PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 97/04391
GOGF 11/14, 9/46, 17/30 Al .

(43) International Publication Date: 6 February 1997 (06.02.97)

(21) International Application Number: PCT/US96/11903 | (74) Agents: OGILVIE, John, W., L. et al.; Computer Law++, Suite

(22) International Filing Date: 18 July 1996 (18.07.96)

(30) Priority Data:

60/001,245 20 July 1995 (20.07.95) Us

(60) Parent Application or Grant
(63) Related by Continuation
US
Filed on

60/001,245 (CIP)
20 July 1995 (20.07.95)

(71) Applicant (for all designated States except US): NOVELL,
INC. [US/US]; 1555 North Technology Way, Orem, UT
84057 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FALLS, Patrick, T.
[GB/GB]; Meadlands, Broad Layings, Woolton Hill,
Newbury, Berkshire RG15 9TT (GB). COLLINS, Brian, J.
[GB/GB]; 30 High Drive, New Malden, Surrey KT3 3UG
(GB). DRAPER, Stephen, P., W. [GB/GB]; 123 Pack Lane,
Basingstoke, Hampshire RG22 SHL (GB).

550, 8 East Broadway, Salt Lake City, UT 84111 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY,
CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL,
IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, L
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, TJ, T™M, TR, TT, UA, UG, US, UZ,
VN, ARIPO patent (KE, LS, MW, N
patent (AM, AZ, BY, KG, KZ ,
patent (AT, BE, CH, DE, DK, E ,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: TRANSACTION LOG MANAGEMENT IN A DISCONNECTABLE COMPUTER AND NETWORK

4
I 20
OTHER @
NETWORKS el

(57) Abstract

4

A method and apparatus are disclosed for managing a transaction log which contains updates representing operations performed
on a database replica in a network of disconnectable computers. The invention provides for compression of the log by the identification
and removal of redundant updates. Log compression removes apparent inconsistencies between operations performed on disconnected
computers, reduces storage requirements on each computer, and speeds up transaction synchronization when the computers are reconnected.
The invention also provides for restoration of prior versions of database objects using the log.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

TITLE
TRANSACTION LOG MANAGEMENT IN A
DISCONNECTABLE COMPUTER AND NETWORK

INVENTORS
STEPHEN P.W. DRAPER, BRIAN J. COLLINS,
AND PATRICK T. FALLS

FIELD OF THE INVENTION
" The present invention relates to the management of
transaction logs which contain updates representing operations
performed on separated disconnectable computers, and more
particularly to log compression that is suitable for use with
transaction synchronization and with the handling of clashes
that may arise during such synchronization.

TECHNICAL BACKGROUND OF THE INVENTION

"Disconnectable" computers are connected to one another
only sporadically or at intervals. Familiar examples include
"mobile-link" portable computers which are connectable to a
computer network by a wireless links and separate server
computers in a wide-area network (WAN) or other network.
Disconnectable computers can be operated either while connected
to one another or while disconnected. During disconnected
operation, each computer has its own copy of selected files (or
other structures) that may be needed by a user. Use of the
selected items may be either direct, as with a document to be
edited, or indirect, as with icon files to be displayed in a
user interface.

Unfortunately, certain operations performed on the
selected item copies may not be compatible or consistent with
one another. For instance, one user may modify a file on one
computer and another user may delete the "same" file from the
other computer. A "synchronization" process may be performed
after the computers are reconnected. At a minimum,
synchronization attempts to propagate operations performed on
one computer to the other computer so that copies of items are

consistent with one another.

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

During synchronization, some disconnectable computers also
attempt to detect inconsistencies and to automatically resolve
them. These attempts have met with limited success.

For instance, the Coda File System ("Coda") is a client-
server system that provides limited support for disconnectable
operation. To prepare for disconnection, a user may hoard data
in a client cache by pfbviding a prioritized list of files. On

. disconnection, two copies of each cached file exist: the

original stored on the server, and a duplicate stored in the
disconnected client’s cache. The user may alter the duplicate
file, making it inconsistent with the server copy. Upon
reconnection, this inconsistency may be detected by comparing
timestamps.

However, the inconsistency is detected only if an attempt
is made to access one of the copies of the file. The Coda
system also assumes that the version stored in the client’s
cache is the correct version, so situations in which both the
original and the duplicate were altered are not properly
handled. Moreover, Coda is specifically tailored, not merely
to file systems, but to a particular file system (a descendant
of the Andrew File System). Coda provides no solution to the
more general problem of detecting and resolving inconsistencies
in a distributed database that can include objects other than
file and directory descriptors.

Various approaches to distributed database replication
attempt to ensure consistency between widely separated replicas
that collectively form the database. Examples include, without
limitation, the replication subsystem in Lotus Notes and the
partition synchronization subsystem in Novell NetWare® 4.1
(LOTUS NOTES is a trademark of International Business Machines,
Inc. and NETWARE is a registered trademark of Novell, Inc.).

However, some of these approaches to replication are not
transactional. Non-transactional approaches may allow
partially completed update operations to create inconsistent
internal states in network nodes. Non-transactional approaches
may also require a synchronization time period that depends
directly on the total number of files, directories, or other
objects in the replica. This seriously degrades the
performance of such approaches when the network connéction used

-l -

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

for synchronization is relatively slow, as many modem or WAN
links are.

Moreover, in some conventional approaches potentially
conflicting changes to a given set of data are handled by
simply applying the most recent change and discarding the
others. 1In other conventional systems, users must resolve
conflicts with little or no assistance from the system. This

.can be both tedious and error-prone.

It is well-known in the database arts to maintain a log of
transactions. However, conventional disconnectable systems are
not traditional database systems. Conventional disconnectable
systems lack transaction logs which can be used to identify and
then modify or remove certain apparently inconsistent
operations to improve the synchronization process.

Conventional systems provide no way to compress transaction

logs based on the semantics of the logged update operations.
Conventional systems also lack a way to use such transaction
logs to recreate earlier versions of database objects.

Thus, it would be an advancement in the art to provide a
system and method for compressing a log of transactions
performed on disconnectable computers.

It would be a further advancement to provide such a system
and method which are suited for use with systems and methods
for transaction synchronization.

It would also be an advancement to provide such a system
and method which are not limited to file system operations but
can instead be extended to support a variety of database
objects.

Such a system and method are disclosed and claimed herein.

BRIEF SUMMARY OF THE INVENTION
The present invention provides systems and methods for

managing a transaction log which represents a sequence of
transactions in a network of connectable computers. Each
transaction contains at least one update targeting an object in
a replica of a distributed target database. The replicas
reside on separate computers in the network. In one embodiment
the network includes a server computer and a client computer

-3 -

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

and a replica of the target database resides on each of the two
computers.

One method of the present invention compresses the trans-
action log by identifying redundant updates and then removing
them from the log. Redundant updates are identified by
examining the operations performed by the updates and the
status of the replicas.‘ The compression is thus based on

~update semantics, unlike data compression methods such as run-

length-encoding which are based only on data values. Semantic
tests are also used to identify incompressible update sequences
such as file name swaps or sequences that cross a transaction
boundary.

A hierarchical log database representing at least a
portion of the transaction log assists log management. The log
database contains objects corresponding to the updates and
transactions in the specified portion of the transaction log.
The specified portion of the transaction log may be the entire
log, or a smaller portion that only includes recent
transactions. The remainder of the transaction log is
represented by a compressed linearly accessed log.

Transactions and updates are appended to the log by
inserting corresponding objects into the log database. The log
database includes an unreplicated attribute or other update
history structure. The update history structure is accessed to
identify any earlier update referencing an object in the target
database that is also referenced by an update in the appended
transaction.

The invention also provides other log management
capabilities. For instance, each completed transaction in the
transaction log has a corresponding transaction sequence
number. By specifying a range of one or more transaction
sequence numbers, one can retrieve transactions from the
transaction log in order according to their respective
transaction sequence numbers. In addition, one can locate a
desired transaction checkpoint, access the update history
structure in the log database, and then construct a prior
version of a target database object at it existed at the time
represented by that checkpoint.

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

The present log management invention is suitable for use
with various transaction synchronization systems and methods.
According to one such, synchronization of the database replicas
is performed after the computers are reconnected and includes a
"merging out" step, a "merging in" step, and one or more clash
handling steps. During the merging out step, operations
performed on a first coﬁputer are transmitted to a second

.computer and applied to a replica on the second computer.

During the merging in step, operations performed on the second
computer are transmitted to the first computer and applied to
the first computer’s replica.

Some of the clash handling steps detect transient or
persistent clashes, while other steps recover from at least
some of those clashes. Persistent clashes may occur in the
form of unique key clashes, incompatible manipulation clashes,
file content clashes, permission clashes, or clashes between
the distributed database and an external structure. Recovery
may involve insertion of an update before or after a clashing
update, alteration of the order in which updates occur,
consolidation of two updates into one update, and/or creation
of a recovery item. Log compression may be performed as part
of clash handling, in preparation for merging, or separately
from those procedures.

Transaction synchronization and clash handling are further
described in commonly owned copending applications entitled
TRANSACTION SYNCHRONIZATION IN A DISCONNECTABLE COMPUTER AND
NETWORK and TRANSACTION CLASH MANAGEMENT IN A DISCONNECTABLE
COMPUTER AND NETWORK, filed the same day and having the same
inventors as the present application.

The features and advantages of the present invention will
become more fully apparent through the following description
and appended claims taken in conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
To illustrate the manner in which the advantages and
features of the invention are obtained, a more particular
description of the invention summarized above will be rendered
by reference to the appended drawings. Understanding that

-

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

these drawings only provide selected embodiments of the
invention and are not therefore to be considered limiting of
its scope, the invention will be described and explained with
additional specificity and detail through the use of the
accompanying drawings in which:

Figure 1 is a schematic illustration of a computer network
suitable for use with the present invention.

Figure 2 is a diagram illustrating two computers in a
network, each configured with a database manager, replica
manager, network link manager, and other components according
to the present invention.

Figure 3 is a diagram further illustrating the replica
managers shown in Figure 2.

Figure 4 is a flowchart illustrating log management
methods of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference is now made to the Figures wherein like parts
are referred to by like numerals. The present invention
relates to a system and method which facilitate disconnected
computing with a computer network. One of the many computer
networks suited for use with the present invention is indicated
generally at 10 in Figure 1.

In one embodiment, the network 10 includes Novell NetWare®
network operating system software, version 4.x (NETWARE is a
registered trademark of Novell, Inc.). In alternative
embodiments, the network includes Personal NetWare, NetWare
Mobile, VINES, Windows NT, LAN Manager, or LANtastic network
operating system software (VINES is a trademark of Banyan
Systems; NT and LAN Manager are trademarks of Microsoft
Corporation; LANtastic is a trademark of Artisoft). The
network 10 may include a local area network 12 which is
connectable to other networks 14, including other LANs, wide
area networks, or portions of the Internet, through a gateway
or similar mechanism.

The network 10 includes several servers 16 that are
connected by network signal lines 18 to one or more network
clients 20. The servers 16 may be file servers, print servers,
database servers, Novell Directory Services servers,'or a

- -

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

combination thereof. The servers 16 and the network clients 20
may be configured by those of skill in the art in a wide
variety of ways to operate according to the present invention.
The network clients 20 include personal computers 22,
laptops 24, and workstations 26. The servers 16 and the
network clients 20 are collectively denoted herein as computers
28. Suitable computersizs also include palmtops, notebooks,

~personal digital assistants, desktop, tower, micro-, mini-, and

mainframe computers. The signal lines 18 may include twisted
pair, coaxial, or optical fiber cables, telephone lines, satel-
lites, microwave relays, modulated AC power lines, and other
data transmission means known to those of skill in the art.

In addition to the computers 28, a printer 30 and an array
of disks 32 are also attached to the illustrated network 10.
Although particular individual and network computer systems and
components are shown, those of skill in the art will appreciate
that the present invention also works with a variety of other
networks and computers.

At least some of the computers 28 are capable of using
floppy drives, tape drives, optical drives or other means to
read a storage medium 34. A suitable storage medium 34
includes a magnetic, optical, or other computer-readable
storage device having a specific physical substrate
configuration. Suitable storage devices include floppy disks,
hard disks, tape, CD-ROMs, PROMs, RAM, and other computer
system storage devices. The substrate configuration represents
data and instructions which cause the computer system to
operate in a specific and predefined manner as described
herein. Thus, the medium 34 tangibly embodies a progranm,
functions, and/or instructions that are executable by at least
two of the computers 28 to perform log management steps of the
present invention substantially as described herein.

With reference to Figure 2, at least two of the computers
28 are disconnectable computers 40 configured according to the
present invention. Each disconnectable computer 40 includes a
database manager 42 which provides a location-independent
interface to a distributed hierarchical target database
embodied in convergently consistent replicas 56. Suitable

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

databases include Novell directory services databases supported
by NetWare 4.x.

A database is a collection of related objects. Each
object has associated attributes, and each attribute assumes
one or more values at any given time. Special values are used
internally to represent NULL, NIL, EMPTY, UNKNOWN, and similar
values. Each object is identified by at least one "key." Some

_keys are "global" in that they are normally unique within the

entire database; other keys are "local" and are unigue only
within a proper subset of the database. A database is
"hierarchical" if the objects are related by their relative
position in a hierarchy, such as a file system hierarchy.
Hierarchies are often represented by tree structures.

The target database includes file descriptor objects,
directory descriptor objects, directory services objects,
printer job objects, or other objects. The target database is
distributed in that entries are kept in the replicas 56 on
different computers 40. Each replica 56 in the target database
contains at least some of the same variables or records as the
other replicas 56. The values stored in different replicas 56
for a given attribute are called "corresponding values." In
general, corresponding values will be equal.

However, replicas 56 at different locations (namely, on
separate computers 40) may temporarily contain different values
for the same variable or record. Such inconsistencies are
temporary because changes in value are propagated throughout
the replicas 56 by the invention. Thus, if the changes to a
particular variable or record are infrequent relative to the
propagation delay, then all replicas 56 will converge until
they contain the same value for that variable or record.

