发明名称
偏振双波长光纤超短脉冲激光器

摘要
本发明公开了一种偏振双波长光纤超短脉冲激光器。其结构采用保偏或普通掺稀土光纤，作为激光增益介质，利用保偏分束器分光，宽带啁啾光纤光栅作为腔内反射元件，色散补偿元件和半导体可饱和吸收体作为锁模元件，产生高重复率、高功率，结构简单，高效率的光纤激光器。是实现全光纤化的双波长锁模光纤超短激光脉冲输出的激光器。它具有皮秒和飞秒光脉冲宽度偏振激光输出，波长>1μm激光；该激光器的高功率双波长光纤放大器放大后，可用于替代体积庞大、操作复杂、效率低下的双色波长锁模钛宝石激光器和放大器，用于利用差频产生15μm左右的中红外超短脉冲激光，用于分子系统的泵浦-探测超快光物理实验等或环境监测和微波光子学及生物物理实验等。
一种偏振双波长光纤超短脉冲激光器，采用保偏元器件，其特征在于：它由第一激
光腔体端面及输出端面、光纤激光增益介质及双波长分光器和第二激光腔体端面及双波
长调谐器组成，所述的光纤激光增益介质及双波长分光器，采用一段保偏掺稀土增益光纤
作为增益介质，用一个偏振分束器将两个不同偏振方向的激光分别作为长波（λ₁）和短波
（λ₂）的激光振荡谐腔臂，其结构包括：
一个泵浦源（5）为波分复用器（4）提供泵浦光，作为输入泵浦光；
一个波分复用器（4）与保偏掺稀土增益光纤（3）连接用于将泵浦源的泵浦光（5）输入
保偏掺稀土增益光纤（3）中产生双波长激光振荡；
一个偏振分束器（6）的一字端由保偏光纤（61）与波分复用器（4）的另一端连接，偏振
分束器（6）将偏振光纤（62, 62）的两个偏振方向的激光分开；
所述的第一激光腔体端面及输出端面为以下结构中的一种；
（1）一个光纤耦合器（2）的一端与保偏掺稀土增益光纤（3）连接，用于将光纤激光器
产生的双波长激光耦合输出；光纤耦合器（2）的另一端与一个半导体可饱和吸收体（1）连
接，作为激光腔体的一个端面，同时作为被动锁模的锁模元件；
（2）两个宽带啁啾光纤光栅（15, 16）与保偏掺稀土增益光纤（3）连接，作为激光腔体的
一个端面，同时作为双波长锁模激光耦合输出端；
所述的第二激光腔体端面及双波长谐腔为以下结构中的一种；
（1）两个光纤准直器（71, 72）分别与偏振分束器（6）的两个偏振光纤（62, 63）连接，
用于将两个偏振方向的激光准直后进入波长调谐和腔内色散元件中；两个展宽光栅（81, 82）分
别放在两个光纤准直器（71, 72）后，作为两个波长激光的波长调谐元件和腔内反射
元件；
（2）两个光纤准直器（71, 72）分别与偏振分束器（6）的两个偏振光纤（62, 63）连接，用
于将两个偏振方向的激光准直后进入波长调谐和腔内色散元件中；两个展宽光栅由第一
光栅（81）和第二光栅（82）构成，放在两个光纤准直器（71, 72）后，作为腔内两个激
光波长色散补偿元件和双波长激光调谐元件；两个全反射镜（91, 92）分别放在两个光
栅对外，作为双波长锁模光纤激光器激光腔体反射镜；
（3）两个光纤准直器（71, 72）分别与偏振分束器（6）的两个偏振光纤（62, 63）连接，用
于将两个偏振方向的激光准直后进入波长调谐和腔内色散元件中；两个展宽光栅由第一
光栅（81）和第二光栅（82）构成，放在两个光纤准直器（71, 72）后，作为腔内两个激
光波长色散补偿元件和双波长激光调谐元件；两个半导体可饱和吸收体（101, 102）分别放在两
个光栅对外，作为双波长锁模光纤激光器激光腔体腔内反射镜；
（4）两个宽带啁啾光纤光栅（15, 16）直接与偏振分束器（6）的两个偏振光纤（62, 63）连
接，两个宽带啁啾光纤光栅（15, 16）作为双波长激光锁模光纤激光腔体的腔体内色散补
偿元件，同时作为锁模双波长光纤激光腔体另一个反射端面；
（5）两个宽带啁啾光纤光栅（15, 16）分别与两个半导体可饱和吸收体（101, 102）连接，
分别作为腔内两个波长激光的色散补偿器件和双波长激光波长缩选元件，两个半导体可饱和
吸收体（101, 102）作为两个波长激光的锁模元件和光纤激光腔体反射端面。
2. 一种偏振双波长光纤超短脉冲激光器，其特征在于：它由第一激光腔体端面及输出
端面、光纤激光增益介质及双波长分光器和第二激光腔体端面及双波长谐腔组成，所述
的光纤激光增益介质及双波长分光器，采用一个偏振分束器将两个不同偏振方向的光分别
作为长波（λ₁）和短波（λ₂）的激光振荡调谐臂，采用两段不同长度的偏振掺杂稀土光纤，
在两个双波长激光调谐臂作为增益介质，其结构包括：

两个泵浦源（51,52）分别为两个波分复用器（41,42）提供泵浦光，作为输入泵浦激
光；

两个波分复用器（41,42）分别与两段不同长度的掺稀土光纤（31,32）的一端连接用于
将泵浦源的泵浦激光（51,52）分别输入掺稀土光纤（31,32）中产生双波长激光振荡；

一个偏振分束器（6）的两个分束偏振光纤端（62,63）分别与掺稀土光纤（31,32）另一
端连接，用于将两个偏振方向的激光合束进入偏振分束器（6）的单根一字端偏振光纤（61）
中；

所述的第一激光腔体端面及输出端面为以下结构中的一种：

（1）偏振光纤（61）的一端与偏振分束器（6）合束一字端连接，另一端与光纤耦合器
（2）的一端光纤连接，输出双波长模激光脉冲；光纤耦合器（2）的另一端光纤与一个半导
体可饱和吸收体（1）通过耦合光学系统连接或直接通过光学胶连接，半导体可饱和吸收体
充当锁模元件和激光腔体的一个腔体反射元件；

