METHOD FOR PRODUCING AN OPTICALLY ACTIVE NITRO COMPOUND

An optically active nitro compound having two hydrogen atoms on its α-cabon atom and having β-asymmetric carbon atom can be produced by making α, β-unsaturated nitroolefin having a hydrogen atom on its α-cabon atom react with at least two organosilicon compounds having at least one silicon-hydrogen bond in the molecule in the presence of an asymmetric copper complex, or react with an organosilicon compound having at least one silicon-hydrogen bond in the molecule in the presence of an asymmetric copper complex and water.
Description

Method for producing an optically active nitro compound

Technical Field

The present invention relates to a method for producing an optically active nitro compound and amino compound.

Background Arts

Optically active nitro compounds and amino compounds are useful for synthetic intermediates for fine chemicals, medicaments, pesticides and so on.

USP 6,456,664 discloses a process for producing optically active compounds having an electron-withdrawing group by reducing olefin with a silicon compound in the presence of an asymmetric copper complex. Said electron-withdrawing groups generally include nitro group, however the process gives poor yield when the process is applied to nitro compounds. Further, it may cause side reaction of isomerization.

Disclosure of the Invention

The present invention provides a method for producing an optically active nitro compound having two hydrogen atoms on its \(\alpha \)-carbon atom and having \(\beta \)-asymmetric carbon atom which comprises making \(\alpha \), \(\beta \)-unsaturated nitroolefin having a hydrogen atom on its \(\alpha \)-carbon atom react with at least two organosilicon compounds having at least one silicon-hydrogen bond in the molecule in the presence of an asymmetric copper complex.

Further, the present invention provides a method for producing an optically active nitro compound having two hydrogen atoms on its \(\alpha \)-carbon atom and having \(\beta \)-asymmetric carbon atom which comprises making \(\alpha \), \(\beta \)-unsaturated nitroolefin having a hydrogen atom on its \(\alpha \)-carbon atom react with an organosilicon compound having at least one silicon-hydrogen
bond in the molecule in the presence of an asymmetric copper complex and water.

Furthermore, the present invention provides a method for producing an optically active amino compound which comprises reducing the nitro compound obtained by the above-mentioned methods.

The optically active nitro compounds having two hydrogen atoms on its α-carbon atom and having β-asymmetric carbon atom are given by formula:

wherein R^a and R^b are different from each other and represent organic groups which are inert to the reduction of a nitro compound, and * indicates an asymmetric carbon.

The α, β-unsaturated nitroolefins having a hydrogen atom on its α-carbon atom of formula:

wherein R^a and R^b have the same meanings given above, are utilized for the present invention.

Typical compounds of the optically active nitro compound are given by formula (1):

wherein R¹ and R² are different from each other, and each of R¹ and R² represents an optionally substituted C1-C10 alkyl group, optionally substituted C3-C10 cycloalkyl group, optionally substituted C6-C14 aryl group or optionally substituted heterocyclic group; said heterocyclic group is pyridyl group, pyrimidinyl group, furyl group, thienyl group, pyrazolyl group.
group, imidazolyl group, oxazolyl group, thiazolyl group, quinolyl, quinazolinyl, dihydropyridyl, tetrahydrofuranyloxy and piperidyl group; and the substituent of the alkyl group, cycloalkyl group, aryl group and heterocyclic group is one or more selected from the group consisting of halogen atom, hydroxyl group, cyano group, isocyanato group, C1-C10 alkoxy group, C3-C10 cycloalkyl group, C6-C14 aryl group, C1-C10 alkylcarbonyl group, C6-C14 haloaryl group, C1-C10 alkylcarbonyloxy group, benzylloxy group, halobenzylloxy group, C1-C10 alkylsulfonyloxy group, C6-C14 arylsulfonyloxy group, C6-C14 haloaryl sulfonyloxy group, tetrahydrofuranloxy group, tetrahydropyranloxy group, amino group, C1-C10 alkylcarbonylamino group, trifluoroacetamino group, C6-C14 arylcarbonylamino group, halobenzylamino group, benzylxycarbonylamino group, pyridyl group, pyrimidinyl group, furyl group, thietyl group, imidazolyl group, halopyridyl group, C1-C10 alkylpyridyl group and C1-C10 alkylfuryl group; and * indicates an asymmetric carbon, and typical compounds of the α, β-unsaturated nitroolefins having a hydrogen atom on its α-carbon atom are given by formula (2):

$$\begin{align*}
\text{NO}_2 \\
\text{R}^1 \text{---} \text{R}^2
\end{align*}$$

(2)

wherein R¹ and R² have the same meanings given above.

Examples of the C1-C10 alkyl group for the optionally substituted C1-C10 alkyl group, C1-C10 alkylcarbonyl group, C1-C10 alkylcarbonyloxy group, C1-C10 alkylsulfonyloxy group, C1-C10 alkylcarbonylamino group, C1-C10 alkylpyridyl group and C1-C10 alkylfuryl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, penty1 and hexyl.

Examples of the C3-C10 cycloalkyl group for the optionally substituted C3-C10 cycloalkyl group and C3-C10 cycloalkyl group as the substituent include cyclopropyl, cyclopentyl, cyclohexyl and cyclooctyl.

Examples of the C6-C14 aryl group for the optionally substituted
C6·C14 aryl group, C6·C14 aryl group as the substituent, C6·C14 arylsulfonfylloxy group and C6·C14 arylcarbonylamino group include phenyl, 3·methylphenyl, 4·methylphenyl, 2,4·dimethylphenyl, 2,6·dimethylphenyl, 1·naphthyl and 2·naphthyl.

Examples of the heterocyclic group include 2·pyridyl group, 3·pyridyl group, 4·pyridyl group, 2·pyrimidiny1 group, 4·pyrimidiny1 group, 5·pyrimidiny1 group, 2·furyl group, 3·furyl group, 2·thienyl group, 3·thienyl group, 1·pyrazolyl group, 3·pyrazolyl group, 1·imidazolyl group, 2·imidazolyl group 4·imidazolyl group, 2·oxazolyl group, 2·thiazolyl, 2·quinolyl, 8·quinolyl, 2·quinazoliny1, 1,4·dihydro·2·pyridyl, tetrahydrofurfuryl and 2·piperidyl group which may be substituted.

The substituents of the alkyl, cycloalkyl, aryl and heterocyclic group are explained in detail below.

