second transaction should win the conflict and
be allowed to proceed (stage 372). If the first and second transactions are not part
of the same transaction group (decision point 376), then a pre-determined commiut

order 1s not enforced between those two transactions (because none existed) (stage

11

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

378) and the process ends at end point 388. If the first and second transactions are
part of the same transaction group (decision point 376), then the system checks to
see 1f nested transactions are involved (decision point 380).

[040] If nested transactions are not involved (decision point 380), then the order
number (or other ordering indicator) of the first transaction 1s compared with the
order number (or other ordering indicator) of the second transaction (stage 384).
The transaction with the lower order number 1s allowed to proceed (or the one
determined to be next in order by using other suitable ordering criteria) (stage 386).
[041] If nested transactions are involved (decision point 380), then the order
number (or other ordering indicator) of the top level ancestor of the first transaction
1s compared with the order number (or other ordering indicator) of the top level
ancestor of the second transaction (stage 382). The term ““top level ancestor” as
used herein 1s meant to include the immediate children of common ancestors where
common ancestors are involved, and the top level ancestor of each transaction
where there 1s no common ancestor involved. These scenarios involving common
and uncommon ancestors are 1llustrated in further detail in Figures 9 and 10. The
transaction with the lower order number 1s allowed to proceed (e.g. the transaction
related to the ancestor that had the lower order number or other suitable criteria)
(stage 386). The process ends at end point 388.

[042] Figure 9 1s a logical diagram 1llustrating an exemplary ancestor tree with top
level ancestors that have a common ancestor. In the example shown, transaction A
1s a common ancestor of D and E. In conflicts occurring between D and E, the
order number of transactions B and C (the immediate children of common ancestor
A) are analyzed to determine which transaction D or E should be allowed to
proceed (stage 382 1n Figure 8).

[043] Figure 10 1s a logical diagram 1illustrating an exemplary ancestor tree with
top level ancestors that do not have common ancestors. In the example shown,
transaction A 1s an ancestor of transaction C. Transaction D 1s an ancestor of
transaction F. In conflicts occurring between transactions C and F, then the order

number of transactions A and D (the top level ancestor of each) are compared to

12

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

determine which transaction C or F should be allowed to proceed (stage 382 1n
Figure 8).

[044] Figure 11 illustrates one implementation of the stages involved 1n reducing
the amount of wasted work by using a commit arbitrator 1n a software transactional
memory system. In one form, the process of Figure 11 1s at least partially
implemented 1n the operating logic of computing device 100. The procedure
begins at start point 400 with providing one or more commit arbitrators for a
software transactional memory system, the commit arbitrator being operable to
allow a pre-determined commit order to be specified for a plurality of transactions
(stage 402). The commuit arbitrator 1s operable to put a transaction into sleep/hold
mode to block that transaction from re-executing when a predecessor transaction 1s
still executing (e.g. by analyzing the pre-determined commit order to determine the
proper order (stage 404). The commit arbitrator 1s also operable to wake up
transactions that were put on hold once the predecessor transaction(s) have finished
(e.g. by again analyzing the pre-determined commit order to determine the proper
order) (stage 406). By providing these blocking and waking mechanisms, the
commit arbitrator helps reduce the amount of work that 1s wasted by keeping
operations from being performed that would have to be undone later (stage 408).
The process ends at end point 410.

[045] Figure 12 illustrates one implementation of the stages involved 1n analyzing
an entire ancestor chain 1n a contention management process to determine the
proper contlict resolution. In one form, the process of Figure 12 1s at least partially
implemented 1n the operating logic of computing device 100. The procedure
begins at start point 430 with providing a contention management process that 1s
invoked when a conflict occurs between a first transaction and a second transaction
(stage 432). A pre-determined commit order 1s used in the contention management
process to aid in determining whether the first transaction or the second transaction
should win the conflict and be allowed to proceed (stage 434). An entire ancestor
chain of a pre-determined commit order 1s analyzed to help determine the proper
conflict management (stage 436). For example, 1f there are four transactions, two

parents and two children, where B 1s nested within A and D 1s nested within C.

13

10

15

20

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

Suppose there 1s an ordering relationship between A and C where A should commut
before C. If B and D conflict, the contention management process should favor B
because favoring D 1s useless given that A must commit before C. (stage 436). The
process ends at end point 438.

