(51) International Patent Classification  
G11B 7/24

(54) Title: STORAGE MEDIUM HAVING ELECTRONIC CIRCUIT AND COMPUTER SYSTEM HAVING THE STORAGE MEDIUM

(57) Abstract

A storage medium having an electronic circuit portion serves as a central unit, and a main body serves as a peripheral unit, so that a system using the storage medium can be arbitrarily constructed and a computer system having the storage medium, for example, a personal computer, a car navigation system, a multi-functional television set, or the like can be provided. In an intelligent disk having a disk portion for storing information and an electronic circuit portion for processing information, a program for controlling at least an external device as a peripheral device is stored in the disk portion, and the electronic circuit portion executes the program to control the external device as a peripheral device.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION

STORAGE MEDIUM HAVING ELECTRONIC CIRCUIT AND
COMPUTER SYSTEM HAVING THE STORAGE MEDIUM

Technical Field

The present invention relates to a storage medium having an information storage unit for storing information and an electronic circuit portion for processing information, e.g., an optical disk (to be referred to as an intelligent disk (ID) hereinafter; the term "ID" is not used as "IDentification" in this specification) or the like and, more particularly, to a computer system having the storage medium as a central unit.

Background Art

Conventionally, a disk having a cartridge on which a memory or a CPU is mounted or an IC card having a processor constituted by a magnetic-stripe storage and a memory or a CPU has been proposed.

However, a storage media having such intelligent is used to assist a computer system or for transport information. In recent years, the storage media is used as only a peripheral unit of a computer system.
Disclosure of Invention

The present invention removes the drawback of the prior art and provides a computer system such as a personal computer, a car navigation system, or a multi-functional television set in which a storage medium having an electronic circuit portion serves as a central unit, and a main body serves as a peripheral unit, so that a system which is required by an owner of the storage medium can be arbitrarily constructed.

In order to solve this subject, a storage medium according to the present invention is a storage medium having an information storage unit for storing information and an electronic circuit portion for processing information, characterized in that a program for controlling at least an external device is stored in the information storage unit, and the electronic circuit portion has control means for executing the program to control the external device.

Here, the information storage unit stores a plurality of programs, and the electronic circuit further comprises determination means for determining the characteristics of the external device and selecting means for selectively executing the plurality of programs in correspondence with a determination result of the determination means. The information storage unit stores the plurality of programs, and the
electronic circuit portion further comprises display instruction means for causing the external device to selectively display the plurality of programs and selecting means for selectively executing the plurality of programs in correspondence with selection instruction. The information storage unit further stores data used in the programs. The programs and/or data are stored as a not-overlapped structure such that the programs and/or data are separated in each part of function. The electronic circuit portion further comprises communication means for performing wireless communication with a host computer, and load means for downloading, when a desired program or data is not stored in the information storage unit, a program or data from the host computer through the communication means. The external device is an input/output device constituting a personal computer, and the programs include a system program and/or an application program. The external device is an input/output device constituting a car navigation system, the programs include a system program and/or an application program, and the data includes map data. The external device is an input/output device constituting a multi-functional smart card, the programs include a system program and/or an application program, and the data includes
merchandise catalog data. The storage medium is an optical disk.

A computer system according to the present invention is a computer system including a storage medium having an information storage unit for storing information and an electronic circuit portion for processing information, and is characterized in that a program for controlling at least the computer system is stored in the information storage unit of the storage medium, and the electronic circuit portion of the storage medium has control means for executing the program to control the computer system.

The information storage unit stores the plurality of programs, and the electronic circuit portion further comprises determination means for determining the characteristics of the computer system and selecting means for selectively executing the plurality of programs in correspondence with a determination result of the determination means. The information storage unit stores the plurality of programs, and the electronic circuit portion further comprises display instruction means for causing the external device to selectively display the plurality of programs and selecting means for selectively executing the plurality of programs in correspondence with selection instruction. The information storage unit further stores data used in
the programs. The programs and/or data are stored as a not-overlapped structure such that the programs and/or data are separated in each part of function. The electronic circuit portion further comprises communication means for performing wireless communication with a host computer, and load means for downloading, when a desired program or data is not stored in the information storage unit, the program or data from the host computer through the communication means. The computer system includes a personal computer, a car navigation system, and a multi-functional smart card. The storage medium is an optical disk.