Examples of the halogen atom include fluorine, chlorine, bromine and iodine; examples of the C1·C10 alkoxy group include methoxy, ethoxy and butoxy; and examples of the C1·C10 alkylcarbonyl group include acetyl and propionyl. The C6·C14 haloaryl group means C6·C14 aryl group substituted by one or more halogen atoms and the typical examples include 4·chlorophenyl, 3·fluorophenyl, 2,4·dichlorophenyl, 2,6·dichlorophenyl and 4·trifluoromethy1phenyl. Examples of the C1·C10 alkylcarbonyloxy group include acetoxy and propionyloxy. The halobenzyloxy group means benzyloxy group substituted by one or more halogen atoms and the typical examples include 4·chlorobenzyloxy and 3·fluorobenzyloxy; and examples of the C1·C10 alkylsulfonfylloxy group include methanesulfonfylloxy and ethanesulfonfylloxy; examples of the C6·C14 arylsulfonfylloxy group include benzenesulfonfylloxy, 4·methylbenzenesulfonfylloxy and naphthalenesulfonfylloxy. The C6·C14 haloaryl sulfonfylloxy group means C6·C14 arylsulfonfylloxy group substituted by one or more halogen atoms and the typical examples include 4·chlorobenzenesulfonfylloxy and 4·bromobenzenesulfonfylloxy. Examples of the C1·C10 alkylcarbonylamino group include acetamino and propionamino; and examples of the C6·C14 arylcarbonylamino group include benzoylamino, 4·methylbenzoylamino and
naphthoylamino. The halobenzoylamino group means benzoylamino group substituted by one or more halogen atoms and the typical examples include 4-chlorobenzoylamino and 3-fluorobenzoylamino. Examples of the pyridyl group include 2-pyridyl, 3-pyridyl and 4-pyridyl; examples of the pyrimidinyl group include 2-pyrimidinyl, 4-pyrimidinyl and 5-pyrimidinyl; examples of the furyl group include 2-furyl and 3-furyl; examples of the thienyl group include 2-thienyl and 3-thienyl; and examples of the imidazolyl group include 1-imidazolyl, 2-imidazolyl and 4-imidazolyl. The halopyridyl group means pyridyl group substituted by one or more halogen atoms and the typical examples include 5-chloropyridin-2-yl, 3,5-dichloropyridin-2-yl and 5-bromopyridin-3-yl. Examples of the C1-C10 alkylpyridyl group include 5-methylpyridin-2-yl and 6-methylpyridin-2-yl; and examples of the C1-C10 alkylfuryl group include 5-methyl-2-furyl and 3-methyl-2-furyl.

Examples of the optionally substituted C1-C10 alkyl group for R¹ and R² include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, chloromethyl, trifluoromethyl, hydroxymethyl, 1-hydroxy-1-methylethyl, cyanomethyl, isocyanomethyl, methoxymethyl, ethoxymethyl, benzyl, phenethyl, 4-methylbenzyl, acetonyl, 3,3-dimethyl-2-oxo-butyl, 4-chlorobenzyl, 2,6-dichlorobenzyl, 4-trifluoromethoxybenzyl, acetoxyethyl, benzyloxymethyl, 4-chlorobenzoxymethyl, 2,4-dichlorobenzoxymethyl, methanesulfonyloxymethyl, benzenesulfonyloxymethyl, 4-methylbenzenesulfonyloxymethyl, 4-chlorobenzenesulfonyloxymethyl, tetrahydrofuranylloxymethyl, tetrahydropyranylloxymethyl, aminomethyl, acetaminomethyl, trifluoroacetaminomethyl, benzoylaminomethyl, 4-chlorobenzoylaminomethyl, benzylxocarbonylaminomethyl, pyridin-2-ylmethyl, pyrimidin-2-ylmethyl, furfuryl, thiophen-2-ylmethyl, imidazol-1-ylmethyl, 5-chloropyridin-2-ylmethyl, 6-methylpyridin-2-ylmethyl and 5-methylfurfuryl.

Examples of the optionally substituted C3-C10 cycloalkyl group for R¹ and R² include cyclopropyl, cyclopentyl, cyclohexyl and cyclooctyl,
2,2-dichlorocyclopropyl, 4-chlorocyclohexyl, 2,2-dicyanocyclopropyl, 4-cyanocyclohexyl and 4-isocyanocyclohexyl.

Examples of the optionally substituted C6-C14 aryl group for R1 and R2 include phenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,6-dimethylphenyl, 1-naphthyl, 2-naphthyl, 4-chlorophenyl, 3-fluorophenyl, 4-trifluoromethylphenyl, 4-hydroxyphenyl, 4-cyanophenyl, 4-isocyanophenyl, 4-methoxyphenyl, 4-tert-butoxyphenyl, 4-phenylphenyl, 4-acetylphenyl, 4-aminophenyl and 4-acetaminophenyl.

Examples of the optionally substituted heterocyclic group for R1 and R2 include 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-chloropyridin-2-yl, 3,5-dichloropyridin-2-yl, 5-bromopyridin-3-yl, 5-methylpyridin-2-yl, 6-methylpyridin-2-yl, 4-cyanopyridin-2-yl, 2-quinolyl, 8-quinolyl, 2-quinazolinyl, 5-methyl-2-furyl and 3-methyl-2-furyl.

The α, β-unsaturated nitroolefin having a hydrogen atom on its α-carbon atom used for the reaction of the present invention can be prepared by the reaction of nitromethane with a ketone (nitro-aldol reaction, Henry reaction) optionally followed by dehydration of the obtained nitroalcohol, or prepared by the reaction of an olefin with dinitrogen tetraoxide followed by elimination reaction. The preparation of the nitroolefin are well known and referred to many literatures including N. Ono “The Nitro Group in Organic Synthesis” Wiley-VCH, New York, pp.30-44 (2001) and Synthesis, p. 1017-1018 (1982).

Both (E)- and (Z)-nitroolefins can be utilized for the present invention.

The asymmetric copper complex used for the present invention is prepared by copper salt and optically active ligand precursor.

Examples of the copper salt include copper alkoxides such as copper C1-C6 alkoxides (e.g. copper tert-butoxide), copper carboxylates
such as copper C2-C6 carboxylates (e.g. copper acetate) and copper trifluoroacetate, copper sulfonates (e.g. copper trifluoromethanesulfonate), copper halides such as copper chloride and copper bromide, copper sulfate, copper tetrafluoroborate, copper trifluoromethanesulfonamide and copper phosphate. Both of cuprous (Cu(I)) salts and cupric (Cu(II)) salts are available as copper salts, however, cuprous salts are preferable. Further, cuprous alkoxides, especially, cuprous tert-butoxide is preferable. Cuprous alkoxide is prepared by the reaction of cuprous halide with sodium alkoxide, and it is provided to the reaction.