（2）偏振光纤（61）的一端与偏振分束器（6）合束一字端连接，另一端与两个偏振宽带
啁啾光纤光栅（15,16）连接，两个偏振宽带啁啾光纤光栅（15,16）作为双波长锁模激光激
光器的输出耦合端口，同时作为整个光纤激光器腔体的双波长激光腔内波长选择元件；

所述的第二激光腔体端面及双波长谐谐腔为以下结构中的一种：

（1）两个波分复用器（41,42）的另一端光纤分别与两个光纤准直器（71,72）连接，两个
光纤准直器（71,72）分别将两个波长的激光准直后分别进入锁模光纤激光器的双波长激
光色散补偿器中；两个半导体可饱和吸收体（101,102）分别是整个双波长锁模光纤激光腔
体两个波长激光的腔体端面反射元件和锁模元件；

（2）两个波分复用器（41,42）的另一端光纤分别与两个宽带啁啾光纤光栅（15 和 16）
连接，作为双波长锁模光纤激光器腔内色散补偿元件/整个双波长锁模光纤激光器腔体的
腔面反射元件；

（3）两个波分复用器（41,42）的另一端光纤分别与两个光纤准直器（71,72）连接后直
接进入光栅（81,82）作为腔体反射元件和双波长色散谐腔元件；

（4）两个波分复用器（41,42）的另一端光纤分别与两个宽带啁啾光纤光栅（15,16）连
接，两个宽带啁啾光纤光栅（15,16）分别作为整个双波长锁模光纤激光器腔体内的色散补
偿元件；两个宽带啁啾光纤光栅（15,16）分别与两个半导体可饱和吸收体（101,102）通过
耦合光学系统连接或直接通过光学胶连接，两个半导体可饱和吸收体（101,102）功能分别
是两个波长激光的锁模元件和整个双波长锁模光纤激光腔体的两个波长激光腔体端面反
射元件；

（5）两个波分复用器（41,42）的另一端光纤分别与两个光纤准直器（71,72）连接，两个
光纤准直器（71,72）分别将两个波长的激光准直后分别进入锁模光纤激光器的双波长激
光色散补偿器中，两个光纤准直器（71,72）分别将两个波长的激光准直后分别进入两个光
栅对与两个平面反射镜（91,92）的色散补偿系统中，该光栅对分别由第一光栅（81）和第二
光栅（82）组成，两个平面反射镜（91,92）分别充当两个波长激光的腔体端面反射元件。
3. 一种偏振双波长光纤超短脉冲激光器，其特征在于：它由第一激光腔体底面及输出端面、光纤激光增益介质及双波长分光器和第二激光腔体端面及双波长调谐腔组成。所述的光纤激光增益介质及双波长分光器，采用一个掺稀土非保偏增益光纤作为增益介质，采用一个偏振分束器将两个不同偏振方向的激光分别作为长波（λ₁）和短波（λ₂）的激光振荡谐频，其结构包括：

一个泵浦源（5）为波分复用器（4）提供泵浦光，作为输入泵浦激光；
一个波分复用器（4）与掺稀土非保偏增益光纤（3）连接用于将泵浦源（5）的泵浦激光输入到掺稀土非保偏增益光纤（3）中产生双波长激光振荡；
一个波分复用器（4）的另一个光纤端与一个单模光纤偏振控制器（18）的一个光纤端连接，单模光纤偏振控制器（18）是调整光纤激光器腔体的两个波长激光偏振状态和两个波长激光的增益平衡以利于克服激光增益介质均匀光谱展宽造成的双波长激光的增益竞争，有利于双波长激光振荡；
一个单模光纤偏振控制器（18）的另一个光纤端与一个偏振分束器（6）的一字端保偏光纤（61）连接；

所述的第一激光腔体端面及输出端面为以下结构：两个宽带谐波光纤光栅（15, 16）与掺稀土非保偏增益光纤（3）连接，作为整个双波长锁模光纤激光器的一个腔体端面，同时作为双波长锁模激光耦合输出端；

所述的第二激光腔体端面及双波长调谐腔为以下结构中的一种：

(1) 偏振分束器（6）的另外两个偏振分束光纤端（62, 63）分别与两个光纤准直器（71, 72）相连，两个光纤准直器（71, 72）有将两个偏振方向的激光准直后进入激光腔体内两个激光波长的偏振方向、波长调谐和色散系统中；两个偏振方向的激光经过两个光纤准直器（71, 72）准直后分别进入两个光纤光栅（15, 16）与掺稀土非保偏增益光纤（3）连接，作为整个双波长锁模光纤激光器的一个腔体端面，同时作为双波长锁模激光耦合输出端；

(2) 一个偏振分束器（6）的另外两个偏振分束光纤端（62, 63）分别与两个宽带谐波光纤光栅（15, 16）相连，两个宽带谐波光纤光栅（15, 16）是整个光纤激光器腔体两个激光波长的色散补偿和两个激光波长的选择；两个宽带谐波光纤光栅（15, 16）分别与两个半导体可饱和吸收体（101, 102）通过耦合光学系统连接或直接通过光学胶连接，两个半导体可饱和吸收体（101, 102）分别是一个波长激光的锁模元件和一个波长激光腔体的端面反射元件。

4. 一种偏振双波长光纤超短脉冲激光器，其特征在于：它由第一激光腔体端面及输出端面、光纤激光增益介质及双波长分光器和第二激光腔体端面及双波长调谐腔组成。所述的光纤激光增益介质及双波长分光器，采用一个偏振分束器将两个不同偏振方向的光分别作为长波（λ₁）和短波（λ₂）的激光振荡谐频，采用两段不同长度的掺稀土非保偏单模光纤在两个波长激光调谐频上作为增益介质，其结构包括：

两个泵浦源（51, 52）分别为两个波分复用器（41, 42）提供泵浦光，作为输入泵浦光源；
两个波分复用器（41, 42）的一端光纤分别与两段不同长度的掺稀土非保偏单模光纤（31, 32）连接用于将泵浦源（51, 52）的泵浦激光分别输入掺稀土非保偏单模光纤（31, 32）
中产生双波长激光振荡；

