20047017602 A1 | I VU1 AV YO0 00 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
26 February 2004 (26.02.2004)

AT O YOO A

(10) International Publication Number

WO 2004/017602 A1l

HO4L 29/06,

(51) International Patent Classification’:
HO4N 7/16, 7/173

(21) International Application Number:
PCT/US2003/024175

(22) International Filing Date: 31 July 2003 (31.07.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/403,995
10/632,003

17 August 2002 (17.08.2002)
30 July 2003 (30.07.2003)

UsS
UsS

(71) Applicant (for all designated States except US): DISNEY
ENTERPRISES, INC. [US/US]; 500 South Buena Vista
Avenue, Burbank, CA 91521-0165 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WATSON, Scott,
F. [US/US]; 15355 Michael Crest Drive, Santa Clarita,
CA 91287 (US). HASELTINE, Eric, C. [US/US]; 2616

Midway Branch Drive, #103, Odenton, MD 21113 (US).
FREEMAN, Eric [US/US]; 5719 Ward Avenue, Bain-
bridge Island, WA 98110 (US). FREEMAN, Elisabeth,
M. [US/US]; 5719 Ward Avenue, Bainbridge Island, WA
98110 (US). LaBERGE, Aaron, P. [US/US]; 62 Lyon
Road, Burlington, CT 06013 (US). FRITZ, Adam, T.
[US/US]; 2922 Western Avenue, #710, Seattle, WA 98121
(us).

(74) Agents: BERMAN, Charles et al.; Greenberg Traurig
LLP, 2450 Colorado Avenue, Suite 400E, Santa Monica,

CA 90404 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US,UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: SYSTEM FOR THE DELIVERY AND DYNAMIC PRESENTATION OF LARGE MEDIA ASSETS OVER BAND-

WIDTH CONSTRAINED NETWORKS

60
\ Remote Site

Content Provider 8

i - Client 2
- -~ Asset
Medja Assets / S ——— .
Cable/ e~ ; J, Uist(s)
(e.g., audio, /
5P \\'-“ videa, tQXt) ;7 /
b i ,
L , A %
| A
: l 90 86 I/ /’ //
E 5 N W ‘/ ot 40 Content Provider A
]\\ |\\‘_-__ }\ 26 p
AN Cache lient
“*-v) [Assat
Manager
22 Process
(-
20

User Machine

O (57) Abstract: Media content, based on a predetermined set of constraints, from a content provider is delivered to a local cache of a
user device before viewing the media. A client asset manager process resides in the user device, an asset list at the content provider

=

site, and the media assets are located at a remote site.

WO 2004/017602 A1 II}}10 Y N080H0 T 0000 00

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Published:

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, — with international search report
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, — before the expiration of the time limit for amending the
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, claims and to be republished in the event of receipt of
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). amendments
Declarations under Rule 4.17: For two-letter codes and other abbreviations, refer to the "Guid-
— of inventorship (Rule 4.17(iv)) for US only ance Notes on Codes and Abbreviations” appearing at the begin-

— of inventorship (Rule 4.17(iv)) for US only ning of each regular issue of the PCT Gagzette.

WO 2004/017602 PCT/US2003/024175

SYSTEM FOR THE DELIVERY AND DYNAMIC PRESENTATION OF
LARGE MEDIA ASSETS OVER BANDWIDTH CONSTRAINED
NETWORKS

BACKGROUND
[0001] 1. Field of the Invention

[0002] The present invention relates to delivering and presenting high quality,
media based content, to users or processes over networks, with assured Quality of

Service (QOS) even if insufficient network bandwidth is available.
[0003] 2. Description of the Background Art

[0004] The inventors have recognized that even with advances in network
technologies, delivering rich, high quality experiences will remain a challenge. In
particular, delivering large media assets — whether they be audio, video, flash,
games, data or other digital media formats — often requires more network
bandwidth/throughput than is available. For instance, in the case of audio and video,
a high bit rate asset can only be delivered in real time if a user's effective bandwidth
is at least equal to the asset's bit rate, otherwise the result is a sub-optimal user

experience complete with stutters, stops, and content buffering.

[0005] On the other hand, a large game executable may not have the same real
time constraints (or required quality of service) as a video, however doWhIoading the
asset requires a significant amount of time and overhead for the user, even on the
fastest networks. While a number of “download managers” on the market will take
care of this for the user, a content provider may wish to intelligently and adaptively
manage the download of assets to the user device (e.g., a computer, a set-top box
with memory and/or processor, a device) in an elegant and transparent manner,

without needing the attention of the user.

[0006] Given this, there is a need to manage and deliver large, high quality media
assets to users using their limited bandwidth in a time shifted manner. That is, there
is a need to be able to unobtrusively deliver content to users via available bandwidth

and idle cycles, so that when the high quality content is needed, it is readily available

WO 2004/017602 PCT/US2003/024175

on demand and an uncompromised user experience is rendered. This in tumn
provides the illusion that the user has more effective bandwidth than is actually
available. To this end there is also a need for this technology to integrate
seamlessly into delivery and presentation platforms (including but not limited to web
browsers, flash and other platforms) and content publishing systems. The present
invention achieves this and other functionalities and also overcomes the limitations

of the prior art.

[0007] For ease of understanding, the following definitions will apply throughout
this application; however, no definition should be regarded as being superceding any

art-accepted understanding of the listed terms.
[0008] Glossary:

[0009] 1. Throughput — The amount of data transferred from one place to another
in a specified amount of time. Typically, throughputs are measured in kbps, Mbps
and Gbps.

[0010] 2. Quality of Service, QOS — The term that specifies a guaranteed
throughput level.

[0011] 3. Client Process — The process on the client that receives cache/display
management directives or hints from a server process and then executes directives
to bring the cache current state in line with desired state and may trigger one or

more notifications to users or other process’s as it does so.

[0012] 4. Cache — A store of assets with “known” availability or QOS. A cache in
this context is an asset storage mechanism where the QOS meets the content
requirements and is in general higher than the medium used to acquire the assets.

State changes within the cache may result in notifications.

[0013] 5. Server Process — Provides the client with the information required for the
client to manage the state of the cache. In its most simple implémentation it is
similar to a quasi dynamic server generated play list. More elaborate
implementations (all of ours) also provide control directives for the client to inform

other process’s of progress against specific sets of assets.

[0014] 6. Expiration date — expiration date of asset, and indicates when the asset

should be removed from the local cache.

WO 2004/017602 PCT/US2003/024175

[0015] 7. Callback URL — a URL that is retrieved once the asset item has been
downloaded.

[0016] 8. Client-side Token — a token or cookie to set when the item has been
downloaded. This allows a client or server application to determine the presence of

an asset on the local system.
[0017] 9. Embargo Date — This indicates the latest date the asset will be used.

[0018] 10. Delete — This indicates that the asset is to be marked for explicit
deletion (to override the expiration date). This allows for retraction of an asset.

[0019] 11. Refresh rate — determines how often a client checks an asset list for

changes.

[0020] 12. Resource path — the network location of any number of resources
associated with the asset list.

[0021] 13. Media Assets — at least one of a text, audio, video, or binary file/data.
[0022] 14. Item — a single media file.
[0023] 15. Link— URL for the media file.

[0024] 16. hitCountUrl — URL to ping after the file has successfully downloaded. A
parameter, duration, will be appended to the end of the URL indicating, in seconds,

how long the download took.

[0025] 17. helpUrl — URL for the client process help that is to be displayed when

the user selects help menu item,

[0026]- 18. trackWithCookie — optional element that, If present, indicates this asset
will be added to the list of assets in the cookie specified by cookieName.

[0027] 19. cookieName — name of the cookie that lists all downloaded assets that
have the trackWithCookie element present. This cookie is essential for ad serving
so the ad server knows which ads have been downloaded. The format of the cookie
will consist of the name only of the files (no extension or path) separated by

commas,

[0028] 20. cookieDomain —domain on which to set the downloaded assets cookie.

Multiple domains can be specified if separated by semi-colons or commas.

WO 2004/017602 PCT/US2003/024175

[0029] 21. /regserver — registers the ActiveX controls with the system and adds
the client process to the startup folder

[0030] 22. /shutdown — stops another running instance of the client process, if

present.

[0031] 23. /unregserver — unregisters the ActiveX controls and removes the
shortcut from the startup folder. Also stops the running instance of clientprocess.exe

and removes COM object registry entries.

[0032] 24. CDN — Content Distribution Network. A federated group of content
servers owned and operated by a 3 party. In general practice a CDN service
provide additional capacity using a highly decentralized collection of servers.

SUMMARY OF THE INVENTION

[0033] The present invention provides for a system and method by which media
content is delivered from a content provider to a local cache of a user device, based
on a predetermined set of constraints, prior to viewing the media. An asset list
comprises information related to the media assets to be downloaded to the client
device, and is transmitted from the content provider to the user device. The asset
list, for example contains URL’s or information related to the location of the media

assets.

