发明名称：用于执行最佳切换的方法和系统

摘要

用于执行在第一基站 BS1 和第二基站 BS2 之间的最佳切换的方法和系统，其中移动终端 MT 请求切换。在切换期间，必须避免数据丢失，以及应当提供快速重新发送。而且，切换最好是处在发起切换的移动终端 MT 的控制下。所以，本发明提供这样一种方法和系统，其中信息流被分成几段以及每个段被编号。编号的段通过第一通信路径 P1 和第一基站 (BS1) 而被发送到移动终端 MT，同时，它们被存储到第二基站 (BS2) 的第二通信路径 P2 上的缓冲器 (BF) 中。第二基站是其中请求向其进行切换的基站。在执行切换后，通过第二通信路径 P2 请求由一个确切号码所规定的一个编号的段。这样，该已编号的段对于移动终端 MT 是可提供的，并且它确切地是由该具体体号码规定的。
权利要求书

1. 用于执行基站（BS1, BS2, ..., BSn）之间最佳切换的方法，包括以下步骤：
 - 请求从第一基站（BS1）切换到第二基站（BS2）。
 - 把要被发送到第一基站（BS1）的信息流划分成段（S1, S2, ..., Sn），并对它们编号。
 - 把各段（S1, S2, ..., Sn）发送到第一基站（BS1），并将各段（S1, S2, ..., Sn）存储在通到第二基站（BS2）的第二通信路径上以及
 - 执行切换，并通过第二基站（BS2）请求在所存储的各段（S1, S2, ..., Sn）中由号码（X）所规定的编号的一个段（SX）。

2. 按照权利要求1的方法，其特征在于，其中所请求的段是由移动终端（MT）通过发送关于段（SX）的特定号码（X）的信号而被请求的。

3. 按照权利要求1或2的方法，其特征在于，其中该各段（S1, S2, ..., Sn）被存储在第二基站（BS2）。4. 按照权利要求2或3的方法，其特征在于，其中所请求的段（SX）是与在切换时被发送到第一基站（BS1）的段具有相同的号码（X）。

5. 按照权利要求1到4之一的方法，其特征在于，其中信息流的划分和编号是通过使用包含有关该号码的信息的ATM资源管理信元而完成的。

6. 按照权利要求1到4之一的方法，其特征在于，其中信息流的划分和编号是通过使用包含有关该号码的信息的ATM信源头标GFC（通用流程控制）比特而完成的。

7. 按照权利要求1到4之一的方法，其特征在于，其中信息流的划分和编号是通过使用载送有关该号码的信息的ATM信元头标GFC（通用流程控制）比特而完成的。

8. 按照权利要求1到4之一的方法，其特征在于，其中信息流的划分和编号是通过使用载送有关该号码的用户到用户信息的AAL5（ATM自适应层5）分组结尾部分而完成的。

9. 用于执行基站（BS1, BS2, ..., BSn）之间最佳切换的系统，包
括：

- 用于发起和建立从第一基站（BS1）切换到第二基站（BS2）的请求的装置，
- 用于把要被发送到第一基站（BS1）的信息流划分成段（S1, S2, ..., Sn）的装置，以及用于对这些段进行编号的装置，
- 存储装置（BF），用于存储在到第二基站（BS2）的第二通信路径上的各段（S1, S2, ..., Sn），以及
- 用于在执行切换后通过第二基站（BS2）从第二通信路径（P2）上的存储装置（BF）中请求所编号的段（SX）的装置。

10. 按照权利要求9的系统，其特征在于，其中存储装置（BF）位于第二基站（BS2）。

11. 按照权利要求9的系统的使用，其特征在于，其中该系统被使用来执行在面向连接的分组或面向连接的小区网络中的最佳切换。

12. 按照权利要求12的使用，其特征在于，其中网络是ATM（异步传输模式）或WATM（无线异步传输模式）网络。
说明书

用于执行最佳切换的方法和系统

本发明涉及用于执行基站之间的最佳切换的方法和系统，其中与基站或网络有联系的移动终端请求从一个基站切换到另一个基站。本发明还涉及该系统在面向连接的分组和面向连接的蜂窝小区网络的环境（例如，ATM或WATM（无线ATM）环境）中的使用。