两个单模光纤光键控制器 (181, 182) 的一端光纤分别与两段不同长度的掺稀土非保偏单模光纤 (31, 32) 另一端连接，两个单模光纤光键控制器 (181, 182) 分别用于调整两个激光波长的偏振态和进入偏振分束器 (6) 的光强比例以调节两个波长激光的增益和强度；

两个单模光纤光键控制器 (181, 182) 的另一端光纤分别与一个偏振分束器 (6) 的两个偏振分束偏振光纤端 (62, 63) 连接；

所述的第一激光腔体端面及输出端面结构为以下结构中的一种；

(1) 偏振分束器 (6) 的合束一字端偏振光纤 (61) 与两个偏振宽带啁啾光纤光栅 (15, 16) 连接，两个偏振宽带啁啾光纤光栅 (15, 16) 作为锁模光纤激光器的输出耦合端口，同时作为整个锁模光纤激光器腔体的腔内色散补偿元件；

(2) 偏振分束器 (6) 的合束一字端偏振光纤 (61) 与一个偏振光纤耦合的透射式半导体可饱和吸收体 (19) 一端光纤连接，透射式半导体可饱和吸收体 (19) 的另一端偏振光纤与两个偏振宽带啁啾光纤光栅 (15, 16) 连接，两个偏振宽带啁啾光纤光栅 (15, 16) 作为双波长锁模激光器的输出耦合端口，同时作为整个双波长锁模光纤激光器腔体内的激光色散补偿元件；

所述的第二激光腔体端面及双波长调谐腔结构为以下结构中的一种；

(1) 两个波分复用器 (41, 42) 的另一端光纤分别与两个光纤耦合的透射式半导体可饱和吸收体 (191, 192) 一端光纤连接，两个透射式半导体可饱和吸收体 (191, 192) 的另一端光纤分别与两个宽带啁啾光纤光栅 (15, 16) 连接，两个透射式半导体可饱和吸收体 (191, 192) 分别是两个波长激光的锁模元件，两个偏振宽带啁啾光纤光栅 (15, 16) 是两个波长激光的腔内色散补偿、波长选择和激光腔体的端面反射镜；

(2) 两个波分复用器 (41, 42) 的另一端光纤分别与两个宽带啁啾光纤光栅 (15, 16) 连接，两个宽带啁啾光纤光栅 (15, 16) 分别与两个半导体可饱和吸收体 (101, 102) 通过耦合光学系统连接或直接通过光学胶连接，两个半导体可饱和吸收体 (101, 102) 分别作为两个波长激光的锁模元件和两个波长激光腔体端面反射元件，两个宽带啁啾光纤光栅 (15, 16) 是两个波长锁模光纤激光器腔内色散补偿元件和两个波长激光选择元件；

(3) 两个波分复用器 (41, 42) 的另一端光纤分别与两个光纤准直器 (71, 72) 连接，两个光纤准直器 (71, 72) 分别将两个波长的激光准直后分别进入双波长激光锁模光纤激光器的色散补偿器中；两个波长的激光经过两个光纤准直器 (71, 72) 准直后分别进入两个光栅对和两个平面反射镜 (91, 92) 组成的光纤激光色散补偿系统中，每对光栅由第一光栅 (81) 和第二光栅 (82) 构成，两个光栅对的功能是两个波长激光的腔内色散补偿和两个波长激光的波长选择，而两个平面反射镜 (91, 92) 的功能是两个波长激光腔体的端面反射镜；

(4) 两个波分复用器 (41, 42) 的另一端光纤分别与两个光纤准直器 (71, 72) 连接，两个光纤准直器 (71, 72) 分别将两个波长的激光准直后分别进入双波长激光锁模光纤激光器的色散补偿器中；分别进入两个光栅 (81, 82) 中，两个光栅分别作为两个波长激光腔体反射元件和波长色散调谐元件。
偏振双波长大光纤超短脉冲激光器

技术领域
[0001] 本发明涉及一种光纤维激光器，特别涉及一种具有高脉冲重复率双波长超短光脉冲输出的被动锁模光纤维激光器，适用于采用直接差频法产生超短脉冲中红外激光辐射用于分子系统的泵浦－探测等科学实验，环境监测和微波光子学及生物物理学探测等，属激光信息技术领域。

背景技术
[0002] 现今分子系统的泵浦－探测等科学实验，环境监测和微波光子学及生物物理学探测等需要高平均功率超短脉冲的中红外光源。近年来固体激光介质如可调谐钛宝石激光器技术和谐波频变换技术及光参量振荡与放大技术的发展，高重复率超短光脉冲覆盖从200nm的紫外到4μm的中红外都已得到实现。而Tlz系统可提供的波长超过20μm。
明 书

[0008] 基于光纤技术的双波长锁模光纤激光器具有如下一些优点，如掺稀土离子单模光纤损耗小，采用紧凑全光纤高效率的泵浦成为可能，光纤结构具有较高的面积 - 体积比因而散热较好。可以与通讯光纤很好地兼容因而可以采用光纤光缆及全光纤分束器耦合器等全光纤器件结构减少对状光学元件的依赖和光路调整的困难，极大地简化双波长锁
模超短脉冲光纤激光器的设计和调整。由于可以采用不同的掺稀土光纤可以在很宽的波长范围内实现具有双波长振荡的锁模超短光脉冲输出。可采用大模场双履层掺稀土光纤或大模场光子晶体掺稀土光纤采用啁啾脉冲放大 (CPA) 技术实现功率放大产生高平均功率双波长超短脉冲输出。

【0009】公开号为 CN101202408A 的中国发明专利“共偏振光纤光栅可调谐双波长光纤激光器”其采用了偏振光纤光栅的两个不同偏振态所具有的两个光谱反射峰通过改变压力或温度改变偏振光纤光栅的反射峰位置实现双波长线偏振谐波激光输出。其缺点是：1. 这两个由于偏振光纤固有的大的双折射引起的不同的反射峰（分别有不同的偏振态）的光谱间隔比较小而且调节的范围很小；2. 由于采用窄带宽偏振光纤光栅作为激光腔体反射面, 很难实现线性锁模产生超短激光脉冲; 3. 此腔体结构适合线性宽调谐双波长光纤激光器。公开号为 CN1194453C 的中国发明专利“一种多波长输出光纤激光器”，采用 AWG (阵列波导光栅) 作为腔内光滤波器实现多波长激光输出。