[0034] A client asset manager process resides in the user device and is
responsible for downloading assets from the content provider. The asset manager
uses the asset list to request media assets which are located at a remote site. The
client process manages delivery of assets to the user device, periodically, when
specific constraints are met. For example, assets are delivered to the user when
there is optimal network bandwidth availability, user device memory, assured quality

of service, etc.

[0035] The present invention thereby provides a continuous, uninterrupted, and
substantially seamless display (visual and auditory) of media content by efficient
delivery of the media assets to the users. By integrating these assets with a viewing
means (e.g., a web-browser), the user is provided an uninterrupted and continuous

stream of media content that does not require real-time buffering.

WO 2004/017602 PCT/US2003/024175

[0036] The present invention furthermore provides improved methods for delivering
one or more large media assets, for instance, audio content, video content, movies,
games etc., intelligently and adaptively, over a network to a local asset store. As
such, the local asset store is available to a client, or end-user, device and where a
relatively high quality of service is to be assured. The invention also includes an
adaptive method of combining these assets into an essentially seamless

presentation based on local availability of the assets.

[0037] The present invention comprises a method for delivering an asset over a
network. The method comprises supplying an asset list over the network to a user
device. The method further comprises a client which operates on a user device.
The client refers to the asset list in downloading and delivering the asset to the user
device. The client further manages downloading the assets based on when at least

one predetermined constraint is satisfied.

[0038] A content provider can place a digital asset on a user's device a priori, so
that it is immediately available for use, without a network download, when the user
needs it. This can happen when explicitly requested by a user or process, or be

initiated by a content provider based on a subscription service.

[0039] The invention is further described with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0040] FIG. 1 shows a general overview of the client process, according to one
embodiment of the present invention, interacting with a content provider site and a

remote media server;

[0041] FIG. 2 is another view of the client process showing scripts used for

integrating streaming and cached media into web browsers;
[0042] FIG. 3 shows an exemplary program code for the file;

[0043] FIG. 4 is an exemplary depiction of C++ classes in the client process
application;

[0044] FIG. 5 is an exemplary depiction of a timing feature used for downloading

media assets by the client;

WO 2004/017602 PCT/US2003/024175

[0045] FIG. 6 is an error chart which affects the amount of time to wait for a media
asset download;

[0046] FIG. 7 depicts one aspect of the hierarchical nature of the attributes in

relation to asset information in an asset list; and

[0047] FIG. 8 depicts another aspect of the hierarchical nature of the attributes in
relation to asset information in an asset list.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0048] A. General Description

[0049] A continuous, uninterrupted, and substantially seamless display (visual and
auditory) of media content, by efficient delivery of the media assets is provided to
users. Specifically, assets are delivered to a user device, periodically, when specific
constraints are met (e.g., network bandwidth availability, user device memory,
assured QOS, etc.) By integrating these assets with a viewing means (e.g., a web-
browser), the user is provided an uninterrupted and continuous stream of media

content that does not require real-time buffering.

[0050] One or more large media assets, for instance, audio content, video content,
movies, games etc., are delivered intelligently and adaptively, over a network to a
local asset store. As such, the local asset store is available to a client, or end-user,
device and where a relatively high QOS is to be assured. There is also an adaptive
method of combining these assets into an essentially seamless presentation based
on local availability of the assets.

[0051] One example of a local asset store, where the QOS is assured, could be a
cache or a data storage facility offered by Local Area Network (LAN) to which the
user device is connected. By local availability it is meant that an asset is available
on a local to end user or process storage system (or a local store, with a high speed

network in between the client device and the local store).

[0052] In one embodiment a process or application runs on a user’s device, herein
referred to as the client. The client is responsible for managing a cache of content
on the user's local store. Applications, web pages and multimedia presentations can
then rely on this cache to incorporate large media assets that are already resident.

Applications, web pages and multimedia presentations can query the cache about its

WO 2004/017602 PCT/US2003/024175

content and dynamically tailor user experiences around the content that is available.

These applications may be client or server side applications.

[0053] The client may be a service that is downloaded from the Internet and
installed in the user's device. The client may alternatively be provided as a core
component of a computer operating system, or come bundled with other software

applications.

[0054] The client manages a cache of media asset's for the end user. In one
implementation, the assets included in the cache are dictated by an asset list
provided by a content provider. In this implementation, the client retrieves the asset
list at specific and tunable time intervals from a network location. Based on the
information in the asset lists, the client manages the download of assets from a

remote location when predetermined constraints are satisfied.

[0055] A client is allowed to be associated with more than one asset list, so that
many service providers or multiple business units of one service provider can
separately maintain their own asset lists and make use of the same client to manage
the downloads. Also, the client may be made aware of the location of an asset list
when the client is installed or updated. The install is initiated from a web page. If the
client is not yet installed in the client device, software in the web page detects this
and prompts the user to download and install the client. It is also possible to add an
asset list to the client through scripting (combined with ActiveX controls) in a web

page.

[0056] The client manages the download of assets based on predetermined
constraints. As has been mentioned thus far, predetermined constraints include, for
example, network bandwidth availability, user device memory, time of day, and
assured quality of service. For instance, in one implementation of the client,
downloads only occur when the user device is idle. In another implementation, the
client process downloads only when network activity is below a certain level. In
another instance, the client process measures the CPU and memory usage on the
user device, and the predetermined constraint is met when usage is below certain
performance levels. In yet another instance the client process manages the

downloading of assets based on the time of day, and statistically when network

WO 2004/017602 PCT/US2003/024175

usage is lowest. The client process can of course, additionally utilize any

combination of constraints to manage the download of assets.

[0057] The download capability can be switched on and off by the user. The user
can also specify that downloads only happen when the device is on certain networks
(for example on a LAN versus a dialup connection). For example, a user may
subscribe to a content service whereby assets are downloaded (by the client) in the

late evening hours for morning viewing.

[0058] Furthermore, intelligent and adaptive management of assets is possible
without the need for an explicit “download manager” under control by a user. By
intelligently, it is meant that the assets are delivered to the client when some
predetermined constraints are satisfied (e.g., bandwidth of the network, time of day,
QOS, etc.). By adaptively, it is meant that the asset lists, at the content provider site
or the user device site, are automatically updated based on user viewing

preferences.

[0059] Asset lists are used as a means for content prbducers to publish and
manage content on client's local store. Thus, this functionality allows content
producers to publish media assets that will at some point later be integrated into the
presentation of an Application, web page or flash-based presentation. In one
instance the producers enter information about an asset including its location, dates
of presentation and text & related information that may be associated with the asset
into a backend publishing system. This information is then published and
incorporated into the relevant asset lists. The publishing system may also
(immediately or at a certain date and time in the future) publish a web page or

presentation that incorporates the asset.

[0060] One method for delivering asset over a network includes: (i) supplying an
asset list by a content provider over the network to a client, wherein the client
process operates on a user device; and (i) delivering the asset, corresponding to the
asset list, over the network to the user device when predetermined constraints are
satisfied. As an example, the asset could be at least one of a binary data, an audio
content, a video content, a textual content, or a multimedia file. The predetermined
constraints could include the time of day, the user device status (i.e., whether the

device is being used or is idle), bandwidth usage (i.e., whether the bandwidth usage

WO 2004/017602 PCT/US2003/024175

is below a predetermined operating level, the user device CPU usage, the user
device memory usage (i.e., whether the memory usage is below predetermined
operating levels). In addition, the asset could be stored in the local cache of the user
device. Furthermore, the client may integrate the stored asset with the real time
content, from the content provider, in a seamless fashion to provide an uninterrupted
and seamless presentation of content to the user. Moreover, the asset list can be
updated frequently, thereby providing the client process (or cache) with the ability to
receive a wide variety of content periodically based on the predetermined

constraints.

[0061] The system provides to a user an uninterrupted stream of content
comprising: (i) an asset list made available by a content provider over the internet to
a client process, wherein the client process operates on a device of the user; (i) an
asset, made available from a remote location, over the network to the user device
when predetermined constraints are satisfied, wherein information of the remote
location is obtained from the asset list; and (iii) an integrator tool for integrating the
delivered asset with a content stream being received by the user device from the
remote location over the internet. The user is presented with an uninterrupted and

continuous stream of content.

[0062] The producer can enter alternative low-bandwidth media assets and
corresponding textual information, which can then be combined in the backend with
the information on the rich media assets to produce two different versions of the
page (one for users that for whatever reason have not been able to download the
large assets and one for the rich media assets). Users may not be able to download
the rich media assets for a number of reasons, such as (1) incompatible system (2)
their systems haven’t been online to receive the downloads (3) they haven't paid for
a premium service (4) they have insufficient disk space (5) they have been using the
computer and didn’t want it's resources used for downloading. As such, the ability to

deliver an alternative experience in either case is important.