现在有多种切换方案。一种非常熟知的执行切换的环境是GSM环境。这里把不同类型的切换分类为内部的和外部的切换。内部切换是不涉及MSC（移动业务交换中心）而执行的，因此节省信令带宽。外部切换（例如MSC间的切换，或BSC间的切换）涉及到从所谓的“最后接棒者（anchor）”MSC到新MSC（即所谓的接力MSC）的切换控制的转移。切换请求可由移动台或由MSC发起。

在当前的蜂窝或无线系统中执行基站之间的切换期间，可能出现信息流中的信息的少量丢失。取决于信息的不同（例如实时信息或数据信息），数据的丢失过多或过少地产生干扰。数据丢失造成的干扰越大，则越应当加以避免。最好是在切换期间没有数据丢失。

在现有技术中，已知一种在切换期间避免丢失数据的方法。所描述的用于无线ATM的无丢失的切换机制必须组合信令和ATM（和较低）层蜂窝小区接力功能。在这个方法中，信息流或数据流被分段成两个部分。分段的数据流的第一部分被发送到“老的”基站，它是建立在“老的”路径的基站。第二部分通过“新的”通信路径被发送到那个应当被切换到的基站。在执行切换以后，新的通信路径应当为信息流服务。该段的末端用来表示从“老的”基站切换到“新的”基站（参见Håkan Mitts，Harri Hansen等：“Lossless Hand over for Wireless ATM（用于无线ATM的无损失切换）”，Proceeding of ACM MobiCom ‘96）。

按照这个方法的分段过程因此可以提供无损失切换。然而，这个方法没有把对于切换过程的控制权给予移动终端。而移动终端不能提前知道切换实际发生的精确时间，因此，例如在该清空它的缓存器后，希望确定切换的精确时间。

除此以外，因为在切换过程期间出现某些错误或甚至丢失，可能
必须重新发送信息流中的信息，以使得该信息再次可提供。所以，在移动终端和网络之间的路径应当尽可能地短，以便提供快速重新发送的可能性。特别是对于高速连接，重要的是要使得传输路径尽可能地短，因为在高速网络中延时是不能接受的，它会与约定的业务合同严重地冲突。

所以，本发明的目的是提供用于切换的方法和系统，其中不出现信息丢失，以及其中切换被最佳化，从而使得有可能进行快速的重新发送，而且，本发明的目的是在由移动终端发起切换的情况下把对于切换的控制权给予移动终端。

这个目的是通过具有按照权利要求 1 和 9 的步骤与特征的方法和系统达到的。通过权利要求 11 的目的可以达到优选的使用。

本发明是有优点的，因为它导致低延时的重新发送，这特别对于高速网络更具有很高的重要性，并且提供低延时重新发送对于它是必须的。

除此以外，本发明有利地允许在移动台控制下灵活地执行切换。这导致了例如用于面向连接的分组和面向连接的蜂窝小区网络的切换协议的最优化。

按照权利要求 2 到 8 和 10 与 12, 可以得到进一步优选的实施例。用于执行最优化切换的方法和系统包括对通到第二基站的路径上的数据段进行存储。这样，有利的是按照权利要求 3 和权利要求 10 在第二基站中存储这些数据段，以使得在存储装置与第二基站之间的路径尽可能地短，这是因为使重新发送的延时最小化是有利的。

按照权利要求 4, 请求具有与在切换时已被发送到第一基站的相同数目的数据段是有利的。这在切换期间链路质量降低很多以至于将不能确保发送数据段的情况下是有利的。在这种情况下，接收站可通过第二基站再次得到相同的段，从而避免丢失任何的段以及避免数据丢失。

从以下的结合附图所作的详细描述将进一步了解和懂得本发明的方法和系统，其中:

图 1 是显示可以使用本方法和系统的环境的方框图，图 2 是按照权利要求 1 的本发明方法的流程图。

参照图 1，显示了面向连接的分组和面向连接的蜂窝小区网络。
这可以是例如 ATM（异步传输模式）网络或 WATM（无线异步传输模式）网络。这个网络包括一个或多个交换机 SW。这个交换机 SW（其中实际的连接将在该交换机处被重新路由）是所谓的停泊的交换机（anchor switch）。在该例中，只显示了一个作为停泊的交换机的交换机 SW，但是在从交换机 SW 到第一基站 BS1 或第二基站 BS2 的通信路径上可以存在有另外的交换机。还有多个基站 BS1, BS2, ..., BSn, 每个基站通过通信路径 P1, P2 被连接到一个交换机 SW。除了存储装置 BF 以外，例如在交换机 SW 与基站 BS1, BS2, ..., BSn 之间的通信路径上提供有缓存器。在本图上，为了简明起见，只在一条通信路径 P2 上显示了仅一个缓存器 BF。还有多个移动终端 MT。移动终端 MT 通过无线链路与基站 BS1, BS2, ..., BSn 通信。在本图上，为了简明起见，只显示了一个移动终端 MT。在交换机 SW 与移动终端 MT 之间的通信路径是通过一个基站建立的。

在本例中，移动终端 MT 与第一基站 BS1 相联系，并且由于任何的原因而请求实现到另一个基站的切换。于是，例如发送了一个从第一基站（BS1）到第二基站（BS2）的切换的请求。切换请求也可以由于任何已知的切换的原因而由网络发起。在执行和完成切换后，信息或数据通过第二基站 BS2 和第二通信路径 P2 被发送到移动终端 MT。

下面将按照图 2 考虑按照图 1 的环境更详细地描述本发明。

移动终端 MT 准备好进行通信。这意味着，在移动终端 MT 与交换机 SW 之间的第一通信路径 P1 已通过基站建立。在本例中，通信是通过第一基站 BS1 和通过第一通信路径 P1 建立的。这意味着，发送了一个信息流。在第一步骤 10 中，移动终端 MT 由于任何原因请求从第一基站 BS1 切换到例如第二基站 BS2。也可以是网络请求从第一基站 BS1 切换到第二基站 BS2。必须由交换机检验资源，以便确保可以进行切换。然而，由于这对于本发明没有影响，所以这里没有更详细地提到它。

在接收到切换请求消息后，交换机 SW（例如停泊的交换机）在下一个步骤 20，开始把信息流划分成段 S。此外，在步骤 30，使用号码 1, 2, ..., n 把段 S 进行编号，结果形成的是带有编号的段 S1, S2, ..., Sn 的通信信息流。

所得到的编号的段 S1, S2, ..., Sn 通过第一通信路径 P1 发送到第
一基站 BS1，同时通过相应的第二通信路径 P2 发送到第二基站。在到
第二基站的通信路径 P2 上，在步骤 40，这些段被存储到存储装
置 BF 例如缓存器中。最好是（并且为了避免延时）使缓存器 BF 成为
第二基站 BS2 的一部分，或者将它结合到第二基站 BS2 中去。在执行
切换以后，所存储的段 S1, S2, ..., Sn 被加以存储，以便以后通过第二
基站被发送到移动终端 MT 去。

在执行切换后这意味着，移动终端 MT 已经把它的天线切换到第
二基站 BS2，以及它已准备好通过第二基站来接收信息（例如数据）
（步骤 50），移动终端 MT 可以请求一个由确切的号码 X 所规定的段
SX，在此，X=1, 2, ..., n, （步骤 60）。这个段 SX 是移动终端 MT 要通
过第二基站 BS2 接收的、准确规定的段。在执行切换以及使移动终端
MT 与第二基站相联系后，移动终端通过明确地发送表示相应的号码 X
的信号来请求一个数据段 SX。然后，切换结束。

为了避免在切换发起以后在移动终端 MT 与第一基站 BS1 之间的
链路上链路质量降低的情况下丢失信息，移动终端 MT 可通过第二基
站 BS2 请求与它原先打算通过第一基站 BS1 接收的相同的段 Y。这意
味着，段 Y 被复制。应当指出，这个特定的方法导致信元的增多，这
在所有的网络中都不允许的。