Other objects and feature of the present invention will be apparent from the following drawings and detailed description of the preferred embodiment.

Brief Description of Drawings

FIG. 1 is a view showing the appearance of an intelligent disk according to an embodiment of the present invention.

FIG. 2 is a view showing an arrangement of the intelligent disk according to the embodiment.

FIG. 3 is a view showing an arrangement of a personal computer system according to the embodiment.

FIG. 4 is a view showing contents stored in the disk portion of the ID in the system in FIG. 3.
FIG. 5 is a flow chart showing an operation procedure in the system in FIG. 3.

FIG. 6 is a flow chart showing another operation procedure in the system in FIG. 3.

FIG. 7 is a view showing an arrangement of a car navigation system according to the embodiment.

FIG. 8 is a view showing contents stored in the disk portion of an ID in the system in FIG. 7.

FIG. 9 is a flow chart showing an operation procedure in the system in FIG. 7.

FIG. 10 is a view showing an arrangement of an automatic selling and settlement system.

FIG. 11 is a view showing contents stored in the disk portion of the ID in the system in FIG. 10.

FIG. 12 is a view showing an automatic selling and settlement procedure in the system in FIG. 10.

FIG. 13 is a flow chart showing an operation procedure in the system in FIG. 10.

Best Mode for Carrying Out the Invention

Several embodiments according to the present invention will be described below with reference to the accompanying drawings. The embodiments described here are only exemplified to effectively use the present invention, and the present invention is not limited to these embodiments.
<Arrangement of ID according to Embodiment>

FIG. 1 is a view showing the appearance of an intelligent optical disk serving as a kind of ID according to this embodiment.

An ID 1 is constituted by a disk portion 3 serving as a disk surface on which information is stored, and an intelligent circuit portion 2 mounted at the central portion of the disk portion 3 as shown in FIG. 1, for example. However, this arrangement is not limited to a specific one. For example, the circuit portion 2 may occupy one surface of the disk, or the disk may be manufactured to have a plurality of layers, and the circuit portion 2 may be arranged on one of these layers.

FIG. 2 is a view showing a concept arrangement of the ID1.

Referring to FIG. 2, the intelligent circuit portion 2 includes a ROM 22 for storing fixed information, a RAM 23 which is used as a temporarily used if necessary, and a CPU 21 for executing a program stored in the ROM 22 or the RAM 23. Reference numeral 26 denotes a photoelectric cell which is necessary when the ID has an independent power supply.

The intelligent circuit portion 2 exchanges information with an external device through a system interface 24. The connection point of the interface is of a contact type or a non-contact type, or bus coupling
or communication coupling may be employed. As communication, wireless wave communication, optical communication, or the like may be used.

In addition, the ID according to this embodiment has a wireless communication unit 25, and also has a function of performing automatic dialing when information must be transmitted to an external device or when data or a program must be loaded from an external device.

The system interface 24 is indicated by a broken line for the following reason. That is, in particular, when this ID is used in a personal computer, bus coupling is preferably used as the coupling between the ID and the system in consideration of a data transfer rate and reliability. In this case, the system interface 24 can be omitted.

*Example of ID Constructing Personal Computer System*

FIG. 3 is a view showing an arrangement obtained when the ID according to this embodiment is used to construct a personal computer system.