[0063] Content along with advertising can be delivered, for instance, in a
sequenced fashion, only allowing the content to be played when a corresponding
advertisement also exists in the local cache. In one embodiment this is achieved by

using (client or server-side) scripting to determine if both media assets exist on the

WO 2004/017602 PCT/US2003/024175

user's device (the content piece and the advertisement). In another embodiment,
this functionality is achieved by using the asset list bundles, which sets a token when

both assets are on the local device.

[0064] The user can actively specify the media that is downloaded and cached on
the local device. In one implementation, this is achieved by a server-side database
that manages an asset list for each user. For instance, in the middle of the week, a
user might specify they'd like to watch a feature length DVD quality movie that
weekend. This would result in an asset being added to their asset list and result in
the client downloading the asset over time. The user may be charged to add the
asset to this list, or (see below) digital rights management may be used to control the
asset. In another instance, this method is combined with a “push” from the content
provider as follows: to watch a late night news broadcast every morning a user
subscribes to a service. As a result, the service inserts a new asset into the user’s

asset list each evening to identify the new show to be downloaded.

[0065] Furthermore, the system may work with ISP and cable provider co-location
delivery facilities. In one implementation, when a producer publishes an asset it is
then moved to an ISP and cable provider collocation delivery facility or system
(which is close to the user in network geography). The client retrieves that asset and
places it in local cache by retrieving it ISP and cable provider collection delivery

facility or system rather than the service providers source media servers.

[0066] In addition, a content provider can optimize the user experience based on
the assets at hand. For instance, a news related web site may provide a photo of a
news story if no rich media asset is available, however if a video asset is stored
locally, the web page may substitute the video in place of the image ‘on the web
page. This may include the corresponding textual “copy” of the video, as the video
and image may not be of the same story and thus would require different supporting
text and captions. In one embodiment this is accomplished by having the server-
side application detect the presence of the asset via it's corresponding asset token
(see asset lists attributes above). Depending on whether or not the token is present
a different page is created for the end user. In another embodiment this is done on
the client side via scripting in the web browser. That is, by using scripting in the web

10

WO 2004/017602 PCT/US2003/024175

page a different page is created via dynamic HTML based on the existence of the

media assets token.

[0067] One advantage provided by the invention is that it allows a content provider
to optimize its network bandwidth usage. Specifically, by increasing delivery of
content when usage falls below peak, the valleys of bandwidth use are filled such

that bandwidth use is optimized.

[0068] In another aspect, digital rights management (DRM) schemes can be
applied to the data flows. For instance, the DRM protected asset could be published
through the invention. Thus, when the user “plays” the asset, they are prompted to

acquire the appropriate license as a “right-to-use” the content.

[0069] In another aspect, GAME assets can be distributed in the form of real or
virtual ISO images that may be used on the client.

[0070] B. Set-Top Box Example

[0071] The client may download and manage media assets related to media
content from different sources such as a TV set-top box, wherein the assets are
delivered on a sideband of a carrier signal or through a data network, such as a
cable or satellite network or the Internet or an intranet. For example, in one
embodiment, viewers at home have access to a library of movies, or any other
audio/video content available for viewing at anytime. Specifically, the method
involves transmitting media assets, such as movies, to a set-top box in one’s home

and allowing movies to accumulate.

[0072] A hard disk drive in the set-top box is used to store movies. The movies are
transmitted using a datacasting technology which transmits large amounts of data
over standard broadcast television signals. Information related to the datacasting
technology is found in Application number WO9955087 to Hartson et al. filed on
April 16,1999 and published Oct. 28, 1999, which is hereby incorporated by
reference. For example, in a 24-hour period, this datacasting technology can
distribute 20 high-quality feature-length movies. The set top box is easily connected
to the user's television just as any other external device such as a VCR or DVD

player. The set-top box is also connected to a phone line for billing purposes.

11

WO 2004/017602 PCT/US2003/024175

[0073] In an exemplary embodiment, the set top box is located in a person’s home,
connected to their television using standard video cables. The set top box has an
antenna which receives data via the broadcast television signal. The set top box
has, preferably, at least an 80 Gigabyte hard drive for storing a plurality of movies.
The set-top box has a modem which the set-top uses to periodically contact the
service provider. Information passed between the service provider and the set-top
includes: the users “Viewing/Rental History” which is used for billing purposes, set-
top performance logs which are used to monitor the performance of the system and

“Movie Keys” which are used decrypt the movies.

[0074] The set-top box has a processor which is capable of receiving the data
stream from the broadcast signal, reassembling data, and writing data to the hard
drive. The processor must also be capable of simultaneously playing a movie and
reacting to infrared signals fro’m the remote control as well as modem activity. The
hard drive is mated with the sét-top box for security purposes, rendering it useless if
removed and used anywhere else. The set-top box preferably does not have a fan
as it is designed to be very quiet. The set top box also comprises a secure
processor as part of its security system. The secure processor is the active
component of a smart card which is physically attached to the PCB with epoxy to
make it physically hard to tamper with.

[0075] Movies are not “streamed” to the set-top box in real-time, instead content
files are “packetized” and these “packets” are continuously transmitted to the set-top
box where they are incrementally reassembled. The user is not aware of what data
is being sent to their set-top box. The movies are pushed down by the provider to
reside passively in the box for a finite time period. Transmission of the data is
controlled by the content or service provider. To ensure that movies are received in
their entirety, the same movie may be broadcast to the set-top box several times.
Any packets of data that were not received in the first attempt of transmission will be
received with subsequent broadcasts. In the perspective of the present invention, a
client process resides on the set-top box and the media assets (movie content) are
retrieved from the remote site when predetermined constraints (e.g., network
bandwidth, QOS) are satisfied.

12

WO 2004/017602 PCT/US2003/024175

[0076] Movies transmitted to the set-top box may also have associated information
that defines certain characteristics of the movie. For example, a movie may have an
associated start and end date or time which limits the time period in which a movie
can be viewed. For example, a movie may arrive and be stored in the set-top box,
however it may have a start date associated with it which does not allow it to be
viewed until that date. This allows for any discrepancies in transmission times for
movies that may vary from one location to another, and also allows for movies to be
“pre-loaded” and immediately available on the official release date. Similarly, the
asset list may have an end date associated with a movie, after which date the movie

can no longer be viewed, and is automatically deleted from the set-top box.

[0077] Movies stored on the set top box are encrypted. Upon selection of a movie
to view and satisfaction of business rules (ie: the user has sufficient credit), the set
top box allows for the movie to be decrypted and played. The set-top box does not
need to connect to the service provider prior to allowing a movie to be viewed, since
the keys for decrypting the movies are typically pre-fetched and resident on the set-
top along with the current account status. Obviously, the encrypted movies cannot
be viewed without decrypting them. All decryption is logged and this log is used to
determine a user’s bill. The logic surrounding decryption and user account status is
handled by the secure processor. In a preferred embodiment of the present
invention, a fee is charged to the user upon selection of the movie for viewing, a

subsequent “rental confirmation” dialog and prior to viewing of the movie.

[0078] In another embodiment, the user is billed for viewing a movie once a
substantial portion of the movie has been viewed. Once a movie has been selected,
it can be viewed again without charge for a limited period of time (e.g. 24 hours), or
for a limited number of viewings. In another embodiment, instead of paying for each
movie, the user is charged a monthly fee. The amount of the monthly fee will
depend on various options such as the number of movies that can be viewed, the
period of time that a selected movie is available for viewing, and the number of
permitted viewings of each selected movie. A telephone line is used to effect
transfer from the user of the information that a key is being sought by the user and
thus a charge should be made. Thus, even though the user has a library of movies
stored on the user's set-top box, there is no charge unless a movie is actually

viewed.

13

WO 2004/017602 PCT/US2003/024175

[0079] In other embodiments, data can be transmitted to the set-top box by cable,
satellite, internet, etc. Although wireless broadcast is a preferred embodiment, the

present invention should not be limited to wireless transmission.

[0080] C. Description In Relation To Drawings

[0081] FIG. 1 shows a general overview of the system 10 used for delivering and
presenting a media stream, without interruptions, on a user device. Specifically, the
user device 20 includes an at least one client process 24 (e.g., a client asset
manager process) that interacts with the client asset list 42 at a site of the content
provider, depicted as 40. Also present, in the user device 20, is a local cache 26 for
storing information. The cache 26 could be at least one of a random-access-
memory (RAM), a read-only-memory (ROM), or a hard drive. In addition, there could
be present a remote site 60 that contains assets 62 such as program content (e.g., a
sporting event, cooking show, etc.). As an alternative, assets 62 could be located at
the content provider site 40, or at a cable/internet-service provider (not shown). The
asset is made available at the cable/ISP provider, before the client starts retrieving it.
Furthermore, the client may retrieve the assets simultaneously from a plurality of

physically separate locations (e.g., from a cable/ISP provider, content provider, etc.)