Examples of the optically active ligand precursor include optically active phosphorus-phosphorus ligand (bidentate phosphine ligand) such as optically active 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (optically active BINAP), optically active 6,6'-dimethyl-2,2'-bis(diphenylphosphino)-1,1'-biphenyl (optically active BIPHEMS), optically active 2,2'-bis(di-p-tolylphosphino)-1,1'-binaphthyl (optically active p-tol-BINAP), optically active N-(tert-butoxycarbonyl)-4-(diphenylphosphino)-2-[(diphenylphosphino)methyl]pyrrolidine (optically active BPPM), optically active 2,3-o-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane (optically active DIOP), optically active 2,3-bis(diphenylphosphino)butane (optically active CHIRAPHOS), optically active 2,4-bis(diphenylphosphino)pentane (optically active BDPP), optically active 5,6-bis(diphenylphosphino)-2-norbornene (optically active NORPHOS), optically active 1-[1',2-bis(diphenylphosphino)ferroceny]ethyl alcohol (optically active BPPFOH), optically active 1,2-bis(2,5-diethylphosphorano)ethane (optically active Et-BPE), optically active 1,2-bis(2,5-dimethylphosphorano)benzene (optically active Me-DUPHOS), optically active 1-[2-(diphenylphosphino)ferrocenyl] ethylidicyclohexylphosphine (optically active JOSIPHOS), optically active 6,6'-dimethoxybiphenyl-2,2'-diylbis[di(3,5-di-tert-butylphenyl)phosphine] (optically active 3,5-tBu-MeO-BIPHEP), optically active 6,6'-dimethoxybiphenyl-2,2'-diylbis[di(2-furyl)phosphine] (optically active 2-Furyl-MeO-BIPHEP) and optically active 1-[2-(dicyclohexylphosphino)
ferrocenyl]ethylidicyclohexylphosphine; optically active phosphorus-
nitrogen ligand (bidentate phosphinite ligand) such as optically active
methyl α-glucopyranoside·2,6-dibenzoate·3,4-di[bis(3,5-dimethylphenyl)
phosphinite], optically active 1,2-cyclohexyldiamino·N,N′-bis(2-
diphenylphosphanylbenezamide) and optically active
2-(2-diphenylphosphanylferrocenyl)·4-isopropyl-4,5-dihydrooxazol; optically
active phosphorus-sulfur ligand such as diphenyl-2-(2′-
phenylsulfenyl-[1,1′]-binaphthalen-2-yl)phosphate and optically active
2-(1-methylsulfenylethyl)-1-(diphenylphosphanylf)ferrocene; optically active
nitrogen-nitrogen ligand such as optically active
2,2′-isopropylidene-bis(4-benzyl-2-oxazoline), optically active bis(4-tert-
butyl-4,5-dihydrooxazol-2-yl)phenylamine, optically active 4,4′-dibenzyli-
4,5,4′,5′-tetrahydro-[2,2′]-bioxazolyl, optically active (4-phenyl-4,5-
dihydrooxazol-2-yl)·[4-phenyloxazolidin-(2E)-ylidene]acetonitrile and
optically active 2,6-bis(4-isopropyl-2-oxazolin-2-yl)pyridine; and optically
active carbon ligand such as optically active
2-[(3N-methylimidazol-1-yl)methyl]-1-trimethylsilylferrocene. Among
them, optically active bidentate phosphine ligand is preferably used.
Further, optically active p-tol·BINAP, optically active JOSIPHOS and
3,5-tBu·MeO·BIPHEP are more preferable.

The optically active ligand precursors have optical isomers, for
example, p-tol·BINAP has two optical isomers of (S)-p-tol·BINAP and
(R)-p-tol·BINAP. Each of the optically active ligand precursors can be
used for the objective optically active nitro compound having two hydrogen
atoms on its α-carbon atom and having β-asymmetric carbon atom

These optically active ligand precursors are available in the
market and also prepared by known methods described in R. Noyori
“Asymmetric Catalysis in Organic Synthesis” John Wiley & Sons, New
York (1994), Chapter 2; I Ojima “Catalytic Asymmetric Synthesis” VCH
(1994) and so on.

The asymmetric copper complex is usually prepared by mixing the
copper salt with the optically active ligand precursor in an inert solvent such as aromatic hydrocarbons (e.g. toluene, xylene). In the preparation, the amount of the optically active ligand precursor is usually equimolecular or more to the copper salt. Too much ligand precursor may not be beneficial by economical reason. Thus, the amount of the ligand precursor is usually 1 to 2 parts, preferably 1 to 1.5 parts by mol to 1 part by mol of the copper salt.

The mixture of the optically active ligand precursor and the copper salt in the solvent can be used as it is, or the mixture is concentrated and then provided for the reaction of the present invention. Further, the asymmetric copper complex may be formed in the reaction vessel at the α, β-unsaturated nitroolefin having a hydrogen atom on its α-carbon atom by adding the optically active ligand precursor and the copper salt separately.

The amount of the asymmetric copper complex is, based on the amount of the copper salt, usually 0.0001 to 0.5 part, preferably 0.0005 to 0.3 part by mol to 1 part by mol of the nitroolefin.

Examples of the organosilicon compounds having at least one silicon-hydrogen bond in the molecule used for the reaction of the present invention include poly(methylhydrosiloxane), hydride terminated poly(dimethylsiloxane), 1,1,3,3-tetramethyldisiloxane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, tris(dimethylsilyloxy)methylsilane, tris(trimethylsilyloxy) silane, tetrakis(dimethylsilyloxy)silane, trimethoxysilane, triethoxysilane, phenylsilane, methylphenylsilane, diphenylsilane, diphenylmethyisilane, triphenylsilane, dimethylphenylsilane, 1,2-bis(dimethylsilyl)benzene and 1,4-bis(dimethylsilyl)benzene.

According to the first method of the present invention, the optically active nitro compound having two hydrogen atoms on its α-carbon atom and having β-asymmetric carbon atom can be produced by making α, β-unsaturated nitroolefin having a hydrogen atom on its α-carbon
atom react with at least two organosilicon compounds having at least one silicon-hydrogen bond in the molecule in the presence of an asymmetric copper complex.

The optically active nitro compound, nitroolefin, organosilicon compound and asymmetric copper complex are mentioned above.