[046] Although the examples discussed herein talked about enforcing commat
ordering using various technologies and techniques, 1t should be noted that a
transaction may not have a commit arbitrator at all. In such a case that a
transaction does not have a commit arbitrator at all, a normal unordered commit
will occur.

[047] Although the subject matter has been described 1in language specific to
structural features and/or methodological acts, 1t 1s to be understood that the subject
matter defined in the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims. All equivalents,
changes, and modifications that come within the spirit of the implementations as
described herein and/or by the following claims are desired to be protected.

[048] For example, a person of ordinary skill in the computer software art will
recognize that the client and/or server arrangements, user interface screen content,
and/or data layouts as described 1n the examples discussed herein could be
organized differently on one or more computers to include tewer or additional

options or features than as portrayed 1n the examples.

14

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

What 1s claimed 1s:

1. A method for applying ordering to transactions in a software
transactional memory system comprising the steps of:

providing a software transactional memory system (242);

providing a feature to allow a pre-determined commit order to be specified for
a plurality of transactions (244); and

using the pre-determined commit order at runtime to aid in determining an
order 1n which to commuit the plurality of transactions 1n the software transactional
memory system (240).

2. The method of claim 1, further comprising:

using the pre-determined commit order to aid 1n resolving contlicts occurring
between two or more of the plurality of transactions (248).

3. The method of claim 1, wherein the pre-determined commit order
comprises a pre-determined total ordering of the plurality of transactions (244).

4, The method of claim 1, wherein the pre-determined commit order
comprises a pre-determined partial ordering of the plurality of transactions (244).

. The method of claim 1, wherein a commit arbitrator 1s provided that
tracks one or more ordering values for the pre-determined commit order (272).

0. The method of claim 5, wherein when a particular transaction of the
plurality of transactions prepares to commit, comparing the one or more ordering
values to an ordering value for the particular transaction to determine 1f the
particular transaction can commit (278).

7. The method of claim 1, wherein the pre-determined commit order 1s
assigned dynamically (244).

8. The method of claim 1, wherein the pre-determined commit order 1s
assigned statically (244).

9. The method of claim 1, wherein a commut arbitrator 1s provided that
tracks a next-to-commit field that represents a next transaction of the plurality of
transactions that should be allowed to commut (274).

10. The method of claim 9, wherein a commit order number 1s provided

for each of the plurality of transactions (276).

15

10

15

20

25

30

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

11. The method of claim 10, wherein when a particular transaction of the
plurality of transactions prepares to commit, determining 1f the commit order
number for the particular transaction has a same value as the next-to-commit field
tracked by the commit arbitrator (278).

12. The method of claim 11, wherein 1f the commait order number for the
particular transaction and the next-to-commit field have the same value, allowing
the commit to proceed (278).

13. The method of claim 12, wherein after the commit proceeds and 1s
successtul, the commit arbitrator increments the next-to-commit field to a next
number 1n a sequence (278).

14. The method of claim 11, wherein 1f the commit order number for the
particular transaction and the next-to-commit field do not have the same value,
putting the particular transaction into a hold mode until 1t 1s awakened at a later
point 1n time after a predecessor transaction commits (280).

15. A computer-readable medium having computer-executable
instructions for causing a computer to perform the steps recited in claim 1 (200).

16. A method for providing contention management with ordering
comprising the steps of:

providing a software transactional memory system that supports a pre-
determined commit order for one or more groups of transactions (342);

providing a contention management process that 1s invoked when a conflict
occurs between a first transaction and a second transaction (344); and

using the pre-determined commit order in the contention management process
to aid 1n determining whether the first transaction or the second transaction should
win the conflict and be allowed to proceed (346).

17. The method of claim 16, wherein 1f the contention management
process determines that the first transaction and the second transaction are part of a
same transaction group (348), then a first order number field representing the first
transaction and a second order number field representing the second transaction are
compared (352), and a particular transaction of the first transaction and the second

transaction that has a lower respective order number 1s allowed to proceed (354).