[0082] The client process 24 manages a cache of media assets 26 for the end
user. In one implementation, the assets 62 included in this cache 26 are dictated by
an asset list 42 provided by a content provider 40 via data path 80. In this
implementation, the client asset manager process 24 retrieves the asset list 42 at
specific (and tunable) time intervals from a network location (such as the content
providers site 40) via data path 80. Specifically, the client process 24 places a
request, via the control signal pathway 84, to the content provider 40 to deliver an
updated asset list 42 via the data path 80.

[0083] Likewise, in another implementation, the asset list 42 could be sent to the
end user client 24 by a server (not shown) of the content provider in a periodic
manner. The asset list 42 is a data file that contains, at minimum, the list of content
assets. Each element in the asset list 42 typically identifies a network location and
protocol needed to obtain the asset. For example in one implementation this

network location is a Universal Resource Locator (URL) and the protocol is HTTP.

14

WO 2004/017602 PCT/US2003/024175

An asset list 42 may also contain other attributes (as explained in the summary

section and defined in the Glossary section) associated with each asset, such as:
[0084] (i) Expiration date, (ii) Delete;

[0085] (i) Callback URL — In one embodiment, this callback URL is used to initiate
actions upon an asset’s download, such as a tracking application (to allow tracking of
which assets are downloaded and how often) and an application to notify the user

via email or instant message that a particular asset is ready for viewing;

[0086] (iii) Client-side Token — In one embodiment this is used to adapt the
presentation based on the availability of assets;

[0087] (iv) Throughput — In-one embodiment this number is a percentage of
available client throughput, and is less than 100%, the client can slow the download
by attempting to get chunks of data only every so often rather than all at once. In

another embodiment, this number is a download data rate in bytes per second;

[0088]‘ Embargo Date — Any content may be subject to a limited window of
availability. Once the embargo data has been reached the content is removed by

the client so that it is longer available.

[0089] In one aspect, these assets can be combined into bundles of content. The
above attributes can also be assigned to a bundle. For instance, this allows a client
side token to be created once a set of media assets has been delivered to the user’s

device.

[0090] Certain attributes can be associated with the entire asset list 42, such
attributes being:

[0091] (a) Refresh rate: In one implementation this could be controlled at the
server side (e.g., at the content provider site 40), which would push the asset list 42

to a client manager 24 via data path 80.
[0092] (b) Resource Path, (c) Media Assets.

[0093] FIG. 7 depicts one aspect of the hierarchical nature of the attributes in
relation to asset information in the asset list. As shown, the asset list that is provided

to a client, by the content provider/ISP, has attributes for all asset information. As an

15

WO 2004/017602 PCT/US2003/024175

example, Attribute(1,2) may refer to the expiration date of Asset 1. The attributes, in

this depiction, are local to each asset.

[0094] In an alternative aspect, the attributes may be global to the asset list as
shown in FIG. 8. In this situation, the client could manage the download of assets, in

the asset list, based on the global attributes as applicable to all assets.

[0095] The client 24 is also capable of managing many parameters of its asset
download behavior from a remote site 60. For example, in one implementation, the
client asset manager 24 initiates a request to the remote site 60, via signal 88, to
transfer media assets 62 to the local cache 26 via data path 90. The client process
24 can send these requests for data transfer (downloads) to the remote site 60
based on whether a set of predetermined constraints are satisfied. For example,
downloads could occur when the user device 20 is idle, when the network bandwidth
is below a certain level, when the CPU and/or memory usage in the user device 20

are below certain performance levels.

[0096] The download capability can be switched on and off by the user. The user
can also specify that downloads only happen when the device is on certain networks

(for example on a LAN versus a dialup connection).

[0097] The media assets 62 may be throttled or pushed by the remote site 60,
depending on the network conditions (e.g., traffic, available bandwidth, time of day,

etc.), without an initiating request from the client process 24.

[0098] The asset lists 42 are used as a means for content producers to publish and
manage content on client’é local store/c‘acAhe‘26. For instance, this functionality
allows content producers to publish media assets 62 that will at some point be
seamlessly integrated into the presentation of a web page or flash-based
presentation (not shown).

[0100] Accordingly, the producers may enter information about an asset including
its location, dates of presentation and text & related information that may be
associated with the asset into a backend publishing system. This information is then
published and incorporated into the relevant asset lists. The publishing system may
also (immediately or at a certain date and time in the future) publish a web page or
presentation that incorporates the asset. The producer enters alternative low-

bandwidth media assets and corresponding textual information, which can then be

16

WO 2004/017602 PCT/US2003/024175
combined with the information on the rich media assets to produce two different
versions of the page (one for users that for whatever reason have not been able to

download the large assets and one for the rich media assets).

[0101] The client asset manager process 24 an application that can run on the user
device 20 to provide downloading and caching. Users would be able to opt-in,
possibly through the content provider website, for obtaining the client
manager/process. As an exemplary embodiment, the client manager could be

installed to startup automatically and be running in the background.

[0102] FIG. 2 displays another overview of the flow of information for the system
100 where the client asset manager process 102 is running on a user device. In an
exemplary depiction, a client asset list 110 (e.g., an XML file) is periodically
downloaded from a content provider 120, and assets 130 listed in that file are
downloaded from the remote site/content provider 140 and cached accordingly. The
user may navigate to a web page that can display a asset(s), by including a script
150 that communicates with the client manager process 160 Since the client
manager process 102 could also be an ActiveX Server, only a proxy object could be
running on the web page 180, and the actual control could be part of the client
manager process 102. In an alternative aspect, the client process 160 could be

embedded in the web page 180 or part of the client manager process 102.
[0103] C(i). Design Perspectives

[0104] The inputs may be: (i) configuration file such as an XML file that allows
remote control over the behavior of client manager process 102; (i) remote media

files to be cached on the client. The outputs could be local paths to media files.

[0105] Any web page can display an asset that is cached by the client 102. Using
the client's ActiveX interface, a page could contain JavaScript code 150 to see if the
client process 102 is instailed, and ask the client for information regarding the local
path for a media file. If a path is returned, the script could then pass this path
information to any web based media player that accepts parameters.

[0106] The configuration server 120 could be any web server that hosts the client
configuration file 110. The media server 140 may be any web server that hosts the

media files or assets 130,

17

WO 2004/017602 PCT/US2003/024175

[0107] C(ii). Execution Flow

[0108] The client process 102 may be packaged in a .cab file and signed with a
digital certificate to identify the creator of the program (e.g., the Walt Disney Internet
Group). A separate .cab file, xyzvideo.cab, may be created for different content
providers. For example, the filename could be espnvideo.cab for ESPN and it may
be signed with the ESPN digital certificate. Internet Explorer uses the Internet
Component Download feature to download and track the application. An .INF file
could be included in the .cab to instruct the componenf down-loader as to how to

install the client process 102.

[0109] The .cab file is placed on a web server and when the browser loads a web
page with an OBJECT tag containing the class id of the appropriate ActiveX control,
it will download the .cab file using the URL specified by the CODEBASE attribute.
The digital certificate is displayed to notify the user that our control has been
downloaded and prompts for permission to execute. Once the user accepts, this

window will not be displayed again unless an updated version is downloaded.

[0110] The module, clientprocess.exe, is added to the Downloaded Program Files
folder and the client may create a shortcut for itself in the Startup folder. The name
of the shortcut is dependent upon who builds the file (e.g., Disney, ESPN, etc.). The
client process 102 may also create a cookie on the go.com domain called
ClientProcess which is set to true if the client process is installed. This cookie may

be regularly checked to prevent it from being accidentally deleted by a user.

[0111] The program is initially executed by the operating system and from that

point it will run whenever the user device is booted up.

[0112] The digital certificate, mentioned earlier, may be necessary since most
users have their browser security settings high enough to disallow the installation of
untrustworthy applications from the Internet. The presence of the certificate allows
the browser to identify the origin of the software and ask the user whether that

company or person should be trusted.

[0113] The CODEBASE attribute of the OBJECT tag supports the optional addition
of the desired version of the software to be installed. The version is appended to the
URL of the location of the cab, with a #' used as the separator. If, for example, the

current version of client process in the field is 1,0,0,1 and a new version 1,0,0,2 has

18

WO 2004/017602 PCT/US2003/024175
been put on the web servér, appending ‘#1,0,0,2" at the end of the CODEBASE URL

will direct the component downloader to download and install the new version.

[0114] The .INF file contains a hook to first run clientprocess.exe with the
/shutdown parameter to first close clientprocess.exe so the update will not require a
reboot.

[0115] The component installer may add information to the registry using a
predefined key.

[0116] The menu for the client process system tray icon will contain an Uninstall
option. When clicked, the client process will uninstall itself by running another
instance of clientprocess.exe passing the /unregserver parameter. The uninstall
process will do the following, (i) unregister the controls, (ii) cleanup the registry
entries added by the client process, (iii) remove client process item from the Startup
folder

[0117] When the operating system starts and Explorer runs the items in the Startup
Folder, the client process 102 will start. It may not terminate unless the user closes

it from the system tray icon or the operating system shuts down.

