5 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau _3

(43) International Publication Date

o T
I‘fQA )
Ao

(10) International Publication Number

29 November 2001 (29.11.2001) PCT WO 01/90945 A2
(51) International Patent Classification’: GO6F 17/30 Francisco, CA 94121 (US). JOYCE, Terry; 670 Douglass
Street, San Francisco, CA 94114 (US).
(21) International Application Number: PCT/US01/16117
(74) Agents: PENNINGTON, Edward, A. et al.; Swidler

(22) International Filing Date: 18 May 2001 (18.05.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/573,226 19 May 2000 (19.05.2000) US

(71) Applicant: EPICENTRIC, INC. [US/US]; Suite 300, 333
Bryant Street, San Francisco, CA 94107 (US).

(72) Inventors: ANUFF, Ed; Suite 302, 355 Bryant Street, San
Francisco, CA 94107 (US). TAYLOR, John, Dean; 527
Holly Park Circle, San Francisco, CA 94110 (US). CHAS-
TON, Miles; 798 Post Street, #603, San Francisco, CA
94109 (US). MACLOED, David; 3873 Brown AVenue,
Oakland, CA 94619 (US). LEISER, Peter; 2232 Blake
Street, #10, Berkeley, CA 94704 (US). MUOTO, Oliver;
2225 Sharon Road, #121, Menlo Park, CA 94025 (US).
LADYGO, Seth; 2590 Third Street, #E, San Francisco, CA
94109 (US). SLESINSKY, Brian; 760 29th Avenue, San

Berlin Shereff Friedman, LLP, Suite 300, 3000 K Street,

N.W., Washington, DC 20007 (US).
(81) Designated States (national): AL, AM, AT, AU, AZ, BA,
BB, BG, BR, BY, CA, CH, CN, CO, CU, CZ, DE, DK, EC,
EE, ES, FI, GB, GE, GH, GM, HU, ID, 1L, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: PORTAL SERVER THAT PROVIDES A CUSTOMIZABLE USER INTERFACE FOR ACCESS TO COMPUTER

NETWORKS

64 56 % »
’\ ’\ 58 '\‘ PermissionContext
0.* 0.* 1.4
UserSet | iterates over <> User . UserGroup > p of
0. other usergroups over this
T T user group
Y 0.* 0.* i issions
creates provides persistence provides persistence d;szgz?esxze‘:za‘sjgs
default settings
UserQuery UserManager UserGroupManager 1.1 > PermissionCatalog
creates
, / ‘
J
50/ 62_/ 66 70_J

I (57) Abstract: A portal server presents an HTML page (18) that comprises a plurality of modules (26) that are formatted in a
predetermined layout. Each module (26) represents a network resource that can be accessed by a user through the portal. Some
of the modules (26) can be user-selectable, whereas others may be mandatory elements of the portal. Similarly, some aspects of
~~ the layout may be user-controllable, while others are fixed. The modular nature of the portal enables the various resources to be
readily and independently updated by the entities who provide them, without affecting other features of the portal. The portal server
includes an administration interface that enables an administrator to select from various layout styles, as well as control access to
site information and services using a set of privileges and permissions. A variety of customizations can be done to the portal without
requiring programming skills based on the set of delegated privileges and permissions. As a result, individual businesses and other
entities can exercise complete ownership of their portals, from a hosting, branding and design perspective.

=



WO 01/90945

10

15

20

25

30

PORTAL SERVER THAT PROVIDES A CUSTOMIZABLE
USER INTERFACE FOR ACCESS TO COMPUTER NETWORKS

FIELD OF THE INVENTION

The present invention is generally directed to the mechanisms via
which users access information provided over computer networks, such
as the Internet, intranets and extranets. More particularly, the present
invention relates to a portal mechanism via which users gain access to

resources at various network sites.

BACKGROUND OF THE INVENTION

Browser applications have become ubiquitous tools for accessing
the vast amounts of information that are available via computer networks,
such as the Internet and the like. At its basic level of operation, the

browser permits a user to connect to a given network site, and download

_ informational content from that site, such as an HTML document, for

display at the user's computer. To view additional information, or a
different type of information, the user designates a new network address,
e.g. a different HTML file, whose contents then replace the previously
displayed information on the user's computer.

To alleviate the need to navigate from one network site to another
to view different types of informational content, portals are being
employed on a more common basis. In general, a portal is an entry point
or gateway for access to Internet web sites, or the like. One of the
prominent advantages of a portal is the fact that information stored at a
plurality of different network addresses, including different sites, can be
simultaneously viewed on the display, rather than limiting the user to
information from one site at a time. Most companies and organizations

provide different types of portals for a variety of purposes, including
-1-

PCT/US01/16117



WO 01/90945 PCT/US01/16117

10

15

20

25

portals for the general public, intranet portals for their employees, and
extranet portals for their customers, vendors, supplies and other parties
with whom they transact business.

While the organizational needs served by a portal continue to
grow, so have the complexity and cost of developing, deploying,
administering and continually enhancing portals. To maintain the
continued interest of portal users, administrators must carry out an
ongoing effort to maintain portal content that is fresh, deep, customizable
and sufficiently broad that their constituents will consider them to be a
meaningful gateway to the Internet. On its intranet, an employer must
often compete with public portals for the attention of its employees.
Furthermore, companies and organizations are forced to either maintain
staffs of highly skilled engineers and content developers, or to outsource
these tasks. Meanwhile, Internet-related technologies are proliferating
and maturing, and Internet users’ expectations continue to increase.
Maintaining an effective portal often competes with and detracts from the

resources available for an organization's primary goals.

SUMMARY OF THE INVENTION

To address the foregoing concerns associated with the ongoing
maintenance of an effective portal, the present invention provides a portal
server that streamlines the processes involved in offering a feature-rich
portal. The portal server provides services through a library of object-
oriented classes, such as classes in the Java programming language
developed by Sun Microsystems, that give access to various databases,
web servers, scripting environments and mail services.

At the user interface level, the portal server presents an initial

view, or front page, that comprises a plurality of modules that are

2-



WO 01/90945 PCT/US01/16117

10

15

20

25

positioned in a predetermined layout. Each module represents a resource
of a particular type that can be accessed by the user utilizing the portal.
Some of the modules can be user-selectable, whereas others may be
mandatory elements of the portal, as determined by an administrator, for
example. Similarly, some aspects of the layout may be user-controllable,
while others are fixed. The modular nature of the portal enables the
various resources to be readily and independently updated by the entities
who provide them, without affecting other features of the portal.

In another aspect of the invention, the portal server includes an
administration interface that enables an administrator to select from
various look-and-feel templates, as well as control access to site
information and services. A variety of customizations can be done to the
portal without requiring programming skills. At the same time, however,
script writers can change pages, and programmers can extend
functionality through additional classes.

In another aspect of the invention, the portal server includes
permissions associated with each module provided by the portal. The
permissions define the users having access and privileges associated with
the user. The privileges can include administrative privileges and
functional privileges.

As a result, individual businesses and other entities can exercise
complete ownership of their portals, from a hosting, branding and design
perspective. The features and advantages of the present invention that
offer these capabilities are described in detail hereinafter with reference

to the accompanying figures, which illustrate exemplary embodiments

thereof.



WO 01/90945 PCT/US01/16117

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a general block diagram of an exemplary network
system in which the present invention can be implemented;

Figure 2 is an illustration of an exemplary front page of a portal;

Figure 3 is a diagram of the high-level architecture of the portal
server;

Figure 4 is a block diagram of an object model for a module;

Figures 5a and 5b are diagrams illustrating two exemplary page
layouts;

Figure 6 is a block diagram of a user object model;

Figure 7 is a block diagram of the permission object model;

Figure 8 is an overview of one implementation of the portal
server;

Figure 9 illustrates the initialization and front page files for one
implementation;

Figure 10 illustrates front-page and edit views of a module;

Figure 11 illustrates the front page and edit views in greater detail;
Figure 12 illustrates a customized front-page view; and
Figure 13 depicts the execution environment for one

implementation of the portal server.