16

10

15

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

18. A computer-readable medium having computer-executable
instructions for causing a computer to perform the steps recited in claim 16 (200).
19. A computer-readable medium having computer-executable
instructions for causing a computer to perform steps comprising:
provide a software transactional memory system (206);
provide a commit arbitrator that allows a pre-determined commit order to be
specified for a plurality of transactions (208), the commit arbitrator being operable
to use the pre-determined commit order at runtime to aid in determining an order 1n
which to commit the plurality of transactions 1n the software transactional memory
system (210);
provide a contention management process that 1s invoked when a conflict
occurs between a first transaction and a second transaction (212); and
use the pre-determined commit order in the contention management process to
aid 1n determining whether the first transaction or the second transaction should
win the contlict and be allowed to proceed (214).
20. The computer-readable medium of claim 19, wherein the commiut

arbitrator 1s operable to enforce commit ordering within nested transactions (380).

17

CA 02664041 2009-03-19

PCT/US2007/085033

WO 2008/064139

1/11

SONOILVOl'ldaV
/Sd41NdNOD
ddH10

/

Gl

(SINOILDINNOD
NOILYDINNWINOD
Y3IH10

N

Vil

(3)321A3A LNdNI

(S)321A3A LNdLNO

JOVH0LS
J1dVAONFHE-NON

JOVH0LS
J18VAONIY

NOILVOl ldaV
AJONdN

TIVYNOILOVSNYY L /

FYYMLA0S 007

ll

3111V IOA-NON

LINAONISSF00dd 1LV TOA

AJOWAIN INJLSAS

CA 02664041 2009-03-19

PCT/US2007/085033

WO 2008/064139

211

¢ Dl

0¢¢ NOILYOINddY FHL ONILVHIdO ¥04 J19071 H3H1O

91¢ ({d30404N3 39 ATNOHS LYHL ONIMIAHO FHL NIAID ¥3d0¥d
Sl NOILOVSNVAL dHL 40 LININOO dHL 41 435 OL NOILOVSNVAL NAAID V 40 48NN 43040 LIWNOO
dYINJILYVd ¥ OL SINTYA ONIYIAHO FHON HO INO FHL ONIMVYAINOD ¥O4 ANV (LINNOD OL AIMOTTY
38 A TNOHS LVHL SNOILOVSNVAL 40 ALIVEN 1d dHL 40 NOILOVSNVYL LXdIN V SINASddddd LVHL d'1314
LINWOD-0L-LX3aN ¥ — ONIMIAHO TVLOL NI '9'3) STINTVYA ONIYIAHO FHOW HO INO MOVHL OL ONIMIAHO
JINING414d-ddd dHL 45N 01 318Vddd0 49 O1L 0 1vd1IddV LINIWOO dJHL ONIMO T1V d04 OI100 ']

712 (dNOYD NOILOVSNYHL INYS FHL NI SNOILOVSNYHL OML 40 ¥3FFAWNN ¥IAHO
LINWOD ¥3IMOT IHL SVYH INO HOIHM NO ONIANId3A '9°3) 3300¥d OL AIMOTIV 38 ANY LOITANOD FHL
NIM Q' 1NOHS NOILOVSNYEL ANOOIS 4HL 40 NOILOVSNVEL 15dld AHL d3HLIIHM ONINING4L4A NI dIV OL
05300dd LINJWFDVNVIAN NOILNILNOO dHL NI 43040 LINWOO dANINGAL3d-ddd dHL DNISN d04 01901

¢l¢ NOILOVSNVYHL ANOD3S V ANV NOILOVSNVYL 18414 V NIFIML3F SYNDD0
1IITANOO V NIHM AIHMOANI 51 LVHL $5300dd INFWFDVNVYIA NOILNALNODO V ONIAIAOEd 404 01901

01 W3LSAS AHOWIN TYNOILOVSNYYL FHVYML40S FHL
NI SNOILOVSNVHL 40 ALINVAENTd dHL LININOO OL HOIHM NI 43080 NV ONINIWGTL3A NI dIV OL JNTLNNS
1V 434040 LINWOO AANING4L3d-ddd dHL 45N OL J0LvdLIddV LINWOO JHL ONIMO TV 404 91901