[0118] The client process 102 may not visible to the user except for a system tray
icon containing a few menu items. If, for example, ESPN'’s BottomLine application is
running, the ESPN version of the client process will not display its tray icon because
BottomLine will provide the client process 102 some options in its menu. This is
useful as it cuts down on the number of icons one could place in the tray on a single
client. F->rogramsk such as BottomLihe and the client process 102 may need to be in
periodic communication with each other to ensure one is aware if the other shuts
down and that the client process is aware if one of its menu items is selected. The

icon will either be an ESPN icon or another icon depending upon the build.

[0119] The following items will be in the client process tray icon menu: (i) Help —
displays help for the client process 102, (ii) the XML group file can have an optional
helpUrl item. When the user selects Help, a browser will be opened with this URL,
(i) About — shows program copyright/information.dialog, (iv) Exit — stops the
program (does not remove it from startup folder), (v) Uninstall — uninstalls the

program and removes COM registry entries.

19

WO 2004/017602 PCT/US2003/024175

[0120] At least one instance of the client process 102 may run at a time. The only
exception to this is if clientprocess.exe is run with the /unregserver or /shutdown
parameter, that instance will terminate an already running instance, if it exists.
Clientprocess.exe may achieve this single instance functionality by creating a shared
mutex that is checked by subsequent instances of the program. Thus in some

situations, if an existing instance is found, the second one will terminate immediately.

[0121] The threading model for the client process could be the apartment model.
This means the client process ActiveX controls are designed such that they expect to
only be accessed from a single thread. However, the client process as a whole is
multithreaded and will start a thread to perform a single asset download, terminate
that thread and start another thread when the next download occurs. Only one

download may occur at a time.

[0122] During regular operating mode, the client process will run without any
parameters. However, the following command line parameters could be supported:
(i) /regserver; (ii) /shutdown — Stops another running instance of clientprocess.exe, if

present; and (iii) /unregserver.

[0123] The client process is configured using XML Group files that are downloaded
from the configuration server. The URL of the group file is obtained through the xml
PARAM tag within the OBJECT tag for the ClientProcessGroup ActiveX control on a
web page. Every time a ClientProcessGroup control is initialized with an xml
parameter, the client process checks to see if that group has already been added. If
not, it is added to the registry and the file is downloaded and parsed. The registry

entries for group files are not removed until the client process is uninstalled.

[0124] The Group file is downloaded regularly according to its configurable refresh
rate. If the server supports the If-Modified-Since header, the client process may not
download the file if it has not been modified since the last download.

[0125] The XML in the group file uses the RSS format with some additional client
process specific elements. RSS is an open format for syndication that is used for
many of Disney's feeds. The idea is to try to use as much of the standard as

possible so that the group files could potentially be used by other systems.

[0126] FIG. 3 shows an exemplary DTD for the group file.

20

WO 2004/017602 PCT/US2003/024175

[0127] Upon startup, the client process registers itself with the system as a COM
Local Server for the following ActiveX controls. Only ClientProcessGroup is marked
safe for initialization and only ClientProcessLocator is marked safe for scripting. This
is to avoid use of the controls for malicious purposes. The initial prototype of
ClientProcess was designed to have an ActiveX interface for each major component
to allow a web page to display status. These interfaces are also very useful for

troubleshooting during the development/testing phases.
[0128] ClientProcessSvc:

[0129] This is the main class of the application and is placed on the installation
web page with an OBJECT tag to force the download and install of the application.
There is a singleton instance of CClientProcessSvc created for the process which
tracks all asset and group objects created. The IClientProcessSvc interface provides

methods for reporting the status of the program.
[0130] ClientProcessGroup:

[0131] The ClientProcessGroup ActiveX control is used by JavaScript to assign a
configuration file to the client process. Through the IPropertyBag interface,
ClientProcessGroup accepts an OBJECT tag parameter, called either xml or source,
which is set to the URL of the XML file. A single XML configuration (or group) file is
represented by one ClientProcessGroup object. The IClientProcessGroup interface

provides status functionality.
[0132] CIientProc_:essLocator:

[0133] ClientProcessLocator is a simple control that is safe for scripting and has
only one method, GetlLocalPath. It is used by JavaScript in the web page'that
displays the media files to determine the path of the local file, if it has been

downloaded.

[0134] Furthermore if the user has stopped the client process and then navigates
to a media page, the OBJECT tag containing the ClientProcesslocator class id will
cause clientprocess.exe to execute again. If the user uninstalled the product, this

tag will force a reinstall or an update if the CODEBASE parameter is specified.

[0135] ClientProcessAsset:

21

WO 2004/017602 PCT/US2003/024175

[0136] ClientProcessAsset represents any object that is to be cached locally (group
or media file). This COM Object is returned by the get asset method in

ClientProcessSvc or get_queuedAsset in ClientProcessDownloader.
[0137] ClientProcessDownloader:

[0138] A singleton ClientProcessDownloader is created when the application
starts. It handles the download queue of assets. Assets add themselves to the
queue with the QueueDownload method and when an asset comes to the top of the
download queue, it is handed off to the CAsyncCacheDownloader instance for

processing.
[0139] ClientProcessReference

' [0140] ClientProcessReference objects represent media files. Each group can
have one or more references. This COM object is returned by the get_reference

method in ClientProcessGroup.

[0141] Other C++ Classes

[0142] This section defines exemplary C++ classes in the client process application
and summarizes their behavior and interactions with each other. Some of the
classes have COM wrapper objects for communication with other applications. Fig.

4 provides a table of the various classes.
[0143] CAsyncCacheDownloader — asynccachedownloader.h/.cpp:

[0144] This class encapsulates the downloading of assets to the local device via
HTTP. CAsyncCécheDoWnloader subclasses CWindowlmpl to allow it to receive
messages since most of its operations occur on a separate thread. The client

process uses window messages for inter-thread communication.

[0145] Most of its methods run on the main thread, but StartDownload() creates a
new thread which, in turn, calls the DoDownload() method. DoDownload() uses
Winlnet APIs to download a single asset and create an Internet Explorer cache entry
for it.

[0146] The DoDownload method will download the file in small chunks at a time. It
will also sleep after each chunk if the configured throughput is below 100%. For

22

WO 2004/017602 PCT/US2003/024175

example, if throughput is 50%, the download thread will sleep for the same amount

of time it took to download the chunk to achieve an average of 50% throughput.
[0147] CCacheAsset — cacheasset.h/.cpp:

[0148] A CCacheAsset instance represents a single file that needs to be cached on
the local system. This could either be a group file or a media file (reference). Both
CCacheGroup and CCacheReference instances instantiate a CCacheAsset instance
to handle the downloading and caching of the file. The Getinterface method returns
the ClientProcessAsset interface pointer of its respective COM wrapper object.

[0149] If a download is unsuccessful, CCacheAsset will set a timer to try again
according to the table of Fig. 5. If the download is successful, CCacheAsset
watches the file system to make sure the cache item is not deleted from the cache.

If it is, the item is downloaded again.
[0150] CCacheGroup — cachegroup.h/.cpp:

[0151] This class encapsulates the XML group file. Each Group XML file is passed
to an instance of CCacheGroup that parses it and creates CCacheReference
instances for each media file item. The Getinterface method retuns the
ClientProcessGroup interface pointer of its respective COM wrapper object. A
CCacheAsset instance is created to represent this group file and a timer is set with
the interval set to the refreshRate specified in the XML. When the timer goes off, the
CCacheAsset for the group file is added to the download queue.

[0152] CCacheReference — cachereference.h/.cp:

[0153] As the XML group file is parsed by CCacheGroup, a CCacheReference
instance is created for each media file item. CCacheReference creates a
CCacheAsset instance to handle the download/cache functionality. This class is
also responsible for checking item expiration times and removing items from disk

that have expired.
[0154] CCacheTime — cachetime.h/.cpp:

[0155] CCacheTime subclasses the ATL CTime class to provide time conversion
functionality. All date/time member variables in the client process are stored using
CCacheTime.

23

WO 2004/017602 PCT/US2003/024175

[0156] CClientProcessModule — clientprocess.cpp:

[0157] This class represents the executable process itself. CClientProcessModule
subclasses the standard ATL CAtIExeModuleT class. The reason for this is to add
functionality to the startup of the process as well as the register and unregister. At
startup, a shared mutex is created using the ClientProcessSvc GUID as the name (to
ensure uniqueness). If the mutex already exists, that means the application is
already running, so the current instance exits. All the extra install and uninstall

functionality is done in this class as well.
[0158] CException — exception.h/.cpp:

[0159] Instances of CException are created and thrown when errors occur.