More generally, the present invention provides a basis for
a family of distributed software applications utilizing the
target database by providing capabilities which support
replication, distribution, and disconnectability. 1In one
embodiment, the database manager 42 includes one or more agents
44, such as a File Agent, a Queue Agent, or a Hierarchy Agent.
The database manager 42 hides the complexity of distribution of
data from the application programs. Distributed programs make

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

requests of the database manager 42, which dispatches each
request to an appropriate agent 44.

Each agent 44 embodies semantic knowledge of an aspect or
set of objects in the distributed target database. Under this
modular approach, new agents 44 can be added to support new
distributed services. For instance, assumptions and optimiza-
tions based on the semantics of the hierarchy of the NetWare

File System are embedded in a Hierarchy Agent, while

corresponding information about file semantics are embedded in
a File Agent. 1In one embodiment, such semantic information is
captured in files defining a schema 84 (Figure 3) for use by
agents 44.

The schema 84 includes a set of "attribute syntax" defini-
tions, a set of "attribute" definitions, and a set of "object
class" (also known as "class") definitions. Each attribute
syntax in the schema 84 is specified by an attribute syntax
name and the kind and/or range of values that can be assigned
to attributes of the given attribute syntax type. Attribute
syntaxes thus correspond roughly to data types such as integer,
float, string, or Boolean in conventional programming
languages.

Each attribute in the schema 84 has certain information
associated with it. Each attribute has an attribute name and
an attribute syntax type. The attribute name identifies the
attribute, while the attribute syntax limits the values that
are assumed by the attribute.

Each object class in the schema 84 also has certain
information associated with it. Each class has a name which
identifies this class, a set of super classes that identifies
the other classes from which this class inherits attributes,
and a set of containment classes that identifies the classes
permitted to contain instances of this class.

An object is an instance of an object class. The target
database contains objects that are defined according to the
schema 84 and the particulars of the network 10. Some of these
objects may represent resources of the network 10. The target
database is a "hierarchical" database because the objects in
the database are connected in a hierarchical tree structure.
Objects in the tree that can contain other objects are called

=0

10

15

20

25

30

35

40

45

WO 97/04391 PCT/US96/11903

"container objects" and must be instances of a container object
class.

A specific schema for the Hierarchy Agent will now be
described; other agents may be defined similarly. The
ndr_dodb_server class is the top level of the HA-specific
database hierarchy. Since a database may contain many servers,
the name is treated as a unique key for HA servers within a

~database.
CLASS ha_server
{
SUPERCLASS ndr_dodb_object_header;
PARENT ndr dodb database,
PROPERTY NDR_OS_CLASS_FLAG_FULLY REPLICATED;
ATTRIBUTE
{
ha_server_name server_name
PROPERTY NDR_OS_ATTR_FLAG_SIBLING_KEY;
}
}
CONSTANT HA_VOLUME_ NAME MAX = 32;
DATATYPE ha_volume name STRING HA_VOLUME_ NAME MAX;
DATATYPE ha_volume id BYTE;

A volume has a name, which must be unique within the

server and can be used as the root component of a path name:

CLASS ha_volume
{
SUPERCLASS ndr_dodb_object header;
PARENT ha server,
PROPERTY NDR O0S_CLASS_FLAG_ NAMESPACE_ ROOT;
ATTRIBUTE
{
ha_volume name volume name
PROPERTY NDR_OS ATTR FLAG_SIBLING KEY |
NDR 0S ATTR FLAG IS_DOS FILENAME'
ha_volume_id volume_id;
}

In order to allocate unique volume identifiers this object
holds the next free volume ID. 1Initially this is set to 1, so
that the SYS volume can be given ID 0 when it is added to the

database, in case any applications make assumptions about SYS:

CLASS ha_next_volume
{
SUPERCLASS ndr_dodb_object_header;
PARENT ha_server;
PROPERTY NDR_OS_CLASS_FLAG_UNREPLICATED;

-10-

10

15

20

25

30

35

40

WO 97/04391 PCT/US96/11903

ATTRIBUTE

{
ndr_dodb_dummy_ key dummy _key
PROPERTY NDR_OS_ATTR_FLAG_SIBLING_KEY
COMPARISON ndr dodb dummy key compare
VALIDATION ndr dodb _dummy_ key validate;
ha_volume_id next_free_volume id;

A file or directory name can be 12 (2-byte) characters
long:

CONSTANT HA_FILENAME MAX = 24;
DATATYPE ha_filename STRING HA_FILENAME MAX;

The ha_file_or_dir_id is a compound unique key embracing
the file or directory ID that is allocated by the server, as
well as the server-generated volume number. The latter is
passed as a byte from class 87 NetWare Core Protocols from

which it is read directly into vol (declared as a byte below).

Elsewhere in the code the type ndr_host_volume id (a UINT16) is

used for the same value.
DATATYPE ha_file or_dir_id
{
ULONG file_ or dir;
ha_volume_id vol;
Files and directories have many shared attributes, the

most important being the file name. This must be unique for

any parent directory.

CLASS ha_file or_dir
{
PARENT ha_directory;
SUPERCLASS ndr_dodb object_header;
ATTRIBUTE
{
ha_filename filename
PROPERTY NDR_OS_ATTR_FLAG_SIBLING_KEY !

NDR 0s ATTR FLAG IS DOs FILENAME'

ha file or_ d1r id id

PROPERTY NDR_OS_ATTR_FLAG_GLOBAL_ KEY |
NDR 0S ATTR FLAG _UNREPLICATED

GROUP file or d1r id_group;

ULONG attrlbutes,

SHORT creation_date;

-]11-

10

15

20

25

30

35

40

45

50

WO 97/04391 PCT/US96/11903

SHORT creation time;
ndr_dodb_auth_id creation_id;
SHORT access_date;
SHORT ‘ archive_date;
SHORT archive_time;
ndr_dodb_auth_id archive_id;

A file has some additional attributes not present in a

- directory, and may contain a contents fork which can be

accessed via a file distributor 90 (Figure 3):

CLASS ha_file
{
SUPERCLASS ha file or dir;
PROPERTY NDR 0S_ CLASS _FLAG_DEFINE REPLICAS |

NDR_OS_ CLASS FLAG_ _HAS PARTIALLY _REPLICATED FILE

NDR_OS_CLASS_FLAG_HAS FILE PATH NAME |
NDR OS CLASS FLAG PARENT HAS RSC,

ATTRIBUTE

{
BYTE execute_type;
SHORT update_date
property NDR_OS_ATTR_FLAG_UNREPLICATED;
SHORT update time™
property NDR_0OS ATTR_FLAG UNREPLICATED,
ndr_dodb_auth_id update_id
property NDR_OS_ATTR_FLAG_UNREPLICATED;
ULONG length
property NDR_OS_ATTR_FLAG_UNREPLICATED;

A directory does not possess a contents fork for file
distributor 90 access. The access rights mask is inherited and

should be managed by like access control lists ("ACLs"):

CLASS ha_directory
{
SUPERCLASS ha_file or dir;
PROPERTY NDR 0s_ CLASS FLAG_DEFINE_REPLICAS |

NDR_OS_CLASS_FLAG_ HAS FILE PATH _NAME |
NDR 0S_CLASS_ FLAG HAS_RSC;
//replication support count

ATTRIBUTE

{
BYTE access_rights_mask;
SHORT update_date;
SHORT update_time;
ndr_dodb_auth_id update_id;
SHORT rsc :
PROPERTY NDR_OS_ATTR_FLAG_IS RSC |

-]12-

10

15

20

25

30

WO 97/04391 PCT/US96/11903

NDR_OS_ATTR_FLAG_UNREPLICATED;

The root directory must appear at the top of the hierarchy
below the volume. 1Its name is not used; the volume name is

used instead. This is the top of the replication hierarchy and

“therefore is the top level RSC in this hierarchy:

CLASS ha_root_directory
{
SUPERCLASS ha_directory;
PARENT ha_volume;
PROPERTY NDR_OS_CLASS_FLAG DEFINE REPLICAS |

NDR_OS_CLASS_FLAG_HAS_RSC;

In one embodiment, schemas such as the schema 84 are
defined in a source code format and then compiled to generate C
language header files and tables. The named source file is
read as a stream of lexical tokens and parsed using a recursive
descent parser for a simple LL(1l) syntax. Parsing an INCLUDE
statement causes the included file to be read at that point.
Once a full parse tree has been built (using binary nodes), the
tree is walked to check for naming completeness. The tree is
next walked in three passes to generate C header (.H) files for
each included schema file. The header generation passes also
compute information (sizes, offsets, and so forth) about the
schema which is stored in Id nodes in the tree. Finally, the
complete tree is walked in multiple passes to generate the
schema table C source file, which is then ready for compiling
and linking into an agent’s executable program.

Each disconnectable computer 40 also includes a replica
manager 46 which initiates and tracks location-specific updates

as necessary in response to database manager 42 requests. The

=13~

10

15

20

25

WO 97/04391 PCT/US96/11903

replica manager is discussed in detail in connection with later
Figures.

A file system interface 48 on each computer 40 mediates
between the replica manager 46 and a storage device and

controller 54. Suitable file system interfaces 48 include

well-known interfaces 48 such as the File Allocation Table

("FAT") interfaces of various versions of the MS-DOS® operating
system (MS-DOS is a registered trademark of Microsoft Corpora-
tion), the XENIX® file system (registered trademark of
Microsoft Corporation), the various NOVELL file systems (trade-
mark of Novell, Inc.), the various UNIX file systems (trademark
of Santa Cruz Operations), the PCIX file system, the High
Performance File System ("HPFS") used by the 0S/2 operating
system (0S/2 is a mark of International Business Machines
Corporation), and other conventional file systems.

Suitable storage devices and respective controllers 54
include devices and controllers for the media disclosed above
in connection with the storage medium 34 (Figure 1) and other
conventional devices and controllers, including non-volatile
storage devices. It is understood, however, that the database
replicas 56 stored on these media are not necessarily conven-
tional even though the associated devices and controllers 54
may themselves be known in the art.

Each computer 40 also has a network link manager 50 that
is capable of establishing a network connection 52 with another
disconnectable computer 40. Suitable network link managers 50
include those capable of providing remote procedure calls or an
equivalent communications and control capability. One

embodiment utilizes "DataTalk" remote procedure call. software

-14-

10

15

20

25

30

WO 97/04391 PCT/US96/11903

with extended NetWare Core Protocol calls and provides

functionality according to the following interface:

rpc_init() Initialize RPC subsystem

rpc_shutdown() Shutdown RPC subsystem

rpc_execute() Execute request at single
location

rpc_ping() Ping a location (testing)

rpc_claim next_execute() Wait until the next rpc_execute()
is guaranteed to be used by this
thread

rpc_free_next_execute() Allow others to use rpc_execute()

Those of skill in the art will appreciate that other
remote procedure call mechanisms may also be employed according
to the present invention. Suitable network connections 52 may
be established using packet-based, serial, internet-compatible,
local area, metropolitan area, wide area, and wireless network
transmission systems and methods.

Figures 2 and 3 illustrate one embodiment of the replica
manager 46 of the present invention. A replica distributor 70
insulates the database manager 42 from the complexities caused
by having database entries stored in replicas 56 on multiple
computers 40 while still allowing the database manager 42 to
efficiently access and manipulate individual database objects,
variables, and/or records. A replica processor 72 maintains
information about the location and status of each replica 56
and ensures that the replicas 56 tend to converge.

A consistency distributor 74 and a consistency processor
76 cooperate to maintain convergent and transactional
consistency of the database replicas 56. The major processes
used include an update process which determines how transaction
updates are applied, an asynchronous synchronization process

that asynchronously synchronizes other locations in a location

set, a synchronous synchronization process that synchronously

-15=

10

15

20

25

WO 97/04391 PCT/US96/11903

forces two locations into sync with each other, an optional
concurrency process that controls distributed locking, and a
merge process that adds new locations to a location set. 1In
one embodiment, processes for synchronization and merging are

implemented using background software processes with threads or

similar means. The concurrency process may be replaced by a

combination of retries and clash handling to reduce
implementation cost and complexity.

Each location is identified by a unique location
identifier. A "location sync group" is the group of all
locations that a specific location synchronizes with. The
location sync group for a database replica 56 on a client 20 is
the client and the server 16 or other computer 28 that holds a
master replica 56; the computer 28 holding the master replica
56 is the "storage location" of the target database. The
location sync group for the computer 28 that holds the master
replica 56 is all computers 28 connectable to the network that
hold a replica 56. A "location set" is a set of presently
connected locations in a location sync group. Locations in an
"active location set" have substantially converged, while those
in a "merge location set" are currently being merged into the
active location set. Objects are read at a "reference
location" and updated at an "“update location," both of which
are local when possible for performance reasons. To support
concurrency control, objects require a "lock location" where
they are locked for read or update; the local location is the
same for all processes in a given location set.

According to one update process of the present invention,

the updates for a single transaction are all executed at one

-16-

10

15

20

25

WO 97/04391 PCT/US96/11903

update location. Each group of updates associated with a
single transaction have a processor transaction identifier
("PTID") containing the location identifier of the update
location and a transaction sequence number. The transaction

sequence number is preferably monotonically consecutively

increasing for all completed transactions at a given location,

even across computer 28 restarts, so that other locations
receiving updates can detect missed updates.

The PTID is included in update details written to an
update log by an object processor 86. An update log (sometimes
called an "update stream") is a chronological record of
operations on the database replica 56. Although it may be
prudent to keep a copy of an update log on a non-volatile
storage device, this is not required. The operations will vary
according to the nature of the database, but typical operations
include adding objects, removing objects, modifying the values
associated with an object attribute, modifying the attributes
associated with an object, and moving objects relative to one
another.

The PTID is also included as an attribute of each target
database object to reflect the latest modification of the
object. In one embodiment, the PTID is also used to create a
unique (within the target database) unique object identifier
("UOID") when a target database object is first created.

A target database object may contain attributes that can
be independently updated. For instance, one user may set an
archive attribute on a file while a second user independently
renames the file. In such situations, an object schema 84 may

define attribute groups. A separate PTID is maintained in the

-17-

10

15

20

25

WO 97/04391 PCT/US96/11903

object for each attribute group, thereby allowing independent
updates affecting different attribute groups of an object to be
automatically merged without the updates being treated as a
clash.

