
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0164407 A1

Voegele et al. (43) Pub. Date:

US 2009.0164407A1

Jun. 25, 2009

(54)

(76)

(21)

(22)

(30)

Dec. 21, 2007

MONITORING ASERVICE ORIENTED
ARCHITECTURE

Joachim Voegele, Riedstadt (DE);
Gerald Ristow, Griesheim (DE)

Inventors:

Correspondence Address:
MEYERTONS, HOOD, KIVLIN, KOWERT &
GOETZEL, P.C.
P.O. BOX 398
AUSTIN, TX 78767-0398 (US)

Appl. No.: 11/969,642

Filed: Jan. 4, 2008

Foreign Application Priority Data

(EP) O7 O25 008.9

(51)

(52)

(57)

Publication Classification

Int. C.
G06N 7/02 (2006.01)
G06F 7/18 (2006.01)

U.S. Cl. .. 706/52

ABSTRACT

Monitoring a service oriented architecture (SOA) comprising
a plurality of components. The method may include provid
ing at least one monitoring unit for at least one of the plurality
of components. The method may further include providing
data concerning an operation of the at least one component as
input data to the at least one monitoring unit. Finally, the
method may include applying fuzzy logic in the monitoring
unit to analyze the input data for generating at least one output
value. The at least one output value may then be provided.

high

medium

IoW

n/a

Patent Application Publication Jun. 25, 2009 Sheet 1 of 3 US 2009/O164407 A1

high

medium

IoW

n/a

FIG. 2

Patent Application Publication Jun. 25, 2009 Sheet 2 of 3 US 2009/O164407 A1

1OO

cS
g
.S.)
CMO
S
S.
s
O

O
avg - Std aVg avg + Std

Input Signal
FIG. 3

100

s
SR)
CMD
S
S
s
O

O
avg - 2 Std aVg avg + 2 Std

Input Signal

FIG. 4

1 OO

cS
g
S)
CMO
S
S.
s
O

O
avg - 2 Sto avg avg + 2 std

Input Signal

FIG. 5

Patent Application Publication Jun. 25, 2009 Sheet 3 of 3 US 2009/O164407 A1

100

cis
g
S)
CVO
S
S
s
O

O
avg - Std aVg avg + Stod

Input Signal
FIG. 6

60-1a M1 a
M1

60-1b M1b

r 70 60-2a M2a

60-2b M2 M2 71
b 150

60-2C M2C
72

60-ia Mia
MI

60-ib Milb

FIG. 7

US 2009/0164407 A1

MONITORING ASERVICE ORIENTED
ARCHITECTURE

PRIORITY CLAIM

0001. This application claims benefit of priority of Euro
pean application no. titled “Method and System for
monitoring a Service Oriented Architecture', filed Dec. 21,
2007 and whose inventors are Joachim Voegele and Dr. Ger
ald Ristow.

INCORPORATED BY REFERENCE

0002 European application no. titled “Method
and System for monitoring a Service Oriented Architecture'.
Dec. 21, 2007 and whose inventors are Joachim Voegele and
Dr. Gerald Ristow, is hereby incorporated by reference in its
entirety as though fully and completely set forth herein.

TECHNICAL FIELD

0003. The present application relates to service oriented
architectures (SOAs) and more particularly to a method for
monitoring an SOA.

DESCRIPTION OF THE RELATED ART

0004. In an SOA, resources are made available to partici
pants in a network as independent services that the partici
pants can access in a standardized way. Whereas most defi
nitions of an SOA use SOAP requests conveyed via HTTP/
HTTPS over TCP/IP, an SOA may use any service-based
technology. The services interoperate based on formal defi
nitions which are independent from the underlying platform
and programming language. More specifically, the interface
definition may encapsulate the specific implementations. An
SOA is typically independent of a specific development tech
nology (such as Java and .NET). The Software components
may be reusable because the interface is standards-compliant
and is independent from the underlying implementation of
the (web) service logic. For example, a C# (CSharp) service
could be used by a JAVA application and vice versa.
0005 Monitoring an SOA is an important and difficult
technical task in order to assure that the SOA operates as
desired. This applies not only to the development stage of the
SOA, when the source code of the various SOA components
repeatedly need to be debugged, but also to the deployment
and test phases, for example, when exceptional runtime situ
ations must be controlled or the performance of the SOA is to
be evaluated for maintenance or other purposes.
0006 Traditionally, monitoring a software system com
prises generating one or more log files according to a set of
fixed and predetermined rules of the monitoring system,
where the log files allow an administrator to understand the
sequence of events as they occurred in the Software system.
This concept is problematic for application in an SOA, since
it only provides a limited amount of flexibility, which is in
contrast to the flexible nature of an SOA. Furthermore, log
files are not applicable to discover complex error situations in
advance. On the contrary, log files only allow for discovering
the reason for a problem after the problem has already
occurred. Consequently, log files do not enable taking any
counter measures in due time to prevent the problem.
0007 Since an SOA landscape usually consists of many
components that can interact with each other in a complex
way that may dynamically change over time, keeping track of
all configurations and the changes thereof is a non-trivial task.