CException handles the formatting of an error.
[0160] CRegistryVirtualDeviceX — registryvirtualdevicex.h:

[0161] Subclass of CRegistryVirtualDevice in ATL. This class overloads
AddStandardReplacements to stop ATL from checking the extension of the module
to determine whether we should put InProcServer32 or LocalServer32 in the registry.
The client process is always an .exe and, therefore, a LocalServer, so the call may

be unnecessary and added external requirements on the application.
[0162] CTimer and CTimeable — timer.h/.cpp:

[0163] CTimer encapsulates timer functionality. Any object that wishes to use a
timer need only to inherit from CTimeable, implement OnTimer, create an instance of

CTimer and call its Start method. Stop() stops the timer.
[0164] CUriMap — urlmap.h/.cpp:

[0165] CUriMap is a specialized CAtiMap template class that allows one to create
hash map classes that map objects to URLs.

[0166] More specifically, the system is further enhanced by: (i) adding download
rate (throttling) support to download code, (i) deleting assets when they expire, (jii)
implementing ClientProcessLocator control and removing cookie logic, (iv) using a
system tray icon and menu, (v) providing uninstall (removing executable, removing
startup shortcut, cleaning registry), (vi) providing HitCountURL support, (vii)
providing program information (an about dialog).

24

WO 2004/017602 PCT/US2003/024175

[0167] Care has been taken to ensure: (i) all proper ActiveX safety settings are
applied to each control, (if) COM methods and properties are hidden (this way they
will not show up in control design user interfaces like Visual Basic), (iii) static function
is used to poll the file system so only one timer is used, (iv) logic to BottomLine is
added to detect ClientProcess and provide the System Tray icon submenu, (V)
startup menu shortcut is used instead of windows run registry entry, (vi) regularly,
check the cookie that indicates whether ClientProcess is installed and re-create it if

necessary.
[0168] C(iii). BottomLine Enhancements

[0169] BottomLine (Trademark of ESPN) may need to be modified to detect the
client process and, if present, display the client process menu items in its System
Tray menu. This precludes having multiple icons in the tray if the user has both

applications installed and running.

[0170] The client process will define its menu item ids within the range
CLIENTPROCESS_MENU_START and CLIENTPROCESS MENU_END. These
constants will be defined in a header file that is accessible to BottomLine when it is
built.

[0171] BottomLine and the client process need to be aware of whether each
process is running so they will need to perform the following steps: (a) when
BottomLine starts up, it tries to create the client process Mutex to see if the client
process is running, (b) when the client process starts up or closes, it broadcasts a
registered windows message that BottomLine sees and BottomLine will respond with
an acknowledgement, (c) when BottomLine starts up or closes, it broadcasts a
registered windows message that the client process sees and the client process will

respond with an acknowledgement.

[0172] Registered windows messages may allow applications to define their own
unique messages for communication with other windows that also register the same
message. When the client process or BottomlLine announces its presence to the
other application or acknowledges, it will pass along its window handle for future
communication. Then the client process will use WM_COPYDATA to send to
BottomLine the information to be displayed in the menu. When a client process

menu item is select, BottomLine will forward it.

25

WO 2004/017602 PCT/US2003/024175

[0173] Some of the features also included with the system that implements the
client process are: (i) ease of installation and updating (automatic), (ii) little or no
client side user interface, (ii) server side configuration of the client program, (iii)
control over rate at which files are downloaded, (iv) ability to track how many media
files are downloaded, (v) ability to determine status of a media file download via
JavaScript, (vi) ability to ship a version of the control that is content provider specific
(e.g., ESPN specific) in its naming.

[0174] C(iv). System Features
[0175] Client Process Program:

[0176] The client process program is responsible for downloading media content
hours before it is to be displayed on the web page. When the user navigates to a
page containing the HTML to display that file, the local copy of the file can be used,

which will significantly improve playback quality.
[0177] Installation:

[0178] The client program may be allowed to install automatically. Any web page
could contain a tag referring to the client process and the browser will automatically

install it or update it, if necessary.
[0179] User Interface:

[0180] The user interface for the client program can be integrated into a system
tray icon with a menu providing the ability to turn off or uninstall the product. If the
BottomLine application is present, its existing system tray menu may be - used

instead.
[0181] Execution:

[0182] The client process may be installed in the startup folder on the user’s device
so it will always be running. The program may regularly download an XML file from
a WDIG server that will contain information about which assets to download, when
they expire and at what rate to download them. There will also be an interface for
content provider web sites to communicate with the client process to determine the

location of local media files.

[0183] Hosting:

26

WO 2004/017602 PCT/US2003/024175

[0184] The installation .cab file may be hosted by one or more head-ends provided
by the Vertical using this product. Sinceitis a static file, it can be hosted by any web
server. As new versions of the client process are released, this file will be updated

on the server.
[0185] Content Provider Bottom Line Modifications:

[0186] Suitable modifications may be done to the BottomLine application to provide

the system tray interface for the client process.
[0187] Sample HTML and Script:

[0188] Sample HTML and JavaScript may be provided to developers to

demonstrate how to host and communicate with the client process.
[0189] External Interface Requirements

[0190] This section describes the external systems for which interfaces will need to
be created or modified.

[0191] ESPN BottomLine:

[0192] Some minor changes may be made to BottomLine to detect the presence of

the client process and add menu items to stop and uninstall the client.
[0193] Client process detection:

[0194] Each time the BottomLine menu is displayed, BottomLine must detect the
presence of the client process and, if present and running, display a submenu
containing the client process menu items. Detection of the client process.is easily
done by checking for the existence of a Mutex that the client process creates upon

startup or by looking for a window that has the client process window class.
[0195] Client process communication:

[0196] If the client process is running, BottomLine may use windows messages to
query which menu items to display. When a client process menu item is selected,
BottomLine will use messages to tell the client process as io which item was
selected.

[0197] Media Content Server:

27

WO 2004/017602 PCT/US2003/024175

[0198] The server that hosts the media files may be any HTTP 1.1 web server
which should support HTTP byte range downloading (206 success code) in order to
enable download throttling. If the server does not support byte ranges, the entire file

could be downloaded at once, regardless of configuration settings.
[0199] Configuration Server Interface:

[0200] There could be a server that hosts the XML configuration file. The XML
may adhere to a format that is published in the design specifications.

[0201] Functional Requirements

[0202] 1. Setting a cookie on the user’s device indicating the program is installed.

This cookie could be periodically checked to make sure the user did not remove it.

[0203] 2. Support software updates via internet Explorer's Component Download
facility will ensure client code is properly updated if a new version is placed on the
head end and the HTML page is modified to request a more recent version. Also, it

may be ensured that no rebooting is required upon refresh.

[0204] 3. Program may be installed in the startup folder and, therefore, will always

be running unless the user specifically stops it
[0205] 4. Only one instance of the program will be running at once

[0206] 5. Uninstall will be provided through a system tray icon menu. Uninstall
may be from initiated outside the program.

[0207] 6. Menu items provided by a system tray icon.
[0208] 7. Help — displays help for Disney Cache

[0209] 8. The configuration file can have an optional helpURL item. When the

user selects Help, a browser will be opened with this URL.

[0210] 9. About— shows program copyright/information dialog.

[0211] 10. Exit— stops the program (does not remove it from startup folder).
[0212] 11. Uninstall — uninstalls the program and removes registry entries

[0213] 12. The configuration file: (i) may be in XML Format, (ii) may provide
refresh rate for determining how often to download the configuration file, (i) may

provide per-item settings for the URL, expiration date, URL for hit tracking and the

28

WO 2004/017602 PCT/US2003/024175

download rate. Furthermore, the priority of an item may determined by the order in
the configuration file. Also, two different configuration files may not contain the same
item with the same URL. In addition, information about the location of the XML
configuration file could be located in the registry under HKEY_CURRENT_USER.

[0214] File Download
[0215] Browser (e.g., Internet Explorer) Cache:

[0216] The client process could use the Internet Explorer cache to provide client
side caching of the media files. Files stored in the cache could be cleaned up by
Internet Explorer, if necessary, to make room for other items. The XML configuration
file, however, may be marked as sticky so it will remain on the hard drive for a
certain period of time (e.g., 30 days). Since the Internet Explorer cache is on a per

Windows login basis, each user is allowed to have a separate cache.

[0217] The client process will need to check periodically (or use a File System
watch) to detect when an item has been removed from the cache. If it has not yet

expired, it will be downloaded again.
[0218] Item Lifespan:

[0219] Each item will have an expiration date and time. Periodically, the client
process will check these times and delete any item from the cache that has expired.
The client process needs to be sure to track assets that exist on the device so that if
they are removed from the XML configuration file before the client had a chance to
_expire them, they will still get deleted from the user’s hard drive (this could happen if
the user has had their device off for an extended period of time).

[0220] Once an item is downloaded, it will not be downloaded again unless Internet

Explorer has removed it from the cache.
[0221] Configuration Refresh:

[0222] The client process will periodically refresh the XML configuration file by
downloading it from the server at the rate specified by the refreshRate XML element.