The consistency distributor 74 gathers all of the updates
for a single transaction and sends them, at close transaction
time, to the update location for the transaction. The
consistency processor 76 on the update location writes the
updates to a transaction logger 88. In one embodiment, the
transaction logger 88 buffers the updates in memory (e.g. RAM).
If the update location is not local then the updates are
committed to the transaction log and the PTID for the
transaction is returned, so that the same updates can be
buffered locally; this allows all updates to be applied in
order locally. 1In this manner the transaction updates are
applied to the update location.

An objective of one asynchronous synchronization process
of the present invention is to keep the rest of the locations
in the location set in sync without unacceptable impact on
foreground software process performance. This is achieved by
minimizing network transfers.

A process of the consistency processor 76 (such as a
background software process) either periodically or on demand
requests the transaction logger 88 to force write all pending
transactions to the log and (eventually) to the target
database. The consistency processor 76 also causes the batch
of updates executed at an update location to be transmitted to
all other locations in the current location set as a

"SyncUpdate" request. These updates are force written to the

-18~

10

15

20

25

WO 97/04391 PCT/US96/11903

log before they are transmitted to other locations, thereby
avoiding use of the same transaction sequence number for
different transactions in the event of a crash.

The SyncUpdate requests are received by other locations in

the same location set and applied to their in-memory

transaction logs by their respective consistency processors 76.

Each consistency processor 76 only applies SyncUpdate
transactions which have sequence numbers that correspond to the
next sequence number for the specified location.

The consistency processor 76 can determine if it has
missed updates or received them out of order by examining the
PTID. If updates are missed, the PTID of the last transaction
properly received is sent to the consistency distributor 74
that sent out the updates, which then arranges to send the
missing updates to whichever consistency processors 76 need
themn.

Acknowledged requests using threads or a similar mechanism
can be used in place of unacknowledged requests sent by non-
central locations. Non-central locations (those not holding a
master replica 56) only need to synchronize with one loéation
and thus only require a small number of threads. To promote
scalability, however, central locations preferably use
unacknowledged broadcasts to efficiently transmit their
SyncUpdate requests.

The asynchronous synchronization process causes SyncUpdate
requests to be batched to minimize network transfers. However,
the cost paid is timeliness. Accordingly, a synchronous
synchronization process according to the present invention may

be utilized to selectively speed up synchronization. The

=19~

10

15

20

25

WO 97/04391 PCT/US96/11903

synchronous synchronization process provides a SyncUptoPTID
request and response mechanism.

In one embodiment, the SyncUptoPTID mechanism utilizes a
SyncState structure which is maintained as part of a location

state structure or location list that is managed by a location

state processor 80 in the memory of each computer 28. The

SyncState structure for a given location contains a location
identifier and corresponding transaction sequence number for
the most recent successful transaction applied from that
location. The SyncState structure is initialized from the
update log at startup time and updated in memory as new
transactions are applied.

A SyncUptoPTID request asks a destination to bring itself
up to date with a source location according to a PTID. The
destination sends a copy of the SyncState structure for the
source location to that source location. The source location
then sends SyncUpdate requests to the destination location, as
previously described, up to an including the request with the
PTID that was specified in the SyncUptoPTID request. 1In a
preferred embodiment, the central server is a NetWare server
and the SyncUptoPTID requirements are approximately 100 bytes
per location, so scalability is not a significant problem for
most systems.

A merge process according to the present invention
includes merging location sets when disconnected disconnectable
computers are first connected or reconnected. For instance,
merging location sets normally occurs when a computer new to

the network starts up and merges into an existing location set.

-20-

10

15

20

25

WO 97/04391 PCT/US96/11903

Merging can also happen when two sets of computers become
connected, such as when a router starts.

Merging occurs when two replicas 56 are resynchronized
after the computers 28 on which the replicas 56 reside are

reconnected following a period of disconnection. Either or

both of the computers 28 may have been shut down during the

disconnection. A set of updates are "merged atomically" if
they are merged transactionally on an all-or-nothing basis. A
distributed database is "centrally synchronized" if one
computer 28, sometimes denoted the "central server," carries a
"master replica" with which all merges are performed.

Portions of the master replica or portions of another
replica 56 may be "shadowed" during a merge. A shadow replica,
sometimes called a "shadow database", is a temporary copy of at
least a portion of the database. The shadow database is used
as a workspace until it can be determined whether changes made
in the workspace are consistent and thus can all be made in the
shadowed replica, or are inconsistent and so must all be
discarded. The shadow database uses an "orthogonal name
space." That is, names used in the shadow database follow a
naming convention which guarantees that they will never be
confused with names in the shadowed database.

A "state-based" approach to merging compares the final
state of two replicas 56 and modifies one or both replicas 56
to make corresponding values equal. A "log-based" or
"transaction-based" approach to merging incrementally applies
successive updates made on a first computer 28 to the replica
56 stored on a second computer 28, and then repeats the process

with the first computer’s replica 56 and the second computer’s

_2 -

10

15

20

25

30

WO 97/04391 PCT/US96/11903

update log. A hybrid approach uses state comparison to
generate an update stream that is then applied incrementally.
The present invention preferably utilizes transaction-based
merging rather than state-based or hybrid merging.

As an illustration, consider the process of merging a

single new location A with a location set containing locations

B and C. 1In one embodiment, the following performance goals
are satisfied:

(a) Use of locations B and C is not substantially

interrupted by synchronization of the out-of-date location

A with B and C; and

(b) Users connected to location A (possibly including

multiple users if location B is a gateway) are able to see

the contents of the other locations in the set within a

reasonable period of time.

Merging typically occurs in three phases. During a
"merging out" phase location A sends newer updates to location
B. For instance, if A’s location list contains PTID 50:14
(location identifier:transaction sequence number) and B’s
location list contains PTID 50:10, then the newer updates sent
would correspond to PTID values 50:11 through 50:14.

During a "merging in" phase new updates in the merge
location B are merged into A’s location. For instance, suppose
A’s location list contains PTIDs 100:12 and 150:13 and B’s
location list contains PTIDs 100:18 and 150:13. Then the new
updates would correspond to PTID values 100:13 through 100:18.
If updates are in progress when merging is attempted, the
initial attempt to merge will not fully succeed, and additional
iterations of the merging in and merging out steps are
performed.

In one embodiment, merging does not include file contents

synchronization. Instead file contents are merged later,

-22-

10

15

20

25

WO 97/04391 PCT/US96/11903

either by a background process or on demand triggered by file
access. This reduces the time required for merging and
promotes satisfaction of the two performance goals identified
above. In embodiments tailored to "slow" links, merging is

preferably on-going to take advantage of whatever bandwidth is

available without substantially degrading the perceived

performance of other processes running on the disconnectable
computers.

In embodiments employing an update log, the log is
preferably compressed prior to merging. Compression reduces
the number of operations stored in the log. Compression may
involve removing updates from the log, altering the parameters
associated with an operation in a given update, and/or changing
the order in which updates are stored in the log.

In one embodiment, all Object Database calls come through
the consistency distributor 74, which manages distributed
transaction processing and maintains consistency between
locations. Almost all calls from a location distributor 78 are
made via the consistency distributor 74 because the consistency
distributor 74 supports a consistent view of the locations and
the database replicas 56 on them.

The consistency distributor 74 and an object distributor
82 support multiple concurrent transactions. This is needed
internally to allow background threads to be concurrently
executing synchronization updates. It could also be used to
support multiple concurrent gateway users. In an alternative
embodiment, multiple concurrent transactions on the same

session is supported through the consistency distributor 74.

-23-

10

15

20

25

30

35

40

45

WO 97/04391 PCT/US96/11903

In one embodiment, the consistency distributor 74 and the
consistency processor 76 are implemented in the C programming
language as a set of files which provide the functionality
described here. Files CD.H and CD.C implement part of the
consistency distributor 74. A separate module having files

CD_BG.H and CD_BG.C is responsible for background processes

- associated with merging and synchronization. A module having

files CDI.H and CDI.C contains functions used by both the cD
and CD_BG modules. These modules provide functionality

according to the following interface:

cd_init
cd_shutdown
cd_create_replica

cd_remove_replica

cd_load db
cd_ unload db
cd _merge_ start

cd_merge_stop
cd_ start txn
cd set txn ref loc

cd_get_txn desc

cd abort _txn
cd end txn
cd commit

cd_execute_txn

cd_read

cd_readn

cd _lookup_by_ uoid
cd add_lock

cd remove lock

cd modlfy attribute

cd_init_new_doid
cd add

cd_remove

cd_move
cd_set_marker

cd revert to_marker

Init CD

Shutdown CD

Create a replica of a specified
database

Remove a replica of a specified
database

Load an existing database
Unload an existing database
Start merge of active and merge
location sets

Stop merge

Start a CD transaction

Set reference/update 1lid
(location identifier) for txn
(transaction)

Get a txn descriptor given a txn
id

Abort a CD transaction

End a CD transaction

Commit all previously closed txns
to disk

Execute locks and updates for a
txn

Do read or lookup request

Do readn

Do lookup using UOID

Add an object or agent lock
Remove an object or agent lock
Modify a single attribute in a
previously read object

Setup all fields in a new doid
Add a new object

Remove an object

Move an object

Add marker point to txn

Revert txn state to last marker

cd _get_ effectlve access_right

-24 -

10

15

20

25

30

35

40

WO 97/04391 PCT/US96/11903

Get the effective access rights
for the current session and

object

cd_convert_uoid2doid Convert UOID to DOID

cd_sync_object Get the server to send a newly
replicated object

cd_bg_init Initialize CD background
processes

cd bg merge Execute a background merge

cd_bg_sync_remote_upto ptid
Bring remote location up to date
with local PTID

cdi_init

cdi_shutdown

cdi_execute_ack_sys Execute acknowledged request
using system session

cdi_execute_ack Execute acknowledged request

cdi_apply locks Apply locks for txn

cdi_abort_prc txn Remove all locks already set for
a txn

//Forced update location (used to change update location
when executing clash handler functions)
cdi_register forced update_location

Register location to be used as

update location for thread
cdi_unregister_ forced update location

Unregister location to be used as

update location for thread
cdi_get_forced_update_location

Get forced update location for

thread

cdi_sync_upto_ptid Bring location up to date with
PTID

cdi_sync_upto now Bring location up to date with
latest PTID

cdi_sync_loc_list Make my location list consistent

with destination location list
and return info on mismatch of

PTIDs
cdi_read_loc_list Read location list
cdi_sync_upto_dtid Bring location up to date with
DTID

Since updates are cached during a transaction, special

handling of reads performed when updates are cached is
required. In one embodiment, the caller of cd read() or
cd_readn() sees the results of all updates previously executed
in the transaction. In an alternative embodiment, for
cd_read() reads will see all previously added objects and will
see the modified attributes of objects, but will not see the
effects of moves or removes. Thus if an object is removed

25~

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

during a transaction the read will behave as if it has not been
removed. The same is true for moved objects. Modifications to
keys will have no effect on reads using the keys. The
cd_readn() function behaves as if none of the updates in the
current transaction have been applied.

In one embodiment, the consistency processor 76, which
processes all distributed object database requests, includes
background processes that manage object database updates on
local locations and synchronization of locations. Within this
embodiment, a CP module contains a dispatcher for all requests
which call functions that have a prefix of "cpXX "; a CPR
module processes read requests; a CPU module processes update
and lock requests; a CPSM module processes synchronization and
merging requests; a CP_BG module controls background processing
which includes scheduling multiple background threads,
controlling the state of all local locations and
synchronization of local locations with local and remote
locations; and a CPUI module provides functions that are shared
by the CP_BG and CPx modules. These modules provide
functionality according to the following interface:

cp_init Includes performing mounting of

local locations and recovery of
TL (transaction logger 88) and OP
(object processor 86)

cp_shutdown Shutdown CP

Cp_process
cp_clear_stats
cp_dump_stats
Cpr_process_read
cpr_process_readn
cpu_register dtid

cpu_execute_txn
cpu_comnmit

cpu_add_locks
cpu_remove_locks

Process a consistency request
Reset CP statistics

Dump CP statistics to the log
Process OP read or lookup request
Process readn request

Register use of a DTID at a
reference location

Execute single txn at reference
location

Commit all txns for session
Add list of locks

Remove list of locks

-26-

10

15

20

25

30

35

40

45

50

55

WO 97/04391

cpu_abort_prc_txn
cpsm_sync_upto_ptid

cpsm_get_latest ptid
cpsm_get_sync_object

cpsm_sync_object

cpsm_get_sync_updafe
cpsm_sync_update

cpsm_read_loc_list
cpsm_sync_ “loc list
cpsm_merge_ loc list

cpsm_sync_finished

cpsm_request merge

cpui_init
cpui_shutdown
cpui_execute_txn

PCT/US96/11903

Remove object locks for specified
transaction

Bring remote locations up to date
as far as given PTID

Obtain the latest PTID

Remote machine wants to sync a
newly replicated object

Add a newly replicated object to
the local database

Get a local sync_update

Apply multiple update txns to
location

Read list of locations and states
Sync location list

Attempt to merge my location list
with other location list

Remote machine is notifying us
that a sync_upto_ptid has
completed

Request a merge of this location
with the central server
Initialize internal structures
Shutdown CPUI subsystem

Execute update txn at a local
location

cpui_apply update_list_to db

cpui_commit
cpui_flush

Apply an update list to an OP
database

Commit all txns at location

Flush all txns to object database
at location

cpui_replay logged_transactions

cp_bg_init
cp_bg_shutdown

Replay transactions from the log
that have not been committed to
OP

Initialize CP_BG subsystem
Shutdown CP BG subsystem

cp_bg_handle_distributed request

cp_bg_notify close_txn

cp_bg_notify commit

cp_bg_attempt_send flush

cp_bg_notify load
cp_bg_notify unload

cp_bg_flush _upto_ptid

"Handle a request that requires
remote communication

Notify CP_BG of a closed
transaction

Notify CP_BG that all txns are
committed at a location

Attempt to send out and flush
txns

Notify CP_BG of a newly loaded DB
Notify CP_BG of a newly unloaded
DB

Force all transactions upto the
specified ptid to the migrated
state

The location distributor 78 in each replica manager 46 and

the location state processor 80 are used to determine the

storage locations of database entries. 1In one embodiment, the

=-27-

10

15

20

25

WO 97/04391 PCT/US96/11903

location state processor 80 uses a cache of the current state
of locations and maintains state information on the merging
process. The location state processor 80 is responsible for
processing remote requests which pertain to the location list.