Referring to FIG. 3, reference numeral 10 denotes set for a personal computer constituted by peripheral units which are bus-coupled to each other. In FIG. 3, the minimum necessary elements are indicated by solid lines, and additional elements which are not necessary are indicated by dashed lines.
As the necessary elements, an optical disk drive unit 11 including: a pick-up for reading (writing) data from the disk portion 3 of the ID of this example, a drive circuit portion for the pick-up, and the like; a display unit 13 (preferably an LCD) for displaying the conditions of the present system or information; a keyboard 14 (which can be replaced with a touch panel on the display unit 13) for inputting an instruction from a user; a mouse 15 (omitted in a portable personal computer) for inputting an instruction from the user like the keyboard 14; and the like are used.

As the elements which are not necessary, a buffer memory 16 (a RAM or a hard disk device may be used) for temporarily storing a program or data while the program or data is being transferred, a direct memory access controller (DMAC) 18 for independently performing data transfer at a high speed, a printer 17 for outputting a hard copy, and an ID interface 12 which is used in the bus coupling also described in the explanation of the ID.

In the above description, although the arrangement is explained as a set used as a personal computer, for example, a single-purpose device for a display of the display unit 1, a print output from a printer 7, storage of information in the hard disk device 16, or the like may be considered. However, in this case, the optical disk drive unit 11 is always a necessary element.
In this case, in order to improve a conventional device, matching between the system and the ID must be established through the ID interface 12 and the system interface 24. However, in the future, an interface (also in case of bus coupling) is preferably standardized such that any system can be easily coupled to any ID.

Although FIG. 3 shows only the system which is used as a peripheral device, the present invention can also be applied to an arrangement in which the system is used as one of conventional personal computers. This will be apparent from the following description of the procedure in FIG. 5.

FIG. 4 shows an arrangement of information stored in the disk portion 3 of the ID when the present invention is constituted as a conventional personal computer.

A plurality of OSs (OS1, OS2,...) 3b, a plurality of applications (application 1, application 2,...) 3c, and data 3d are stored at respective positions pointed by a directory 3a. Though only one OS and/or one application may be stored, it is preferable that a plurality of OSs and applications are stored and a user selectively uses the OSs and the applications, to effectively use the ID of the present invention.
FIG. 5 is a flow chart showing an operation procedure of the personal computer system. This example is a transitional embodiment in which an OS used until the system is standardized depends on the structure of the system.

The circuit portion 2 of the ID 1 checks at step S51 whether or not the ID 1 is inserted into the drive. If the ID 1 is inserted into the drive, the flow shifts to step S52 to check the model or the like of the system. Here, one of conventional personal computers may be used as the system even if only peripheral units are used.

If only the peripheral units are used, the CPU 21 of the ID 1 checks the characteristics, capabilities, or the like of the peripheral units. If a personal computer is used, the CPU 21 checks the maker, type, version, and the like of the personal computer.

When the model or the sort of the personal computer is determined at step S52, an optimum OS corresponding to the model is selected to instruct the optical disk drive unit 11 to load the OS at step S53. The selected OS is loaded on a hard disk drive serving as the buffer memory 16 by, e.g., a DMA. The circuit portion 2 of the ID 1 waits for the end of loading at step S54. Upon completion of loading, the circuit portion 2 starts the OS at step S55.
Subsequently, an operation of the personal computer system controlled by the CPU 21 is realized.

FIG. 6 is a flow chart showing another operation procedure of the personal computer system. This example is an embodiment in which a system is standardized to be turned on as a system which is desired by a user.

The circuit portion 2 of the ID 1 checks whether or not the disk is inserted into the drive at step S61. If it is determined that the disk is inserted into the drive, the flow shifts to step S62 to output an instruction to the display unit 13 such that the selection screens of various existent OSs are displayed. In correspondence with a selection instruction of an OS desired by a user, the flow passes through step S63 to check at step S64 whether the OS selected by the use is present on the disk portion 3. If YES at step S64, the circuit portion 2 instructs the optical disk drive unit 11 to load the selected OS at step S65. The OS read from the disk portion 3 is loaded in the buffer memory 16 (hard disk drive) by a DMA. On the other hand, if no selected OS is present in the disk portion 3, the flow shifts to step S66 to connect the circuit portion 2 to the external host through the wireless communication unit 25 to download a desired OS.