WO 01/90945 PCT/US01/16117

10

15

20

25

DETAILED DESCRIPTION

To facilitate an understanding of the present invention, it is
described hereinafter with reference to specific implementations thereof.
For example, the software programs that underlie the invention can be
coded in different languages, for use with different platforms. In the
description that follows, examples of the invention are described in the
context of web sites that employ Java Server Pages (JSP) or Active
Server Pages (ASP). It will be appreciated, however, that the principles
that underlie the invention can be implemented with other types of

computer software technologies as well.

1. Qverview

A general depiction of a networked computer system in which the
present invention can be implemented is illustrated in Figure 1. In
essence, the computer systém enables individual users of communication
devices 10, including personal computers 10a, workstations 10b, web
access devices 10c, and the like, to view informational content provided
by various servers 12a-12n. The communication devices 10 are
connected to the servers 12 by means of a suitable communications
network 14, such as a local area network, a wide area network, the
Internet, or the like. To view the content provided by the servers, the
devices 10 run a browser application 16. At the servers 12, the available
content and services are stored on suitable storage media, such as
magnetic or optical disk drives, in a format that is capable of being read
by the browser applications, such as HTML or XML. Typically, each
segment of information that can be accessed at once, e.g. file, is referred
to as a web page, and has an associated network address. Thus, by

entering a particular network address into a browser application, the user

-5-



WO 01/90945 PCT/US01/16117

10

15

20

25

is presented with one page of information that is stored at a particular
server. A collection of web pages that relate to a common topic and are
interlinked with one another may form a web site.

At its basic level of operation, a browser is designed to display one
web page at a time. In such a case, the user is required to navigate from
one web page to another in order to view different types of information
available on different sites. Quite often, however, the user desires to be
able to view a variety of different types of information at once, and then
select the particular type of information that is of most interest at that
time. For instance, within a corporate context, a user may desire to have
quick access to various resources and data provided by the employer,
while at the same time being able to view information provided over the
Internet, such as news headlines, financial data, and vendor data. To this
end, therefore, portals have become popular mechanisms that enable
users to access information from multiple different network sites at once.

The present invention is particularly directed to a server
application and framework that dynamically constructs and maintains
portals for display to users. An example of a portal display that
incorporates features of the present invention is illustrated in Figure 2.
The portal comprises an HTML web page 18, identified as a "front page".
In essence, each page presents a predetermined layout of encapsulated
modules containing the resources that are available to the user. The top
of the page may include a suitable banner 20 containing a corporate logo
or the like, and one or more navigation buttons 22 or links, that permit
the user to access specific pages associated with the sponsor of the portal,
e.g. the user’s employer. Below the banner, another set of buttons or
links 24 are displayed, which permit the user to personalize the portal. In

the illustrated example, the personalization buttons enable the user to

-6-



WO 01/90945 PCT/US01/16117

10

15

20

. revise the layout of the portal, change its color scheme, and edit that

user’s account, e.g. change a password.

Below the banner 20 and the personalization buttons 24, one or
more modules 26 are displayed. Each module provides the user with
access to a particular type of resource, such as news headlines or stock
quotes. As will be apparent from the discussion that follows, these
resources can be applications, databases, services, informational content,
e-commerce offerings, and the like, that are available from one or more
of the servers 12a-12n. Some of these resources may be provided by the
employer (or other provider of the portal), whereas others may come
from independent third parties. By interacting with any one of these
modules, the user can access the information or services provided by that
module. Thus, by clicking on a headline in the "News" module, the user
can be presented with the full text of the news story to which that
headline pertains.

In the example of Figure 2, the modules are arranged in two
columns, or groups. Through the ability to personalize the layout of the
portal, the user can determine which modules appear in each of the
groups, as well as their order of appearance within the groups. In
addition, the user can edit the content of individual modules, by means of
an "Edit" button 27. For the "News" module, for instance, the user can
select which news sources are to be used for the selection of headlines, as

explained in greater detail hereinafter.



WO 01/90945 PCT/US01/16117

10

15

20

25

2. High-Level Architecture

The functionality associated with the portal is provided by a portal
server, running on one or more of the servers 12a-12n. Referring to
Figure 3, the portal server can be viewed as a client/server model. The
client interface is provided by HTML code generated by the portal server
to run in a user’s browser application. The server consists of process
management services that are provided by a web server and suitable class
libraries. These libraries connect to other servers and use other resources
as needed, including a data store which provides object persistence via a
suitable database interface. In one exemplary embodiment of the
invention, this functionality might be provided by a JDBC interface over
a SQL database. In another embodiment based upon an LDAP
environment, user management can be provided via JNDI over LDAP.
The server can connect to other network resources, for example to
acquire information from the Internet or an intranet.

Prior to any customization by an administrator, the portal server
can provide a set of web pages that constitute a default, self-contained
portal web site. One implementation of the portal server includes a Java
Server Pages (JSP) web site, for use under any web server that supports
Java servlets and JSP. Another implementation comprises an Active
Server Pages (ASP) web site, for use under Internet Information Server
(IIS) provided by Microsoft Corporation. Both of the implementations
under these different scripting environments can use the same Java
libraries and services; the primary difference between them is the web
site upon which they are based (JSP or ASP), and how the web site

interfaces with the Java libraries.



WO 01/90945 PCT/US01/16117

10

15

20

3. Object Model

An object-oriented software system consists of software objects.
A software object represents an actor within an overall system design.
Such actors may correspond to real-world concepts, or may exist purely
to support the overall design. Software objects encapsulate the data and
logical processes of the actor. This encapsulation makes objects easy to
use, because the user of an object need not know how the object performs
its processes. Software objects are also extensible: other objects can be
built on top of existing objects, allowing the new object to expand the
concept of the old object without having to rewrite the functionality of
the old object. These properties of software objects make object-oriented
systems flexible and extensible.

An object model comprises a collection of objects that work
together in documented relationships. The portal server is an
object-oriented system built on such an object model, illustrated in
Figures 4, 6 and 7. The objects that make up the portal server
architecture include Components, Managers and Services, Modules,
Views, Pages and Page Ordering, Layouts, Users, Permissions, Content

Parsers, Data Storage and Tasks.



WO 01/90945 PCT/US01/16117

10

15

20

25

3.1 Components

Components are a set of loosely related classes used to create
wrappers to provide simplified access to other objects within the
architecture of the portal server. In a preferred embodiment of the
invention, one component 28, designated as the “Portal Services
Component,” is employed as a single point of access for methods that are
external to the portal server. The function served by the Portal Services
Component is access to other objects within the architecture. Since the
Portal Services Component provides a single point of access, it allows a
very simple distributed object registry profile for use in object brokers.
Only the Portal Services Component need be registered. Other objects
can be accessed by calls to the Portal Services Component. An example
of an object broker is the Microsoft Common Object Model (COM).
When running under an ASP web site, for example, the Portal Services
Component can be published as a Microsoft COM/ActiveX control. An
instance of this class is created once at web server startup in an ASP
environment.

In contrast to the ASP environment, under a JSP web site, any JSP
page has access to any Java object made visible in the classpath.
However, the Portal Services Component can still be used as a single
point of retrieval for important objects within the architecture. This
architecture provides simplicity as well as compatibility with the ASP

version of the portal server.

3.2 Managers and Services
Managers and Services perform similar functions, but in slightly
different and complementary ways. A Manager encapsulates details for

handling the creation and manipulation of a set of objects. A Service can

-10-



WO 01/90945 PCT/US01/16117

10

15

20

25

encapsulate any identifiable Application Programming Interface (API)
within the portal server. Managers can be implemented as Services
within the portal server; however, Services are not restricted to being
Manager implementations. Both Managers and Services allow for
run-time replacement of their implementation with specific versions
adapted to user-specific needs.