下面将更详细地描述用于执行基站之间的最佳切换的系统。对于
它的描述将按照图 1 来进行而无需一个专门的图。

用于执行基站之间的最佳切换的系统工作在按照图 1 描述的环
境。而且，该系统包括用于建立从第一基站 BS1 到第二基站 BS2 的切
换的请求的装置。这些用于建立切换的请求的装置包括用于检测切换
的必要性的装置，这是指检测改变小区的必要性。这些装置在例如移
动终端 MT 决定应当执行切换时发起切换。进行切换的主要准则是上
行链路和下行链路中正在进行的连接的传输质量。已经有各种现有的
和公知的算法，它们在关于切换判决的技术规范中被描述，这里将不
作更详细的描述。

而且，该系统还包括用于把信息流划分成段 S1, S2, ..., Sn 的装
置，和用于把这些段编号为 1, 2, ..., n 的装置。作为面向连接的分组
或面向连接的小区网络（例如 ATM 网络），ATM 层协议把信息流划分
成可容易辨认的信元。所以，ATM 提供一种对信息流进行分段的自然
方式，其中这些段由多个信元组成。为了编号这些段，必须把这些段加以标记，以使得它们是可辨认的。在 ATM 环境下，信元头标缺乏用于识别这些段的信息。所以，必须提供一种包含段号码的新型的信元。这种新型的信元必须由交换机在段的结尾处将其插入到 VCC（虚拟信道连接）的信元流中，同时使段号码递增 1。VCC 在 ATM 技术中是熟知的，其特征在于，它涉及 VC（虚拟信道）链路的级联，以便实现 ATM 业务接入点之间的连接。VCC 可通过交换设备来被提供。

必须加以提供的新型的信元例如是新型的包含序列号信息的资源管理信元。另一种类型的信元是一种包含号码信息的运行和维护信元类型。也可通过使用 ATM 信元头标 GFC（通用流程控制）比特来载送号码信息来提供判决和编号。ATM 信元由 53 个字节组成。头 5 个字节是用于信元-头标区，其余 48 个字节构成用户信息区。信元头标区被划分为 GFC（通用流程控制）、VPI（虚拟路径识别符）、VCI（虚拟信道识别符）、PT（有用负载类型）、CLP（信元损失优先级）、和 HEC（头标错误控制）区。GFC 头标的主要功能是例如物理接入控制。它也可被使用于业务控制等。

可通过使用在 AAL5（ATM 自适应层 5）分组结尾部分中保留的比特来载送号码信息来执行另一种方法。对于系统化的和灵活的信息转移，ATM 规定了三层-层协议参考模型。这些相关的层包括物理层、ATM 层、和 ATM 自适应层（AAL）。AAL 执行把业务信号映射到 ATM 信元有效负载空间的功能，以及 ATM 层执行与 ATM 信元头标有关的功能以用于对 ATM 有效负载空间的透明传递。AAL5 能够进行高速处理，这是 AAL5 的关键特性。AAL5 协议具有简单的头标结构，并且它使得能够进行简单的协议处理和快速与有效的数据通信。

正如已在前面描述的，包括新型的信元的经过分段和编号的信息流可通过第一基站 BS1 和第一通信路径 P1 被中继到移动终端 MT。用于执行最佳切换的该系统还包括设在到第二基站 BS2 的第二通信路径上的存储装置 BF（例如缓存器），以用于同时存储编号的段。存储装置 BF 可以是第二基站 BS2 的一部分，或者甚至是交换机 SW 的一部分。

为了在执行切换时不丢失任何数据，该系统还包括用于通过第二基站 BS2 来请求一个已编号的段 SX 的装置。这意味着，准确地请求了由其号码规定的一个段。这是通过发送有关段号码 X 的信号而完成
的，该号码应当是对于每个 VCC 而进行接收的。

正如前面已经提到的，该系统和方法的优选应用是在面向连接的分组或面向连接的小区网络中的使用。优选地，它在 ATM 或无线 ATM（WATM）环境中使用。ATM 环境使得能容易地进行分段，以及创造有利的环境来提供最佳化的切换，并且能达到不丢失数据、低延时地重新发送、和按顺序地执行。然而，应当明确地指出，任何其它的面向连接的分组和基于蜂窝小区的网络也可以使用该用于最佳切换的方法和系统。这可以是还没有被标准化的系统，以及优选地这是一个允许增多信元的系统。
图 1
图 2