In the method, two or more kinds of the organosilicon compound are utilized. Typical combination is poly(methylhydrosiloxane) and at least one selected from the group consisting of phenylsilane, diphenylsilane and dimethylphenylsilane. In such case, the mixing ratio by mol of the poly(methylhydrosiloxane) to the phenylsilane, diphenylsilane and dimethylphenylsilane is usually 1 to 0.1-50, preferably 1 to 0.3-25.

The reaction is usually carried out at -78 to 100°C, preferably 0 to 50°C. The reaction time is usually 0.5 to 50 hours. The total amount of the organosilicon compounds used for the reaction is usually 1·10 parts by mol to 1 part by mol of the nitroolefin.

The reaction is usually carried out in an inert solvent. Examples of the solvent for the reaction include aromatic hydrocarbons such as toluene and xylene; ethers such as diethyl ether, methyl tert-butyl ether and tetrahydrofuran; aliphatic hydrocarbons such as hexane and heptane; halogenated hydrocarbons such as dichloromethane, chloroform and chlorobenzene; esters such as ethyl acetate; nitriles such as acetonitrile; ketones such as acetone; water and mixtures thereof. The solvent may be degassed of oxygen or air, under inert gas such as nitrogen and argon.

After the reaction, usual work-up procedure gives the objective optically active nitro compound. The reaction mixture is typically mixed with aqueous tetrabutylammonium fluoride solution, optionally added lipophilic organic solvent, extracted with the organic solvent and concentrated the organic layer to give the nitro compound. Examples of the organic solvent include aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as hexane and heptane; halogenated hydrocarbons such as dichloromethane, chloroform, chlorobenzene and dichlorobenzene; and ethers such as diethyl ether and methyl tert-butyl.
ether. The isolated nitro compound can be purified by usual procedures such as distillation, recrystallization and so on. When the objective compound is the optically active amino compound corresponding to the nitro compound, the reaction mixture can be subjected to the following reduction procedure without isolation.

According to the second method of the present invention, the optically active nitro compound having two hydrogen atoms on its α-carbon atom and having β-asymmetric carbon atom can be produced by making α, β-unsaturated nitroolefin having a hydrogen atom on its α-carbon atom react with an organosilicon compound having at least one silicon-hydrogen bond in the molecule in the presence of an asymmetric copper complex and water.

The optically active nitro compound, nitroolefin, organosilicon compound and asymmetric copper complex are mentioned above.

In this method, one kind of the organosilicon compound is sufficient for the reaction, though two or more kinds of the organosilicon compounds can be used. The amount of the organosilicon compound used for the reaction is usually 1-10 parts by mol to 1 part by mol of the nitroolefin.

The amount of water used for the reaction is usually one or more parts by mol to 1 part by mol of the nitroolefin. Water may be used in a large excess amount as a reaction solvent.

This method is usually carried out in a solvent and the solvent for the reaction is the same as the solvent for the reaction in the first method. The method is usually carried out by mixing the optically active nitro compound, organosilicon compound, asymmetric copper complex and water in the solvent, and the mixing order is not restricted. The reaction temperature and reaction time are the same as the first method. Further, the work-up procedures after the reaction are the same as the first method.

Examples of the optically active nitro compound produced by the
first or second method include optically active compounds of
1-nitro-2-phenylpropane, 2-(4-methylphenyl)-1-nitropropane,
2-(4-chlorophenyl)-1-nitropropane, 2-(4-methoxyphenyl)-1-nitropropane,
2-(4-acetylphenyl)-1-nitropropane,
1-nitro-2-(4-trifluoromethylphenyl)propane,
3-methyl-1-nitro-2-phenylbutane, 3-hydroxy-1-nitro-2-phenylpropane,
1-nitro-2,3,3-trimethylbutane, 3-hydroxy-2,3-dimethyl-1-nitrobutane,
1-nitro-2,4,4-trimethyl-1-nitropentane, 1-nitro-2-phenylpentane,
2-(2-naphthyl)-1-nitropropane, 3-(benzoylamino)-1-nitro-2-phenylpropane,
3-acetamino-1-nitro-2-phenylpropane,
3-(trifluoroacetamino)-1-nitro-2-phenylpropane,
1-nitro-2-(pyridin-2-yl)propane, 2-(5-chloropyridin-2-yl)-1-nitropropane,
1-nitro-2-[(pyridin-2-yl)methyl]propane, 2-(furan-2-yl)-1-nitropropane,
2-furfuryl-1-nitropropane, 1-nitro-2-(thiophen-2-yl)propane,
1-nitro-2-[(tetrahydropyranloxy)methyl]propane
and 1-nitro-2-[(tetrahydrofurfuryloxy)methyl]propane.

The optically active nitro compound produced by the first or second
method can be subjected to a reduction process to provide an optically
active amino compound, which has two hydrogen atoms on its α-carbon
atom and has β-asymmetric carbon atom. The nitro compound can be
subjected to a reduction process without isolation, namely the reaction
mixture can be subjected as it is after the reaction of the first or second
method.

Typical example of the optically active amino compound is given
by formula (3):

```
\[ \begin{align*}
R^1 & \quad \text{NH}_2 \\
\ast & \quad \text{R}^2
\end{align*} \]
```

wherein \(R^1 \) and \(R^2 \) have the same meanings given above, and \(\ast \) indicates an
asymmetric carbon,

which is produced by the reduction of the optically active nitro compound.
given by formula (1).

The reduction process is carried out according to a known method for reducing nitro group to amino group.

Typical method is reduction by hydrogen donor such as hydrogen, formic acid and ammonium formate in the presence of a metal catalyst. Examples of the metal catalyst include noble metals such as palladium, ruthenium and platinum, and Raney nickel. Both of heterogeneous catalysts and homogeneous catalysts are available as the noble metal catalyst, however, heterogeneous catalysts are preferable because the recovery of the catalyst is easy. In the noble metal heterogeneous catalysts, the noble metal is supported on a suitable carrier such as activated carbon, silica and zeolite. The amount of the noble metal on the carrier is usually 0.1-20 parts, preferably 0.2-10 parts by weight to 100 parts by weight of the carrier. A carrier having a larger surface area is preferably used because it has higher reactivity. The noble metal supported on activated carbon is preferably used.

The amount of the noble metal used for the reduction is usually 0.02-2 parts by weight to the 100 parts by weight of the optically active nitro compound. When Raney nickel is used, the amount of the Raney nickel is usually 1-50 parts by weight to 100 parts by weight of the optically active nitro compound.

The amount of the hydrogen donor is usually 3 parts by mol, practically 10 or more parts by mol to 1 part by mol of the optically active nitro compound.