Two examples of Managers are a module manager and a user
manager. Modules follow a "singleton" design pattern, meaning that
there is one instance of a module for the lifetime of a server session. The
class of module managers, therefore, maintains those module instances,
and handles their persistence. The user manager class is an abstract class
whose purpose is to manage the persistence of User objects. Classes that
extend this class could, for instance, store users in a SQL database or an
LDAP server or Java serialization.

To be useful to a broad range of portal providers, a portal
framework must easily allow different implementations of key services.
Services such as user management, flexible schema storage, and search
engines are likely to be different for different portals. To facilitate a high
degree of customization, the portal server includes technology for
allowing configuration-data driven resolution of service implementations
within the portal server. This technology provides a means of allowing
runtime resolution of the specific class used to implement the service, as
well as configuration of all its properties.

Essentially, a Service allows a few lines of configuration data
within the computer system's startup configuration files or registry to
specify details of the run-time implementation, including the actual class
to be run to provide the service. This allows the portal provider to use

existing implementations or define their own, and substitute their chosen

-11-



WO 01/90945 PCT/US01/16117

10

15

20

25

implementation into the system without rewriting source code that uses
the implementation.

The portal server Service includes the following elements:

1. a format for specifying configuration directives
identifying the service implementation, by type and by name;

2. a format for specifying and locating configuration
directives used by the service implementation;

3. A Service Manager class, which acts as the factory
for loading and retrieving individual Service Managers;

4. A Service Manager API, which an implementation
must satisfy to act as service manager to a particular service type;
and

5. a "Service" APIL, which an implementation must
satisfy to act as a Service.

Given these elements, a process can utilize a Service by calling the
Service Manager class, and asking for a particular service manager by its
type. Once the service manager is retrieved, it can be used to retrieve a
particular service, by giving the name of the service. Once the service is

retrieved, it can be used for its intended purpose.

-12-



WO 01/90945 PCT/US01/16117

10

15

20

3.3 Modules

Modules are objects that encapsulate a specific, bounded portion
of content at a network address, and allow that portion to be administered
as a unit. For example, a module might display news, sports scores, stock
quotes, or weather fofecasts. Site and end-user content preferences are
expressed by the set of modules displayed on a portal page. Figure 4
illustrates the module object model. A module 29 follows the "singleton"
design pattern, the same as Java servlets, which means that the portal
server keeps only one instance of the module, which persists for the

lifetime of a web server session.

3.3.1 Module Types and Descriptors

Each new class that implements the module interface defines a
new module type. Each module type has a module descriptor object 30,
that defines metadata for the module, such as its name, administrative
properties, and default settings. A module descriptor gets its initial data
from an XML document. The metadata for a module can be customized
simply by editing the XML document. Since XML documents are quite
easy to change, the module descriptor provides another point for the
customization of the portal server. Each module descriptor represents a
module type that can be added to a portal using an administration GUI
(described hereinafter). A module that has been added to a portal is an

instance of its module type.

-13-



WO 01/90945 PCT/US01/16117

10

15

20

25

3.3.2 Views

Views are the means by which the portal server isolates the
presentation logic of the modules so that they can be more easily
customized. The Module View 32 is the display logic for a particular
view, or mode of a particular module. Examples of views are the front
page of a portal, where the module is displayed within a box or other
graphical region (as shown in Figure 2); the page where a user
customizes a module (for example, selects news categories or stocks of
interest); and the page where the portal administrator customizes the
global properties of a module. A new view object is created for each
HTTP request. '

The Module View interface defines constants identifying these
and other common views. Modules can also create custom views to
handle module-specific processes. Implicit to most methods in this
interface is that the Module View contains an HTTP request, an HTTP
response, and other page-specific data, all of which is encapsulated
within a Portal Page Context object 34. However, this interface specifies
no method for setting that information. This architecture provides
flexibility for the creating module to independently manage and create its
views. Any object can perform some process at the start of a Module
View by implementing a Page Start Handler object 36, and passing itself
to the view via its constructor.

Each module view's purpose is to create an HTML page, or part of
an HTML page, displaying some aspect of the module's data. Module
views can generate their HTML through any means desired. To this
end, therefore, certain types of modules can be defined for the portal
administrator to use as building blocks in the construction of a portal site.

For example, a “clip” module can capture specific HTML elements from

-14-



WO 01/90945

10

15

20

25

PCT/US01/16117

an HTML page, so that only those elements are retrieved as the content
of a module. In contrast, an “include” module can be defined that is
capable of capturing the entirety of an HTML page for inclusion in a
module. In these types of modules, the HTML data can be embedded in
the Module View class. Other types of exemplary building block
modules comprise an XML inclusion module, which retrieves an XML
style sheet and generates the HTML for display as the content of a
module; a transaction module which can employ a script to obtain filtered
data from a network location for display in a module; a JSP module,
which can execute a JSP page and display the contents of that page as the
contents of the module; and a module that creates a framework for
multiple JSP pages providing common module views.

Using JSP with modules has a number of advantages:

1- Modules that use JSP are easier to maintain than modules that
embed their HTML in a Java class. If a module's JSP file is changed, all
users of that module see the changes immediately, with no recompiling of
Java class files required.

2- Once a module is built using JSP, HTML knowledge is all that
is required to change the module's look-and-feel.

3- Because the HTML generation is controlled by JSP, the Module
View objects can be very thin.

A module subclass can be defined that enables creation of new
module types using only JSP. Modules that do not need their own new
methods can use this subclass and JSP files for all of their functionality.
Each module view corresponds to a JSP file that contains the HTML and
logic for that view. The portal server allows a Module View, which is a
class object, to execute a JSP page and add its results to the overall

HTML page being constructed.

-15-



WO 01/90945

10

15

20

25

PCT/US01/16117

3.3.4 Portal Page Context and Portal Page Info

A Portal Page Context object 34 extends the Page Context class
46, which can be a class within the javax.servlet.jsp package provided by
Sun Microsystems. The Portal Page Context object contains everything a
Module View needs to know about its execution environment. A Portal
Page Info object 48 tells the modules about the display characteristics of
an HTML page that is being constructed. By using the Portal Page Info
object passed to them via their page context, all modules on a page can

coordinate their fonts, colors, and other display characteristics.

3.4 Page Layout

Multiple modules are presented to the user, for example, within an
HTML pages. The present invention enables the addition of modules to a
page to take place in a flexible manner, which provides control to both a
portal administrator and the end user. Several alternative methods for

achieving such a result can be used.

3.4.1 Layouts and Groups

A Layout 38 contains the Groups 40 on a specific HTML page of
the portal, and Groups contain a set of modules specific to one user of the
portal. Hence, in the example of Figure 2, the Layout for the illustrated
page contains two groups, e.g. left column and right column, and the two
groups contain three and two modules, respectively. A module
constructs a Module View that is specific to the user and context, and the
view assembles the HTML presentation. The JSP or ASP code
enumerates through groups and then enumerates through the modules

within each group.

-16-



WO 01/90945

10

15

20

25

PCT/US01/16117

A Group Template 42 is a pattern used by a Group object to create
itself. Unlike a regular Group object, the Group Template is not
user-specific.

A Layout Template 44 holds a collection of Group Template
objects. A regular Layout is created by patterning itself from a Layout
Template.

3.4.2 Pages, Page Layout and Page Ordering

An alternative to Layouts and Groups can use Pages, Page
Ordering, and Page Layouts. This alternative can provide better built-in
support for multiple-page designs, such as those typical of a "tabbed"
user interface. In a tabbed user interface, the end user mouse-clicks on
one of a series of tabs to move between pages. Each page has its own
content and layout.

The site administrator can create pages, and can publish them for
availability by end users. The general steps for an administrator to create
a page and make it available to users are as follows:

1. Create the page by identifying its descriptive information: e.g.

title and description;

2. Establish the page layout, as a set of columns and/or rows in

which modules are to be grouped. Columns and rows form cells.