80¢ INILSAS LS FHL NI SNOILOVSNVYL 40 ALNVHNTd ¥V ¥O4 (ATIVOINYNAQ ¥O ATTVOILYLS) A314103dS
14 01 44040 LINWOO AANING4L13d-ddd V SMO T1V LVHL J01vd 1184V LINWOO V DNIAINOHd 04 91901

90Z¢ INTLSAS (NLS) ASOWIN TYNOILOVSNYHL FHVMLA0S V ONIAIAOYC ¥04 21907

v0C
01907 NYHOOUd

00¢
NOILVOllddV AJOWIN TVNOILOVSNVEL J4VMLA0S

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

3/11

START
240

Y

PROVIDE A SOFTWARE TRANSACTIONAL MEMORY SYSTEM
242

Y

PROVIDE A FEATURE TO ALLOW A PRE-DETERMINED COMMIT ORDER
(I.E. A TOTAL ORDERING OR PARTIAL ORDERING) TO BE SPECIFIED
FOR A PLURALITY OF TRANSACTIONS (I.E. ASSIGNED DYNAMICALLY

OR STATICALLY)
244

|

USE THE PRE-DETERMINED COMMIT ORDER AT RUNTIME TO AID IN
DETERMINING AN ORDER IN WHICH TO COMMIT THE PLURALITY OF
TRANSACTIONS IN THE SOFTWARE TRANSACTIONAL MEMORY
SYSTEM
246

|

USE THE PRE-DETERMINED COMMIT ORDER TO AID IN RESOLVING
CONFLICTS OCCURRING BETWEEN TWO OR MORE OF THE PLURALITY
OF TRANSACTIONS
248

| 4
END
FIG. 3 < 250 >

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

411

START
270

PROVIDE ONE OR MORE COIVII\/IIT ARBITRATORS FOR A SOFTWARE
TRANSACTIONAL MEMORY SYSTEM, THE COMMIT ARBITRATOR OPERATES TO
ALLOW A PRE-DETERMINED COMMIT ORDER TO BE SPECIFIED FOR A
PLURALITY OF TRANSACTIONS 272

THE COMMIT ARBITRATOR TRACKS AND UPDATES ONE OR MORE ORDERING
VALUES THAT ARE USED TO DETERMINE A PROPER ORDERING OF
TRANSACTIONS WITH RESPECT TO ONE ANOTHER (E.G. FOR TOTAL
ORDERING - A NEXT-TO-COMMIT FIELD THAT REPRESENTS A NEXT
TRANSACTION OF A PLURALITY OF TRANSACTIONS THAT SHOULD BE
COMMITTED NEXT) 274

Y

AS APPROPRIATE, THE COMMIT ARBITRATOR USES THE PRE-DETERMINED
COMMIT ORDER TO PROVIDE A COMMIT ORDER NUMBER FOR EACH OF THE
PLURALITY OF TRANSACTIONS 276

\ /

WHEN A PARTICULAR TRANSACTION OF THE PLURALITY OF TRANSACTIONS
PREPARES TO COMMIT, I[F THE ONE OR MORE ORDERING VALUES REVEAL
THAT THE COMMIT IS PROPER, THEN THE COMMIT ARBITRATOR ALLOWS THE
TRANSACTION TO COMMIT (E.G. IN THE CASE OF TOTAL ORDERING, WHEN
THE COMMIT ORDER NUMBER FOR THE PARTICULAR TRANSACTION AND THE
NEXT-TO-COMMIT FIELD HAVE THE SAME VALUE, THE COMMIT ARBITRATOR
ALLOWS THE TRANSACTION TO COMMIT AND THEN INCREMENTS THE NEXT-
TO-COMMIT FIELD TO A NEXT NUMBER IN A SEQUENCE [E.G. NEXT HIGHER
NUMBER] IF THE COMMIT |5 SUCCESSFUL) 278