The reaction is carried out under pressure or at atmospheric pressure. The reaction temperature is usually within the range between -20 and 100°C and the reaction time is usually within the range between 0.5 and 24 hours.

The reaction is usually carried out in an inert solvent such as alcohol solvents (e.g. methanol, ethanol). When the reaction mixture of the first or second method is used as it is, an addition of the alcohol solvent is preferable.
After the reaction, usual work-up procedure gives the objective optically active amino compound. The reaction mixture is typically subjected to filtration for removing catalyst and then concentration and so on. The isolated amino compound can be purified by distillation, recrystallization and so on. It can also be purified by forming salt (e.g. HCl salt), recrystallization and then making free.

Another typical method is carried out with a reducing agent from nitro group to amino group. Examples of the reducing agent include metal hydrides such as lithium aluminum hydride and sodium borohydride activated by cobalt chloride. The amount of the reducing agent is a theoretical amount or more.

The reducing reaction is usually carried out in an inert solvent such as ethers (e.g. tetrahydrofuran, diethyl ether) and alcohol solvents (e.g. methanol, ethanol). When the reaction mixture of the first or second method is used as it is, an addition of the alcohol solvent is preferable. The reaction temperature is usually within the range between -20 and 100°C and the reaction time is usually within the range between 0.5 and 24 hours.

After the reaction, usual work-up procedure gives the objective optically active amino compound. The reaction mixture is typically mixed with water or aqueous alkali solution for decomposing the residual reducing agent, extracted with an organic solvent under alkali or neutral condition, and then concentration and so on. The isolated amino compound can be purified by distillation, recrystallization and so on. It can also be purified by forming salt (e.g. HCl salt), recrystallization and then making free.

In the reduction process, the configuration is maintained and the optically active amino compound corresponding to the configuration of the optically active nitro compound is obtained.

Examples of the optically active amino compound produced by the
first or second method include optically active compounds of 1-\textit{aminoo}-2-phenylpropane, 1-\textit{aminoo}-2-(4-methylphenyl)propane, 1-\textit{aminoo}-2-(4-chlorophenyl)propane, 1-\textit{aminoo}-2-(4-methoxyphenyl)propane, 2-(4-acetylpheynyl)-1-aminopropene,

5 1-\textit{aminoo}-2-(4-trifluoromethylphenyl)propane,
1-\textit{aminoo}-3-methyl-2-phenylbutane, 1-\textit{aminoo}-3-hydroxy-2-phenylpropane,
1-\textit{aminoo}-2,3,3-trimethylbutane, 1-\textit{aminoo}-3-hydroxy-2,3-dimethylbutane,
1-\textit{aminoo}-2,4,4-trimethylpentane, 1-\textit{aminoo}-2-phenylpentane,
1-\textit{aminoo}-2-(2-naphthyl)propane,

10 1-\textit{aminoo}-3-(benzoylamino)-2-phenylpropane,
3-acetamino-1-\textit{aminoo}-2-phenylpropane,
1-\textit{aminoo}-3-(trifluoroacetamino)-2-phenylpropane,
1-\textit{aminoo}-2-(pyridin-2-yl)propane, 1-\textit{aminoo}-2-(5-chloropyridin-2-yl)propane,
1-\textit{aminoo}-2-(pyridin-2-yl)methylpropane, 1-\textit{aminoo}-2-(furan-2-yl)propane,

15 1-\textit{aminoo}-2-furfuylpropane, 1-\textit{aminoo}-2-(thiophen-2-yl)propane,
1-\textit{aminoo}-2-[(tetrahydropranylxy)methyl]propane and
1-\textit{aminoo}-2-[(tetrahydrofurlyloxy)methyl]propane.

Examples

The present invention will be further illustrated by the following examples; however, the present invention is not limited to these examples. In the following examples, the ratio of (R)/(S) is measured by liquid chromatography analysis with optically active column.

Example 1

In a 10mL Schlenk-flask, 6.8mg of cuprous tert-butoxide and 37.3mg of (S)-p-tol·BINAP were dissolved in 5ml of toluene. After stirring for 30 minutes at room temperature to give an asymmetric copper complex. One hundred microliters (100 µL) of this solution (containing 1 µmol of the asymmetric copper complex) were mixed with 4.9ml of toluene, and 90 µL (1.5mmol) of poly(methylhydrosiloxane) (15-40mPas (20°C), d=1.004g/mL, nD30=1.398, produced by Fluka) and 221mg (1.2mmol) of diphenylsilane were added thereto. After stirring for 5 minutes, 1 mmol of
(E)-1-nitro-2-phenyl-1-propene was added, and the mixture was further stirred for 24 hours at room temperature. Four milliliters (4mL) of a tetrahydrofuran solution of tetrabutylammonium fluoride (1mol/L) were added to the reaction mixture and stirring was continued for 3 hours. Water was added and the mixture was extracted with diethyl ether (30mL ×2). After drying over sodium sulfate, the solvent was evaporated. The residue was purified by flash chromatography (silica gel, hexane/ethyl acetate) to provide optically active 1-nitro-2-phenylpropane.

Yield: 67%

(R)/(S) = 86/14

1H-NMR (δ, 300MHz, CDCl3, 25°C) 7.34 (m, 2H), 7.25 (m, 3H), 4.58 (dd, J=12.1, 7.5Hz, 1H), 4.49 (dd, J=12.1, 8.1Hz, 1H), 3.64 (m, 1H), 1.39 (d, J=6.8Hz, 3H)

Example 2

In a 10mL Schlenk-flask, 6.8mg of copper (I) tert-butoxide and 32.7mg (55 μmol) of (S)-p-tol-BINAP were dissolved in 5ml of toluene. After stirring for 30 minutes at room temperature to give an asymmetric copper complex. This solution to the amount containing 1 μmol of the asymmetric copper complex were mixed with 4.9ml of toluene, and 6 μL (0.1mmol) of poly(methylhydrosiloxane) (15-40mPas (20°C), d=1.004g/mL, nD20=1.398, produced by Fluka) were added thereto. Further, 185 μL of (1.5mmol) of phenylsilane and 27 μL (1.5mmol) of water were added. After stirring for 5 minutes, 1 mmol of (E)-1-nitro-2-phenyl-1-propene was added, and the mixture was further stirred for 24 hours at room temperature. Four milliliters (4mL) of a tetrahydrofuran solution of tetrabutylammonium fluoride (1mol/L) were added to the reaction mixture and stirring was continued for 3 hours. Water was added and the mixture was extracted with diethyl ether (30mL ×2). After drying over sodium sulfate, the solvent was evaporated. The residue was purified by flash chromatography (silica gel, hexane/ethyl acetate) to provide optically active 1-nitro-2-phenylpropane.