Characteristics of cells, such as relative or absolute widths, are set

as part of this step. The administrator can be shown a grid that

visually reflects the layout of cells within the page. Figures 5a and
5b illustrate two examples of such a grid. The layout of Figure 5a
is row-centric, i.e. it comprises two horizontal rows of module

cells, whereas the layout of Figure 5b is column-centric;

-17-



WO 01/90945 PCT/US01/16117

10

15

20

25

3. Specify modules for cells within the page. The administrator
can leave the set of modules completely up to the end user, or can
add modules to cells within the page. The administrator can
decide whether a given module is optional to the end user, or is
required. The administrator can also lock entire cells, effectively
dictating a predefined set of module content;

4. Assign styles to elements of the page;

5. Assign appearance settings, such as fonts and color;

6. Publish the page, making it available to one or more user

groups, and establishing the order of this page relative to others.

Once a page has been published, it can become available to end
users. They can control which modules are on the page, within the
restrictions established by the administrator. For example, users might be
able to choose modules and rearrange them within the cells of one page,
but the portal administrator might lock the content and arrangement of
another page.

Page ordering is controlled by a Page Ordering object within the
object model. This object holds the collection of published pages, and
supports re-ordering of the pages. This is a portion of the API that can be
used, for instance, to affect the relative tab positions of published pages.
In an implementation of the administration user interface, it can use the

API to allow the portal administrator to re-order pages visually.

3.4.3 Manager Classes

The Layout Manager class 50, the Group Manager class 52, and
the Module Manager class 54 manage object persistence. For each
defined layout, the Layout Manager maintains information regarding the

groups contained in that layout. The Group Manager, in turn, maintains

-18-



WO 01/90945 PCT/US01/16117

10

15

20

25

information describing the modules that comprise each group. The
module Manager determines the particular characteristics of each module
in a group, e.g. which news sources the user has selected for display in a

"News" module.

3.4.4 Templates and Styles

Templates and Styles collectively provide a Templates API. In
one implementation, there are three main classes in the Templates API:
the Style class, the Template Manager class and the Template class.

The Style class corresponds to a single style. The Style class
contains methods to display itself (the execute methods) and to make
itself persistent. The Template Manager class is used to create, retrieve
and store Template objects. The Template class corresponds to a single
style type. The main function of this class is to associate default Styles
with particular templates and to create Style objects. Default Style
associations for every template can be made on a system-wide, per-user-

group, per-page, or per-user-group-per-page basis.

3.5 Users

A User object 56 represents an end user of the portal. Figure 6
illustrates the User object model. Referring thereto, a User Group 58 is a
site-defined group of users, to support permissions, described below.
Registered portal users can be assigned to one or more user groups.
Examples of user groups are Engineering and Sales, or Beginning and
Advanced. The user data and group assignments can be stored in an
LDAP directory or a database. User groups enable different portals to be
targeted to different users, as well as to distribute different administrative

functions to selected users. User Query 60 is an interface for searching

-19-



WO 01/90945 PCT/US01/16117

10

15

and retrieving users. An instance of the User Query class is created via
the User Manager 62, which is the abstract implementation of a class to
manage User persistence. Classes that extend the User Manager class
could, for instance, store user data via a SQL database, an LDAP server,
or Java serialization.

A User Set 64 contains a set of User objects, and could be
implemented in a relational database, for example. The User Group
Manager 66 is an interface to the underlying representation of user
groups.

The portal server manages user retrieval and authentication
through a general API composed of the User Manager, User, and User
Set classes. A portal server configuration property specifies the actual
classes that are used at runtime. This design makes it possible to plug in
any desired user manager implementation. The portal server can
employ various user manager implementations. Examples include one
that is SQL-based and another that is directory server-based (JN DI over
LDAP). A variation of the SQL user manager performs its user

authentication against NT domain user accounts.

-20-



WO 01/90945

10

15

20

25

3.6 Permissions

Properties are associated with modules to determine which
modules users can access, which ones they can customize, which ones
they cannot remove from their front pages, and which ones they can
minimize on their front pages. For instance, in the example of Figure 2,
the "Company Directory" module does not include an edit button 27, so
that the user is not able to edit its content. In one implementation of the
invention, a permissions architecture can be employed to control what a
user group can do to a particular object. In this implementation,
permissions can be associated with the Modules and Users classes. User
group permissions determine whether one group can perform any
administrative tasks over another group (for example, view the group
membership, add members to the group, delete members from it, etc.).

Module permissions determine what a user group can do to a
particular module. A standard set of permissions can apply to every
module. Some of these can be end-user permissions (for example,
whether a module is available to the members of the user group, whether
the user group members can customize the module, etc.), while others are
administrative permissions (for example, whether user group members
can add new instances of a module or edit a module's end-user
permissions). In addition, a module can have custom permissions that
control access to functionality that is particular to that module. For
example, a discussion board module might have custom permissions
controlling whether a group is allowed to post messages to the board and
create new discussion categories.

The various types of permissions can be set via an administration
tool, which is preferably web-based. In addition, delegated

administration modules, such as User Manager 62 and Module Manager

21-

PCT/US01/16117



WO 01/90945 PCT/US01/16117

10

15

20

25

54, can enable user groups to perform specific administrative tasks
without having access to the full range of administrative privileges
available through the administration tool.

Figure 7 illustrates the permission object model. The core of the
permissions API comprises four interfaces. A Permission object 72 is a
string ID (such as "enabled"), a list of groups that are allowed the
permission, and an "everyone" Boolean that determines whether the
permission is on or off for everyone. This Boolean supercedes the group
list. A Permission Context object 74 is a set of permissions. Each object
that has permissions defined on it, like a module, has one Permission
Context object containing all of the permissions for that object.
Permission Catalog 76 is a static, class-wide list describing the
permissions allowed in a Permission Context object. A catalog is used to
initialize and update the permissions in an object's Permission Context.
A Permission Catalog Item 78 is the definition of a permission within the
Permission Catalog. Each item describes a permission's ID (e.g.,
CAN_EDIT), friendly name (e.g., "Can edit module"), and a default seed
value for the "everyone" Boolean.

Each module has one Permission Context object 74 containing all
the permissions defined for the module. There is one Permission Catalog
that defines the standard module permissions. Each module defines a
custom Permission Catalog. The catalog can be empty by default, but
permissions can be added to the catalog by defining them within the
module's descriptor file. All permissions referenced in the catalog are

created when the module is instantiated.

22



WO 01/90945 PCT/US01/16117

10

15

20

25

3.7 Content Parsers

One of the significant advantages of the portal framework of the
present invention is the fact that the resources that are made available to
the user via the modules can come from a variety of third-party sources.
Consequently, however, the content for the modules may be largely
unstructured, which can be problematic when it is to be made available
for manipulation and display within the portal. To this end, therefore, a
parsing technology is employed for retrieving data from external web
sites and various other sources, translating the data into XML, and
returning structured results as objects for use by other entities, such as
modules. A Content Parsing object is used for executing a transaction
script and obtaining the results produced by it. The Content Parsing
Manager class, which manages Content Parsing objects, can be
instantiated by a web server or called directly using code.

Once the Content Parsing Manager is created and the script
package loaded, transactions are created. Only one script package need
be used per Content Parsing Manager. Since initializing a Content
Parsing Manager can often involve time-consuming one-time setup
operations such as loading and parsing a package file, preferably a single
instance is created for each web server "application," while multiple
Content Parsing objects are created to handle individual user actions.

The Content Parsing script provides a level of abstraction between
a source of data, e.g. headlines from a news source, and the manner in
which the data is used. If a change occurs in the data source, only the
script needs to be updated, and not the various entities that use the data,

such as modules, Java programs, JSP files, etc.

23



WO 01/90945 PCT/US01/16117

10

15

20

25

3.8 Data Storage

A portal is supported by an extensible database schema at the data
storage tier of the overall architecture so that new data storage
requirements do not in turn require a database administrator to modify the
structure of underlying tables. The Data Storage object is a dynamically
extensible, hierarchical data store, consisting of folders and documents,
that enables modules to be developed that can store their own custom
persistent properties, without having an impact on the overall schema.