All locations that are up at any time within a sync group

are in either the ACTIVE or MERGE location sets. The ACTIVE

location set contains all locations that are in sync with the
local location up to certain sync watermarks. The MERGE
location set contains all nodes that are not in sync with the
local location, either through not having updates the active
set does have, or through having updates the active set does
not have.

Locations in the MERGE set enter the ACTIVE set through
the two-way merging process described above, under control of
the consistency distributor 74 and the consistency processor
76. Once in the ACTIVE set, a location should never leave it
until the location goes down.

Each location continuously sends out its local updates to
other members of its active location set as part of the merging
process. The PTID in a location’s log that was last sent out
in this manner is called the location’s "low watermark" PTID.
For a location to enter the active set it must have all PTIDS
in its local log up to the low watermark PTID; only the merging
process used to move a location from the MERGE to the ACTIVE
location set is capable of propagating early transactions.
Each location also maintains a "high watermark" PTID which is
the last transaction (in local log order) that has been
committed, and is thus a candidate for sending out in a

background sync update.

-28~-

10

15

20

25

30

35

40

45

WO 97/04391 PCT/US96/11903

The replica managers 46 track the last transaction
sequence number made by every location up to the low watermark
PTID in order to know whether a location is up to date with
another location’s low watermark. The log ordering ﬁay be
different in different locations, up to an interleave.

One embodiment of the location state processor 80 provides

functionality according to the following interface:

ls_init Initialize LS

ls_shutdown Shutdown LS

ls close_db Clear out all entries for a
database

ls_allocate_new_1lid Allocate a new location
identifier for use by a new
replica

ls_add Add a new location

ls_remove Remove a location

ls_modify local_ tid Modify a location entry’s local
transaction identifier (sequence
number)

ls modify state Modify a location entry’s state

ls _get_loc_list Get list of locations

ls_get_loc_sync_list Get list of locations for syncing

ls_get_next loc Get next location

1ls_get_first_in_loc_list Get first location in list that
is in current location set

ls_get_loc_entry Get location entry given 1lid
(location identifier)
1ls_get_first_ref loc Get nearest reference location in

provided list

ls_get_first_ref loc_in_list
Get first reference location in
provided list

ls_get lock_loc Get lock location for location
set

ls_higher priority Determine which location has
highest priority

ls_complete merge Complete the merge process

ls_set_sync_watermarks Set the high and low watermark
PTIDs used in syncing and merging

The object distributor 82 manages ACLs and otherwise
manages access to objects in the database. 1In one embodiment,
the object distributor 82 provides functionality according to
this interface:
typedef void* ndr_od_db handle; //open database handle
//1lint -strong(AJX,ndr_od_txn_id)

=29~

- 10

15

20

25

30

35

40

45

WO 97/04391

PCT/US96/11903

//object distributor transaction instance identifier

typedef void* ndr od_txn_id;

#define NDR_OD_ INVALID TXN ID (ndr_od_txn_id)o
typedef struct //Txn info returned by NdrodGetTxnInfo

{

ndr_od_db_handle db; /* database */

ndr dodb session _type session; /* session

} ndr_ od txn _info;

//Start a new clash txn for this session
ndr ret EXPORT

//Find out what databases are available
ndr_ret EXPORT
NdrOdEnumerateDBs (

ndr_od_enum_flags flags,

*/

‘NdrOdStartClashTxn(
ndr_od_db_handle db_handle,
/* -> Handle to the open DB */
ndr_dodb_session_type session, /* -> session */
ndr_od_txn_id *txn_id); /* <- txn id */

/* -> Determines which databases are included in search*/

ndr_os_db_name search _name,
/* => The database name (may be wild)

ndr_os_db_type name search_type,

/* => The database type (may be wild)
ndr_dodb_database_id type search id,
/* => The database id (may be wild)

ndr_os_db_name name,
/* <- The database name
ndr_os_db_type name type,

/* <- The database type */
ndr_dodb_database_id_type *id,
/* <- The database id */

UINT16 *index) ;
/* <> Set to 0 to start else use
previous returned value */

//Start a new txn for this session

ndr_ret EXPORT

NdrodStartTxn(
ndr_od_db_handle db_handle,
/* => Handle to the open DB */
ndr_dodb_session_type session,
/* -> session */
ndr_od_txn_id *txn_id);
/* <- txn id * /

The interface includes NdrOdCloseTxn(), which closes

updates for the current transaction and causes all updates

since the last NdrodstartTxn() call to be applied. Either all
updates will be applied, or none will be applied.

NdrOdCloseTxn() does not commit the updates, that is, they are

-30-

10

15

20

25

30

35

40

WO 97/04391 PCT/US96/11903

not written to disk. NdrOdCommit () is used to commit closed
updates to disk. However, after calling NdrOdCloseTxn(), no
further updates may be applied in the transaction. This
function is also where all the locking and updates previously

cached actually get done. Consequently, most locking and/or

consistency errors are reported here (after synchronization) so

that the transaction can be retried:
ndr_ret EXPORT
NdroOdCloseTxn(ndr_od_txn_id txn_id); /* => txn_id
*/
The NdrOdEndTxn() function ends the current transaction
and executes an implicit NdrodCloseTxn(). No error is returned

if no transaction is currently open:

ndr_ret EXPORT
NArOdEndTxn (ndr_od_txn_id txn_id); /* => txn id */

The NdrOdCommit function commits all previously closed
transactions for the session to disk:

ndr ret EXPORT

NdrodCommit (
ndr_od_db_handle db, /* -> DB to commit */
ndr_dodb_session_type session); /* -> session */

The interface also includes the following functions:

//Abort current txn

ndr_ret EXPORT

NdrOdAbortTxn(ndr_od_txn_id txn_id); /* -> txn_id
*/

//Get info on current txn
ndr ret EXPORT

NdrodGetTxnInfo (
ndr_od_txn_id txn_id, /* => txn_id */
ndr_od_txn_info* txn_info); /* <= txn info */

//Lookup an object using parent Distributed Object Identifier
// (DOID; encodes location info to assist in sending distributor
//requests to the right machine; includes UOID) & sibling key
or
//using global key; the key value MUST be a contiguous
structure.
ndr_ret EXPORT
NdrOdLookupByKey (.

ndr od_txn_id txn_id, /* => txn_id %/

-31-

10

15

20

25

30

35

40

45

50

55

¥/

WO 97/04391 PCT/US96/11903

ndr_dodb_access_rights_type rights_needed on_parent,
/* => rlghts needed on parent */
ndr_os_class class id,
/* => Class id. of superclass to match#*/
/* Acts as filter when key contains wildcard. */
ndr_dodb_doid class* parent_doid, /* => Parent DOID
*/
ndr_os_attribute key id,
/* => Type of unique key */
UINT16 , key length,
/* => Length, in bytes, of the key value */
VOID* key, /* => Key value

ndr_dodb_doid_class* doid);
/* <- Pointer to returned DOID of object */

//Lookup an object using DOID
//This checks the existence of the object and updates its DOID
ndr_ret EXPORT
NdrodLookup (
ndr_od_txn_id txn_id, /* => txn id */
ndr dodb access _rights type rights needed on parent
/* => rights needed on parent */
ndr_dodb_doid class* doid, /* -> DOID */
ndr dodb d01d class* new d01d),
/* <- Updated DOID of object */

//Lookup an object’s parent using DOID.

ndr_ret EXPORT

NdrOdLookupParent (
ndr_od_txn_id txn_id, /* => txn_id */
ndr dodb access _rights type rights_needed_on parent
/* =-> rights needed on parent */
ndr_dodb_doid class* doid, /* => DOID */
ndr dodb d01d class* parent _doid);
/* <- Parent DOID of object” */

//Read an object using parent DOID and sibling key or using
//global key. It’s always OK to read an object with an out of
//date parent doid as the parent’s 1lid is not used to get the
//reference location. The key value MUST be a contiguous
//structure.
ndr_ret EXPORT
NdrOdReadByKey (

ndr_od_txn_id txn_id, /* => txn_id */

ndr . dodb access _rights type rights_needed_on parent

/* => rights needed on parent */

ndr_os_class class id,

/* => Class id. of superclass to match */

/* and superclass structure to be returned */
ndr_dodb_doid_class* parent_doid, /* -> Parent DOID */
ndr os attrlbute key id, /* -> Type of unique key */
UINT16 key length

/* => Length, in bytes, of the key value */

VOID#* key, /* => Key value */
UINT16 max_length,

/* => Max length of data read */

UINT16%* length,

-32-

5

10

15

20

25

30

35

40

45

WO 97/04391 PCT/US96/11903

/* <- Final length of data read */
ndr_os_object* object);
/* -> Pointer to object buffer */

//Read an object using DOID

ndr_ret EXPORT

NdroOdRead (
ndr _od_txn_id txn_id, /* => txn_id */
ndr dodb access _rights_ type rights_needed on parent
/* => rights needed on parent */

ndr_os_class class_id,

/* => Class id. of superclass to match */

/* and superclass structure to be returned */
ndr_dodb_doid_class* doid, /* => DOID */
UINT16 max length

/* -> Max length of data read */

UINT16* length,

/* <- Final length of data read #*/
ndr_os_object* object);

/* => Pointer to object buffer */

An NdrOdReadn() function which reads multiple objects
using parent DOID and wildcards behaves as if none of the
updates in the transaction have been applied. Interpretation
of wildcard values in the key is done by registered keying
functions. NdrOdReadn() reads either up to max_objects, or up
to the maximum number of objects that will fit in the
max_length object buffer:
ndr_ret EXPORT
NdrOdReadn (

ndr_od_txn_id txn_id, /* => txn_id * /

ndr dodb access _rights type rights_needed on parent

/* => rights needed on parent */

ndr_os_class class_id,

/* => Class id. of superclass to match
and superclass structure to be returned #*/

ndr_os_class read_as_class,

/* =-> Class id. target objects are to be read as */
ndr_dodb_doid_class* parent_doid, /* -> Parent DOID */
ndr os_ attribute key ig, /* -> Type of unique key */
UINT16 key 1ength

/* => Length, in bytes, of the key value */

VOID* key,

/* => Key value to match, can contain wildcard.
NULL implies match all objects under parent containing
the key id */

UINT16 max_length,
/* => Max length of data read */
UINT16%* length,

/* <- Final length of data read */
ndr_dodb_object_list* object_list,

-33-

10

15

20

25

30

35

40

WO 97/04391 PCT/US96/11903

/* =-> Pointer to object buffer */

UINT16 max_objects,

/* => Max number of objects read. Use OD_MAX OBJECTS to
read max that will fit in buffer #*/

ndr_dodb_context type* context);

/* <> => set to DODB_CONTEXT_START to start a new read,

or a previously returned context to continue a previous
read. <- set to DODB_CONTEXT END if all objects read,
or a value that can be used to continue reading at the
next object */

' #define NDR_OD_MAX OBJECTS OXFFFF

The NdrOdLock() function explicitly adds an exclusive or
shared lock to an object using the object’s DOID. The lock
call is called implicitly for all updates, but should be called
explicitly if read locks are required. The lock is only taken
when the transaction is initially executed. It is not executed
when the update is merged. The lock is applied at the end of a
transaction. If it fails the transaction is aborted and should
be re-tried by the caller. One embodiment does not utilize
locks to control concurrency but instead relies on retries and

clash handling:

ndr ret EXPORT

NdrodLock (
ndr_od_txn_id txn_id, /* -> txn_ id */
ndr dodb d01d class* doid, /* =-> Objects’s DOID */
BOOLEAN is exclusive);

/* => TRUE => take exclusive lock */
The interface also includes:

//Add agent defined lock to object
ndr ret EXPORT

NdrOodAddAgentLock (
ndr_od_txn_id txn_id, /* -> txn_id */
ndr_ dodb doid class* doid, /* -> Objects’s DOID */
ndr dodb lock _type lock_type,
/* => Type of lock */

ndr_dodb_lock_flags_type lock flags,

/* =-> Flags that allow multiple locks to be taken

in single call. Each bit corresponds to a separate
lock, e.g. used for read/write flags on file open *x/
ndr_ dodb lock_deny flags_type deny flags);

/* => Bits set that correspond to lock _flags bits
causes the corresponding lock to be denied #*/

=34~

10

15

20

25

30

35

40

45

WO 97/04391 PCT/US96/11903

//Remove agent defined lock
ndr ret EXPORT
NdrOdRemoveAgentLock (

ndr_od_txn_id txn_id, /* -> txn_id */
ndr_dodb_doid_class* doid, /* <> Objects’s DOID */
ndr_dodb_lock_type lock_type);

/* => Type of lock */

The following four calls are used to append various types

of updates onto an open transaction. Any of them may return

NDR_OK indicating success, NDR_CD_EXCEEDED_TXN LIMITS
indicating that transaction limits have been exceeded, or some
other error indicator. 1In the case of exceeded transaction
limits the transaction state will not have been changed and the
failed call will have had no effect. The caller is expected to
commit or abort the transaction as appropriate. 1In all other
error cases the transaction is automatically aborted before
returning the error to the caller:

//Modify a single attribute in a previously read object
//The object distributor caches the modifications and only
//applies them at close txn time
ndr_ret EXPORT
NdrOodModifyAttribute(
ndr_od_txn_id txn_id, /* => txn_id */
ndr_dodb_access_rights_type rights_needed on_parent,
/* => rights needed on parent */
ndr_dodb_doid_class* doid,
[* => DOID of previous read version of object.
Used to verify object has not been modified by another
user since previously read */

ndr os_attribute attribute_id,
/* => Identifies attribute to be modified */
VOID* value) ; /* => New attribute value */

//Add a new object
//The DOID attribute does not need to be filled in by the
caller.
//The DOID will be set up before writing the object to the
//database.
ndr_ret EXPORT
NArodadd (
ndr_od_txn_id txn_id, /* => txn_id *
ndr_dodb_access_rights_type rights_needed_on_parent,
/* => rights needed on parent */
ndr_dodb_doid_class* parent_doid, /* -> Parent DOID */

ndr_os_class class_id,
/* => Class id of object #*/
ndr_os_object* object) ;