发明内容
[0012] 本发明的目的是为了克服现有技术存在的不足，提供一种新结构的偏振波长光纤超短脉冲激光器。
[0013] 为了实现上述发明目的，本发明采用的技术方案是：一种偏振波长光纤超短脉冲激光器，采用偏振分束器，它由第一激光腔体端面及输出端面、光纤激光增益介质及双波长分光器和第二激光腔体端面及双波长调谐腔组成，所述的光纤激光增益介质及双波长分光器，采用一段偏振分束器（PBS）将两个不同偏振方向的激光分别作为长波（λ₁）和短波（λ₂）的激光振荡调谐器，其结构包括：
[0017] 上述偏振双波长光纤超短脉冲激光器所述的第一激光腔体端面及输出端面为以下结构中的一种：
[0020] 上述偏振双波长光纤超短脉冲激光器所述的第二激光腔体端面及波长调谐腔为以下结构中的一种：

(6) 另一种技术方案，一种偏振双波长光纤超短脉冲激光器，它由第一激光腔体端面及输出端面、光纤激光增益介质及双波长光纤器和第二激光腔体端面及双波长谐振腔组成，所述的光纤激光增益介质及双波长光纤器，采用一个偏振分束器 (PBS) 将两个不同偏振方向的光分别作为长波 (\(\lambda_1 \)) 和短波 (\(\lambda_2 \)) 的激光振荡谐振臂，采用两段不同长度的偏氨掺杂稀土光纤，在两个双波长激光谐振臂作为增益介质，其结构包括：

(7) 两个泵浦源 [51, 52] 分别为两个波分复用器 [41, 42] 提供泵浦光，作为输入泵浦激光；

(10) 上述偏振双波长光纤超短脉冲激光器所述的第一激光腔体端面及输出端面为以下结构中的一种：

(13) 上述偏振双波长光纤超短脉冲激光器所述的第二激光腔体端面及双波长谐振腔为以下结构中的一种：

(15) 2. 两个波分复用器 [41, 42] 的另一端光纤分别与两个宽带啁啾光纤光栅 [15 和 16] 连接，作为双波长锁模光纤激光器腔内色散补偿元件 / 整个双波长锁模光纤激光器腔体的腔体反射元件；

(16) 3. 两个波分复用器 [41, 42] 的另一端光纤分别与两个光纤准直器 [71, 72] 连接后直接进入光栅 [81, 82] 作为腔体反射元件和双波长色散谐振元件；

(18) 5. 两个半导体可饱和吸收体 [101, 102] 分别与两个半导体可饱和吸收体 [101, 102] 双波长锁模光纤激光器的两个输出端口，作为输出端口的光纤光栅 [81, 82] 作为腔体反射元件和双波长色散谐振元件。
102] 通过耦合光学系统连接或直接通过光学胶连接，两个半机械可饱和吸收体 [101, 102]功能分别是两个波长激光的锁模元件和整个双波长锁模光栅激光腔体的两个波长激光腔体端面反射元件；

[0039] 另一种技术方案：一种偏振双波长光纤超短脉冲激光器，它由第一激光腔体腔面及输出端面、光纤激光增益介质及双波长光栅和第二激光腔体腔面及波长调谐腔组成，所述的光纤激光增益介质及双波长光栅，采用一段掺稀土非饱和增益光纤作为增益介质，采用一个偏振分束器 (PBS) 将两个不同偏振方向的激光分别作为长波 (λ₁) 和短波 (λ₂) 的激光振荡谐调臂，其结构包括：

[0044] 上述偏振双波长光纤超短脉冲激光器所述的第一激光腔体腔面及输出端面为以下结构：

[0046] 上述偏振双波长光纤超短脉冲激光器所述的第二激光腔体腔面及波长调谐腔为以下结构中的一种：

可饱和吸收体 [101, 102] 分别是两个波长激光的锁模元件和两个波长激光腔体端面反射元件。

[0049] 另一种技术方案：一种偏振双波长光纤超短脉冲激光器，它由第一激光腔体端面及输出端面、光纤激光增益介质及双波长分光器和第二激光腔体端面及双波长调谐腔组成，所述的光纤激光增益介质及双波长分光器采用一个偏振分束器 (PBS) 将两个不同偏振方向的光分别作为长波 (λ₁) 和短波 (λ₂) 的激光振荡腔谐臂，采用两段不同长度的掺杂稀土非饱和光纤在两个波长激光腔谐臂上作为增益介质，其结构包括：

[0050] 两个泵浦源 [51, 52] 分别为两个泵分复用器 [41, 42] 提供泵浦光，作为输入泵浦激光源。

[0054] 上述偏振双波长光纤超短脉冲激光器所述的第一激光腔体端面及输出端面结构为以下结构中的一种：

[0057] 上述偏振双波长光纤超短脉冲激光器所述的第二激光腔体端面及双波长调谐腔结构为以下结构中的一种：

(4) 两个波长分复用器 [41, 42] 的另一端光纤分别与两个光纤准直器 [71, 72] 连接，两个光纤准直器 [71, 72] 分别将两个波长的激光准直后分别进入双波长激光锁模光纤激光器的色散补偿器中；分别进入两个光栅 [81, 82] 中，两个光栅分别作为两个波长激光腔体反射元件和波长色散调节元件。

本发明技术方案中所述的掺稀土光纤为掺稀土元素 Nd³⁺、Pr³⁺、Yb³⁺、Er³⁺ 和 Tm³⁺ 的光纤；所述的光纤为普通单模传输或非偏振传输光纤，减少泵浦的掺稀土大芯径单模传输或非偏振光纤和掺稀土的传输或非偏振大芯径单模光子晶体光纤中的一种。