The Data Storage object can also be employed to solve another
problem, namely the performance hit associated with retrieving web
content. The Data Storage object provides an infrastructure that can be
used to cache web content. Recently used data can be stored in a
memory cache, and content can be programnlatically expired and/or
uncached. The memory cache holds onto data with weak references, i.e.
when memory gets scarce, garbage collection can be performed on the
cache. The following API provides an interface to an abstract storage
system:

1- Data Storage: the data store itself

2- Data Storage Folder: a folder within the Data Storage object.
Folders can have an unlimited number of string or integer properties and
can contain Data Storage Documents as well as subfolders. A folder
within the Data Storage object is accessed by its path, similar to the
operation of a file system.

3- Data Storage Document: a document within the Data Storage
object. The document can be a string, a serializable object, a DOM
Document, the contents of a URL, or a byte array. Each document can

have an unlimited number of string properties.

24-



WO 01/90945

10

15

20

25

Different implementations of the Data Storage class, with different
persistence mechanisms, are possible. One version could use a relational
database, another could use LDAP, and yet another could use custom
machinery. In a SQL and file system implementation of the Data Storage
class, document contents are stored in the file system. For instance, a
document containing a Java object is serialized and written to a file. A
document containing text has the text written as a simple bytestream to
file. A document containing a URL has the contents of the URL
downloaded and written as a bytestream to file. A relational database
keeps track of document names and where in the file system their
contents are stored. Every document, when created or retrieved, is
automatically put into a memory cache. The memory cache can be
cleared by the Java Virtual Machine (JVM) when resources are running
low.

The portal server can be scaled by load balancing across multiple
machines. Many web sites cannot be replicated across servers because of
state cached in memory that gets out of synchronization. The portal
server of the present invention can notify all servers in a cluster that

cached content has changed.

3.9 Task

Services frequently need to be able to execute jobs according to a
schedule. An example is a cache cleanup routine, which must be run,
transparent to any user, on a regular basis, e.g. every 15 minutes.
Another example is a news headline purge routine that should run every
few days to remove headlines older than a specified number of days. In
the portal server, these scheduled matters are handled by a task. A task is

a collection of one or more subtasks coupled with a schedule. Tasks can

225.

PCT/US01/16117



WO 01/90945 PCT/US01/16117

be set up to run as external programs, Java programs in separate JVMs,
on separate threads in the current JVM, or on the current thread.
A schedule defines run times. It is made up of an interval, interval
units, and constraining variables:
5 1- Maximum number of repetitions (if left at 0, unrestricted);
2- Start date (if left blank, can start immediately, depending on
other constraints);
3- End date (if blank, never expires);
4- Arrays of allowed days of week, days of month, and months
10 (specifying any of these constrains the schedule to run only on
days that match the array contents; the effect of constraining
arrays is cumulative).
The Persistent Scheduler class executes from a collection of
persistent tasks described in its database. It reads the database for all
15 current tasks, finds those due to be executed, and executes them. |
A Task Scheduler object can iterate over scheduled tasks until
there are no more to schedule, or until a shutdown time. Direct Task is
an interface for a task that can be executed directly, instead of by
indirection. This interface is useful for single tasks that do not need input

20 parameters.

4. Initialization Architecture

The portal server can have different initialization strategies, e.g.
one for an Active Server Pages (ASP) version and another for a Java
25 Server Pages (JSP) version. These strategies solve the problem of
allowing dynamic web pages to obtain access to Java objects within the

object model.

-26-



WO 01/90945 PCT/US01/16117

10

15

20

25

4.1 ASP Version

The ASP version of the portal server can run under Microsoft
Internet Information Server (IIS). The bridge between IIS and Java
classes is the Microsoft Component Object Model (COM), an operating
system service for connecting objects that are written in different
languages. The portal server registers one of the classes within its class
library as a COM object, e.g. PortalServices. When a browser first
accesses the IIS portal server ASP pages, an instance of PortalServices is
created within the JVM. This PortalServices object provides a path to
other portal server objects so that they do not also have to be registered
with COM.

Figure 8 summarizes how the portal server works under ASP. IIS
serves HTML and ASP pages for an IIS web application. According to
the IIS definition, an "application" is the collection of files in a particular
web directory and its subdirectories. Each application must have an
initialization file, named global.asa, in its root directory.

The starting point for an IIS application is default.asp. Figure 9
shows the role of global.asa and default.asp in one possible portal server
IIS implementation. Everything under the portal directory is part of the
portal server application. The global.asa file in this directory is portal
server's application initialization file. An OBJECT tag in global.asa
creates one instance of the PortalServices COM component at web server
startup.

At the start of a user's session, the global.asa file finds the correct
User object, and the default.asp file creates the Layout object. ASP is
used for the pages served to the user. JSP can be used to generate the

module HTML within those pages, using the portal server's JSP

-27-



WO 01/90945 PCT/US01/16117

10

15

20

25

execution environment. This technique constitutes JSP wrappering

within an ASP environment

4.2 JSP Version

Unlike some scripting environments, standard JSP does not have
the built-in capability to know when the web server has started, or to
know when a new user has begun a session. By contrast, ASP has the
notion of the global.asa file, in which code can be placed that is executed
before any page in the directory is accessed by a particular user.
Accordingly, the JSP version of a portal web site can be designed to
ensure that initialization code is executed before any page of the site is
run. The initialization code can be in a file that contains a session start
method and an application start method. This file is preferably included
at thé top of every JSP file to ensure that the application and current user

have been initialized correctly.

5. User Session Control

A portal server session begins when a user first accesses any portal
server page, and ends after a period of inactivity that is configurable via
the web server, e.g. 20 minutes.

Identifying information about registered site users is stored in a
database. A registration page enables new users to be added to the
database; a login page enables users to identify themselves to the portal
server by entering their user name and password. The login information
can be stored as a browser cookie so that users don't have to log in each
time they visit a site.

When a user accesses the portal site, the portal server checks for a

cookie identifying the user. Site access can be controlled through a

-28-



WO 01/90945 PCT/US01/16117

10

15

20

25

combination of cookies and two administrative flags: one indicating
whether guest access is allowed and the other indicating whether new
users can register themselves. If no cookie is found, the portal server can
send one to the browser when a registered user logs in.

If a user is identified as a registered user, the portal front page
creates a User object as well aé a Layout object, which it uses to build the
User's custom front page. For a guest user, a guest user account can be
used. A guest user can access only the guest front page, the login page,
and (if self-registration is allowed) the registration page.

Each portal server web page checks for the User object cached in
the session; if none exists, the login page is displayed instead. This check
prevents unauthorized access to any portal server page.

A site can change this behavior through portal server scripting

pages - for example, to send unregistered users to some other site.

6. Module Display Within a Portal Page

Once a user has been registered, that user’s front page is displayed
via the browser application, for example as depicted in Figure 2. Each
module generates HTML, which the front page displays at that module's
spot, as designated by the layout. A module displays various sets of
information. For example, a news module displays various categories of
news. On the front page, the news module displays news headlines.
When the user clicks the module's edit button 27, the module displays the
list of available news categories as well as the categories a user has
already selected. A module provides these display capabilities by having
a separate "view" object in charge of each type of display. Figure 10

displays the front-page and edit views for the news module.

29



WO 01/90945 PCT/US01/16117

10

15

20

25

These two views create only the portion of a module that is
surrounded by a dotted line in Figure 10, namely its substantive content.
The front page and user edit page create the rest of the displayed features.

A module view object contains the display logic for its module.
When a user accesses the portal, each module on the front page creates an
object that generates the HTML for its front-page view. When the user
clicks the edit button of a module, the edit view object creates and
displays the user edit page. Figure 11 shows the display logic in more
detail, again using the news module as an example.