-35=

10

15

20

25

30

35

40

45

50

WO 97/04391 PCT/US96/11903

/* -> Pointer to agent object */

//Remove an object u51ng DOID

ndr_ret EXPORT

NdrOdRemove (
ndr_od_txn_id txn id, /* => txn_id */
ndr dodb access _rights type rights_needed on parent
/* => rights needed on parent */
ndr_dodb_doid_class* doid); /* => DOID */

//Move an object using DOID

" ndr ret EXPORT

NdrOdMove (
ndr_od_txn_id txn id, /* => txn_id */
ndr dodb access _rights type rights_needed_on parent
/* => rights needed on " parent */
ndr_dodb_doid_class* doid, /* => DOID */
ndr dodb d01d class* target parent_doid);
/* => Target parent DOID */

//Set a marker in an open transaction. The state of the
//transaction at the time the marker is set can be reverted
//to at any time before the transaction is closed by
//calling NdrOdRevertToMarker()

//only the last marker in a transaction is significant.
//This call may return NDR_CD_EXCEEDED_TXN_ LIMITS which
//should be treated as for the update appending calls above
ndr_ret = EXPORT

NdrodsetMarker (ndr_od_txn_id txn_id); /* -> txn_id */

//Revert a txn’s state to the last previously marked state
ndr_ret = EXPORT
NdrOdRevertToMarker (ndr_od_txn_id txn_id); /* => txn_id */

//Add a <user-id, rights-mask> pair to an object’s
//access rights, overwriting any previous rights-mask for
//that user

ndr ret EXPORT

NdrOodAddAccessRight (
ndr_od_txn_id txn_id, /* => txn_id */
ndr_dodb_doid class* doid, /* =-> Object DOID */

ndr dodb auth id _type user,

/* => User to whom rights are to be granted */
ndr_dodb_access_rights type rights);

/* => Rights to be granted to that user */

//Remove any <user-id, rights-mask> pair from an object’s
//access rights for a given user-id
ndr_ret EXPORT
NdrOdRemoveAccessRight (
ndr_od_txn_id txn_id, /* => txn id */
ndr dodb d01d class* doid, /* -> Object DOID */
ndr dodb auth id_type user),
/* => User whose rights are to be revoked */

//Get the array of all <user-id, rights-mask> pairs for an
object
ndr_ret EXPORT

-36-

10

15

20

25

30

35

40

WO 97/04391 PCT/US96/11903

NdrOdGetAccessRights (

ndr_od_txn_id txn_id, /* => txn_id */
ndr dodb_d01d class* doid, /* => Object DOID */
UINT16%* : acl count,

/* <- Number of ACL entries for that object */
ndr_dodb_acl_element_type* acl);
/* <- nghts information for that object */

//Get the effective access rights for the current session
//for an object
ndr_ret EXPORT

-NdrOdGetEffectiveAccessRight (

ndr_od_txn_id txn_id, /* => txn_id %/
ndr dodb d01d class* doid, /* -> Object DOID */
ndr dodb access _rights_type* rlghts),

/* <- Effective . rights for the current session #*/

//Convert UOID to DOID
ndr_ret EXPORT
NdrodConvertUoid2Doid (

ndr_os_class class_id,

/* => Class id. of object */

ndr_dodb_uoid_typex* uoid, /* => UOID +*/

ndr dodb _doid_class* doid) ; /* <- Updated DOID */

//Convert UOID to DOID
ndr_ret EXPORT
NdrOdConvertUoid2LocalDoid (

ndr_os_class class_id,

/* => Class id. of object */

ndr_dodb_lid_type location,

/* => Location on which object exists */
ndr_dodb_uoid_type* uoid, /* => UOID */

ndr_ dodb doid_class* doid); /* <- Updated DOID */

The object processor 86 provides a local hierarchical

object-oriented database for objects whose syntax is defined in

the object schema 84. 1In one embodiment, the object processor
86 is built as a layered structure providing functionality
according to an interface in the structure which is described
below. The embodiment also includes a module for object
attribute semantics processing, a set of global secondary

indexes, a hierarchy manager, a B-tree manager, a record

manager, and a page manager. Suitable modules and managers are

readily obtained or constructed by those familiar with database

internals. A brief description of the various components
follows.,

-37~

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

The page manager provides functionality according to a
logical file interfacg of free-form fixed length pages
addressed by logical page number. Rollback and commit at this
level provide anti-crash recovery.

The record manager provides for the packing of variable

length keyed records into fixed length pages.

The B-tree manager uses the facilities of the record and
page managers to provide general B-trees supporting variable
length records and variable length keys.

The hierarchy manager imposes a hierarchical structure on
records by use of structured B-tree keys and a global
UOID->full name index.

The secondary index manager provides generalized global
indexing capabilities to records.

The attribute manager interprets the schema 84 in order to
raise the interface of the object processor 86 from a
record-level to an object-level interface.

The interface module of the object processor 86 uses lower
level interfaces to provide functionality according to the
following interface:

Initializes object processor
Shuts down object processor
Creates a new volume

Mounts a specified volume for use
Dismounts the specified volume
Removes a specified volume

(permanently)
Read an object by UOID

op_init

op_shutdown
op_add_database
op_mount_database
op_dismount_database
op_remove_database

op_read

op_readn

op_execute update list
op_commit

op_rollback
op_free_inversion_list

op_clear_stats

Read one or more objects with
wildcards

Apply one or more updates

Commit updates to a specified
volume

Rollback to the last committed
state

Free up an inversion list
returned from update execution
Clear object processor statistics

-38~-

10

15

20

25

WO 97/04391 PCT/US96/11903

op_dump_stats Dump statistics to the log

Due to higher level requirements of trigger functions in a
set of trigger function registrations 94, in one embodiment it
is necessary to have the old values of modified attributes
available on a selective basis. This is done by means of a
‘preservation list’ produced by op_execute updates(). The
preservation list contains an update list specifying old
attribute values for all executed updates that require it (as
determined by a callback function), together with pointers to
the original causative updates. These updates may not actually
be present in the input update list, as in the case of an
object removal that generates removes for any descendant
objects it may have. Preservation lists reside in object
processor 86 memory and must thus be freed up by the caller as
soon as they are no longer needed.

The transaction logger 88 provides a generic transaction
log subsystem. The logs maintained by the logger 88 provide
keyed access to transaction updates keyed according to location
identifier and processor transaction identifier (PTID). 1In one
embodiment, a non-write-through cache is used to batch
uncommitted transaction updates.

The transaction logger 88 is used by the consistency
processor 76 to support fast recovery after a crash. Recovery
causes the target database to be updated with any transactions
that were committed to the log by the logger 88 but were not
written to the target database. The log file header contains a
"shutdown OK" flag which is used on startup to determine if

recovery is required for the location.

-39~

10

15

20

25

WO 97/04391 PCT/US96/11903

The transaction logger 88 is also used by the consistency
processor 76 to suppo:t fast synchronization. The update log
created by the logger 88 is used to replay the updates from one
location to a second location using minimal disk and network 10
transfers.

The file distributor 90 distributes file contents to

~ appropriate locations in the network 10. A file processor 92

supports each file distributor 90 by carrying out requested
read, write, lock, or other operations locally.

The file distributor 90 hides from agents the complexities
caused by the distributed nature of files. To the extent
possible, the interface portion of the file distributor 90
resembles file system interfaces that are familiar in the art.
An open file is denoted by a numeric fork_id and functions are
provided to read, write, open, and otherwise manipulate and
manage files and their contents.

However, a class in the schema 84 can be given a
REPLICATED_FILE property. Whenever an object of such a class
is created in the database, a distributed file is created by
the file distributor 90 and file processor 92 to hold the file
contents associated with that object. For instance, the
Hierarchy Agent might create such an object to denote a leaf
node in the directory hierarchy. 1In short, in one embodiment
the file distributor 90 neither has nor needs an explicit
externally called mechanism for creating files.

Moreover, the distributed file is deleted from storage
when the corresponding object is deleted from the database.
The locations at which the file is stored are precisely those

at which the object exists. When a file with more than one

-40~-

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

replica 56 is modified and closed, the file distributors 90 and
file processors 92 at the various locations holding the
replicas 56 ensure that all replicas 56 of the file receive the
new contents. It is not necessary for the agent to expressly
manage any aspect of file content distribution.

A distributed file is identified by the UOID of the
corresponding object; no built-in hierarchical naming scheme is
used. A transaction identifier is also required when opening a
file, to identify the session for which the file is to be
opened. In one embodiment, the file distributor 90 and file
processor 92 provide functionality according to the following
interface:

//An ndr_fd_fork_id is the Id by which an FD open fork is known
typedef SINT16 ndr fd_fork_id;

#define NDR_FD__ NOT A FORK ID (-1)

//An ndr_fd open mode is a bit-mask which specifies whether a

//fork is open for reading and/or writing
typedef UINT16 ndr_fd_open _mode;

#define NDR_FD OPEN READ MODE 0x0001
#define NDR FD OPEN WRITE _MODE 0x0002
#define NDR FD | OPEN EXCL MODE 0x0004

#define NDR FD | OPEN EXTERNAL MODES 0x0007
//The remaining open modes are “private to the replica managers

#define NDR_FD_OPEN_SYNC MODE 0x0008
#define NDR FD_ OPEN CLOSE ON_EOF_MODE 0x0010
#define NDR FD OPEN READ Now 0x0020

In one alternative embodiment, opening a file with an
NdrFdOpenFile() function returns pointers to two functions
together with a separate fork_id for use with these two
functions only. These pointers are of the type
ndr_fd_io_function, and may be used as alternatives to
NdrFdReadFile() and NdrFdWriteFile() when accessing that open
file only. The functions should be at least as efficient as
NdrFdReadFile() and NdrFdWriteFile() and will be significantly
faster when the file access is to a local location. Their use
does require that the caller maintain a mapping from the open

-4]1~-

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

fork id onto these function pointers. For this reason,
NdrFdReadFile() and NdrFdwWriteFile() should always be available
for all open files in this alternative embodiment:

typedef ndr_ret EXPORT (*ndr_fd io function) (

ndr_fd_fork id fork_id, /* =-> Id of open fork
*/)

UINT32 offset,

/* -> Offset at which to start reading */

UINT16%* length,

/* <=> desired length on entry, actual length on
exit. These will only differ if an error

is encountered (such as end of file) */

UINT8=* data,

/* <=> Data read or written #*/

ndr_od_txn_id txn_id); /* => txn_id */

A "clash" occurs during synchronization when two desired
changes to the database are inconsistent. Clashes arise from
"independent" updates, namely, updates performed on separate
replicas 56 while the computers holding the replicas 56 were
disconnected. Thus, clashes always take place between a pair
of "clashing updates" which together define a "clash
condition." A "repairing update" is an update that removes a
clash condition caused by a clashing update.

A "transient clash" is a clash that is not present in the
final states of the two replicas 56 being merged. Transient
clashes only arise when log-based or hybrid merging is used.
For instance, suppose two users each create a file of a given
name at two locations 36, 38 while those locations are
disconnected. The user at the first location 36 then deletes
(or renames or moves) the file in question before reconnection
such that it no longer clashes with anything on the second
location 38. On merging the replicas 56 of the two locations
36, 38, the original add update for the file from the first
location 36 will clash with the replica 56 of the second
location 38, yet the final result of applying the update stream

-42-

10

15

20

25

WO 97/04391 PCT/US96/11903

from the first location 36 to the replica 56 on the second
location 38 is a state that is compatible with that replica 56.

By contrast, "persistent clashes" create inconsistencies
that are present in the final states of two replicas 56. A
clash whose type is unknown is a "potential clash."

A "file contents clash" occurs when a file’s contents have
been independently modified on two computers 28, or when a file
has been removed from one replica 56 and the file’s contents
have been independently modified on another replica 56.

An "incompatible manipulation clash" occurs when an
object’s attributes have been independently modified, when an
object has been removed in one replica 56 and the object’s
attributes have been modified in another replica 56, when an
object has been removed in one replica 56 and moved in the
hierarchy in another replica 56, when a parent object such as a
file directory has been removed in one replica 56 and has been
given a child object in another replica 56, or when an object
has been independently moved in different ways. Thus, although
clashes are discussed here in connection with files and the
file distributor 90, clashes are not limited to updates
involving files.

A "unique key clash" occurs when two different objects are
given the same key and both objects reside in a portion of the
database in which that key should be unique. In a database
representing a file system hierarchy, for instance, operations
that add, move, or modify files or directories may create a
file or directory in one replica 56 that clashes on
reconnection with a different but identically-named file or

directory in another replica 56.

-43-

10

15

20

25

WO 97/04391 PCT/US96/11903

A "permission clash" occurs when a change in file access
or modification permissions that is made to a central server
replica 56 would prohibit an independent update made to a
mobile or client computer replica 56 from being applied to the

server replica 56. A permission clash is an example of an

"external clash," namely, a clash detected by reference to a

structure external to the database. Permission clashes and
other external clashes may be detected by trigger functions.

A "grouped attribute" is a database object attribute that
is associated with other database object attributes such that
changing the value of any attribute in a group creates a clash
with the other attributes in the group. For instance, filename
and rename-inhibit attributes are preferably grouped together,
while filename and file-access-date attributes are preferably
not grouped together. Without attribute grouping, a change to
any attribute of an object is assumed to clash with a change to
any other attribute of the object or another change to the same
attribute.

"Eliminating a clash" means identifying the basis for the
clash and elihinating it. "Recovering from a clash" means
identifying the basis for the clash and either eliminating that
basis or presenting alternative resolutions of the clash to a
user to choose from. "Regressing an update" means undoing the
update on at least one replica 56. Creating a "recovery item"
means creating a duplicate object in a shadow database and then
remapping uses of the recovery item’s key so that subsequent
updates are performed on the recovery item instead of the
original object. If the database represents a file system

hierarchy, recovery items may be gathered in a "single

-4 4~

10

15

20

25

30

35

40

WO 97/04391 PCT/US96/11903

directory hierarchy" or "recovery directory" that contains a
directory at the root of the volume, recovered items, and
copies of any directofies necessary to connect the recovered
items properly with the root.