与现有技术相比，本发明具有以下几方面明显的优点：

1. 明显采用偏振分束器 (PBS) 作为不同偏振方向 (双波长) 激光分离元件，这就意味着分光原理是偏振，因而分束比与波长无关而只与偏振有关。

2. 采用两个波长分离的宽带啁啾光纤光栅作为波长选择元件和腔内色散补偿元件（也可以采用光栅或光栅对），实现超短光脉冲工作。

3. 既可采用一段保偏掺稀土增益光纤也可采用两段不同长度的保偏掺稀土增益光纤作为增益介质实现双波长锁模激光振荡。

4. 既可采用一段非偏振掺稀土增益光纤也可采用两段不同长度的非偏振掺稀土增益光纤作为增益介质实现双波长锁模激光振荡。

5. 腔内引入半导体可饱和吸收体 (SESAM) 载入实现腔内全正色散（无色散补偿）的锁模状态产生超短光脉冲工作也可采用腔内色散补偿器件使激光器工作在孤子区 (Soliton Regime) 和其它大能量非线性锁模区如自相像 (Self-Similar) 和展宽脉冲锁模 (Stretched Pulse Mode-Locked) 工作区实现大能量超短脉冲工作，并通过进一步的保偏掺杂稀土大芯径光子晶体光纤或保偏大芯径掺稀土光纤直接放大以及光纤啁啾脉冲放大技术进一步提高平均功率。

附图说明

图 1～图 5 是本发明实施例 1 中提供的各种实施方案的结构组成示意图；
图 6～图 10 是本发明实施例 2 中提供的各种实施方案的结构组成示意图；
图 11～图 12 是本发明实施例 3 中提供的各种实施方案的结构组成示意图；
图 13～图 16 是本发明实施例 4 中提供的各种实施方案的结构组成示意图；
图中：1(101, 102)、锁模的半导体可饱和吸收体锁模元件；2、光纤耦合器；3(31, 32)、保偏或非保偏增益光纤；4(41, 42)、波分复用器；5(51, 52)、泵浦激光；6、偏振分束器；61(62, 63)、保偏光纤；71(72)、光纤准直器或光纤输出耦合器；81(82)、光栅；91(92)、全反射镜；10(16)、宽带啁啾光纤光栅。
具体实施方式

结合实施例和附图对本说明作进一步描述。

实施例 1:

本实施例提供的一种偏振双波长光纤超短脉冲激光器的腔体结构，采用一段偏振掺稀土光子作为增益介质，用一段偏振分束器 (PBS) 将两个不同偏振方向的激光分别作为长波 (λ₁) 和短波 (λ₂) 的激光振荡谐振臂，掺稀土光子为掺稀土元素 Nd³⁺、Pr³⁺、Yb³⁺、Er³⁺ 和 Tm³⁺ 光纤；光纤为普通单模掺偏稀土光纤，复层泵浦的掺稀土大芯径单模掺偏光纤或掺稀土的偏偏大芯径单模光子晶体光纤中的一种。具体结构见附图 1 ～图 5。

参见附图 1，第一种腔形是直接采用光栅作为波长激光腔体谐振腔反射元件。泵浦激光通过波分复用器 (WDM) 耦合进偏振掺杂稀土光纤产生增益，偏振掺杂稀土光纤在光泵浦下两个偏振态都产生增益，偏振分束 (PBS) 将两个偏振态激光分开，这两个线偏振态激光腔则分别是用于波长调谐的两个光栅。腔体另一端是用于锁模的半导体可饱和吸收体 (SESAM，可以粘接在光纤 FC/PC 接头上) 并非作为一个腔体端面，此腔体无腔内色散补偿元件，锁模产生超短激光脉冲的效应是利用腔体端面的半导体可饱和吸收体 (SESAM)。如图一所示其具体的连接关系是：泵浦激光 5 通过波分复用器 4 耦合进偏振掺杂稀土光纤 3 产生增益，偏振掺杂稀土光纤在光泵浦下两个偏振态 (长波长 λ₁ 和短波长 λ₂) 都产生增益，偏振分束器 (PBS) 将两个偏振态激光 (波长) 分开，这两个线偏振态激光腔则分别是用于波长调谐的光栅 81 和 82。偏振分束器 (PBS)6 的偏振光纤合束端头是用于锁模的半导体可饱和吸收体 (可以粘接在光纤 FC/PC 接头上) 并非作为一个腔体端面，此激光腔体无腔内色散补偿元件，锁模产生超短激光脉冲的效应是利用腔体端面的半导体可饱和吸收体 (SESAM)，输出激光脉冲从光纤耦合器 2 输出。光栅 81、半导体可饱和吸收体 1、偏振增益光纤 3 的一个偏振态构成的激光腔体产生一个波长 (λ₁) 的锁模激光脉冲输出。光栅 82、半导体可饱和吸收体 1、偏振增益光纤 3 的另一个偏振态构成的激光腔体产生另一个波长 (λ₂) 的锁模激光脉冲输出，这两个激光脉冲的激光腔无腔内色散补偿元件。61、62 和 63 为偏振光纤 71、72 为光纤准直器或光纤输出耦合镜。

参见附图 2，第二种腔形是直接采用光栅作为波长激光腔体谐振腔反射元件。泵浦激光通过波分复用器 (WDM) 耦合进偏振掺杂稀土光纤产生增益，偏振掺杂稀土光纤在光泵浦下两个偏振态都产生增益，偏振分束器 (PBS) 将两个偏振态激光 (长波长 λ₁ 和短波长 λ₂) 分开，这两个线偏振态激光腔则分别是用于波长调谐的光栅对 (81/82) 和全反射镜 (91/92)，光栅对同时作为腔内色散补偿元件。腔体另一端是用于锁模的半导体可饱和吸收体 (可以粘接在光纤 FC/PC 接头上) 并非作为一个腔体端面，锁模产生超短激光脉冲的效应是利用腔体端面的半导体可饱和吸收体 (SESAM)。第二种腔体与第一种腔体最大的差别在于采用了两个光栅对 81/82 作为腔内色散补偿元件以得到锁模的超短激光脉冲输出。

参见附图 3，第三种腔形是采用宽带啁啾光纤光栅作为波长激光腔体谐振腔反射元件。泵浦激光通过波分复用器 (WDM) 耦合进偏振掺杂稀土光纤产生增益，偏振掺杂稀土光纤在光泵浦下两个偏振态都产生增益，偏振分束器 (PBS) 将两个偏振态激光 (长波长 λ₁ 和短波长 λ₂) 分开，这两个线偏振态激光腔则分别是用于波长调谐的宽带啁啾光纤光栅，宽带啁啾光纤光栅对同时为腔内色散补偿元件。腔体另一端是用于锁模的半导体可饱和吸收体 (可以粘接在光纤 FC/PC 接头上) 并非作为一个腔体端面，锁模产生超短激光脉冲的...
实现是利用腔体端面的半导体可饱和吸收体 (SESAM)。第三种腔体与第一种腔体最大的差别在于采用了两个宽带啁啾光纤光栅作为腔内色散补偿元件和波长选择元件以得到双波长的锁模超短光脉冲输出。