Yield: 60%
(R)/(S) = 89/11
Example 3

The same procedure as Example 2, except that 1 \(\mu \) mol of the asymmetric copper complex of (S)-(R)-JOSIPHOS was used in place of 1 \(\mu \) mol of the asymmetric copper complex of (S)-p-tol-BINAP, provided optically active 1-nitro-2-phenylpropane.
Yield: 77%
(R)/(S) = 94/6
Example 4

The same procedure as Example 3, except that (E)-2-(4-chlorophenyl)-1-nitro-1-propene was used in place of (E)-1-nitro-2-phenyl-1-propene, provided optically active 2-(4-chlorophenyl)-1-nitropropane.
Yield: 88%
(R)/(S) = 95/5
Example 5

The same procedure as Example 4, except that 10 \(\mu \) mol of the asymmetric copper complex of (S)-(R)-JOSIPHOS was used in place of 1 \(\mu \) mol of the asymmetric copper complex of (S)-(R)-JOSIPHOS, provided optically active 2-(4-chlorophenyl)-1-nitropropane.
Yield: 89%
(R)/(S) = 95/5
Example 6

The same procedure as Example 5, except that (E)-2-(4-methoxyphenyl)-1-nitro-1-propene was used in place of (E)-2-(4-chlorophenyl)-1-nitro-1-propene, provided optically active 2-(4-methoxyphenyl)-1-nitropropane.
Yield: 94%
(R)/(S) = 95/5

\(^1\)H-NMR (\(\delta \), 300MHz, CDCl3, 25°C) 7.15 (m, 2H), 6.87 (m, 2H), 4.51 (dd, J=11.8, 8.1Hz, 1H), 4.45 (dd, J=11.8, 8.1Hz, 1H), 3.79 (s, 3H), 3.59 (m, 1H), 1.36 (d, J=7.2Hz, 3H)
Example 7
The same procedure as Example 5, except that (E)-3-hydroxy-2,3-dimethyl-1-nitro-1-butene was used in place of (E)-2-(4-chlorophenyl)-1-nitro-1-propene, provided optically active 3-hydroxy-2,3-dimethyl-1-nitrobutane.
Yield: 66%
(R)/(S) = 95/5

Example 8
The same procedure as Example 7, except that 3 µmol of the asymmetric copper complex of (S)-(R)-JOSIPHOS was used in place of 10 µmol of the asymmetric copper complex of (S)-(R)-JOSIPHOS, provided optically active 3-hydroxy-2,3-dimethyl-1-nitrobutane.
Yield: 55%
(R)/(S) = 97/3

Example 9
The same procedure as Example 7, except that (S)-p-tol-BINAP was used in place of (S)-(R)-JOSIPHOS, provided optically active 3-hydroxy-2,3-dimethyl-1-nitrobutane.
Yield: 60%
(R)/(S) = 93/7

Example 10
The same procedure as Example 9, except that (Z)-2-methyl-1-nitro-3-tetrahydropyranoxy-1-propene was used in place of (E)-3-hydroxy-2,3-dimethyl-1-nitro-1-butene, provided optically active 2-methyl-1-nitro-3-tetrahydropyranoxypropane.
Yield: 76%
(R)/(S) = 83/17

Example 11
The same procedure as Example 10, except that (S)-(R)-JOSIPHOS was used in place of (S)-p-tol-BINAP, provided optically active 2-methyl-1-nitro-3-tetrahydropyranoxypropane.
Yield: 62%
(R)/(S) = 93/7

Example 12

The same procedure as Example 11, except that 1 μmol of the asymmetric copper complex of (S)-(R)-JOSIPHOS was used in place of 10 μmol of the asymmetric copper complex of (S)-(R)-JOSIPHOS, provided optically active 2-methyl-1-nitro-3-tetrahydropyranoyloxypropane.

Yield: 81%
(R)/(S) = 93/7

Example 13

The same procedure as Example 11, except that (E)-2-methyl-1-nitro-3-tetrahydropyranoyloxy-1-propene was used in place of (Z)-2-methyl-1-nitro-3-tetrahydropyranoyloxy-1-propene, provided optically active 2-methyl-1-nitro-3-tetrahydropyranoyloxypropane.

Yield: 82%
(R)/(S) = 84/16

Example 14

The same procedure as Example 12, except that (E)-2-methyl-1-nitro-3-tetrahydropyranoyloxy-1-propene was used in place of (Z)-2-methyl-1-nitro-3-tetrahydropyranoyloxy-1-propene, provided optically active 2-methyl-1-nitro-3-tetrahydropyranoyloxypropane.

Yield: 77%
(R)/(S) = 83/17

Example 15

The same procedure as Example 5, except that (Z)-3-methyl-1-nitro-2-phenyl-1-butene was used in place of (E)-2-(4-chlorophenyl)-1-nitro-1-propene, provided optically active 3-methyl-1-nitro-2-phenylbutane.

Yield: 83%
(R)/(S) = 97/3

Example 16

The same procedure as Example 5, except that (E)-1-nitro-2-phenyl-1-pentene was used in place of
(E)-2-(4-chlorophenyl)-1-nitro-1-propene, provided optically active 1-nitro-2-phenyl-1-pentane.
Yield: 86%
(R)/(S) = 96/4

Example 17

In a 10mL Schlenk flask, 6.8mg of copper (I) tert-butoxide and 55 µmol of (S)-(R)-JOSIPHOS were dissolved in 5ml of toluene. After stirring for 30 minutes at room temperature to give an asymmetric copper complex. This solution to the amount containing 10 µmol of the asymmetric copper complex were mixed with 4.9ml of toluene, and 6 µL (0.1mmol) of poly(methylhydrosiloxane) (15·40mPas (20°C), d=1.004g/mL, nD20=1.398, produced by Fluka) were added thereto. Further, 185 µL of (1.5mmol) of phenylsilane and 27 µL (1.5mmol) of water were added. After stirring for 5 minutes, 1 mmol of (E)-1-nitro-2-(pyridin-2-yl)-1-propene was added, and the mixture was further stirred for 24 hours at room temperature. Water was added to the reaction mixture and the product was extracted with diethyl ether (30mL×2). After drying over sodium sulfate, the solvent was evaporated. The residue was purified by flash chromatography (silica gel, hexane/ethyl acetate) to provide optically active 1-nitro-2-(pyridin-2-yl)propene.
Yield: 55%
(R)/(S) = 86/14