A clash handler function of one of the types below can be

registered with the file distributor 90 for a database type to

be called whenever the file distributor 90 detects a clash
caused by disconnected modification or removal of a file’s
contents. The parameters are those of a regular clash handler
plus the object DOID with
NDR_OS_CLASS_FLAG_HAS_PARTIALLY_ REPLICATED FILE property (the
file object defined by the object schema 84) and possibly a
duplicated object return:

//Call back to a husk in respect of clashes detected at the

//database level
typedef ndr ret EXPORT (*ndr_fd_object_clash_fn) (

ndr_od_ db _handle “db, /* => Database */
ndr . dodb sess1on _type session,

/* => session to use in od start_txn */
ndr_od_clash_infox* info,

/* => Information on clash */

ndr_dodb_doid_class* old doid,

/* => DOID of file with clashing contents */
ndr_dodb_doid_class* new_doid) ;

/* <- Doid of “duplicated file */

//Call back to the husk in respect of clashes detected at the
//filesystem level

// (via pre trigger functions)

typedef ndr_ret EXPORT (*ndr_fd_filesys_clash _fn) (

ndr od db _handle “db, /* -> Database */
ndr dodb session _type session,

/* => session to use in od_start_txn */

ndr_od_clash info* info,

/* => Information on clash */

ndr_dodb_doid_class* doid) ;

/* => DOID of file with clashing contents */

A parameter block such as the following is passed to clash
handling functions to provide them with information about the
clash:
typedef struct

-45-

10

15

20

25

30

35

40

45

50

WO 97/04391 PCT/US96/11903

ndr_dodb_ptid_type* ptid;

/* => PTID of clashing txn */
ndr_od_clash_type clash_type;

/* => Clash type */
ndr_os_class class_id;

/* => Class id of object causing the clash */
ndr os_attribute attr_id;

/* => Attr id of object causing the clash */
ndr_dodb_update list* update_list;
/* => Update list of transaction */
ndr_dodb_updatex* update;
/* -> Update causing clash (always a pointer
into ’update_list’ */
BOOLEAN is_higher priority;
/* => Relative priority of location
to which update is being applied.
TRUE=> Applying to location with higher
priority (e.g. to location set with
central location) */
void* agent_merge_info;
/* => Value which is reserved for (arbltrary)
use by agent clash handlers. It is
guaranteed to be set to NULL on the
first clash of a merge, and preserved
for all subsequent clashes within that
merge */
} ndr_od_clash_info;

A close handler function of type ndr_fd_close_fn can be
registered with the file distributor 90 for a database type to
be called whenever the file distributor 90 closes a modified
local copy of the file contents, passing the new length and
modification date/time and user identifier:

typedef ndr_ret EXPORT (*ndr_fd close_fn) (

ndr_od db handle “db, /* -> Database */
ndr dodb session_type session,

/* => session to use in od start txn */
ndr_os_class class_id,

/* => Class ID of file */

ndr_dodb_uoid_type* uoid, /* => UOID */
UINT32 length,

/* => length of closed file */

UINT16 time,

/* => modification time */

UINT16 date,

/* => modification date */

UINT32 updator) ;

/* => modification user */
A creation handler function of type ndr_fd creation_fn can
be registered with the file distributor 90 for a database type

-4 6~

10

15

20

25

30

35

40

45

WO 97/04391 PCT/US96/11903

to be called whenever the file distributor 90 creates a local
copy of the file contents. This allows the replica manager 46
on a central server computer 28 to update the master copy of
the file to reflect the attributes of the file created while
disconnected:

typedef ndr_ret EXPORT (*ndr_fd_creation_ fn) (

ndr_od_txn_id txn_id, /* => txn_id */
ndr_os_class class_id,

/* => Class ID of file */

ndr_ dodb_uoid_type* uoid); /* => UOID of file */

The file distributor 90 embodiment also provides the
following:

//Return aggregated information about all volumes
ndr ret EXPORT

NdrFdVolumeInfo(
ndr_od_txn_id txn_id, /* => txn_id */
UINT32* cluster_size,
/* <- Number of bytes per cluster */
UINT16%* total_clusters,
/* <- Total number of clusters */
UINT16* free_clusters);
/* <- Number of free clusters */

//Add a file
ndr_ret EXPORT
NdrFdAaddFile(
ndr_od_txn_id txn_id, /* => txn_id */
ndr dodb d01d class* doid,
/* => Uoid of file created */
UINT32 length);
/* => Length of existing file (0 when new) */

//Remove a file

ndr_ret EXPORT

NdrFdRemoveFile(
ndr_od_txn_id txn_id, /* => txn_id */
ndr dodb uoid _type* uoid) ;
/* => Uoid of file removed */

//Open a file for reading or writing by a task
ndr_ret EXPORT

NdrFdOpenFile(
ndr_od_txn_id txn_id, /* -> txn_id */
ndr os class class id,

/* => Class ID of file to open */
ndr_dodb uoid_type uoid,
/* => Uoid of file to open */

ndr_fd open_mode open_mode,
/* => Open for read and/or write? */
ndr_fd_fork_id* fork_id,

-47 -

WO 97/04391 PCT/US96/11903

/* <- FD Fork Id of open file */

BOOLEAN is_create,

[* => TRUE if open as part of create */
ndr_fd_io function* read _function,

/* <- Function to be used for READ operations */
ndr_fd_io_function* write _function,

/* <- Function to be used for WRITE operations */

ndr_fd fork id* io_fork_id,

/* <- FD Fork Id used with above two functions (only) */
UINT16%* num_forks remaining);

/* <- Number of forks remaining to be opened

on same machine */

//Read from a file
ndr_ret EXPORT

NdrFdReadFile(
ndr_od_txn_id txn_id, /* -> txn_id */
ndr fd fork id fork 1d /* -> Id of open fork */
UINT32™ offset,
/* -> Offset at which to start reading */
UINT16 req_length,
/* -> Number of bytes requested to read */
UINT8* data, /* <- Data read */
UINT16%* act_length);

/* <- Actual number of bytes read */

//Write to a file
ndr ret EXPORT

NdrFdWriteFile(
ndr_od_txn_id txn_id, /* -> txn_id */
ndr fd fork id fork 1d /* -> Id of open fork */
UINT32 offset
/* -> Offset at which to start writing */
UINT16 reqg_length,
/* => Number of bytes requested to write */
UINT8* data) ; /* => Data to be written */

//Get the current length of an open file
ndr_ret EXPORT
NdrFdGetOpenFileLength (

ndr_od_txn_id txn_id, /* -> txn_ id */
ndr fd fork id fork 1d /* -> Id of open fork */
UINT32%* length),

/* <- Length of that open file #*/

//Lock or Unlock a range of bytes in an open file
ndr_ret EXPORT
NdrFdClearPhysicalRecord(or NdrFdLockPhysicalRecord (

ndr_od_txn_id txn_id, /* -> txn id * /

ndr fd fork id fork_id, /* -> Id of open fork */
UINT32 offset, /* -> Offset for lock */
UINT32 req_length);

/* => Number of bytes requested to lock */

//Ensure a file’s contents are on disk

ndr_ret EXPORT

NdrFdCommitFile(.
ndr_od_txn_id txn_id, /* => txn_id */

-48-

10

15

20

25

30

35

40

45

WO 97/04391 PCT/US96/11903

ndr_fd_fork id fork_id); /* -> Id of open fork
*/

//Close a file, having completed reading and writing
ndr_ret EXPORT

NdrFdCloseFile(
ndr_od_txn_id txn_id, /* => txn_id %/
ndr_fd_fork_id fork_id); /* => 1Id of open fork
*/ _

//Given a UOID to a file or directory return its name

'//in the specified namespace, along with its parent’s UOID

ndr_ret = EXPORT

- NdrFdGetFilename (
ndr_od_db_handle db,
/* => “handle to current database */
ndr_dodb_uocid_type* file or_dir_iad,
J* => Uoid of object whose name is wanted */
ndr_os_attr_property namespace,
/* =-> Namespace (e.g. DOS) of name wanted */
void* name_buffer,
/* <~ Buffer to receive name */
UINT16%* name_size,
J* => Size of provided buffer #*/
ndr_dodb_uoid_type* parent_dir_id);
/* <- Parent UOID of object (NULL at root) */

//Callback functions to be used with
/ /NdrFdRegisterChangedIdCallback

typedef ndr ret EXPORT
(*NdrFdChangedIdCallback) (

ndr_od_db_handle db, /* -> Database Id */

ndr oS _ “class class id,

/* => Class ID of file or dir */ A

ndr_dodb_uoid_type *uoid, /* => Uoid of file or dir
*/

UINT32 new id);

/* -> New Id allocated by underlying file system */

A NdrFdRegisterChangedIdCallback() function provides
registration of a callback function to be called when a change
to a file or directory’s unique identifier is made. On a
NetWare 4.x server this normally happens only when the file or
directory is created by an internal file distributor 90 trigger
function. However the identifier will be needed by agents for
tasks such as directory enumeration. Because trigger functions
cannot directly modify replicated objects, a record of the
identifier change is queued within the file distributor 90 and
the callback is made asynchronously:

=49~

10

15

20

25

30

35

40

45

50

WO 97/04391 PCT/US96/11903

ndr_ret EXPORT

NdrFdRegisterChangedIdCallback (
ndr_os_db_type_ handle db_type, /* -> Database type */
NdrFdchangedIdCallback fn); /* -> Callback function */

The interface also provides the following:
//Register clash handlers for contents clashes for files held
in .
//a database of the given type.
ndr_ret EXPORT

- NdrFdRegisterClashHandlers(

ndr_os_db_type handle db_type, // -> Database type
ndr os class class id,

// => Class ID of contents ’contalner’ eg file
ndr_fd_object clash_fn object_clash_fn,

// => Clash handler for dealing with conflicts

// => between objects (e.g. contents modification
// and removal)

ndr_fd filesys clash_fn filesys_clash fn,

// => Clash handler for conflicts that arise

// through some characteristic of the file

// system (e.g. access rights on delete)
ndr_fd_filesys clash fn filesys_clash_fni);

//Register a trigger-like routine to be called when a local
//replica of a file is modified. The routine takes the length
//and modification date/time of the local replica of the file.
ndr ret EXPORT
NdrFdRegisterCloseHandler (

ndr_os_db_type handle db_type, // -> Database type

ndr os class class_id,
/* => Class ID of file * /
ndr_fd close_fn Cclose_fn);

/* => Clash handler to call */

//Register a trigger-like routine to be called when a local
//replica of a file is has been created. This allows the
//replica manager on a central server to update the
//server’s master copy of the file to reflect the attributes
//of the file created during the disconnection.
ndr_ret EXPORT
NdrFdRegisterCreationHandler (

ndr_os_db_type handle db_type, /* -> Database type */

ndr_os_class class_id,
/* => Class ID of file */
ndr_fd_creation_fn creation_fn);

/* => Creation handler to call */

//De-register a clash or close or creation handler for
//contents clashes for files held in a database of the given
type
ndr_ret EXPORT
NdrFdDeRegisterClashHandler(or CloseHandler(or
CreationHandler (
ndr_os_db_type handle db_type, // -> Database type
ndr_os_class class_id); // -> Class.ID of file

-50-

10

15

20

25

30

35

40

WO 97/04391 PCT/US96/11903

//Synchronize all the files to and from this client for the
//passed database. Return control when the files are up to
date.

ndr ret EXPORT

NdrFdSynchronizeFiles(ndr_od_db _handle db);

//Called from pre trigger functions to check whether
//or not the current connection has sufficient
//per-user-rights to perform a particular operation
//on a particular file system object.

ndr_ret
"NdrFdCheckRights (
ndr_dodb_uoid type* file uoid,
// uoid of object requiring rights to operation
ndr_od_db_handle db,
// database raising the pre trigger
UINT16 operation);

// bits representing operation
//Note that a file has been locally modified, setting
//modification info and triggering propagation onto other
//replicas.
ndr_ret EXPORT
NdrFdNoteFileModified (

ndr_od_txn_id txn_id, /* => txn_id */

ndr_dodb_doid_class* file_doid);

The trigger function registrations 94 identify trigger
functions that are provided by agents and registered with the
object distributor 82. A registered trigger function is called
on each event when the associated event occurs. Suitable
events include object modification events such as the addition,
removal, movement, or modification of an object. Because the
trigger functions are called on each location, they can be used
to handle mechanisms such as file replication, where the file
contents are not stored within the target database, while
ensuring that the existence, content, and location of the file
tracks the modifications to the target database. All objects
must have been locked, either implicitly or via NdrodLock(), in
the triggering transaction before the corresponding trigger
function is called, and other objects may only be modified if
the trigger function is being called for the first time at the

location in question.

=51~

10

15

20

25

WO 97/04391 PCT/US96/11903

In an alternative embodiment, the replica manager 46
comprises a NetWare andable Module ("NLM") and an NWAdmin
snap-in module. The NLM uses hooks in the NetWare file system
48 to intercept updates to the local NetWare storage 54, and

uses standard NetWare file system Application Programmer’s

Interface ("API") calls to update the storage 54 when

synchronizing. The architecture is symmetric, with the same
code running on all computers 28.

The NLM has three major internal subsystems. An
environment subsystem provides portability by separating the
other two internal subsystems from the operating system
environment such as the Windows NT or UNIX environment. The
environment subsystem provides execution, debugging,
scheduling, thread, and memory management services. A
Distributed NetWare ("DNW") subsystem implements NetWare
semantics by intercepting NetWare file system calls and calls
from a DNW API and making corresponding requests of a dispatch
layer discussed below. A distributed responder subsystem
implements the replica manager 46 to provide a distributed
disconnectable object database which supports replication,
transaction synchronization, and schema-definable objects,
including file objects, as described herein.

An application layer contains application programs and the
NWAdmin snap-in. These programs interface with the replica
manager 46 either by calling an API or by attempting to access
the storage device 54 and being intercepted. An intercept
layer in the replica manager 46 intercepts and routes external

requests for file system updates that target a replica 56. A

=-52=-

10

15

20

25

WO 97/04391 PCT/US96/11903

dispatch later receives the routed requests and dispatches them
to an appropriate agent 44,

The agents 44, which have very little knowledge of the
distributed nature of the database, invoke the consistency

distributor 74, location distributor 78, object distributor 82,

and/or file distributor 90. For example, a directory create

would result in an object distributor 82 call to NdrOdAdd() to
add a new object of type directory.