\/

WHEN THE PARTICULAR TRANSACTION OF THE PLURALITY OF TRANSACTIONS
PREPARES TO COMMIT, IF THE COMMIT ORDER NUMBER WHEN COMPARED
TO THE ORDERING VALUES REVEALS THAT THE COMMIT IS NOT PROPER,
THEN THE PARTICULAR TRANSACTION IS PLACED IN A HOLD MODE UNTIL IT 1S
AWAKEN AT A LATER POINT IN TIME AFTER A PREDECESSOR TRANSACTION
COMMITS (E.G. FOR TOTAL ORDERING - IF THE COMMIT ORDER NUMBER FOR
THE PARTICULAR TRANSACTION AND THE NEXT-TO-COMMIT FIELD DO NOT
HAVE THE SAME VALUE, THEN THE PARTICULAR TRANSACTION IS PLACED IN
THE HOLD I\/IODE 280

END
FIG. 4 282

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

5111

START
290

¢

PROVIDE ONE OR MORE COMMIT ARBITRATORS OPERABLE TO ALLOW A PRE-
DETERMINED TOTAL ORDERING TO BE SPECIFIED FOR A PLURALITY OF
TRANSACTIONS (E.G. ONE SPECIFYING AN EXACT ORDER IN WHICH THE

PLURALITY OF TRANSACTIONS SHOULD BE COMMITTED)
292

v

WHEN A PARTICULAR TRANSACTION OF THE PLURALITY OF TRANSACTIONS
REACHES ITS COMMIT POINT, TO ENFORCE THE COMMIT ORDER, COMPARE
THE COMMIT ORDER OF THE PARTICULAR TRANSACTION WITH A NEXT-TO-
COMMIT FIELD OF THE COMMIT ARBITRATOR (UNLESS THE SYSTEM
DETERMINES THAT ENFORCEMENT OF THE TOTAL ORDERING SHOULD BE
RELAXED - SUCH AS BECAUSE THERE IS DEFINITELY NO CONFLICT)
294

VES ARE THEY THE NO
SAME VALUE?

COMMITTHEPARTICUAR |||y 1 opgicULAR TRANSACTION
| IN A HOLD/SLEEP MODE UNTIL IT IS

AND IF THE COMMIT 1S
SUCCESSFUL, INCREMENT THE AWAKENED AT A LATER POINT IN TIME

NEXT-TO-COMMIT FIELD AND ’?‘FF{;ENE ﬁcﬁ%ﬁ %%El\fﬁﬁg
WAKE UP THE NEXT o
SUCCESSOR, IF ANY 300

298

v

< END >
302
FIG. 5

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

6/11

START
310

'

PROVIDE ONE OR MORE COMMIT ARBITRATORS OPERABLE TO ALLOW A PRE-
DETERMINED PARTIAL ORDERING TO BE SPECIFIED FOR A PLURALITY OF
TRANSACTIONS (E.G. ONE SPECIFYING A PLURALITY OF ACCEPTABLE
ORDERS IN WHICH THE PLURALITY OF TRANSACTIONS SHOULD BE
COMMITTED - E.G. IN THE FORM OF A DIRECTED GRAPH)

312

Y

WHEN A PARTICULAR TRANSACTION OF THE PLURALITY OF TRANSACTIONS
REACHES ITS COMMIT POINT, TO ENFORCE THE COMMIT ORDER, CONSULT
THE STATE OF PREDECESSOR TRANSACTIONS FOR THE COMMITTING
TRANSACTION (E.G. AS TRACKED BY THE COMMIT ARBITRATOR)

314

YES HAVE ALL "
316

v Y
COMMIT THE PARTICULAR
TRANSACTION, AND IF THE PUT THE PARTICULAR TRANSACTION
COMMIT IS SUCCESSFUL, IN A HOLD/SLEEP MODE UNTILIT IS
UPFATE THE COMMIT AWAKENED AT A LATER POINT IN TIME
ARBITRATOR AS APPROPRIATE AFTER A PREDECESSOR
AND WAKE UP ALL POSSIBLE TRANSACTION COMMITS
NEXT SUCCESSORS, [F ANY 320
318
Y

< END >
322
FIG. 6

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

1111

START
340

v
PROVIDE A SOFTWARE TRANSACTIONAL MEMORY SYSTEM THAT SUPPORTS A

PRE-DETERMINED COMMIT ORDER FOR ONE OR MORE GROUPS OF
TRANSACTIONS
342

Y

PROVIDE A CONTENTION MANAGEMENT PROCESS THAT IS INVOKED WHEN A
CONFLICT OCCURS BETWEEN A FIRST TRANSACTION AND A SECOND
TRANSACTION
344