A layout page, which is accessed by one of the personalization
links 24, lists all modules that are available to any user group to which
the user belongs. Users can add, remove or reorder the modules that are
included in their layouts by means of this page.

Modules allow attributes to be added easily, without concern over
the method of storage. The portal server provides custom properties,
which support an easily extensible storage mechanism. Figure 12
illustrates how the hypothetical news module could use the Data Storage
object to customize a view for a particular user. The Data Storage object
stores any administrative customizations that a module might have. In
the case of the news module, these customizations could be default news
categories that individual users can override for their own front pages,
categories that users are required to include on their own front pages, or a
combination of the two.

A module can have custom properties as well. A module might
use a custom property for values an administrator would change

frequently - such as reminders or a "tip of the week."

-30-



WO 01/90945 PCT/US01/16117

10

15

20

25

6.1 Multithreaded Module Preparation

Since the portal server partitions a web page into logical
components, i.e. modules, they can do much of their work separate,
simultaneous threads. Multithreading permits multithreaded page
requests to yield faster page response time, especially for heavily
dynamic and network-bound pages. For example, if three modules are
making network connections to get their data and each one takes two
seconds, the response time for a single-threaded application would be at
least six seconds. However, a multithreaded portal server's response time

could be closer to two seconds.

7. JSP Hosting

An ASP version of the portal server can include a JSP execution
environment that is available to module views, as depicted in Figure 13.
JSP files are manipulated via a Java servlet, a Sun Microsystems
specification analogous to the CGI specification. The ASP version of the
portal server can include a servlet host and JSP servlet to execute JSP
files.

A JSP version of the portal server can also use this internal servlet
host. Alternatively, the JSP version can use the web server's ISP servlet,
by making a Servlet API call for inclusion of the module's HTML output

within a web page being constructed.

8. Site Look-and-Feel, and Communities

Users of a portal web site typically belong to one or more user
groups that are important to the portal provider. The user groups may
constitute communities united by a special interest, common job role,

common membership in a department or group, etc. Very commonly, the

31-



WO 01/90945 PCT/US01/16117

10

15

20

25

portal providers may want to create a different look to their sites for each
of the different user groups. In other words, stylistic elements of the page
can be varied depending on the user's group membership.

To provide for this facility, these general provisions are required:

1. a means of associating formatting intelligence with specific
portions of a page, thus defining a style;

2. a way of associating a user group with the style;

3. a way of identifying which of a user's group memberships takes
primacy in choosing styles.

Each of these provisions is addressed in the description to follow.

8.1. Styles and Templates

A "style" is a portion of software source code affecting the
look-and-feel of a user interface. For styles to be useful, their code must
be packaged in a way that makes them easy to administer and to include
in a user display.

Since it is a portion of user interface source code, a style cannot be
useful outside of a context. A "template" is a category to which a style
can belong. Templates provide the context in which a style will be used.
Templates also provide a means of retrieval for the currently selected
style.

In an HTML-based implementation, styles and templates are the
means by which a page can provide a different look-and-feel for different
portions of the page and for different user groups.

The usefulness of styles and templates depends on how easy they
are to create and to incorporate within a page. Both "templates" and

"styles" can be created dynamically, as part of an administration user

-32-



WO 01/90945 PCT/US01/16117

10

15

20

25

interface. This dynamic creation process involves the following general
steps:

1. define the template, by describing it to the administrative user
interface;

2. create the style's source code in a file, using whatever language
and technique is appropriate to the deployment and to the types of
templates to which the style will apply;

3. define the style in association with a template;

4. upload the style files to the portal web site.

Once a template has been created and has one or more styles
associated with it, the styles can be retrieved for use in a page. Part of
the API for the Template object includes methods for retrieving styles.
Once retrieved, the API for the Style object allows the style to be

executed, creating the desired portion of the user interface.

8.2. Style-to-group Mapping

Styles provide the means of delivering a particular look to a
template. To support the notion that different user groups will have
different styles, a style within the template's set can be identified as the
desired style for a group. This can be made more sophisticated to allow
defaulting to a style when the user's group does not explicitly have a style

associated with it.

-33-



WO 01/90945 PCT/US01/16117

10

15

20

25

8.3. User Primary Group

Users can belong to multiple user groups. To create a
look-and-feel tailored to the user's group membership, one approach is to
choose one of the user's groups as the "primary user group". This group
is the one used to select user interface look-and-feel, by asking the
Template object to return the style associated with the user group.

To achieve this purpose, there must be some way of assigning the
primary user group to the user, from among the set of groups to which the
user belongs. For instance, an administrative user interface can include a
way to flag one of the groups as "Primary".

Once the primary group has been chosen for the user, it can be
used as the basis to make decisions. To support this, the API returns the
primary group. In one implementation, the User object includes a
method to return the user's primary group. Given the primary group, the
portal web site can be written to exploit the style association with user
group. For instance, the rule can be "for a given template, get the style

associated with the user group, and execute the style."

8.4 Group-specific module layout

An important aspect of creating a site for a user community is the
ability of the portal administrator to create pages whose modules are
specific to that group. This can be supported by allowing each page to
have module contents by group. The ability to add modules to pages can

be made specific to a group.

8.5. Special Provisions for Delegated Administration
In a system which allows "delegated administration" where users

other than a portal administrator have some control over the look and feel

-34-



WO 01/90945

10

15

20

25

PCT/US01/16117

of a portal page, care must be given to what template definition and style
definition capabilities are made available to delegated administrators, and
how those templates and styles are allowed to be added to the web site.
Since styles define actual pieces of code affecting the appearance of the
web site, they should be treated as potential viruses, and subjected to
source control as with the rest of the site.

Thus, while a portal administrator can add styles without
restriction, and can make them live immediately, users acting as
delegated administrators must be restricted so that they cannot introduce
ill-behaved code. One way to accomplish this is to restrict what
delegated administrators can add to the system to be only HTML, rather
than JSP or ASP code. This restriction lessens the potential for serious
harm to the server, but places no restriction on the content being added to

the site's pages.

8.6. Viewing the End Result

Given the many provisions for an administrator to control the
look-and-feel of a site by user group, and since users can belong to many
different groups, an administrator can easily lose track of what the
resulting portal site might look like to the end user. A solution to this
problem is to give the administrator the abilij:y to check out the end user
site, by allowing them to quickly and easily "log in" as that user. This
can be provided from the portion of the administrative interface that
allows editing of the user record. This portion is only accessible to an
administrator who necessarily has access to the user's login, so security is
arguably not compromised by providing this access. A single button

within the user editing pages can provide this access.

-35-



WO 01/90945 PCT/US01/16117

10

15

20

25

9. Administration

As discussed in previous sections, a useful feature of the portal
server is a web-based administration tool that enables administrators to
perform many tasks through simple browser actions. These tasks can
include any or all of the following:

1- Adding module types to the web site and setting module
properties

2- Performing user administration

3- Designing page layouts and styles for user groups, and defining
system-wide defaults

4- Enabling or disabling the guest and user self-registration
features

5- Reviewing the most recent log of portal server activity

6- Maintaining user groups and user group membership (version
2.0 and later)

7- Setting module and user permissions

8- Running various graphical utilities, such as one that sweeps
obsolete data from the Data Storage object and database; one that
diagnoses the current operating conditions of the portal; one that maps
images to document mime types; one that explores the contents of the

Data Storage object; and/or various utilities for setting up portal services.

9.2. Delegated Administration

A portal web site can be administered entirely by one or more
portal administrators who have access to all the administration
capabilities of the system. However, depending on the nature of the
portal site and its user communities, this central administration can create

a large workload for those administrators, and may violate privacy of

-36-



WO 01/90945 PCT/US01/16117

10

15

20

25

some of the communities. A remedy to these problems is the ability to
delegate specific portions of administration to trusted members of user
communities.