Example 18

The same procedure as Example 5, except that (E)-1-nitro-2-(furan-2-yl)-1-propene was used in place of (E)-2-(4-chlorophenyl)-1-nitro-1-propene, provided optically active 1-nitro-2-(furan-2-yl)propene.
Yield: 72%
(R)/(S) = 95/5

Example 19

The same procedure as Example 5, except that (E)-1-nitro-2-(thiophen-2-yl)-1-propene was used in place of
(E)-2-(4-chlorophenyl)-1-nitro-1-propene, provided optically active 1-nitro-2-(thiophen-2-yl)propane.
Yield: 73%
(R)/(S) = 92/8

Example 20

The same procedure as Example 17, except that
(E)-3-hydroxy-1-nitro-2-phenyl-1-propene was used in place of
(E)-1-nitro-2-(pyridin-2-yl)-1-propene, provided optically active 3-hydroxy-1-nitro-2-phenylpropane.
Yield: 55%
(R)/(S) = 96/4

Example 21

The same procedure as Example 17, except that
(Z)-3-hydroxy-1-nitro-2-phenyl-1-propene was used in place of
(E)-1-nitro-2-(pyridin-2-yl)-1-propene, provided optically active 3-hydroxy-1-nitro-2-phenylpropane.
Yield: 70%
(R)/(S) = 94/6

Example 22

The same procedure as Example 5, except that
(Z)-1-nitro-2-phenyl-3-trifluoroacetamino-1-propene was used in place of
(E)-2-(4-chlorophenyl)-1-nitro-1-propene, provided optically active 1-nitro-2-phenyl-3-(trifluoroacetamino)propane.
Yield: 73%
(R)/(S) = 89/11

Example 23

The same procedure as Example 5, except that
(Z)-3-benzoylamino-1-nitro-2-phenyl-1-propene was used in place of
(E)-2-(4-chlorophenyl)-1-nitro-1-propene, provided optically active 3-(benzoylamino)-1-nitro-2-phenylpropane.
Yield: 70%
(R)/(S) = 95/5
Example 24

In a 10mL Schlenk flask, 6.8mg of copper (I) tert-butoxide and 55 μmol of (S)-(R)-JOSIPHOS were dissolved in 5ml of toluene. After stirring for 30 minutes at room temperature to give an asymmetric copper complex. This solution to the amount containing 10 μmol of the asymmetric copper complex were mixed with 4.9ml of toluene. Further, 185 μL of (1.5mmol) of phenylsilane and 27 μL (1.5mmol) of water were added thereto. After stirring for 5 minutes, 1 mmol of (E)-2-(4-acetylyphenyl)-1-nitro-1-propene was added, and the mixture was further stirred for 24 hours at room temperature. Four milliliters (4mL) of a tetrahydrofuran solution of tetrabutylammonium fluoride (1mol/L) were added to the reaction mixture and stirring was continued for 3 hours. Water was added and the mixture was extracted with diethyl ether (30mL ×2). After drying over sodium sulfate, the solvent was evaporated. The residue was purified by flash chromatography (silica gel, hexane/ethyl acetate) to provide optically active 2-(4-acetylyphenyl)-1-nitropropane. Yield: 86% (R)/(S) = 95/5

Example 25

In a 10mL Schlenk flask, 8mg of copper (I) chloride and 8mg of sodium tert-butoxide and 110mg of (S)-p-tol-BINAP were dissolved in 6ml of toluene. After stirring for 15 minutes at room temperature to give an asymmetric copper complex. Into this solution, 360 μL (6.0mmol) of poly(methylhydrosiloxane) (15·40mPas (20°C), d=1.004g/mL, nD20=1.398, produced by Fluka) and 32mg of water were added. After stirring for 5 minutes, 1.5mmol of (E)-1-nitro-2-phenyl-1-propene were added, and the mixture was further stirred for 22 hours at room temperature. ¹H-NMR analysis showed that the objective optically active 1-nitro-2-phenylpropane was provided in 50% yield. A by-product, 1-nitro-2-phenyl-2-propene was provided in 4% yield.

The reduction of the nitro compound obtained by the above-mentioned
method for producing the optically active amino compound is given by the following example.

Example 26

Under argon atmosphere, 121mg of optically active 1-nitro-2-phenylpropane (732 μmol) were dissolved in 5mol of dry methanol and 50mg of palladium on charcoal (10%) were added thereto. The obtained suspension was vigorously stirred under hydrogen atmosphere for 24 hours. The mixture was filtered and the solid was washed with methanol. The solvent was evaporated and the residue was dissolved in 2ml of benzene. The solvent was evaporated to give 95mg of an optically active 1-amino-2-phenylpropane as a colorless oil (703 μmol).

Yield: 96%

Industrial Applicability

The present invention provides a method for producing optically active nitro compounds and amino compounds which are useful for synthetic intermediates for fine chemicals, medicaments, pesticides and so on.
Claims

1. A method for producing an optically active nitro compound having two hydrogen atoms on its α-carbon atom and having β-asymmetric carbon atom which comprises making α, β-unsaturated nitroolefin having a hydrogen atom on its α-carbon atom react with at least two organosilicon compounds having at least one silicon-hydrogen bond in the molecule in the presence of an asymmetric copper complex.

2. The method according to claim 1, wherein the organosilicon compounds are poly(methylhydrosiloxane) and at least one selected from the group consisting of phenylsilane, diphenylsilane and dimethylphenylysilane.

3. The method according to claim 1 or 2, wherein the asymmetric copper complex has at least one optically active bidentate phosphine ligand.