Jun. 25, 2009

It is therefore known in the prior art to provide a centralized
registry/repository for an SOA, such as the products
“Infravio' or “CentraSite” of applicant, which can simplify
and facilitate this task. However, documenting the SOA land
scape does not ensure a Smooth and error-free operation. In
the EP 1863. 258, applicant already described a system and
method for managing web services and how runtime infor
mation of the SOA can be gathered and stored in this registry.
Whereas the disclosed method and system already substan
tially facilitates the management of the complex SOA land
scape, it is not capable to automatically analyze complex
situations.
0008 Further monitoring systems known in the prior art
are bound to application servers and mostly Supervise only
web services. An example can be found in US 2006/0031481
A1, which discloses the monitoring of a plurality of service
proxies by collecting and aggregating data and triggering
events according to rules predefined by a user. Another
example for a modeling tool for composite e-services and
functionality, which allows monitoring the status of service
execution, can be found in U.S. Pat. No. 7,222,334 B2.
0009. In a different technical field, namely the operation of
mechanical machines, it is known to involve fuzzy logic for
Supervising tasks such as the control of bearings for a rotation
part. Input signals, such as sensor information concerning the
bearing temperature can be processed by means of an adap
tive, rule-based fuZZy logic process. An example for Such
prior art, which is not at all related to Software and in particu
lar not related to the management of an SOA, can be found in
the U.S. Pat. No. 5,842,157.
0010. In view of the above, improved methods for moni
toring an SOA are desired.

SUMMARY OF THE INVENTION

0011 Various embodiments are presented of a method for
monitoring a service oriented architecture (SOA). The
method may include providing at least one monitoring unit
for at least one of the plurality of components. The method
may further include providing data concerning an operation
of the at least one component as input data to the at least one
monitoring unit. Finally, the method may include applying
fuZZylogic in the monitoring unit to analyse the input data for
generating at least one output value.
0012. In contrast to the prior art mentioned above, the
monitoring method may not only collect input data in a log
file but may further analyze the input data using an intelligent
approach Such as fuZZylogic. Applying fuzzy logic simplifies
the formulation of rules, since simple linguistic formulations
can be employed. Using at least one monitoring unit which
analyses its input data applying fuzzy logic or other intelli
gent analyzing methods and outputting at least one output
value in a sort of “blackbox' manner allows the method to be
applied to all different types of components of a SOA, such as,
for example, services, especially web services, applications,
clients, e.g., any kind of hardware and Software components
of the SOA.
0013. In one embodiment, the monitoring unit or method
may comprise a statistics unit for providing statistical infor
mation on the input data. The additional information on the
input data may help to classify the input data and later in the
monitoring process to derive conclusions based on the clas
sification. Further the provided information can be calculated
orderived based oncurrent input values, on values gathered in
a test run of the system or in a separate system. The statistical