【0081】参见附图4，第四种腔形是采用两个宽带啁啾光纤光栅作为双波长激光腔体调谐反馈元件。泉涌激光通过波分复用器 (WDM) 混合进偏振掺杂稀土光纤产生增益，偏振掺杂光纤在泉涌下两个偏振态都产生增益，偏振分束器 (PBS) 将两个偏振态激光 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 分开，这两条线偏振态激光腔面为两个光栅对同时也是腔内色散补偿元件和两个半导体可饱和吸收体 (SESAM)（用于锁模产生超短光脉冲）。腔体另一端是两个宽带啁啾光纤光栅则分别用于双波长选择和腔内色散补偿元件。第四种腔形与第一种腔形的最大差别在于两个宽带的偏振啁啾光纤光栅 15 和 16 位于第一种腔形的半导体可饱和吸收体 1 位置作为双波长激光输出耦合器和波长选择元件及腔内色散补偿元件，在腔内采用了两个光栅对作为腔内色散补偿元件，而使用了两个半导体可饱和吸收体 101/102 作为锁模元件。

【0082】参见附图5，第五种腔形是直接采用两个宽带啁啾光纤光栅作为双波长激光腔体调谐反馈元件。泉涌激光通过波分复用器 (WDM) 混合进偏振掺杂稀土光纤产生增益，偏振掺杂光纤在泉涌下两个偏振态都产生增益，偏振分束器 (PBS) 将两个偏振态激光 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 分开，这两条线偏振态激光 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 腔面则分别用于实现被动锁模产生超短光脉冲的两个半导体可饱和吸收体（可以接在光纤 FC/PC 接头。）腔体另一端是两个用于腔内色散补偿的宽带啁啾光纤光栅和双波长激光输出的输出耦合器。第五种腔形与第四种腔形的最大差别在于两个宽带的偏振啁啾光纤光栅 15 和 16 位于第四种腔形两对光栅对位置作为双波长激光的波长选择元件及腔内色散补偿元件，而使用了两个半导体可饱和吸收体 101/102 分别作为两个波长激光腔体的锁模元件。

【0083】实施例2：

【0084】本实施例提供的一种偏振双波长光纤超短脉冲激光器的腔体结构是采用一个偏振分束器 (PBS) 将两个不同偏振方向的光分别作为长波 (\(\lambda_1 \)) 和短波 (\(\lambda_2 \)) 的激光振荡谐臂，采用两段不同长度的偏振掺杂稀土光纤，在两个波长激光谐振臂作为增益介质。掺稀土光纤为掺稀土元素 Nd^{3+}、Pr^{3+}、Yb^{3+} 和 Er^{3+} 的 Tm^{3+} 光纤。光纤为普通单模偏振掺杂稀土光纤、复层泉涌的掺稀土大芯径单模偏振光纤或掺稀土的偏振大芯径单模光子晶体光纤的一种。具体结构参见附图6～图10。

【0085】参见附图6，第一种腔体结构为：偏振掺稀土增益光纤长度分别为 \(L_1 \) 和 \(L_2 \)。偏振分束器将不同偏振方向的激光分成两路，一路进入长度为 \(L_1 \) 的增益光纤，一路进入长度为 \(L_2 \) 的增益光纤。\(L_1 \) 和 \(L_2 \) 的偏振掺稀土光纤在泉涌光泉涌下两个偏振态激光 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 都产生增益。腔体另一端是用于腔内色散补偿的两个宽带啁啾光纤光栅兼作双波长激光输出的输出耦合器。两个光栅对作为腔内两个偏振态激光器色散补偿器和波长选择元器件，两个半导体可饱和吸收体 (SESAM1 和 SESAM2) 分别作为腔镜（位于两个不同波长调谐臂的一端）和锁模元件产生超短光脉冲输出。具体的连接关系是：偏振分束器 (PBS) 6 将不同偏振方向的激光分成两路，一路进入长度为 \(L_1 \) 的掺稀土增益光纤 31，一路进入长度为 \(L_2 \) 的掺稀土增益光纤 32。31 和 32 经偏振掺稀土光纤在泉涌光 51/52 通过泉涌激光耦合器 41/42 后在两个偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光都产生增益。两个宽带啁啾光纤光
栅 15/16 在偏振分离 (PBS) 的保偏光纤合束端头作为双波长激光腔体腔内色散补偿元件和输出耦合元件 (及长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \) 波长选择元件)，两个光栅对 81/82 分别作为腔内两个偏振态波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光器色散补偿器和波长选择元件，两个半导体可饱和吸收体 101/102 分别作为腔镜 (位于两个不同波长调谐臂的一端) 和锁模元件产生双波长超短激光脉冲输出。

[0086] 参见附图 7，第二种腔体结构的形式为：保偏慢光光路长度分别为 \(L_1 \) 和 \(L_2 \)，偏振分束器将不同偏振方向 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 的激光分成两路，一路进入长度为 \(L_1 \) 的保偏掺土相湿光路，一路进入长度为 \(L_2 \) 的保偏掺土相湿光路。\(L_1 \) 和 \(L_2 \) 的保偏掺土相湿光路在泵浦光泵浦下两个偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 都产生增益。腔体一端是半导体可饱和吸收体 (SESM) 作为腔镜和锁模元件产生超短光脉冲输出。两个宽带啁啾光纤光栅位于两个调谐臂用于双波长激光 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 选择并兼作腔内色散补偿，半导体可饱和吸收体 \(1 \) 位于偏振分束器 (PBS) 的保偏光纤合束端头 (可以粘接在光纤 FC/PC 接头上) 是用于锁模的元件并兼作一个腔体端面。第二种腔体与第一种腔体的最大差别是采用了两个宽带啁啾光纤光栅位于两个调谐臂用于双波长激光波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 选择并兼作腔内色散补偿。