The circuit portion 2 waits for the end of loading at step S67. Upon completion of loading, the circuit
portion 2 starts the OS at step S68. In this case, as the place for storing the program, the buffer memory 16 or the RAM 23 of the ID may be used.

<ID Constructing Car Navigation System>

FIG. 7 is a view showing an arrangement obtained when the ID according to this embodiment is applied to a car navigation system.

Referring to FIG. 7, in the car navigation system, an optical disk drive unit 31, a display unit 33, a touch panel 34, a loudspeaker 35 for outputting voice, and a microphone 36 for inputting voice are built. In this embodiment, the ID interface 32 and the buffer memory 37 are not necessary.

FIG. 8 shows data stored in a disk portion 3 of an ID in the car navigation system.

In the place pointed by the directory, an OS, an application, and map data are stored. As the application, an application for a zoom process, the shortest route searching process, the predicted time calculation process, and the like are included. In addition, the information may include catch programs such as information of resort places and weather forecast. In this embodiment, although one OS is used, a plurality of OSs may be used to cope with a plurality of systems. On the other hand, although not shown, the
table of telephone numbers used by the ACU of a wireless communication unit 25.

FIG. 9 is a flow chart showing an operation of a car navigation system including an ID.

An intelligent circuit portion 2 of the ID 1 checks at step S91 whether the ID is inserted into a drive. If YES at step S91, the flow shifts to step S92 to instruct the disk drive unit to load an OS and a program. Although not shown in detail, after an actual initial selection display is performed, selection or the like of an application is executed, as described at steps S62 to S63 shown in FIG. 6, for example.

The optical disk drive unit 31 loads the program, which is selected from a disk portion 3 by a DMA, on the buffer memory 37 according to an instruction, and the circuit portion 2 executes the program at step S93.

At step S94, for example, area selection is performed. In this area selection, when an area, a destination, and the like are transmitted by voice through the microphone 36 for example, the voice is recognized to transmit the contents of the information to the circuit portion 2. The flow shifts to step S95 to check whether the selected map is on the disk portion 3. If YES at step S95, the circuit portion 2 instructs the optical disk drive unit 31 to load new map data, and the map data is read onto the buffer memory 37.
On the other hand, if the map is not on the disk, the flow shifts to step S97, the wireless communication unit 25 of the ID automatically performs dialing to telephone to the host. If data can be loaded, the data is downloaded from the host to the buffer memory 37. If data cannot be downloaded, a driver is notified that the data cannot be downloaded.

This automatic telephone dialing can also be used to obtain information such as traffic information or weather forecast by an instruction of the drive or an interrupt which is periodically input or input from an external device when various necessary telephone numbers are stored as a table. Although not described in this embodiment in detail, in addition to the information such as traffic information or weather forecast, merchant information such as a commercial message may be displayed.

When the map data is loaded, navigation information is output to the display unit 33 and/or the loudspeaker 35 by using the OS, application, program, and map data on the buffer memory 37 at step S99.

The map data is updated in accordance with an instruction of the driver or the movement of the automobile position.

<ID Constructing Automatic Selling and Settlement System>
FIG. 10 is a view showing an arrangement of an automatic selling and settlement system using an ID according to this embodiment. This embodiment describes a case wherein all functions are effected by one ID.

However, an inexpensive ID card for selling merchandise and a personally owned ID card for settlement can be separated from each other. In addition, although this system exemplifies a case in which a television set is used, the system may be realized by a portable telephone/ID device constituted by an ID drive unit, an LCD display unit, a keyboard (or touch panel).

Referring to FIG. 10, a television set 42 is used as the display unit for the ID, and selection and instruction are performed on the television screen by a remote controller 43.

FIG. 11 is a view showing an arrangement of data stored in the ID disk portion 3 in this system.