[0223] Download Errors:

29

WO 2004/017602 PCT/US2003/024175
[0224] If an error occurs when an item is being downloaded, after a timeout, the
client process will try again. The amount of time to wait is dependent upon the type
of error according to the chart provided in FIG. 6.

[0225] Furthermore, the client process may perform downloads if network

connectivity is available. If required, it may not perform a dialup to do downloads.
[0226] Throttling:

[0227] Each item in the configuration file can optionally be configured to have a
specific download throughput percentage. This implies that the client process may
download the file in pieces and pause between each piece to achieve this. The web
server that hosts. the file should be capable of supporting the HTTP byte range

feature.
[0228] Web Interface

[0229] URL for configuration file may be passed to the client process via an
ActiveX control property. ActiveX control will be safe for scripting and safe for
initialization. The client process could check the server part of the XML configuration
URL to verify it is from the go.com domain. This is to prevent malicious web pages
from initializing the client process with potentially harmful data (large files
downloaded often with small refresh rates). The OBJECT tag need not have a
CODEBASE parameter so that the client process is not accidentally installed for
someone who has not opted in. The JavaScript may have code to check whether
 the object exists before making any API calls and also check the installed cookie. At

least one version of the client process can be installed on the client device.
[0230] D. General

[0231] The description of exemplary and anticipated embodiments of the invention
has been presented for the purposes of illustration and description. They are not

intended to be exhaustive or to limit the invention to the precise forms disclosed.

[0232] Many modifications and variations are possible in light of the teachings

herein. For example:

[0233] (a) It may be possible to create a new component that provides generic
System Tray icon support where installed client apps can register themselves to add

menu items.

30

WO 2004/017602 PCT/US2003/024175

[0234] (b) The server-side user settings to determine the behavior of the client
process. The client process would need a unique identifier that is tied to the user
who installed it. Then the server could be more sophisticated and send different

XML configuration files for different users.
[0235] (c) Continuation of downloads that do not complete.

[0236] (d) Adding more sophisticated download throttling (for example, taking the
baseline client bandwidth measurement and using that for calculating throughput

control).

[0237] (e) Server-side smarts for determining server load based upon MRTG data
and use that to decide to return 503 responses to the client process to prevent heavy

load on asset download.

[0238] It is evident that those skilled in the art may now make numerous uses and
modifications of and departures from the specific embodiments described herein
without departing from the inventive concepts. Consequently, the invention is to be
construed as embracing each and every novel feature and novel combination of
features present in or possessed by the apparatus and methods herein disclosed
and limited solely by the spirit and scope of the appended claims.

31

WO 2004/017602 PCT/US2003/024175

We Claim:

1. A method for delivering an asset over a network comprising:
supplying an asset list by a content provider over the network to a user
device, said user device including a client process; and ’
delivering the asset, corresponding to the asset list, over the network to

the user device when a predetermined constraint is satisfied.

2. The method according to claim 1, wherein the asset is at least one of
an audio content, a video content, a text content, a right to use license or a

multimedia file.

3. The method according to claim 1, wherein the asset list is generated by

a request from the user.

4, The method according to claim 1, further including accessing a content

web site of a content provider.

5. The method according to claim 1, wherein the predetermined constraint
is at least one of the user device being idle, the network Quality of Service (QOS), or

the bandwidth usage being below a predetermined operating level.

6. The method according to claim 1, wherein the predetermined constraint
is at least one of the user device CPU usage, or memory usage in the user device

being below predetermined operating levels.

7. The method according to claim 1, wherein the client initiates the

délivery of the asset, from the content provider, over the network to the user device.

8. The method according to claim 1, wherein the asset is stored on a local

cache.

9. The method according to claim 8, further comprising presenting the
stored asset in conjunction with real time content, said real time content provided by

the content provider.

10. The method according to claim 1, wherein the time of day is included in
the predetermined constraint.

32

WO 2004/017602 PCT/US2003/024175

11. The method according to claim 8, further determining at least one
parameter from the user device CPU usage, the bandwidth usage, the local cache

usage, and a user device activity timer.

12. The method according to claim 8, further comprising presenting a
substitute asset in conjunction with real time content from the content provider, in the

event that the asset is unavailable at the user.

13. A method for presenting to an user a continuous and uninterrupted

stream of content over the network, the method comprising:

supplying an asset list by a content provider over the network to a
client process, said client process operating in a device of the user,

delivering an asset, from a remote location, over.the network to the
user device when a predetermined constraint is satisfied, wherein information of the
remote location is obtained from the asset list; and

integrating the delivered asset with a content stream being received by
the user device from the remote location over the network, and thereby providing the

user with a continuous and uninterrupted stream of content.

14. The method according to claim 13, wherein the asset is at least one of
an audio content, a binary data content, a video content, a right to use license, a text

content, or a multimedia file.

15. The method according to claim 13, wherein the asset list is provided by
the content provider to the client process.

16. The method according to claim 13, further including accessing a
content web site of a content provider.

17. The method according to claim 13, wherein the predetermined
constraint includes at least one of the user device being idle, the network Quality of

Service (QOS), or the bandwidth usage being below a predetermined operating

level.

18. The method according to claim 13, wherein the predetermined
constraint includes at least one of the CPU usage for the user device, or the user

device memory usage being below predetermined operating levels.

33

WO 2004/017602 PCT/US2003/024175

19. The method according to claim 13, wherein the client initiates the

delivery of the asset, from the content provider, over the network to the user device.

20. The method according to claim 13, wherein the asset is stored on a

local cache.

21. The method according to claim 20, further comprising presenting the
stored asset in conjunction with real time content, said real time content provided by

the content provider.

22. The method according to claim 13, wherein the time of day is included
in the predetermined constraint.

23. The method according to claim 20, further determining at least one
parameter from the user device CPU usage, the bandwidth usage, the local cache

usage, and a user device activity timer.

24. The method according to claim 20, further comprising presenting a
substitute asset in conjunction with real time content from the content provider, in the

event that the asset is unavailable at the user.

25. The method according to claim 13, wherein the asset list is delivered to

the client process by a content provider.

26. A system for presenting to an user a continuous and uninterrupted
stream of content over the Internet, the system comprising:
an asset list made available by a content provider over the internet to a
client process, said client process operating in a device of the user;
an asset, made available from a remote location, over the network to
the user device when a predetermined constraint is satisfied, wherein information of

the remote location is obtained from the asset list.

27. The system according to claim 26, further including an integrator tool
for integrating the delivered asset with a content stream being received by the user
device from the remote location over the internet, and thereby providing the user with

an uninterrupted stream of content.

28. The system according to claim 26, wherein the asset is at least one of
an audio content, a video content, a binary data content, a text content, or a

multimedia file.

34

WO 2004/017602 PCT/US2003/024175

29. The system according to claim 26, wherein the asset list is provided to

the client process by the content provider.

30. The system according to claim 26, further including accessing a

content web site of a content provider.

31. The system according to claim 26, wherein the predetermined
constraint includes at least one of the user device being idle, or the bandwidth usage

being below a predetermined operating level.

32. The system according to claim 26, wherein the predetermined
constraint includes the user device CPU usage, or the user device memory usage

being below predetermined operating levels.

33. The system according to claim 26, wherein the client initiates the

delivery of the asset, from the content provider, over the network to the user device.

34. The system according to claim 26, wherein the asset is stored on a

local cache.

35. The system according to claim 34, further comprising means for
presenting the stored asset in conjunction with real time content, said real time

content provided by the content provider.

36. The system according to claim 26, wherein the time of day is included

in the predetermined constraints.

37. The system according to claim 34, further comprising means for
determining at least one parameter from the user device CPU usage, the bandwidth
usage, the local cache usage, and a user device activity timer.

38. The system according to claim 34, further comprising means for

presenting a substitute asset in conjunction with real time content from the content

provider, in the event that the asset is unavailable at the user.

39. The system according to claim 26, wherein the asset list is updated
periodically by the content provider.

40. The system according to claim 26, wherein the client process is

associated with a plurality of asset lists.

35

WO 2004/017602 PCT/US2003/024175

41. The system according to claim 26, wherein the asset list includes at
least one of an expiration date, a callback URL, a client side token, a throttle
parameter, a refresh rate parameter, a delete asset flag, a help link, and resource

path information.

42. The system according to claim 26, wherein the asset is delivered to at
least one of a cable provider or an internet service provider before delivery of the
asset to the user device, said cable and internet service provider being in

geographical proximity to the user device.

43. A method for presenting to an user a stream of content over the

network, the method comprising:

supplying an asset list by a content provider over the network to a
client process, said client process operating on a device of the user;

delivering an asset, from a remote location, over the network to the
user device when a predetermined constraint is satisfied, wherein information of the
remote location is obtained from the asset list; and

integrating the delivered asset with a content stream being received by
the user device from the remote location over the network;

wherein the asset and the content stream are essentially seamlessly

presented to the user.