Because modules are the portal server's means of distributing
content in a controlled fashion to user communities, they can serve as an
excellent basis for distributing administration capabilities to a subset of
users. Specifically, modules can be written to provide certain
adﬁxinistrative capabilities, and those modules can be assigned to user
groups, so that only members of those user groups will have access to the
modules. Typically, of course, the user group to which an administration
module is assigned is carefully restricted to a very limited number of

authorized users, but this decision is left to the portal administrator.

10. Summary

From the foregoing, it can be seen that the present invention
provides an architecture for a portal server that offers a number of
features and advantages. One such feature is its platform independence.
The portal server can work with UNIX, Linux, and Windows NT, as well
as with leading web servers, application servers, and databases. Further
advantages lie in the fact that installation is rapid. An entire working
portal can be up and running very quickly: in hours or days, rather than
weeks or months that were required prior to the invention. Organizations
can, at their own pace, change all aspects of the look-and-feel of the
portal, integrate their own content, and use the portal server's
development tools to extend out-of-the-box functionality. The portal
server is preferably based on Java, JSP, JIDBC, XML, and other
standards-based technologies, thereby promoting integration with

existing systems and reducing required learning time.

-37-



WO 01/90945 PCT/US01/16117

It will be appreciated by those of ordinary skill in the art that the
present invention can be embodied in other specific forms without
departing from the spirit or essential characteristics thereof, The
presently disclosed embodiments are therefore considered in all respects

5 to be illustrative, and not restrictive. The scope of the invention is
indicated by the appended claims, rather than the foregoing description,
and all changes that come within the meaning and range of equivalence

thereof are intended to be embraced therein.

-38-



WO 01/90945 PCT/US01/16117

O 00 N & R W e

—_— = =
Noo= O

W =

CLAIMS

What is claimed is:

1. A portal server framework for providing a portal on a computer
network, comprising:

a module software class configured to instantiate an object, the
object encapsulating information of a particular type on the computer
network; and

a permission class configured to instantiate a permission object for
the object, the permission object defining a first set of users having
access to, and a set of administrative privileges associated with, the
object;

whereby, upon installation on the network, the classes are

executable by a processor on the computer network.

2. The portal server framework of claim 1, further comprising a
descriptor class configured to instantiate a descriptor object for the

object, the descriptor object defining data for the object.

3. The portal server framework of claim 2, wherein the data includes
properties defining the users and the privileges, the data provided to the

descriptor object by a customizable XML document.

4. The portal server framework of claim 1, further comprising a
permission context class configured to instantiate a permission context
object for the permission object, the permission context object defining

the users and the privileges for the permission object.

-39.



WO 01/90945 PCT/US01/16117

V WD E- R VS

E N VS B

5. The portal server framework of claim 1, further comprising a
group class configured to instantiate a group object encapsulating the

object, the object specific to a set of users.

6. The portal server framework of claim 5, further comprising a page
class configured to instantiate a page object encapsulating the group
object and defining a content preference of the portal, the portal

providing access to the computer network.

7. The portal server framework of claim 5, further comprising a
group manager class configured to instantiate a group manager object, the
group manager object maintaining information describing the object

encapsulated by the group object.

8. The portal server framework of claim 5, further comprising a
module manager class configured to instantiate a module manager object,
the module manager object determining the characteristics of the object

encapsulated by the group object.

-40-



WO 01/90945 PCT/US01/16117

L A W N =

o

BOWON

B~ W

9. The portal server framework of claim 1, further comprising a
portal services component class configured to instantiate a portal services
component object, the portal services component object providing a
single point of access to the objects by methods that are external to the

portal server framework.

10.  The portal server framework of claim 1, further comprising a view
class configured to instantiate a view object for the object, the view
object defining a display logic for a particular presentation of the

information encapsulated by the object.

11.  The portal server framework of claim 10, wherein the display
logic is provided by a page context object, the page context object

encapsulating specific display data.

12.  The portal server framework of claim 1, wherein the set of
administrative privileges includes defining a second set of users having
access to, and at least one administrative privilege in the set of

administrative privileges associated with, the object.

41-



WO 01/90945 PCT/US01/16117

O 00 3 A i BN e

—
— O

HOWN

13. A method of providing a portal server on a computer network, the
method comprising:

providing a module software class configured to instantiate an
object, the object encapsulating information of a particular type on the
computer network;

providing a permission class configured to instantiate a permission
object for the object, the permission object defining a first set of users
having access to, and a set of administrative privileges associated with,
the object; and

whereby the classes are aexecutable by a processor on the

computer network.

14. The method according to claim 13, further comprising providing a
descriptor class configured to instantiate a descriptor object for the

object, the descriptor object defining data for the object.

15.  The method according to claim 14, wherein the data includes
properties defining the users and the privileges, the data provided to the

descriptor object by a customizable XML document.

16.  The method according to claim 13, further comprising a
permission context class configured to instantiate a permission context
object for the permission object, the permission context object defining

the users and the privileges for the permission object.

-42-



WO 01/90945

AW W S WN

T R W N

PCT/US01/16117

17.  The method according to claim 13, further comprising providing a
group class configured to instantiate a group object encapsulating the

object, the object specific to a set of users.

18.  The method according to claim 17, further comprising providing a
page class configured to instantiate a page object encapsulating the group
object and defining a content preference of the portal, the portal

providing access to the computer network.

19.  The method according to claim 17, further comprising providing a
group manager class configured to instantiate a group manager object, the
group manager object maintaining information describing the object

encapsulated by the group object.

20.  The method according to claim 17, further comprising providing a
module manager class configured to instantiate a module manager object,
the module manager object determining the characteristics of the object

encapsulated by the group object.

21.  The method according to claim 13, further comprising providing a
portal services component class configured to instantiate a portal services
component object, the portal services component object providing a
single point of access to the objects by methods that are external to the

portal server framework.

-43-



WO 01/90945 PCT/US01/16117

BN

— B CS N )

O &0 3 O v b~ W W

—
[l

22.  The method according to claim 13, further comprising providing a
view class configured to instantiate a view object for the object, the view
object defining a display logic for a particular presentation of the

information encapsulated by the object.

23.  The method according to claim 22, wherein the display logic is
provided by a page context object, the page context object encapsulating

specific display data.

24.  The method according to claim 13, wherein the set of
administrative privileges includes defining a second set of users having
access to, and at least one administrative privilege in the set of

administrative privileges associated with, the object

25. A computer program product for providing a portal server on a
computer network, the computer program product comprising:
a computer readable medium; and
computer program instructions, recorded on the computer readable
medium, executable by a processor, for performing the steps of:
instantiating an object encapsulating information of a
particular type on the computer network; and
instantiating a permission object for the object , the
permission object defining a first set of users having access to, and

a set of administrative privileges associated with, the object.

-44-



WO 01/90945 PCT/US01/16117

E R VS I

vt B W N

BHWN

26.  The computer program product according to claim 25, further
comprising computer program instructions for performing the step of
instantiating a descriptor object for the object, the descriptor object

defining data for the object.

27.  The computer program product according to claim 26, wherein the
data includes properties defining the users and the privileges, the data

provided to the descriptor object by a customizable XML document.

28.  The computer program product according to claim 25, further
comprising computer program instructions for performing the step of
instantiating a permission context object for the permission object, the
permission context object defining the users and the privileges for the

permission object.

29.  The computer program product according to claim 25, further
comprising computer program instructions for performing the step of
instantiating a group object, the group object encapsulating the object, the

object specific to a set of users.

-45-



WO 01/90945 PCT/US01/16117

— ot R WD = v AW B W N

N N AW

30.  The computer program product according to claim 29, further
comprising computer program instructions for performing the steps of
instantiating a page object encapsulating the group object and defining a
content preference of the portal, the portal providing access to the

computer network.

31.  The computer program product according to claim 29, further
comprising computer program instructions for performing the step of
instantiating a group manager object, the group manager object
majntaining information describing the object encapsulated by the group

object.

32.  The computer program product according to claim 29, further
comprising computer program instructions for performing the step of
instantiating a module manager object, the module manager object
determining the characteristics of the object encapsulated by the group

object.