US 2009/0164407 A1

information can comprise values such as, e.g. average, mini
mum, maximum, standard deviation, etc.
0014. The statistics unit may further receive a selector
signal for selecting one of a plurality of modes of operation of
the statistics unit. This feature may keep the monitoring
method flexible, since the statistical information provided by
the statistics unit can be influenced in the way it is determined,
e.g., by selecting a certain time window for the calculation of
statistic values or by limiting the number of values considered
for one statistic value or other possible restrictions or rules.
Furthermore, the statistical information can be recalculated
and consequently may follow a change of the input data
during operation of the SOA.
0015. According to a further aspect, the input data may be
compared to a response curve. The response curve may be
generated by a response curve generator using statistical
information, e.g., provided by the statistics unit. Using a
response curve based on Statistical values for comparison
may provide more accurate results since the statistical infor
mation is based on the related input data. Since the statistical
information can follow changes of the input data during
operation, automatically generated response curves based on
this information may keep the monitoring method flexible.
0016 Further, the generated response curve may be used
for applying the fuZZylogic in the method, wherein the moni
toring unit may output to what percentage the input data falls
into, e.g., any of the categories high, medium and low or a
value indicating that the input data is currently not available.
Such output values may be advantageous if there is no sharp
limit for distinguishing between different situations. These
values may help to follow rules with contain phases as “a bit'.
“approximately, etc., which without fuZZy logic cannot be
understood by a technical method or system.
0017. In one embodiment, the at least one output value
may be provided with a timestamp in order to facilitate the
later monitoring process and referencing.
0018. In a further embodiment, the at least one output
value of a monitoring unit may be provided as input data into
a further monitoring unit. The further monitoring unit may
receive at least two output values of at least two monitoring
units as input data. In other words, an overall monitoring
process may be built up in a modular and hierarchical fashion
by combining the partial monitoring processes performed by
the monitoring units. Since the monitoring units may show
“black box' behaviour and thus act as standard elements,
building a hierarchy of monitoring units for different types of
components may be significantly simplified. Such a hierarchy
may provide useful output values even for complex monitor
ing processes by combining the condition information of each
component monitored by at least one monitoring unit in order
to obtain a global statement. The further monitoring unit may
be preferably a rule based monitoring unit and preferably
outputs a warning message, if a threshold is exceeded.
0019. The method described above may be implemented
in Software (e.g., as program instructions on computer-acces
sible memory mediums which are executable by a processor)
or in various computing systems. In one embodiment the
computing system may include at least one monitoring unit
for at least one of the plurality of components, wherein the at
least one monitoring unit is adapted to receive data concern
ing an operation of the at least one component as input data,
and wherein the at least one monitoring unit is further adapted
to apply fuZZylogic to analyse the input data for generating at
least one output value.

Jun. 25, 2009

0020. In a one embodiment, the monitoring system may be
part of a registry/repository of the SOA. As a result, the SOA
may comprise a central point for monitoring at least a part of
the SOA and allows easy access to all necessary information
for fulfilling the monitoring task. This may facilitate the work
of an administrator Supervising the warnings output by the
system for monitoring the SOA, or the work of a developer
including further components in the overall monitoring pro
CCSS,

0021. Further modifications of the system are envisioned.

SHORT DESCRIPTION OF THE DRAWINGS

0022. In the following detailed description presently pre
ferred embodiments of the invention are further described
with reference to the following figures:
0023 FIG. 1: A general overview of an example of a
simplified SOA comprising an application calling a Web Ser
vice and a registry with a description of the Web Service,
according to one embodiment;
0024 FIG. 2: Details of an example of an individual moni
toring process, according to one embodiment;
(0025 FIG. 3: An exemplary response curve for “low
value, according to one embodiment;
0026 FIG. 4: An exemplary response curve for “medium
value' with a sharp peak, according to one embodiment;
0027 FIG. 5: An exemplary response curve for “medium
value' with a plateau, according to one embodiment;
0028 FIG. 6: An exemplary response curve for “high
value, according to one embodiment; and
(0029 FIG. 7: An example of the combination of individual
monitoring units to a global monitoring system in a hierar
chical manner, according to one embodiment.
0030. While the invention is susceptible to various modi
fications and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

Terms

0031. The following is a glossary of terms used in the
present application:
0032 Memory Medium—Any of various types of
memory devices or storage devices. The term “memory
medium' is intended to include an installation medium, e.g.,
a CD-ROM, floppy disks 104, or tape device; a computer
system memory or random access memory Such as DRAM,
DDR RAM, SRAM, EDO RAM, Rambus RAM, etc.; or a
non-volatile memory Such as a magnetic media, e.g., a hard
drive, or optical storage. The memory medium may comprise
other types of memory as well, or combinations thereof. In
addition, the memory medium may be located in a first com
puter in which the programs are executed, or may be located
in a second different computer which connects to the first
computer over a network, such as the Internet. In the latter
instance, the second computer may provide program instruc
tions to the first computer for execution. The term “memory
medium may include two or more memory mediums which