44. A system for presenting to an user a continuous and uninterrupted
stream of content over the Internet, the system comprising:
- an-asset listmade available by-a content provider over the internet to a
client process, said client process operating in a device of the user;
an asset, made available from a remote location, over the network to
the user device when a predetermined constraint is satisfied, wherein information of
the remote location is obtained from the asset list; and
an integrator tool for integrating the asset with a content stream being
received by the user device from the remote location over the Internet, thereby
providing the user with an uninterrupted stream of content;
wherein the predetermined constraint includes at least one of at least

one of the user device being idle, the Internet bandwidth usage being below a

36

WO 2004/017602 PCT/US2003/024175

predetermined operating level, the time of day, the user device CPU usage, or

memory usage being below predetermined operating levels.

45. A method for receiving an asset over a network comprising:

delivering an asset list by a content provider over the network to a
client, said client operating in a user device; and

receiving the asset, corresponding to the asset list, over the network at
the user device when a predetermined constraint is satisfied;

wherein the predetermined constraint is at least one of the user device
being idle, the network Quality of Service (QOS), the network bandwidth usage being
below a predetermined operating level, the user device CPU usage, or memory

usage in the user device being below predetermined operating levels.

46. A method for providing a home media library to a user over a network,
the method comprising:
supplying an asset list by a content provider over the network to a set-
top box, the set-top box including a client process which manages the delivery of
assets; and
delivering an asset, from a remote location, over the network to the set-
top box when a predetermined constraint is satisfied, as indicated by the client

process wherein information of the remote location is obtained from the asset list.

47. A method of transmitting movies to a set-top box in a viewer's home for
storage and subsequent viewing, the method comprising the steps of:

- receiving a media -asset list from a content provider on a set top box,.
the media asset list comprising a list of media assets to be downloaded and
information about the location of each of the media assets;

running a client process on a set top box that reads the media asset list
to determine what media assets should be transferred to the set top box and
manages the delivery of digital media assets based on predetermined constraints;

downloading digital media assets from a remote content provider to the
set top box when the predetermined constraints are satisfied; and

storing the downloaded digital media assets on the set top box for

subsequent viewing by the user on a television or other display device.

37

WO 2004/017602

PCT/US2003/024175
1/4
60 10
— Remote Site 40-3 Content Provider B
s 62 I Client %
p Media Assels @ P
Cab/&/ 9 L.-T {e' g., aud,‘a’ gll II, US[’(S}
5PN video, text) F
= ,l l, ‘ll /
§ 1 / I, 84 ’/’
Lol /o Qz
: = 86 / l' //
b 90 ' PR B
E 5 v Zl ol 40 Content Provider A
1o -
‘\ _.__ ! 26 - ,/] 42
AN Y [Cache Client f/1 LBO Client
\hh_’/ [Asset] Asset
Manager JIN- List(s)
H 22 | Process
User Machine
f 180
~ 3.
Web Page 100 F .[G 2
ith Video Content)
with Vide i j "
) . | ActiveX 120
JavaScript Control
4 110 Configuration
150 Get Server
Get local Configuration
path of Asset File
130 140
: Download Asseéls
DisneyCache \.z nioad Media Server
L Process) L

SUBSTITUTE SHEET (RULE 26)

WO 2004/017602 PCT/US2003/024175

244

<|ELEMENT channel (item+ | refreshRate | helpuri? | cookieDomain? |
cookieName?)>

<|[ELEMENT item (Jink | expires | hitCountUrf? | throughput? | trackWithCookie?
y¥>

The foflowing is an example XML group file:

<|?xml version="1.0" 7>
<channpel>

<item>
<link>http://myserver/myfile.wmv</link>
<expires>2002-22-03700:17: 15z</expires>
<hitCountUri>http://hitserver/hiturl</hitCountUrl>
<throughput>75</throughput>
<trackWithCookie/>

</item>

<refreshRate>60</refreshRate>

<helpUrl> hitps//myserver/help.htmi</helpURL>

<cookieName>adAssets</cookieName>

<cookieDomain®>.go.com</cookieDomain>

</channel>
Internal Class Name‘ _ COM/ActiveX Class Name
CCacheAssét CDisCacheAsset
CCacheGroup | CDisCacheGroup
CCacheReference CCisCacheReference

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2004/017602 PCT/US2003/024175

/4
Error Type Retry Attempted Timeout Before Retry
Invalid item URL no N/A
Server Connaction yes 5 minutes
Server not found yes S minutes
File not on server yes 15 minutes
Unknawn server error yes 15 minutes
Internal Error yes 1 hour

FIG. 5

Error Type Retry Attempted Timeoui Before Retry
Invalid item URL no , N/A
Server Connection 1 yes 5 minutes
Server not found yes 1 hour
File not on server yes 1 hour
Unknown server error yes 15 minutes
{ Internal Error yes 1 hour

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 2004/017602 PCT/US2003/024175

44

Asset List

Asset 13 {Attribute(1,1); Attribute (1,2);...;Attribute (1,M)}
Asset 2: {Aftribute(2,1); Attribute (2,2);...;Attribute (2,M)}

Asset N: {Attribute(N,1); Attribute (N,2);...;Attribute (N,M)}

FIG. 7

Asset List {Attribute-1; Attribute 2;...;Attribue N}

Asset 1
Asset 2

Asset N

FIG. 8

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intern I Application No

PCT/US 03/24175

CLASSIFICATION OF SUBJECT MATTER

A
IPC 7

H04L29/06 HOAN7 /16

HO4N7/173

According 1o International Patent Classification (IPC) or to both national classification and PG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7

HO4L HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Eleclronic data base consuited during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 00 48375 A (LOUDEYE TECHNOLOGIES INC) 1-4,7,
17 August 2000 (2000-08-17) 26,
28-30,
33,
39-42,46
abstract
Y page 9, Tine 16 — line 23 5,6,
8-25,27,
31,32,
34-38,
43-45,47

page 11, 1ine 1 —page 13, Tline 13
page 15, line 22 -page 17, Tine 6
page 24, line 6 —-page 25, line 14

-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0O document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
gn?tr]\ts, ﬁuch combination being obvious to a person skilled
inthe art.

*&" document member of the same patent family

Date of the actual completion of the international search

15 December 2003

Date of mailing of the international search report

19/12/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Karavassilis, N

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern | Application No

PCT/US 03/24175

C.{Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

Y WO 01 98920 A (IDT CORP ;MAYER DANIEL J
(US)) 27 December 2001 (2001-12-27)

abstract

page 6, line 1 - 1ine 9

page 8, Tine 2 -page 13, line 20
page 20, Tine 2 - Tine 6

page 20, line 14 -page 21, line 4

Y EP 1 189 403 A (ERICSSON TELEFON AB L M)
20 March 2002 (2002-03-20)

A page 2, column 2, paragraph 11
page 3, column 3, line 7 - Tine 31
claims 4,7

A EP 1 193 920 A (MICROSOFT CORP)

3 April 2002 (2002-04-03)

page 4, column 6, 1ine 19 -page 5, column
7, line 45

page 6, column 10, 1ine 18 —page 7, column
11, Tine 31

A WO 02 052852 A (KONINKL PHILIPS
ELECTRONICS NV) 4 July 2002 (2002-07-04)
page 3, line 12 - line 25

page 8, line 7 - 1ine 19

page 9, 1ine 1 - line 3

page 10

5,8-25,
27,31,
34-38,
43-45,47

6,32
18,37,45

5,45

47

Form PCT/ISA/210 {continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern

| Application No

PCT/US 03/24175

Patent document
cited in search report

Publication
date

Patent family
member(s)

Publication
date

WO 0048375 A 17-08-2000 AU 2988600 A 29-08-2000
AU 2988700 A 29-08-2000
AU 2988800 A 29-08-2000
CA 2361378 Al 17-08-2000
CA 2361379 Al 17-08-2000
CA 2362879 Al 17-08-2000
EP 1151592 Al 07-11-2001
EP 1151611 Al 07-11-2001
EP 1151612 Al 07-11-2001
JP 2002541687 T 03-12-2002
JP 2002537572 T 05-11-2002
WO 0048375 Al 17-08-2000
WO 0048399 Al 17-08-2000
Wo 0048400 Al 17-08-2000
AU 7735300 A 30-04-2001
EP 1221238 A2 10-07-2002
Wo 0124530 A2 05-04-2001
WO 0198920 A 27-12-2001 AU 6856501 A 02-01-2002
WO 0198920 Al 27-12-2001
EP 1189403 A 20-03-2002 EP 1189403 Al 20-03-2002
AU 2163601 A 26-03-2002
Wo 0223859 Al 21-03-2002
EP 1193920 A 03-04-2002 EP 1193920 A2 03-04-2002
JP 2002152274 A 24-05-2002
WO 02052852 A 04-07-2002 EP 1348301 Al 01-10-2003
: Wo 02052852 Al 04-07-2002
US 2002083447 Al 27-06-2002

Form PCT/ISA/210 (patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