4. The method according to claim 1 or 2, wherein the nitro compound is a compound of formula (1):

\[
\text{NO}_2
\]

\[
\text{R}^1\text{R}^2
\]

wherein R\(^1\) and R\(^2\) are different from each other, and each of R\(^1\) and R\(^2\) represents an optionally substituted C1-C10 alkyl group, optionally substituted C3-C10 cycloalkyl group, optionally substituted C6-C14 aryl group or optionally substituted heterocyclic group; said heterocyclic group is pyridyl group, pyrimidinyl group, furyl group, thienyl group, pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, quinolyl group, quinazolinyl group, dihydropyridyl group, tetrahydrofuranyl group and piperidyl group; and the substituent of the alkyl group, cycloalkyl group, aryl group and heterocyclic group is one or more selected from the group consisting of halogen atom, hydroxyl group, cyano group, isocyanato group, C1-C10 alkoxy group, C3-C10 cycloalkyl group, C6-C14 aryl group, C1-C10 alkylcarbonyl group, C6-C14 haloaryl group, C1-C10 alkylcarbonyloxy group, benzyloxy group, halobenzyloxy group, C1-C10 alkylsulfonloxy group, benzyloxy group, halobenzyloxy group, C1-C10 alkylsulfonloxy group.
group, C6-C14 arylsulfonyloxy group, C6-C14 haloarylsulfonyloxy group, tetrahydrofuranyloxy group, tetrahydropyranyloxy group, amino group, C1-C10 alkylcarbonylamino group, trfluoroacetamino group, C6-C14 arylcarbonylamino group, halobenzoylamino group, benzylxycarbonylamino group, pyridyl group, pyrimidinyl group, furyl group, thieryl group, imidazolyl group, halopyridyl group, C1-C10 alkylpyridyl group and C1-C10 alkylfuryl group; and * indicates an asymmetric carbon,

and the α, β-unsaturated nitroolefin is a compound of formula (2):

\[
\begin{align*}
\text{NO}_2 \\
R^1 \\
R^2 \\
\end{align*}
\]

(2)

wherein R^1 and R^2 have the same meanings given above.

5. A method for producing an optically active nitro compound having two hydrogen atoms on its α-carbon atom and having β-asymmetric carbon atom which comprises making α, β-unsaturated nitroolefin having a hydrogen atom on its α-carbon atom react with an organosilicon compound having at least one silicon-hydrogen bond in the molecule in the presence of an asymmetric copper complex and water.

6. The method according to claim 5, wherein the asymmetric copper complex has at least one optically active bidentate phosphine ligand.

7. The method according to claim 5 or 6, wherein the nitro compound is a compound of formula (1):

\[
\begin{align*}
\text{NO}_2 \\
R^1 \text{ - } \ast \text{ - } R^2 \\
\end{align*}
\]

(1)

wherein R^1 and R^2 are different from each other, and each of R^1 and R^2 represents an optionally substituted C1-C10 alkyl group, optionally substituted C3-C10 cycloalkyl group, optionally substituted C6-C14 aryl group or optionally substituted heterocyclic group; said heterocyclic group is pyridyl group, pyrimidinyl group, furyl group, thieryl group, pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, quinolyl group,
quinazolinyl group, dihydropyridyl group, tetrahydrofuranyl group and piperidyl group; and the substituent of the alkyl group, cycloalkyl group aryl group and heterocyclic group is one or more selected from the group consisting of halogen atom, hydroxyl group, cyano group, isocyano group, C1-C10 alkoxy group, C3-C10 cycloalkyl group, C6-C14 aryl group, C1-C10 alkylcarbonyl group, C6-C14 haloaryl group, C1-C10 alkylcarbonyloxy group, benzyloxy group, halobenzyloxy group, C1-C10 alkylsulfonyloxy group, C6-C14 arylsulfonyloxy group, C6-C14 haloaryl sulfonyloxy group, tetrahydrofuranyl oxy group, tetrahydropyanyl oxy group, amino group, C1-C10 alkylcarbonylamino group, trifluoroacetamino group, C6-C14 arylcarbonylamino group, halobenzoylamino group, benzyloxycarbonylamino group, pyridyl group, pyrimidinyl group, furyl group, thienyl group, imidazolyl group, halopyridyl group, C1-C10 alkylpyridyl group and C1-C10 alkylfuryl group; and * indicates an asymmetric carbon,

and the \(\alpha, \beta \)-unsaturated nitroolefin is a compound of formula (2):

\[
\begin{align*}
\text{NO}_2 \\
\text{R}^1 & \quad \text{R}^2
\end{align*}
\]

wherein \(\text{R}^1 \) and \(\text{R}^2 \) have the same meanings given above.

8. A method for producing an optically active amino compound which comprises reducing the nitro compound obtained by the method described in any of claims 1-7.
A. CLASSIFICATION OF SUBJECT MATTER

IPC 7: C07C201/12 C07C231/12 C07D307/58 C07D213/06 C07D307/38
 C07D309/04 C07D333/12

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7: C07C C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002295506 Database accession no. 4657206 abstract & K. ISEKI ET AL: TETRAHEDRON LETT., vol. 37, no. 50, 1996, pages 9081-9084, ------</td>
<td>8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principles or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"S" document member of the same patent family

Date of the actual completion of the international search

27 September 2004

Date of mailing of the international search report

13/10/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HN Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer

Österle, C
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002295508 Database accession no. 5343173 abstract & S.R. CROSBY ET AL: TETRAHEDRON LETT., vol. 41, no. 3, 2000, pages 397-402,</td>
<td>8</td>
</tr>
<tr>
<td>X</td>
<td>DATABASE BEILSTEIN BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; XP002295510 Database accession no. 4199910 abstract & H. SCHAEFER ET AL: TETRAHEDRON, vol. 51, no. 8, 1995, pages 2305-2324,</td>
<td>8</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>A</td>
<td>MAGNUS P ET AL: "Direct conversion of alpha,beta-unsaturated nitriles into cyanohydrins using Mn(dpm)3 catalyst, dioxygen and phenylsilane" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 42, no. 25, 18 June 2001 (2001-06-18), pages 4127-4129, XP004241479 table 2</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>WO 02/066417 A (SEIDELMANN OLIVER ; CHIROBLOCK GMBH (DE); EILITZ UWE (DE); LESSMANN FR) 29 August 2002 (2002-08-29) the whole document</td>
<td>1-8</td>
</tr>
</tbody>
</table>
Continuation of Box II.2

Claims Nos.: 8 in part

The initial phase of the search revealed a very large number of documents relevant to the issue of novelty and only a small, representative number of documents have been cited.

The applicant’s attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.5), should the problems which led to the Article 17(2) declaration be overcome.
INTERNATIONAL SEARCH REPORT

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. X Claims Nos.: 8 in part because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

 see FURTHER INFORMATION sheet PCT/ISA/210

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

□ The additional search fees were accompanied by the applicant's protest.

□ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 5227538 A</td>
<td>13-07-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5292893 A</td>
<td>08-03-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5220020 A</td>
<td>15-06-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 136878 T</td>
<td>15-05-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2096747 A1</td>
<td>22-05-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69118906 D1</td>
<td>23-05-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0558656 A1</td>
<td>08-09-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6502867 T</td>
<td>31-03-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5442119 A</td>
<td>15-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9209545 A2</td>
<td>11-06-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5489682 A</td>
<td>06-02-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0119761 A2</td>
<td>22-03-2001</td>
</tr>
</tbody>
</table>