Y

USE THE PRE-DETERMINED COMMIT ORDER IN THE CONTENTION MANAGEMENT
PROCESS TO AID IN DETERMINING WHETHER THE FIRST TRANSACTION OR THE
SECOND TRANSACTION SHOULD WIN THE CONFLICT AND BE ALLOWED TO

PROCEED
346
N ARE THEY PART OF TH VES
SAME TRANSACTION GROUP?
\
COMPARE THE FIRST ORDER
WIUER [NOT ENFORCED TRANSACTION AND THE SECOND
SENWEEN THESE TV ORDER NUMBER OF THE SECOND
THEY ARE NOT IN A SAME o
TRANSACTION GROUP, T
NONE EXISTED)
350 ALLOW THE TRANSACTION WITH THE
o L OWER ORDER NUMBER TO PROCEED

(OR OTHER SUITABLE PRIORITY
ORDERING)
354

v
END
FIG. 7 356

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

8/11

START
370

F

PROVIDE A CONTENTION MANAGEMENT PROCESS THAT IS INVOKED WHEN A
CONFLICT OCCURS BETWEEN A FIRST TRANSACTION AND A SECOND
TRANSACTION
372

v

USE A PRE-DETERMINED COMMIT ORDER IN THE CONTENTION MANAGEMENT
PROCESS TO AID IN DETERMINING WHETHER THE FIRST TRANSACTION OR THE
SECOND TRANSACTION SHOULD WIN THE CONFLICT AND BE ALLOWED TO

PROCEED
374
” ARE THEY PART OF TH VES
SAME TRANSACTION GROUP?
376
e ARE NESTED
TRANSACTIONS INVOLVED?
! 380 NO
PRE-DETERMINED
COMMIT ORDER IS v
NOT ENFORCED
TRANSACTIONS | | COMPARE THE ORDER NUMBER OF THE FIRST
TRANSACTION AND THE
(BECAUSE NONE 1/ NUMBER OF THE TOP- ORDER NUMBER OF THE
=XISTED) LEVEL ANCESTOR OF SECOND TRANSACTION
378 THE FIRST
TRANSACTION AND 304
THE ORDER NUMBER ¢
OF THE TOP-LEVEL
ANCESTOR OF THE ALLOW THE TRANSACTION
SECOND WITH THE LOWER ORDER
NUMBER TO PROCEED (OR
TRAN§8A2C 1IN "I ONE CHOSEN USING OTHER
204 SUITABLE CRITERIA FOR
RESOLVING AN ORDER)
386

END
6. - R -

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

9/11

A
/\
B C
[
D

=

FIG. 9

FIG. 10

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

10 /11

START
400

|
PROVIDE ONE OR MORE COMMIT ARBITRATORS FOR A SOFTWARE
TRANSACTIONAL MEMORY SYSTEM, THE COMMIT ARBITRATOR BEING
OPERABLE TO ALLOW A PRE-DETERMINED COMMIT ORDER TO BE SPECIFIED
FOR A PLURALITY OF TRANSACTIONS
402

THE COMMIT ARBITRATOR IS OPERABLE TO PUT A TRANSACTION INTO
SLEEP/HOLD MODE TO BLOCK THAT TRANSACTION FROM RE-EXECUTING
WHEN A PREDECESSOR TRANSACTION IS STILL EXECUTING (E.G. BY
ANALYZING THE PRE-DETERMINED COMMIT ORDER TO DETERMINE THE
PROPER ORDER)

404

THE COMMIT ARBITRATOR IS ALSO OPERABLE TO WAKE UP TRANSACTIONS
THAT WERE PUT ON HOLD ONCE THE PREDECESSOR TRANSACTION(S) HAVE
FINISHED (E.G. BY AGAIN ANALYZING THE PRE-DETERMINED COMMIT ORDER
TO DETERMINE THE PROPER ORDER)
400

BY PROVIDING THESE BLOCKING AND WAKING MECHANISMS, THE COMMIT
ARBITRATOR HELPS REDUCE THE AMOUNT OF WORK THAT 1S WASTED BY
KEEPING OPERATIONS FROM BEING PERFORMED THAT WOULD HAVE TO BE
UNDONE LATER
408