[0087] 参见附图 8，第三种腔体为：保偏偏光光纤长度分别为 \(L_1 \) 和 \(L_2 \)，偏振分束器将不同偏振方向 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 的激光分成两路，一路进入长度为 \(L_1 \) 的增益光纤，一路进入长度为 \(L_2 \) 的增益光纤。\(L_1 \) 和 \(L_2 \) 的保偏掺土相湿光路在泵浦光泵浦下两个偏振态都产生增益。一个半导体可饱和吸收体 (SESM) 作为腔镜和腔体。两个光栅为腔体反馈双波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 选择元件。第三种腔体与第二种腔体最大的差别是采用光栅作为腔内波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 选择元件，腔内无色散补偿元件。

[0088] 参见附图 9，第四种腔体采用全光纤腔体结构形式，保偏偏光光纤长度分别为 \(L_1 \) 和 \(L_2 \)，偏振分束器将不同偏振方向 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 的激光分成两路，一路进入长度为 \(L_1 \) 的增益光纤，一路进入长度为 \(L_2 \) 的增益光纤。\(L_1 \) 和 \(L_2 \) 的保偏掺土相湿光路在泵浦光泵浦下两个偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 都产生增益。腔体一端是用于腔内色散补偿的两个宽带啁啾光纤光栅 (CFBG1 和 CFBG2) 兼作双波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光输出的输出耦合器。两个宽带啁啾光纤光栅对作为腔内两个偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光器腔体色散补偿和波长选择元件，两个半导体可饱和吸收体 (SESM1 和 SESM2) 作为腔镜 (位于两个不同波长调谐臂的一端) 和锁模元件产生双波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 超短光脉冲输出。第四种腔体与第二种腔体最大的差别是采用两个宽带啁啾光纤光栅作为腔内波长选择元件和腔内色散补偿元件，采用两个半导体可饱和吸收体分别作为两个波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光锁模元件和腔体反射元件。而采用两个宽带啁啾光纤光栅位于偏振分束器 (PBS) 的保偏光纤合束端头作为腔内波长选择元件和腔内色散补偿元件及双波长激光输出耦合器。

[0089] 参见附图 10，第五种腔体结构形式为：保偏偏光光纤长度分别为 \(L_1 \) 和 \(L_2 \)，偏振分束器将不同偏振方向的激光分成两路，一路进入长度为 \(L_1 \) 的增益光纤，一路进入长度为 \(L_2 \) 的增益光纤。\(L_1 \) 和 \(L_2 \) 的保偏掺土相湿光路在泵浦光泵浦下两个偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 都产生增益。一个半导体可饱和吸收体 (SESM) 作为腔镜元件和腔体，光纤采用普通单模光纤，一个偏振控制器用于腔内偏振调整和两个波长偏振激光束的增益平衡。两个
光栅对和全反射镜作为腔内两个偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光器色散补偿和波长选择元件。产生的超短双波长激光脉冲由光纤耦合器输出。

[0090] 实施例 3：

本实施例提供的一种偏振双波长光纤超短脉冲激光器的腔体结构，其主要结构特点是采用一段掺稀土非保偏增益光纤作为增益介质，一个偏振分离器 (PBS) 将两个不同偏振方向的激光分别作为长波 (\(\lambda_1 \)) 和短波 (\(\lambda_2 \)) 的激光振荡调谐臂。掺稀土光纤为掺稀土元素 Nd\(^3+\)、Pr\(^3+\)、Yb\(^3+\)、Er\(^3+\) 和 Tm\(^3+\) 光纤；所述的光纤为普通单模非保偏掺稀土光纤，复层泵浦的掺稀土大芯径单模非保偏光纤或掺稀土的非保偏大芯径单模光子晶体光纤中的一种。具体结构参见附图 11 ～图 12。

[0092] 参见附图 11，第一种结构的腔体，直接采用两个光栅对作为双波长激光腔体调谐反馈元件和腔内色散补偿元件。轻重激光通过波分复用器 (WDM) 联合进普通掺杂稀土光纤产生增益，掺稀土光纤在光泉浦下产生增益，偏振分离器 (PBS) 将两个偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光分开，这两个线偏振态激光腔面则分别是用于波长调谐和腔内色散补偿的两个光栅对和两个半导体可饱和吸收体 (并兼作为两个振荡激光波长的腔体端面)。锁模产生超短激光脉冲的实现是利用腔体端面的半导体可饱和吸收体 (SESAM)。偏振控制器用于调节两个波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 调谐臂的增益比，两个宽带啁啾光纤光栅作为腔内色散补偿元件和激光输出耦合器。具体的联结关系是轻重激光通过波分复用器 4 联合进普通掺杂稀土光纤 3 产生增益，偏振分离器 (PBS) 6 将两个不同偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光分开，这两个线偏振态激光腔面则分别是用于波长调谐和腔内色散补偿的两个光栅对 81/82 和两个半导体可饱和吸收体 (并兼作为两个振荡波长的腔体端面) 101/102，锁膜产生超短激光脉冲的实现是利用腔体端面的半导体可饱和吸收体 (101/102)。两个偏振控制器 18 用于调节两个波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 调谐臂的增益比。两个宽带啁啾光纤光栅 15/16 位于偏振分离器 (PBS) 6 的偏振光纤合束端头作为腔内波长选择元件及双波长激光输出耦合器。

[0093] 参见附图 12，第二种为全光纤结构的腔体，直接采用宽带啁啾光纤光栅作为双波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光腔体调谐反馈元件和腔内色散补偿元件。轻重激光通过波分复用器 (WDM) 联合进普通掺杂稀土光纤产生增益，掺稀土光纤在光泉浦下产生增益，偏振分离器 (PBS) 将两个偏振态 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光分开，这两个线偏振态激光腔面则分别是用于波长调谐和腔内色散补偿的两个宽带啁啾光纤光栅和两个半导体可饱和吸收体 (并兼作为两个振荡波长的腔体端面)。两个宽带啁啾光纤光栅 (CFBG1 和 CFBG2) 作腔体激光输出端和腔内色散补偿元件。偏向控制器用于调节两个波长调谐臂的增益比。第二种腔体结构与第一种腔体结构最大的差别是分别采用了两个宽带啁啾光纤光栅 15/16 作为双波长激光腔内色散补偿元件和波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 选择元件，采用了两个宽带啁啾光纤光栅 15/16 位于偏振分离器 (PBS) 6 的偏振光纤合束端头作为腔内波长选择元件及双波长 (长波长 \(\lambda_1 \) 和短波长 \(\lambda_2 \)) 激光输出耦合器。