In contrast to the agents 44, the distributors 74,78,82,
and 90 have little semantic knowledge of the data but know how
it is distributed. The object distributor 82 uses the location
distributor 78 to control multi-location operations such as
replication and synchronization. The consistency distributor
74 manages transaction semantics, such as when it buffers
updates made after a call to NdrodStartTxn() and applies them
atomically when NdrOdEndTxn() is called. The file distributor
90 manages the replication of file contents.

The processors 76, 86, 88, and 92 process requests for the
local location 40. The consistency processor 76 handles
transaction semantics and synchronization, and uses the
transaction logger 88 to log updates to the database. The
logged updates are used to synchronize other locations 40 and
to provide recovery in the event of a clash or a crash. The
logger 88 maintains a compressed transaction log. The log is
"compressed," for example, in that multiple updates to the
"last time modified" attribute of a file object will be
represented by a single update. The logger 88 maintains a

short sequential on-disk log of recent transactions; the

-53-

10

15

20

25

WO 97/04391 PCT/US96/11903

longer-term log is held in the object database as update log
entry objects.

The object processor 86 implements a local object store
and supports the following access methods: hierarchical (e.q.,

add file object under directory object); global indexed (e.g.,

read any object using its UOID); and local indexed (e.g., read

files and directories within a directory in name order). The

object processor 86 uses a variant of a B*-tree. The object
processor 86 uses a page table to support atomic commitment of
transactional updates, providing rollback and protection
against crashes of the computer 40.

A file system layer in the file system interface 48
provides a flat file system interface built on the local host
file system. It re-maps the flat file system calls to the
corresponding files in the hierarchical NetWare volumes to
support the current NetWare file system.

With reference to Figures 1 through 4 and particular focus
on Figure 4, methods of the present invention for managing a
transaction log are illustrated. One method of the present
invention compresses the transaction log by utilizing an update
identifying step 100 to identify a redundant update and a
subsequent update removing step 102 to remove that update.
These steps, as well as other steps shown in Figure 4, may be
repeated in additional iterations; the bottom of the flowchart
leads back to the top as well as to other management operations
such as transaction synchronization steps or clash handling
steps.

A variety of redundant updates are identified by replica

managers 46 or other systems which operate according to the

-54~

10

15

20

25

WO 97/04391 PCT/US96/11903

methods of the present invention. For instance, a file or
directory may be renamed twice, rendering the first rename
redundant. Likewise, a file may be modified twice, rendering
the first update to the modification date redundant. Scripts
or other mechanisms may also repeat operations to no further
effect, such as deleting a file twice without recreating it in
between the deletes or moving a file and then immediately
returning it to its original location. These and similar
redundant update sequences are identified during the step 100.

More complex but nonetheless redundant sequences can also
be analyzed during the step 100. For instance, use of the
location state processor 80 may identify an update in the
transaction log that specifies an update location on a computer
40 other than the computer 40 which holds the log presently
being managed. The log can then be compressed during the step
102 by removing that update.

In other situations, further steps are employed to
identify redundant updates. For instance, a transaction
identifying step 104 determines the most recent successfully
merged transaction that updates a selected object. Transaction
boundaries may be identified by checkpoints inserted in the log
during transaction synchronization or by version control
operations. Boundaries may be determined using the object
processor 86 as described below in connection with certain
three-level structures. Every transaction checkpoint is
located at the boundary of a transaction, as defined by the
three-level structures or other means, that is found in the log
prior to compression. However, not every such boundary will be

available as a checkpoint because compression may remove some

-55-

10

15

20

25

30

WO 97/04391 PCT/US96/11903

boundaries. Checkpoints may act as constraints on compression
by delimiting incomprgssible sequences of updates.

An update of the selected object that antedates the
transaction is next identified during the step 100. Finally,

the update is removed dyring the step 102. This presumes that

committed updates will not be needed again. 1In an alternative

embodiment, committed updates are retained to permit recovery
from log corruption or to permit the reproduction of earlier
versions of objects for other reasons.

To rule out certain updates as candidates for removal, an
incompressible sequence identifying step 106 is performed in
one embodiment. An otherwise removable update will not be
removed from an incompressible sequence. A sequence which
spans a transaction boundary is incompressible if removing an
update from the sequence would require the propagation to
replicas 56 of changes to a committed transaction. A sequence
which semantically relies on a temporary item to swap two other
items cannot be compressed; an example would be the sequence:

rename A X

rename B A

rename X B

To facilitate the identifying and/or removing steps 100,
102, the replica manager 46 may reposition an update in the
sequence of updates in the transaction log during a
repositioning step 108. One or more repositioned updates may
then be consolidated with an adjacent update during a
consolidating step 110. Consolidation replaces two or more
updates with a single equivalent update.

For instance, the sequence of updates "add A; add B; add

C; rename A Z" may be managed by the repositioning step 108 to

-56~-

10

15

20

25

WO 97/04391 PCT/US96/11903

produce "add A; rename A Z; add B; add C" and subsequently
managed by the consolidating step 110 to produce the sequence
"add Z; add B; add C." Of course, other semantically
equivalent sequences may also be produced according to the
invention, such as the sequence "add B; add C; add Z."

In short, redundant updates are identified by examining

the operations performed by the updates and the status of the

replicas 56. Log compression is based on update semantics,
unlike data compression methods such as run-length-encoding
which are based only on data values.

During a creating step 112, a hierarchical log database is
made. The log database represents at least a portion of the
transaction log using objects which correspond to the updates
and transactions in the specified portion of the transaction
log. The log database is preferably efficiently cached and
swapped to disk as needed.

In one embodiment, the log database is a hierarchical
database maintained by the object processor 86. Transactions
are represented as a three-level structure. A top-level
transaction sequence object contains the PTID associated with
the transaction that is described by the object’s descendant
objects. This PTID is a global key, with its sibling key being
the log append order for the transaction in question.

An update container object, which is a child of the
transaction sequence object, serves as the parent of the
transaction’s log database update objects. It is separated
from the transaction sequence object in order to allow the
updates in a transaction to migrate into another (by PTID)

transaction during the repositioning step 108.

-57 =

10

15

20

25

WO 97/04391 PCT/US96/11903

One or more updaté objects, which are the children of the
update container objgct, represent individual updates to the
target database during the transaction. Update objects are
separated from one another to aid analysis during the update

identifying step 100 and to reduce the effect of possible

object size limitations. Update objects are ordered by a

sibling key which preserves their order within the update
container.

In an alternative embodiment, the three-level structure is
replaced by a physically flattened, more efficient structure
which nonetheless provides logical separation of transaction
objects and update objects by use of keys. The namespace of
the keys is partitioned to permit interleaving of update and
transaction objects under a common parent. The intermediate
level, represented in the previously described embodiment by
update container objects, is not present.

In one embodiment, update compressibility relationships
are represented using a "previous update" field in each update
object. This field contains the UOID of the update object
which represents the most recent previous update in the log for
the object in question. A NULL UOID, present only in objects
representing a create-performing update, indicates that no such
previous update is present.

Optional synchronization checkpoints provide a way to
group transacfions. Checkpoints are represented using multi-
valued attributes in transaction sequence objects or one or
more checkpoint objects. In one embodiment, one checkpoint
object per checkpoint is present; in an alternative embodiment

one checkpoint object represents all synchronization

-58~-

10

15

20

25

WO 97/04391 PCT/US96/11903

checkpoints. Each checkpoint attribute or checkpoint object
contains the location identifier value(s) of the location(s) 40
to which the synchronization checkpoint pertains. In the case
where the log is on a client 20, this will be the corresponding

server 16. If no values are present, no synchronization has

yet been done.

The portion of the transaction log represented by the log
database may be the entire log, or it may be a smaller portion
that only includes recent transactions. In the latter case,
the remainder of the transaction log is represented by a
compressed linearly accessed log stored on the device 54. In
embodiments that do not include a log database, the entire
transaction log is represented by a linearly accessed log
stored on the device 54.

During one or more iterations of an inserting step 114
objects are inserted into the log database to represent
updates, transactions, or synchronization checkpoints. Updates
are represented as individual objects and determination of
necessary management steps is often made at the update level.

However, the desired transactional treatment of updates
requires that updates in a given transaction are always
committed to the replica 56 together. Thus, in inserting an
update as described herein, the replica manager 46 actually
inserts a transaction containing that update. Likewise, in
consolidating two updates from separate transactions, the
replica manager 46 consolidates the transactions. And in
moving an update, the replica manager 46 moves an entire
transaction to make two transactions needing consolidation

become adjacent to each other.

-59-

10

15

20

25

WO 97/04391 PCT/US96/11903

One method of the present invention appends a transaction
to the log by insertipg a new three-level transaction structure
into the log database. During an accessing step 116 an update
history structure is created or modified when the transaction
is added or modified.

The update history structure may be implemented using an
unreplicated attribute of each log database object, an update
tracking object in the log database, or other means. The
update history structure is indexed on the UOID of the target
database object it refers to and contains as an attribute the
UOID of the most recent previous update of the target database
object in the log database. 1In an alternative embodiment, the
update history structure is implemented using a field or
attribute in the target database rather than the log database.

In one embodiment according to the accessing step 116,
each update object in the transaction log has one or more
unreplicated attributes containing the UOID of the previous
update object affecting the same database object. 1In addition,
there exist objects indexed on the UOID of the database object

whose history is concerned; these objects contain the UOID of

‘the most recent log update object affecting the database object

in question and act as chain headers. For efficiency, several
of these headers may be combined into a single object. The
chain is doubly linked to support log management steps that are
best implemented through chaining in either direction. For
efficiency, three dependency relationships are separately
tracked:

i) Modification to the object in question itself and

naming modifications (renames/moves) of its children;

-60-

10

15

20

25

WO 97/04391 PCT/US96/11903

ii) Modifications to the object’s parent or to the
parent’s naming; and

iii) Modifications to the object’s old parent or to the
old parent’s naming (move-performing updates only).

Such separate tracking makes it possible to track naming

changes (renames and moves) in order to identify incompressible

sequences in step 106. Move operations are effectively naming
changes in both source and parent directories, so move-
performing updates go onto three chains. If object naming
changes (through renames) were kept on the same chain as other
object updates, then coupling of dependency chains through
renames and moves could cause all dependencies to degenerate
into one long chain which provides no benefit because it would
be equivalent to linearly scanning the log in reverse order.
Accordingly, separate tracking is utilized.

As noted, each completed transaction in the transaction
log has a corresponding transaction sequence number. The
transaction sequence numbers are consecutive and monotonic for
all completed transactions. The transaction numbers are stored
in transaction sequence objects in the log database. By
specifying a range of one or more transaction sequence numbers,
the replica manager 46 can retrieve transactions from the
transaction log in order according to their respective
transaction sequence numbers during a reading step 122.

One method of the present invention uses the transaction
identifying step 104, the update history structure accessing
step 116, and a constructing step 124 to provide a prior
version of a target database object. More particularly, a list

of attributes is constructed representing the attributes which

-61~-

10

15

20

25

WO 97/04391 PCT/US96/11903

have changed since the requested point in transaction history;

for each of these attributes an earlier value is required.
Initially this list of required attributes is empty. The

list is populated as follows. During a locating step, the most

recent updating update for the object in question is found

using the dependency chain header indexed by the object’s UOID.

A testing step tests whether the update found is earlier than
the specified point in transaction history. If it is,
execution skips to an iterating step described below.
Otherwise, any attributes modified by the update found are
added to the attribute list, the previous update affecting the
same object is found using the dependency chains, and execution
loops back to the testing step.

After the list is populated, the iterating step is
performed. The replica manager 46 iterates backwards along the
object’s dependency chain from the point reached using the
dependency chains, and for each update visited (including the
one the iteration begins from) checks the populated attribute
list. 1If the update modifies a listed attribute the replica
manager 46 adds the modified value to the list and marks that
attribute as no longer required. When no more attribute values
are required, the iteration stops. The attribute list then
represents changes which are applied to the current version of
the object to reconstruct the historical version.

Thus, during one or more iterations of a modifying step
118 and a removing step 120, the log database is managed to
achieve the steps shown in Figure 4. Operations on the updates
are accomplished by corresponding operations on the linear log

on disk or on update objects in the log database. 1In one

-62-

10

15

20

25

30

35

WO 97/04391 PCT/US96/11903

embodiment, functions are provided in the transaction logger 88

as follows:

object inserting step 114 tl_append() and/or
tl_insert()

object removing step 120 tl_remove_record()

object modifying step 118 tl_remap update_target(),

. t1l_remap_uoid()
accessing step 116,
identifying step 104,

constructing step 124 tl_read historical_object()

reading step 122 tl_readn()

identifying step 106 depend_update_dependent ()

steps 108, 110, 102 various compression
functions

In summary, the present invention provides a system and
method for compressing a log of transactions performed on
disconnectable computers. Redundant updates in the transaction
log are identified through semantic tests and then removed.
Operations are performed either directly on a disk-based log or
by manipulation of objects and attributes in a log database.
The present invention is well suited for use with systems and
methods for transaction synchronization because the invention
is implemented using replica managers 46 that perform
synchronization and the log compression steps of the present
invention may be used to remove transient clashes that arise
during synchronization. The architecture of the present
invention is not limited to file system operations but can
instead be extended to support a vafiety of target and/or log
database objects.

Although particular methods embodying the present inven-
tion are expressly illustrated and described herein, it will be
appreciated that apparatus and article embodiments may be
formed according to methods of the present invention. Unless
otherwise expressly indicated, the description herein of
methods of the present invention therefore extends to

-63~-

10

WO 97/04391 PCT/US96/11903

corresponding apparatus and articles, and the description of
apparatus and articles of the present invention extends
likewise to corresponding methods.