US 2009/0164407 A1

may reside in different locations, e.g., in different computers
that are connected over a network.
0033 Software Program—the term “software program' is
intended to have the full breadth of its ordinary meaning, and
includes any type of program instructions, code, Script and/or
data, or combinations thereof, that may be stored in a memory
medium and executed by a processor. Exemplary Software
programs include programs written in text-based program
ming languages, such as C, C++, Pascal, Fortran, Cobol, Java,
assembly language, etc.; graphical programs (programs Writ
teningraphical programming languages); assembly language
programs; programs that have been compiled to machine
language; Scripts; and other types of executable software. A
Software program may comprise two or more software pro
grams that interoperate in Some manner.
0034 Computer System—any of various types of comput
ing or processing systems, including a personal computer
system (PC), mainframe computer system, workstation, net
work appliance, Internet appliance, personal digital assistant
(PDA), television system, grid computing system, or other
device or combinations of devices. In general, the term "com
puter system’ can be broadly defined to encompass any
device (or combination of devices) having at least one pro
cessor that executes instructions from a memory medium.
0035 Various embodiments are presented of a system and
method for a monitoring process for an SOA which detects
and classifies damage or malfunction by pattern recognition.
This monitoring process can be set up to be self learning
and/or rule based. The whole monitoring process may be built
up in a modular and hierarchical fashion and uses fuZZylogic
to simplify the formulation of rules in order to obtain overall
monitoring statements.

FIG. 1

0036. In this context, FIG. 1 presents an overview of an
extremely simplified SOA, the operation of which could be
monitored by the monitoring system explained below:
0037. An application 30 or client 30 may issue a request31
for a web service 20. To this end, the application 30 or client
30 may need at first a description about the interface defini
tions of the web service 20. This description 40, which may
for example be provided in the Web Service Definition Lan
guage (WSDL), can either be obtained directly from the web
service 20 or from a registry/repository 10 (cf. FIG. 1). It is
apparent that a SOA can comprise more than one application/
client and more than one web service as well as any other type
of component.
0038. The registry/repository 10 may include descriptions
of all web services of the SOA, for example WSDL files 40
with information about the function, the data, the data type
and the exchange protocols of the respective web service.
Therefore, if the application 30 or client 30 intends to send a
request to the web service 20, it can obtain the WSDL file 40
from the registry 10 to find out how to access the web service
20. However, it is to be understood that the present invention
is not limited to the simplified SOA of FIG. 1 but can be used
with any kind of SOA.
0039. In other words, an SOA landscape may usually con
sist of many components that can interact with each other in
a complex way. Such components of an SOA can be of very
different origin including objects such as services, especially
web services, applications, clients, hardware and Software
components, and many more. In order to get an overview of
the actual SOA landscape, at least one of these components

Jun. 25, 2009

can be registered in an SOA registry like Infravio or Centra
Site, provided by applicant, using for example UDDI or
JAXR. The components can either register themselves auto
matically at installation, configuration or start-up time, or
may be registered either manually or through a so-called
harvest process which searches for components in well
known places, e.g., application servers.
0040. Accordingly, the SOA registry may store informa
tion about the SOA infrastructure and their interdependen
cies. This may already allow for impact analysis, e.g., which
applications/clients are affected if a service changes or is
retired and therefore needs to be adopted, or which services
are affected if an application server or computer is going
down for maintenance so that the users have to be informed or
the service needs to be transferred to another application
server or computer. However, the described procedure may
not give information about the actual performance or condi
tion of the SOA landscape.
0041. For this purpose, it may be necessary to collect
runtime data from at least one of the individual components of
the SOA and/or to monitor it/them. Combining the informa
tion about components of the SOA landscape obtained from
one or more monitoring units may provide an overall picture
on how well the SOA landscape formed by the monitored
components is operating. This can become a huge and com
plex task even for simple landscapes. The presented embodi
ments provide a solution on how the complexity can be
reduced and the data be combined in a Smart way to obtain
rule-based monitoring statements. Various embodiments of
the individual monitoring process on at least a single compo
nent of the SOA are described below:
0042. By registering a SOA component in a SOA registry
or by storing information on the SOA component in the SOA
registry, at least a part of the complete SOA landscape may be
modelled in the registry. The proposed process for a detailed
and in-depth monitoring of the SOA landscape may begin
from this information available in the registry. As a result, at
least one component of the SOA landscape in the SOA reg
istry which is intended to be monitored, may be duplicated by
at least one monitoring unit.
0043. In some embodiments, the one or more monitoring
unit(s) may be stored in the registry of the SOA. However, it
is also possible to keep the monitoring unit and/or related
information separate from the registry of the SOA. According
to one embodiment, it is possible to have one monitoring unit
for monitoring one component of the SOA and/or to have one
monitoring unit for monitoring more than one of the plurality
of components of the SOA. It is further possible to monitor
only one component of the SOA, to monitor more than one, or
to monitor all components, as desired.
0044. In one embodiment, the monitoring unit 53 shown in
FIG. 2 for a single SOA component may include the exem
plary units 50, 51, 52. However, it is also possible that some
of the units are combined or that one or more of the units are
situated outside the monitoring unit M1a.
0045 Data collected at the actual component being moni
tored, or data related to this component, which may be
retrieved from the registry 10, may be used as input data 60 for
the monitoring process. The input data can for example com
prise actually measured values of the bandwidth, the message
length, the number of messages per time, the duration or any
other suitable value related to an operation of the monitored
component. If the monitored component is not a web service
but for example a hardware component of the SOA, different