C END
410
FIG. 11

CA 02664041 2009-03-19
WO 2008/064139 PCT/US2007/085035

11 /11
START
430

|

PROVIDE A CONTENTION MANAGEMENT PROCESS THAT IS INVOKED WHEN A
CONFLICT OCCURS BETWEEN A FIRST TRANSACTION AND A SECOND
TRANSACTION
432

USE A PRE-DETERMINED COMMIT ORDER IN THE CONTENTION MANAGEMENT
PROCESS TO AID IN DETERMINING WHETHER THE FIRST TRANSACTION OR
THE SECOND TRANSACTION SHOULD WIN THE CONFLICT AND BE ALLOWED

TO PROCEED
434

|

ANALYZE AN ENTIRE ANCESTOR CHAIN OF A PRE-DETERMINED COMMIT
ORDER TO HELP DETERMINE PROPER CONFLICT MANAGEMENT (E.G.
SUPPOSE THERE ARE FOUR TRANSACTIONS, TWO PARENTS AND TWO
CHILDREN, WHERE B IS NESTED WITHIN A AND D IS NESTED WITHIN C, AND
GIVEN AN ORDERING RELATIONSHIP BETWEEN A AND C WHERE A SHOULD
COMMIT BEFORE C; THEN IF B AND D CONFLICT, THE CONTENTION
MANAGEMENT PROCESS SHOULD FAVOR B BECAUSE FAVORING D IS
USELESS GIVEN THAT AMUST COMMIT BEFORE C)

430

END
438

FIG. 12

SOFTWARE TRANSACTIONAL MEMORY APPLICATION
200

PROGRAM LOGIC
204

LOGIC FOR PROVIDING A SOFTWARE TRANSACTIONAL MEMORY (oTM) SYSTEM 206

LOGIC FOR PROVIDING A COMMIT ARBITRATOR THAT ALLOWS A PRE-DETERMINED COMMIT ORDER TO BE
SPECIFIED (STATICALLY OR DYNAMICALLY) FOR A PLURALITY OF TRANSACTIONS IN THE STM SYSTEM 208

LOGIC FOR ALLOWING THE COMMIT ARBITRATOR TO USE THE PRE-DETERMINED COMMIT ORDER AT
RUNTIME TO AID IN DETERMINING AN ORDER IN WHICH TO COMMIT THE PLURALITY OF TRANSACTIONS IN
THE SOFTWARE TRANSACTIONAL MEMORY SYSTEM 210

LOGIC FOR PROVIDING A CONTENTION MANAGEMENT PROCESS THAT IS INVOKED WHEN A CONFLICT
OCCURS BETWEEN A FIRST TRANSACTION AND A SECOND TRANSACTION 212

LOGIC FOR USING THE PRE-DETERMINED COMMIT ORDER IN THE CONTENTION MANAGEMENT PROCESS
TO AID IN DETERMINING WHETHER THE FIRST TRANSACTION OR THE SECOND TRANSACTION SHOULD WIN
THE CONFLICT AND BE ALLOWED TO PROCEED (E.G. DEPENDING ON WHICH ONE HAS THE LOWER COMMIT

ORDER NUMBER OF TWO TRANSACTIONS IN THE SAME TRANSACTION GROUP) 214

LOGIC FOR ALLOWING THE COMMIT ARBITRATOR TO BE OPERABLE TO USE THE PRE-DETERMINED
ORDERING TO TRACK ONE OR MORE ORDERING VALUES (E.G. IN TOTAL ORDERING — A NEXT-TO-COMMIT
FIELD THAT REPRESENTS A NEXT TRANSACTION OF THE PLURALITY OF TRANSACTIONS THAT SHOULD BE

ALLOWED TO COMMIT) AND FOR COMPARING THE ONE OR MORE ORDERING VALUES TO A PARTICULAR
COMMIT ORDER NUMBER OF A GIVEN TRANSACTION TO SEE IF THE COMMIT OF THE TRANSACTION IS
PROPER GIVEN THE ORDERING THAT SHOULD BE ENFORCED 216

OTHER LOGIC FOR OPERATING THE APPLICATION 220

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - abstract drawing