33.  The computer program product according to claim 25, further
comprising computer program instructions for performing the step of
instantiating a portal services component object, the portal services
component object providing a single point of access to the objects by

methods that are external to the portal server framework.

-46-



WO 01/90945 PCT/US01/16117

whn R W

v AWM

34.  The computer program product according to claim 25, further
comprising computer program instructions for performing the step of
instantiating a view object for the object, the view object defining a
display logic for a particular presentation of the information encapsulated

by the object.

35.  The computer program product according to claim 34, wherein the
display logic is provided by a page context object, the page context object

encapsulating specific display data.

36.  The computer program product according to claim 25, wherein the
set of administrative privileges includes defining a second set of users
having access to, and at least one administrative privilege in the set of

administrative privileges associated with, the object.

-47-



WO 01/90945 PCT/US01/16117

1027 //\ 10 12a—\
BROWSER
14 °l
PC
12b—
10b— \
WORKSTATION
12¢
2
100'\ F 12n
WEB-ACCESS o
DEVICE

Figure 1

1/11
SUBSTITUTE SHEET (RULE 26)



WO 01/90945 PCT/US01/16117

20

~

/

22 ABC Inc.

[ Tech Support ] FHuman Resources J

Layout Color Edit Account Logout
Bookmarks Edit E & News Edit |j
XYZ Corp. Home Page Trade Deficit Improves 26
Investment Account 26 British Election Results o
Developer Site Latest Teen Fads 18
Search Edit E & l/\

. . - \7/
Search the web for : 26 Discussion Board | Edit E‘
Monthly Meeting Agenda
26

Company Dir. ij X Lunch Spots

Search by name or e-mail addr :

26
Figure 2
2/11

SUBSTITUTE SHEET (RULE 26)



WO 01/90945 PCT/US01/16117

Client

Web

Server
ASP/JSP

Libraries

]

Data
Storage

Figure 3

3/11
SUBSTITUTE SHEET (RULE 26)



WO 01/90945 PCT/US01/16117

Legend

Aowns B

Ahas some norrownership relation over B
Alisasubdass of B

56
Portal Front Page //‘\
Senvi it User
vt PortalSenvicesComponen
goup || _group e o
bean bean 28 -/ A
view ||| view 1.1
generates is specific fo a user's
per http request http request
bean bean e 46
view view ‘ el F
per hitp request o '
> subclass
bean ||| bean PortalPageContext|— > o] PageConiext
view view
|\ 34
1.1
1.1 8 —~ v
uses to create \
per user ModuleViews PortalPagelnfo
40 32 36
38 \ ' \ \
¥ W . 0.1
Layout _1' Growp L » ModuleView »  PageStartHandier
o ? /— 30
manages persistence manages persistence 1. ModuleDescriptor
generates per
50~ htp request
|}
0.x
LayoutVianager creit&c GE&JE; GroupManager 29~ creates F 74
ser
" " \ 1.1
\\ 52 J / Module | "l PenmissionContext
0.* ) o penmissions user groups have
manages persistence manages persistence T over this Module
\ 0
1.* manages persistence describes permissions
LayoutTemplate —w GroupTenplate in context, provides
54 —~ default settings 76
A}
44 J 42 J ModuleManager 1.1 I [
> PenﬁssionCa{a!og
)

Figure 4

4/11
SUBSTITUTE SHEET (RULE 26)



WO 01/90945 PCT/US01/16117

64 N\ 56 ~ 53 68 ,\\
v ’\\ PermissionContext
UserSet 0. 0.5 1.1
|——iterates over—<>{ User . UserGroup - admir permissions ot
0./ other usergroups over this
T user group
creates 0. oo describes permissions
provides persistence provides persistence In context, provides

default settings

UserQuery UserManager UserGroupManager 1.1 o PermissionCatalog

creates .
/ !

60_/ 62_J 66 7 70_J

Figure 6

76 78
\ Y
1., PermissionCatalog 1% PermissionCatalogltem
A Class ! »  (container for P>
Catalogltems) default = YES)
11 . 1.x 1.*
J>" Describes a PermissionContext Describes a Permission
4 PermissionContext y Permission 4 UserGrouplD
Instance of a Class . _| (i.e., contains all W | W {i.e., user groups that
1 " |permissions for this | can a user edit this have permission to
instance) instance) EDIT this instance)
74 _J 72
Figure 7
[3] Row
[1] Row [2] Row [1] Row 1-
1 1 1- (Cahvmn 2
Column 1 Column 2 Column 1
[2] Row
2-
Colnmn 2.
[3]Row | [4]Row | [5]Row [2] Row
2- 2- 2- 2- [2] Row
Column 1 | Column 2 | Column 3 Column 1 3.
Calimn 2.

Figure 5a Figure 5b

5/11
SUBSTITUTE SHEET (RULE 26)



WO 01/90945

ViAppHcaﬁun
Papges

1

portal/glohal.ésa
portal/default.asp

PCT/US01/16117

Initialization File (global.asa]

<OBJECT SCOPE="Application"
ID="portal_services" PROG
ID="Epicentric.PortalServices">

Session OnStart() {
id=Request .Coockies ("id")
user = portal services.getUser(id)
Session ("user")=user

FrontPage (default.asp)

user=Session ("user")
layout=user.getLayout ()
for each group in layout {
<start new HTML columns>
for each bean in group {
<gtart new HTML row>
bean.getHTML ()

Figure 9

6/11

SUBSTITUTE SHEET (RULE 26)



WO 01/90945 PCT/US01/16117

Browser} :

HTTP
conngction

GetCOM object

“Epicentric.PortalServices"

"Epicentric.PortalServices”

User {| Group Module Layout

Epicentric Java Classes

Figure 8

7/11
SUBSTITUTE SHEET (RULE 26)



WO 01/90945 PCT/US01/16117

NewsMod

Getcategories for display

A X L LIRS SRS M R Y e 2 Java R el AL TN SN 1 M et ui LIRS N ) 9%

Objects

NewsMod
Editview

theadline
theadline

:Tech

Theadine
headine _ _

_Edit News Module -

e vt o - —— ———
| Awailable News selected News i

I;
1] Politics
I Sports
&‘-z : Health
Yo
1
I

Figure 10

8/11

SUBSTITUTE SHEET (RULE 26)



WO 01/90945

FrontPage

view=newsbean.getView
("Exontpage")
view.getHTML()

PCT/US01/16117

NewsModFrontPageView

] World
¢ getHTML () ;-> headline
2 { i
creates HTML : headine
! forpage § Tech
¥ .
b el headline
headline

Getheadlines
for display

NewsMod

getView()

creates new view
ohjectofdesired type

UserModEditPage

view=newsbean.getView
("edit")
view.getHTML()

Getcategories
for display

NewsModEditView
TR SRR

Available News Selaectad News

o getHTML () Politics  =]|
§ Sports
Pucud creates HTML Heazlth

for page

Figure 11

9/11
SUBSTITUTE SHEET (RULE 26)



WO 01/90945 PCT/US01/16117

Mod

. Get headlines for
Get user's @ ' :

. user's categories
categories

i NewsMod
;iigmmPageView

Return headlines for
\ AN user's categories

:W‘orld

theadline
theadline

:Tech
:headl!ne HTTP
.b?.ag“ﬂe ________ - Connection

Figure 12

10/11
SUBSTITUTE SHEET (RULE 26)



WO 01/90945 PCT/US01/16117

CHTTR
connection

Server

ASP File FortalBeanView
serviceHTML ()
view.serviceHTML () "
servlet_host.execute ("view.]Jsp"
o Epicentric Servlet Host
view.jsp

1igspserviet
"yiew.jsp"

bean.getData ()
<write HTML table> ‘-, Jview. ] i
<insert data> JSP Vlew'JSp:§

Figure 13

11/11
SUBSTITUTE SHEET (RULE 26)



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