US 2009/0164407 A1

values which are specific to this component can be used as
input data 60. The input data 60 may be simultaneously fed
into or provided to the statistics unit 50 and the classification
unit 52.

0046. The statistics unit 50 may provide statistical infor
mation on the input data by calculating the average value, the
minimal and maximal values, the standard deviation or other
Suitable values of the input data respectively the input signal.
It is further possible for the statistics unit 50 to retrieve these
values from the repository 10 or any other source.
0047. In some embodiments, it may depend on the selector
setting 61 provided by a selector, when and how the above
mentioned Statistical information or statistic values are cal
culated or recalculated. The selector may choose between
different modes of operation, may define a time window
and/or may limit the number of data values per possible value
or in total and/or applies any other reasonable rule or restric
tion. Further, the selector may include a manual mode to
allow for individual operation. The selector may feed the
above as a selector setting 61 into the unit 51.
0048. In the embodiment of FIG. 2, the unit 51 may be a
response curve generator. The response curve generator 51
may receive the selector setting 61 and the statistical infor
mation/values provided or calculated by the statistics unit 50.
The response curve generator 51 may further use at least a
part of the received information to determine a response
curve, preferably a fuzzy logic response curve. In another
embodiment, the response curve generator 51 does not
receive a selector setting 61 or statistical information from the
statistics unit 50 but receives a complete response curve or
instructions allowing the generation of a response curve from
a different Source. Regardless of its origin, the response curve
is used in the classification unit 52, which may be a fuzzy
logic classification unit 52.
0049. The classification unit 52 may use the response
curve provided by the response curve generator 51 and/or
may also take into account possible absolute boundary values
in order to determine the at least one output value 62. The
output values 62 may express to what percentage the data
input given to the classification unit 52 falls into the catego
ries high, medium and low. Further, a value of “not available'.
noted as "n/a" in FIG. 2 and FIG. 3, may be preferably also
possible and will be handled by following units. This value of
“not available' can be delivered in a separate fashion, e.g. as
part of a vector, or the numerical value can indicate this
special value which is then given for the low, medium and
high channels simultaneously. In a further embodiment, at
least one output value 62, possibly each output value 62, can
also be provided with a timestamp in order to facilitate the
later monitoring process and referencing.

FIGS. 3-6

0050 FIGS. 3 to 6 illustrate exemplary details of the gen
eration of the response curves in the response curve generator
51 and their application in the classification unit 52. In one
embodiment, the response curves used in the classification
unit 52 may be generated by the response curve generator
using the values collected, provided and/or calculated by the
statistics unit 50. In the embodiment according to FIGS. 3 to
6, the output signal of the response curves may be normalized
to values between 0 and 100, indicating a percentage. How
ever, other output values or mappings are possible according
to other embodiments.

Jun. 25, 2009

0051. An example for a response curve giving the amount
of a “low value” in the input data/signal is shown in FIG.3. As
shown, the curve may include three linear sections which
intersect at the values “average-standard deviation' and
“average--standard deviation”. If the input data respectively
input value is equivalent to the average value, this sample
response curve returns a value of 50% “low value'. In further
embodiments, the response curve could also be a non-linear
or piecewise linear or even a non-linear function. The inter
section points can also vary, e.g. taking into account the
maximum or minimum value or desired low and high values
from a theoretical analysis or other given values. The
response curve generator 51 may contain source code or rules
and/or all further necessary information for generating the
response curves. An example code Snippet for finding the
right-most intersection point for Such a set-up can be:

IP R = AVR + STD
STD by default */

If (IP R < MAX + 0.25*STD) THEN
IP R = MAX + 0.25*STD f* new value assigned to intersection

point */
ENDIF

f* right-most intersection point set to AVG +

0.052 FIG. 4 and FIG. 5 show sample response curves for
the amount of a “medium value'. The first curve shows a
sharp peak around the average value and the latter a plateau
but the exact form of the response curve may of course vary
from use case to use case. The presented Sample curves
include linear sections although other response curves are
also possible. If the input data/signal has the average value,
the amount of “medium value' is returned as being 100% for
both sample response curves.
0053 FIG. 6 shows a sample response curve for the
amount of “high value' in the input data/signal. As can be
seen, an input data value with the average value results in a
response of 50%.
0054. In some embodiments, the intersection points of the
linear sections or of non-linear or partially non-linear sections
may be determined during a self-learning phase of the statis
tics unit 50. The resulting curves can be asymmetric or non
linear which would result in an output signal unequal to 50%
in the example of FIG. 6.
0055. The details of the evaluation and/or analysing pro
cess performed by the monitoring unit can be hidden in nor
mal operation mode once the parameters, e.g., how the
response curve should look like given the values from the
statistics unit 50, are all defined. For each kind of input data,
only the selector may need to be set so that it can provide a
corresponding selector setting 61 and then the percentage of
the data input that falls into the categories high, medium and
low or if it is currently not available may be determined. This
is noted as a “blackbox' behaviour which is illustrated by the
box53 hiding the units 50, 51, 52 of FIG. 2 and only showing
the signals 60, 61 and 62. This black box behaviour may
significantly simplify the generation of an overall monitoring
process since a hierarchy of Standard elements can now be
used.

0056. In the embodiment illustrated in FIG. 7, a hierarchy
of monitoring units can be built in order to realize more
complex monitoring processes based on the combination of
monitoring results of single monitoring units of the SOA. To
this end, one or more of the output values of the monitoring

US 2009/0164407 A1

unit M1a ... Mia may be input into a further monitoring unit
M1, M2, M3, which may in addition receive the output value
(s) of one or more other monitoring unit M1b ... Mib as input
data. The combination of the individual monitoring processes
may lead to an overall monitoring process allowing for a
well-founded statement about the condition of the SOA land
scape, e.g. the quality of the actual performance. It is to be
noted that building a hierarchy of monitoring units as shown
in FIG. 7 is not restricted to monitoring units which apply
fuzzy logic.
0057 Looking more in detail at FIG. 7, two data inputs
60-1a, 60-1b for a SOA component 1 may be individually
monitored and evaluated and then combined in the monitor
ing unit M1 to reflect the state of component 1. For compo
nent 2, three input values 60-2a, 60-2b, 60-2c may be indi
vidually monitored and combined in a similar fashion in
monitoring unit M2. Accordingly, different monitoring units
can have different amounts of input data/signals. All output
values of the last but one level of the monitoring hierarchy
may be then combined in a rule based global monitoring unit
150 providing final result values. If a predefined threshold is
exceeded by one or more of the final result values, the rule
based global monitoring unit 150 may output a warning mes
sage and/or an error message and/or an alarm.
0058. In a further embodiment, the hierarchy consists of
an arbitrary number of hierarchy levels. Further, there may be
a direct link from a lower monitoring level to a higher moni
toring level. For example, the output of the individual moni
toring unit M1a may be directly fed into the global monitor
ing unit 150, if this output is of particular significance.
0059 Based on the warning message or the like provided
by the global monitoring unit 150, an error message can be
logged and/or an alarm can be sent out after the intervention
of a responsible person, who assesses the severity of the
current findings, e.g., the warning message. As a conse
quence, possible counter measures may be triggered in order
to get the SOA landscape back into normal operation mode.
The described two-step approach may assure that further
actions, which can result in non-trivial consequences, are
taken only after human approval. Alternatively, however, the
described monitoring system may automatically initiate
COunter measures.

0060 Although the embodiments above have been
described in considerable detail, numerous variations and
modifications will become apparent to those skilled in the art
once the above disclosure is fully appreciated. It is intended
that the following claims be interpreted to embrace all such
variations and modifications.