The invention may be embodied in other specific forms

without departing from its essential characteristics. The

described embodiments are to be considered in all respects only

as illustrative and not restrictive. Any explanations provided
herein of the scientific principles employed in the present
invention are illustrative only. The scope of the invention
is, therefore, indicated by the appended claims rather than by
the foregoing description. All changes which come within the
meaning and range of equivalency of the claims are to be
embraced within their scope.

What is claimed and desired to be secured by patent is:

-04 -

10

15

20

25

WO 97/04391 PCT/US96/11903

CLAIMS
1. A method for managing a transaction log, the log
representing a sequence of transactions in a network of
connectable computers, each transaction containing at least one

update targeting a target database object in a distributed

hierarchical target database that contains convergently

consistent replicas residing on separate computers in the
network, said method comprising the computer-implemented steps
of identifying at least one redundant update in the transaction
log and then removing the redundant update from the transaction
log.

2. The method of claim 1, further comprising the
computer-implemented step of identifying an incompressible
sequence of updates in the transaction log.

3. The method of claim 1, further comprising the
computer-implemented step of identifying a transaction boundary
within the transaction log.

4. The method of claim 3, wherein said step of
removing the redundant update comprises the steps of
determining the most recent successfully merged transaction
that updates a selected object and then removing an update of
the object that antedates the transaction.

5. The method of claim 1, wherein the transaction
log resides on a first computer and said step of removing the
redundant update comprises the steps of:

identifying an update in the transaction log
that specifies an update location on a computer other
than the first computer; and then

removing that update.

-5 5=

10

15

20

25

WO 97/04391 PCT/US96/11903

6. The method of claim 1, wherein said step of
removing the redundant update comprises the steps of:
repositioning an update in the sequence of
updates in the transaction log; and then
replacing the repositioned update and an
adjacent update by a single equivalent update.

7. The method of claim 1, wherein the network
includes a server computer and a client computer, a server
replica of the target database resides on the server computer,
and a client replica of the target database resides on the
client computer.

8. The method of claim 1, wherein said identifying
and removing steps are preceded by the computer-implemented
step of creating a hierarchical log database representing at
least a specified portion of the transaction log, the log
database containing an object corresponding to an update in the
specified portion and also containing an object corresponding
to a transaction in the specified portion of the transaction
log.

9. The method of claim 8, wherein the specified
portion of the transaction log is the entire existing
transaction log.

10. The method of claim 8, wherein the specified
portion of the transaction log includes recent transactions and
the remainder of the existing transaction log is represented by
a compressed linearly accessed log.

11. The method of claim 8, wherein said method

further comprises the computer-implemented step of appending a

-66~

10

15

20

25

WO 97/04391 PCT/US96/11903

transaction to the transaction log by inserting a transaction
object into the log database.

12. The method of claim 11, wherein said appending
step comprises inserting an update object into the log
database.

13. The method of claim 11, wherein said appending
step comprises accessing an unreplicated attribute in the log
database to identify an earlier update, if any, which
references an object in the target database that is also
referenced by an update in the appended transaction.

14. The method of claim 11, wherein said appending
step comprises accessing an update history structure in the log
database to identify an earlier update, if any, which
references an object in the target database that is also
referenced by an update in the appended transaction, the update
history structure associating each target database object with
the log database objects, if any, that correspond to updates
referencing the given target database object.

15. The method of claim 8, wherein said method
further comprises the computer-implemented step of adding a
synchronization checkpoint to the transaction log by inserting
a synchronization checkpoint object into the log database.

16. The method of claim 8, wherein said method
further comprises the computer-implemented steps of removing a
synchronization checkpoint from the transaction log by removing
a synchronization checkpoint object from the log database and
then compressing a previously incompressible region of the

transaction log.

-67-

10

15

20

25

WO 97/04391 PCT/US96/11903

17. The method of claim 8, wherein each completed
transaction in the transaction log has a corresponding
transaction sequence number, the transaction sequence numbers
are consecutive and monotonic for all completed transactions,

and said method further comprises the computer-implemented

steps of specifying a range of one or more transaction sequence

numbers and then retrieving transactions from the transaction
log in order according to their respective transaction sequence
numbers.

18. A method for managing a transaction log, the log
representing a sequence of transactions in a network of
connectable computers, each transaction containing at least one
update targeting a target database object in a distributed
hierarchical target database that contains convergently
consistent replicas residing on separate computers in the
network, said method comprising the computer-implemented steps
of:

creating a log database representing at least a
specified portion of the transaction log, the log
database containing a log database object
corresponding to an update in the specified portion
and also containing a log database object
corresponding to a transaction in the specified
portion of the transaction log; and

creating an update history structure which
associates each target database object with the log
database objects, if any, that correspond to updates

referencing the given target database object.

-68~

10

15

20

25

WO 97/04391 PCT/US96/11903

19. The method of claim 18, further comprising the
computer-implemented steps of locating a transaction
checkpoint, accessing the update history structure, and then
constructing a prior version of a target database object.

20. A computer-readable storage medium having a

configuration that represents data and instructions which cause

a disconnectable computer to perform method steps for managing
a transaction log, the log representing a sequence of
transactions in a network of connectable computers, each
transaction containing at least one update targeting a target
database object in a distributed target database that contains
convergently consistent replicas residing on separate computers
in the network, the method comprising the computer-implemented
steps of identifying at least one redundant update in the
transaction log and then removing the redundant update from the
transaction log.

21. The storage medium of claim 20, wherein the
method further comprises the computer-implemented step of
identifying an incompressible sequence of updates in the
transaction log.

22. The storage medium of claim 20, wherein the
method further comprises the computer-implemented step of
identifying a transaction boundary within the transaction log.

23. The storage medium of claim 20, wherein the step
of removing the redundant update comprises the steps of
repositioning an update in the sequence of updates in the
transaction log and then replacing the repositioned update and

an adjacent update by a single equivalent update.

-69 =

10

15

20

25

WO 97/04391 PCT/US96/11903

24. The storage medium of claim 20, wherein the
identifying and removing steps are preceded by the computer-
implemented step of creating a hierarchical log database
representing at least a specified portion of the transaction

log, the log database containing an object corresponding to an

update in the specified portion and also containing an object

corresponding to a transaction in the specified portion of the
transaction log.

25. The storage medium of claim 24, wherein the
specified portion of the transaction log includes recent
transactions and the remainder of the existing transaction log
is represented by a compressed linearly accessed log.

26. The storage medium of claim 24, wherein the
method further comprises the computer-implemented step of
extending the transaction log by inserting an object into the
log database.

27. The storage medium of claim 24, wherein the
method further comprises the computer-implemented step of
accessing an update history structure in the log database to
identify an earlier update, if any, which references an object
in the target database that is also referenced by an update in
the appended transaction.

28. The storage medium of claim 27, wherein the
method further comprises the computer-implemented steps of
locating a transaction checkpoint and constructing a prior
version of a target database object.

29. The storage medium of claim 24, wherein each
completed transaction in the transaction log has a

corresponding transaction sequence number, and the transaction

70~

10

15

20

25

WO 97/04391 PCT/US96/11903

sequence numbers are consecutive and monotonic for all
completed transactions.

30. A system for managing a transaction log, the log
representing a sequence of transactions in a network of

connectable computers, each transaction containing at least one

update targeting a target database object in a distributed

target database that contains convergently consistent replicas
residing on separate computers in the network, said system
comprising a computer comprising means for storing the log and
means for executing programmed instructions, means for
identifying at least one redundant update in the transaction
log, and means for removing the redundant update from the
transaction log.

31. The system of claim 30, further comprising means
for identifying an incompressible sequence of updates in the
transaction log.

32. The system of claim 30, further comprising means
for identifying a transaction boundary within the transaction
log.

33. The system of claim 30, further comprising means
for creating a hierarchical log database representing at least
a specified portion of the transaction log, the log database
containing an object corresponding to an update in the
specified portion and also containing an object corresponding
to a transaction in the specified portion of the transaction
log.

34. The system of claim 30, wherein said means for
removing the redundant update comprises means for repositioning

an update in the sequence of updates in the transaction log and

-7]-

10

15

20

25

WO 97/04391 PCT/US96/11903

means for replacing the repositioned update and an adjacent
update by a single eqpivalent update.

35. The system of claim 33, wherein the specified
portion of the transaction log includes recent transactions and

the remainder of the existing transaction log is represented by

a compressed linearly accessed log.

36. The system of claim 33, further comprising means
for extending the transaction log by inserting an object into
the log database.

37. The system of claim 33, further comprising means
for accessing an update history structure in the log database
to identify an earlier update, if any, which references an
object in the target database that is also referenced by an
update in the appended transaction.

38. The system of claim 37, further comprising means
for constructing a prior version of a target database object.

39. The system of claim 33, further comprising means
for removing a synchronization checkpoint from the transaction
log and means for compressing a previously incompressible
region of the transaction log.

40. The system of claim 33, wherein each completed
transaction in the transaction log has a corresponding
transaction sequence number, and the transaction sequence
numbers are consecutive and monotonic for all completed

transactions.

-72=

PCT/US96/11903

WO 97/04391

1/4

N3’
—
=

=
D
N __ L/
(]
=
=]
]
oe (==

I "OIA

8¢ ‘ve .ON\

—c— 1

)

L
]

o€ ‘82 ‘02 < _ > o)
- A— \ ()
A .omj‘ S— 8&97|8
L) oz = [
_ . _ _ A
: _
R ¢
SHHOMLIN vIa3aw =
HIHLO IDVHOLS =
I e o sz '01/ (2]

Ot

PCT/US96/11903

WO 97/04391

¢ OIAd

-y

2/4
|

8|
oy

2]

VOI'ld3Yd

mm\

H3T10HLINOD ANV
J0IA3d FOVHOLS

0

3OV4431NI
W3 LSAS
374

0S|

»

JOV4H3LNI
ANIT
AHOMLIN

|

H3OVNVI vOI1d3d

|

SIN3IOV

3?\

HIOVNVIN 3Svavivd

ov .ww\ﬁ

d431NdNOD

s

lel/

vOlld3d

mmS

H3TTOHLNOOD ANV
30IA3A FOVHOLS

0

o
o

2]

JOV4H3LNI
ANI
AHOMLIN

g8y |

3JOV44H31NI
W3LSAS
3114

0

”

H3IODVNVIN vOIld3d

0

SINIOV

vv\

"H3OVNVIN 3Svav.ivd

d31NdNOD

ov .mwwH

WO 97/04391

3/4

PCT/US96/11903

REPLICA MANAGER
\46
REPLICA DISTRIBUTOR |
\70
CONSISTENCY DISTRIBUTOR ~
LOCATION DISTRIBUTOR &y 74
\\78
OBJECT DISTRIBUTOR ~
OBJECT SCHEMA - 82
N—g4
FILE DISTRIBUTOR g
N\
~—90
REPLICA PROCESSOR iy
\72
CONSISTENCY PROCESSOR ~
LOCATION STATE PROCESSOR \\\76
OBJECT PROCESSOR Ny 80
\~86
TRANSACTION LOGGER ~
FILE PROCESSOR &y 88
N
~—92
TRIGGER FUNCTION REGISTRATIONS oy
\94

FIG. 3

PCT/US96/11903

4/4

WO 97/04391

|
NOISH3A HOIHd Vac
19NH1SNOD .
| Y "OIA
INIOdMOIHD | 40, |
NOILOVSNVHL |~
AdILN3al
4 oLl
3HNLIONYLS |~
— AHOLSIH [e— <0k
31vddn SS300V 3d1vddnN LNVYANNAd3d IAON3Y
«———— 103r90 |«—] Ot 1 { 1
/1__Adidow S3lvddn
8Ll 1IN3OVray 3lvadn
+———— 103r90 {=— 31VAImOSNOD [NOILISOd3Y
021 /1 _3noway o1 \
«——— 103rg0 |«—]{ 00}
ESITEETTY LH3SNI 31vadn LINVaNNna3ayd >“__szn_>_
30NaNO3S | yi1— RN 1 i
NOILOVSNVH.L asvaviva INIOd®OTHO | || 3ONINOIS 3Lvadn | g,
NO Q3asvd \ D07 NOILOVSNYH.L 379ISSIHJINODNI
HO1Avad | 2kt IMVIN AdILNTal [AdILN3QI
21 b }))

INTERNATIONAL SEARCH REPORT

Ir tional Application No

PCT/US 96/11903

1}.. CLASSIFICATION OF SUBJECT MATTER

PC 6 GO6F11/14 GO6F9/46 GO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimurn documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X C.J. DATE: "An Introduction to Database 1,20,30
Systems, Volume II"
July 1985 , ADDISON-WESLEY PUBLISHING
COMPANY , READING, MA, US XP002016220
A 2-6,18,
21'23,
31,32
pages 1-33 (Chapter 1); pages 291-340
(Chapter 7)
see page 13, line 1 - line 14
see page 291, line 1 - page 295, line 20
see page 306, line 34 - page 309, line 26
A EP,A,0 250 847 (IBM) 7 January 1988 1,20,30

see abstract

see claim 1

see page 3, line 23 - page 4, line 10

-/-..

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

“A° document defining the general state of the art which is not
considered to be of partucular relevance

"E” earlier document but published on or after the international
filing date

°L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

‘0" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
later than the priority date claimed ‘

"T later document published after the international filing date
or priority date and not in conflict with the applicaton but
cited to understand the principle or theory underlying the
invention

“X® document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

18 October 1996

Date of mailing of the international search report

04-.1196‘

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Wiltink, J

Form PCT/ISA/210 {second sheet) {July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

In tional Application No

PCT/US 96/11903

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

DATA (SIGMOD) 1987 ANNUAL CONFERENCE,
vol. 16, no. 3, 27 - 29 May 1987, ISSN
0163-5808, SAN FRANCISCO, CA, USA,
pages 82-96, XP002016376

DEAN S. DANIELS ET AL.: "Distributed
Logging for Transaction Processing"

Category * | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A ASSOCIATION FOR COMPUTING MACHINERY 1,5,7,
SPECIAL INTEREST GROUP ON MANAGEMENT OF 20,30

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

In tional Application No

PCT/US 96/11963

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0250847 07-01-88 US-A- 4878167 31-10-89
DE-A- 3786956 16-09-93
DE-T- 3786956 17-03-94
JP-C- 1856908 07-07-94
JP-A- 63010252 16-01-88

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