[0094] 实施例 4：

本实施例提供的一种偏振双波长光纤超短脉冲激光器的腔体结构，其主要结构特点是采用一个偏振分离器 (PBS) 将两个不同偏振方向的光分别作为长波 (\(\lambda_1 \)) 和短波 (\(\lambda_2 \)) 的激光振荡调谐臂，采用两段不同长度的掺稀土非保偏光纤在两个波长激光调谐臂上作
为增益介质，以实现不同波长（长波长 λ₁ 和短波长 λ₂）的激光振荡。掺稀土光纤为掺稀土元素 Nd³⁺，Pr³⁺，Yb³⁺，Er³⁺ 和 Tm³⁺ 光纤；所用的光纤为普通单模非偏振掺稀土光纤，层状泵浦的掺稀土大芯径单模非偏振光纤或掺稀上非偏振大芯径单模光子晶体光纤中的一种。具体结构参见附图 13～16。

[0096] 参阅附图 13，第一种全光纤结构的腔体是：直接采用宽带啁啾光纤光栅作为双波长激光腔体调谐反馈元件和腔内色散补偿元件。泵浦激光通过波分复用器 (WDM) 捆合进两个不同长度的普通掺杂稀土光纤产生增益，掺稀土光纤在光泵浦下产生增益，偏振分束器 (PBS) 将两个偏振态（长波长 λ₁ 和短波长 λ₂）激光分开，这两个线偏振态激光腔面则分别是用于波长（长波长 λ₁ 和短波长 λ₂）调谐腔和腔内色散补偿的两个宽带啁啾光纤光栅（兼作腔体反射面功能）。两个透射式半导体可饱和吸收体 (SAM1 和 SAM2) 作为锁模元件。两个宽带啁啾光纤光栅 (CFBG1 和 CFBG2) 作为激光腔体输出端和腔内色散补偿元件。两个偏振控制器用于调节两个波长（长波长 λ₁ 和短波长 λ₂）调谐臂的增益比。

[0097] 参阅附图 14，第二种全光纤结构的腔体是：直接采用宽带啁啾光纤光栅作为双波长（长波长 λ₁ 和短波长 λ₂）激光腔体调谐反馈元件和腔内色散补偿元件。泵浦激光通过波分复用器 (WDM) 捆合进两个不同长度的普通掺杂稀土光纤产生增益，掺稀土光纤在光泵浦下产生增益，偏振分束器 (PBS) 将两个偏振态（长波长 λ₁ 和短波长 λ₂）激光分开，这两个线偏振态激光腔面则分别是用于波长调谐腔和腔内色散补偿的两个宽带啁啾光纤光栅，两个半导体可饱和吸收体 (SESAM1 和 SESAM2) 作为锁模元件（兼作腔体反射面功能）。两个宽带啁啾光纤光栅 (CFBG1 和 CFBG2) 作为腔体激光输出端和腔内色散补偿元件。两个偏振控制器用于调节两个波长（长波长 λ₁ 和短波长 λ₂）调谐臂的增益比。

[0098] 参阅附图 15，第三种腔体结构采用两个光栅对作为双波长激光腔体调谐反馈元件和腔内色散补偿元件。泵浦激光通过波分复用器 (WDM) 捆合进两个不同长度的普通掺杂稀土光纤产生增益，掺稀土光纤在光泵浦下产生增益，偏振分束器 (PBS) 将两个偏振态（长波长 λ₁ 和短波长 λ₂）激光分开，这两个线偏振态激光腔面则分别是用于波长（长波长 λ₁ 和短波长 λ₂）调谐腔和腔内色散补偿的两个光栅对和全反射镜。一个透射式半导体可饱和吸收体作为锁模元件，两个宽带啁啾光纤光栅 (CFBG1 和 CFBG2) 作为腔体激光输出端和腔内色散补偿元件。偏振控制器用于调节两个波长（长波长 λ₁ 和短波长 λ₂）调谐臂的增益比。

[0099] 参阅附图 16，第四种腔体结构采用两个光栅作为双波长激光腔体调谐反馈元件。泵浦激光通过波分复用器 (WDM) 捆合进两个不同长度的普通掺杂稀土光纤产生增益，掺稀土光纤在光泵浦下产生增益，偏振分束器 (PBS) 将两个偏振态（长波长 λ₁ 和短波长 λ₂）激光分开，这两个线偏振态（长波长 λ₁ 和短波长 λ₂）激光腔面则分别是用于波长调谐的两个光栅，一个透射式半导体可饱和吸收体作为锁模元件，两个宽带啁啾光纤光栅 (CFBG1 和 CFBG2) 作为腔体激光输出端和腔内色散补偿元件。偏振控制器用于调节两个波长（长波长 λ₁ 和短波长 λ₂）调谐臂的增益比。

[0100] 本发明提出采用偏振或非偏振稀土光纤如 Yb³⁺，Nd³⁺，P₂⁺，Er³⁺ 和 Tm³⁺ 等作为增益介质，偏振分束器分光、宽带啁啾光纤光栅作为腔内反射元件兼色散补偿元件和半导体可饱和吸收体作为锁模元件等产生高重复率、高功率，双波长具有飞秒和皮秒脉宽超短光脉冲输出。结构简单、高效率的光纤激光器结构，是可以实现全光纤化的双波长锁模光纤超短
激光脉冲输出新型结构的激光器。它适用于采用直接差频法产生超短脉冲中红外激光辐射用于分子系统的泵浦 - 探测等科学实验，环境监测和微波光子学及生物物理学探测等。该技术方案和光纤激光器腔形结构也可以用于连续波高功率双波长光纤激光器和主动锁模双波长光纤激光器的设计，如在腔内加入电光或声光调制器可以产生主动锁模的可调谐可变波长间隔的双波长激光输出；稳定可调波长的高功率双波长光纤激光可用于差频产生微波和毫米波等；还可以用于其它一些科学和技术领域，例如，制备仪器化便携式双色超快光纤激光器，可用于双波长的泵浦 - 探测超快光物理实验、合频光辐射产生、相干反斯托克斯拉曼散射显微（Coherent Anti-Stokes Raman Scattering Microscopy）等等。