1. A method for monitoring a service oriented architecture
(SOA), comprising a plurality of components, the method
comprising:

providing at least one monitoring unit for at least one of the
plurality of components of the SOA;

providing data concerning operation of the at least one
component as input data to the at least one monitoring
unit; and

applying fuZZy logic in the monitoring unit to analyse the
input data for generating at least one output value;

providing the at least one output value, wherein the at least
one output value is based on said applying.

2. The method of claim 1, wherein said applying comprises
a statistics unit of the monitoring unit providing statistical
information on the input data.

Jun. 25, 2009

3. The method of claim 2, wherein the statistical informa
tion comprises at least one of the following values with
respect to the input data: average, minimum, maximum, or
standard deviation.

4. The method of claim 2, wherein the method further
comprises receiving a selector signal for selecting one of a
plurality of modes of operation of the statistics unit.

5. The method of claim 1, wherein the input data are com
pared to a response curve.

6. The method of claim 5, further comprising:
generating the response curve using statistical information.
7. The method of claim 5, wherein said applying comprises

using the response curve.
8. The method of claim 1, wherein the output value indi

cates to what percentage the input data falls into any of the
categories high, medium and low or a value indicating that the
input data is currently not available.

9. The method of claim 1, wherein said providing com
prises providing the at least one output value with a times
tamp.

10. The method of any claim 1, further comprising:
providing the at least one output value as input data into a

further monitoring unit.
11. The method of claim 10, wherein the input data into the

further monitoring unit comprises at least two output values
of at least two monitoring units.

12. The method of claim 11, wherein the further monitor
ing unit is a rule based monitoring unit.

13. The method of claim 12, further comprising the further
monitoring unit outputtinga warning message ifa threshold is
exceeded.

14. The method of claim 1, further comprising outputting a
warning message if a threshold is exceeded.

15. A computer-accessible memory medium comprising
program instructions for monitoring a service oriented archi
tecture (SOA), wherein the SOA comprises a plurality of
components, wherein the program instructions are executable
to implement:

at least one monitoring unit for at least one of the plurality
of components of the SOA, wherein the at least one
monitoring unit is adapted to:
receive data concerning an operation of the at least one
component as input data;

apply fuZZylogic to analyse the input data for generating
at least one output value and

provide the at least one output value, wherein the at least
one output value is based on said applying.

16. The memory medium of claim 15, wherein the moni
toring unit comprises a statistics unit adapted to provide sta
tistical information on the input data.

17. The memory medium of claim 16, wherein the statis
tical information provided by the statistics unit comprises at
least one of the following values with respect to the input data:
average, minimum, maximum, or standard deviation.

18. The memory medium of claim 16, wherein the statistics
unit is adapted to receive a selector signal for selecting one of
a plurality of modes of operation of the statistics unit.

19. The memory medium of claim 15, wherein the program
instructions are further executable to implement a classifica
tion unit adapted to compare the input data to a response
CUV.

20. The memory medium of claim 19, wherein the program
instructions are further executable to implement a response

US 2009/0164407 A1

curve generator adapted to generate the response curve using
statistical information provided by a statistics unit.

21. The memory medium of claim 19, wherein said apply
ing comprises using the response curve.

22. The memory medium of claim 15, wherein the output
value indicates to what percentage the input data falls into any
of the categories high, medium and low or a value indicating
that the input data is currently not available.

23. The memory medium of claim 15, wherein at least one
output value is provided with a timestamp.

24. The memory medium of claim 15, wherein the program
instructions are further executable to implement a further
monitoring unit adapted to receive the at least one output
value as input data.

25. The memory medium of claim 24, wherein the further
monitoring unit is adapted to receive at least two output
values of at least two monitoring units as input data.

26. The memory medium of claim 25, wherein the further
monitoring unit is a rule based monitoring unit.

Jun. 25, 2009

27. The memory medium of claim 26, wherein the further
monitoring unit is adapted to output a warning message if a
threshold is exceeded.

28. The memory medium of claim 15, wherein the moni
toring unit is adapted to output a warning message if a thresh
old is exceeded.

29. The memory medium of claim 15, wherein the moni
toring unit is part of a registry of the SOA.

30. A computer-accessible memory medium comprising
program instructions for monitoring a service oriented archi
tecture (SOA), wherein the program instructions are execut
able by a processor to:

receive input data concerning operation of the at least one
component of the SOA; and

apply fuZZy logic to analyse the input data for generating at
least one output value;

providing the at least one output value, wherein the at least
one output value is based on said applying.

c c c c c