An OS, an application, merchandise catalog data are stored on a place pointed by a directory. As the merchandise catalog data, order telephone numbers and the like for respective pieces of merchandises are also stored. In addition, personal information such as sizes of shoes and clothes required for order may also be stored. As the application, for example, an application for a catalog output process for outputting a catalog onto a television screen, an application for a
merchandise order process for automatically ordering a piece of merchandise selected by a user to a maker to send the order report to a credit company, an application for an automatic settlement process for using the ID as a credit card, an application for an electronic wallet process for using the ID as an electronic wallet for electronic money, or the like is stored.

The plurality of applications are stored in one ID, the catalog output process, the merchandise order process, the automatic settlement process, the electronic wallet process must be independently performed to keep secret, and are completely separated from other processes. Similarly, data used by these processes are managed such that separate portions completely separated from a shared portion coexist. In the above system, although not specifically described, the same management as described above must be performed between a plurality of OSs in the system in FIG. 3 such that the programs or data of the OSs are not broken. This is realized by using digital signature or personal identification number technique.

FIG. 12 is a schematic view showing a series of procedures performed from when a piece of merchandise is ordered by this system to when settlement is completed.
In a user ID device in which an IC card is inserted, a merchandise catalog stored in the disk portion 3 is displayed, and a user selects a piece of desired merchandise. In this case, the circuit portion of the ID card performs automatic dialing to the maker of merchandise by using the wireless communication unit 25 (1st). When this order is accepted, the ID card performs automatic dialing to a credit company to be used, and a report representing that the order is completed (2nd). When the maker ships the ordered merchandise (3rd), the maker sends a report that the merchandise is shipped (4th). The credit company receives this report to send remittance to the maker (5th) and requests the user of payment (6th). The user who receives the bill and pays money into the account of the credit company by the automatic settlement function or electronic wallet function of the IC card (7th), the bank reports the completion of payment to the credit company (8th), and the series of selling and settlement processes are completed.

FIG. 13 is a flow chart showing an operation procedure of, especially, an order process of the series of processes.

The circuit portion checks insertion of the ID into a drive at step S131. If YES at step S131, the circuit portion instructs a drive unit to load an OS and
a desired application from the disk portion 3 at step S132. Note that selection of applications is realized as at steps S62 and S63 in FIG. 6 described above.

An optical disk drive unit 41 transfers the designated programs and catalog data to a buffer memory 45 of the TV set or the RAM 23 of the ID 1 at step S133. The circuit portion 2 of the ID 1 instructs the television set 42 to display the catalog at step S134. Although the process for selecting a display catalog must be performed before the catalog is displayed, a description of the selection process will be omitted.

When merchandise selection is performed by a remote controller 43 of a user at step S135 to select a piece of merchandise, the circuit portion sends the telephone number of a corresponding maker to the wireless communication unit 25 to perform automatic dialing at step S136, thereby automatically ordering the selected merchandise. When the order is accepted by the maker, the flow shifts from step S137 to step S138 to display "order OK" on the television set 42 and to record completion of order on the disk portion 3 or the RAM 23. At steps S139 and S140, automatic dialing and order report performed to a credit company to be used.

On the other hand, if the order is not accepted, the flow shifts to step S141 to display "disable order".
As an example similar to this system, an automatic
reserving system for recording television programs is
considered. In this case, television program data for
one week or the like is stored in place of the
merchandise catalog data in FIG. 3. As applications, an
application for a television program display process, an
application for a television program recording reserve
process, an application for a recording management
process, and the like are stored.

By using the above ID, computer makers are
released from oligopoly control of CPUs and OSs, and an
ID in which a CPU optimum for respective pieces of
software is mounted, is available from software makers.
In addition, hardware makers can terminate unprofitable
business wherein model changes must be performed three
or four times a year according to frequent improvement
of CPU.

Users can enjoy improved utility by using ID. For
eexample, unless available software is temporarily copied
from a CD-ROM or the like onto a hard disk, the utility
of the software utility is degraded. For this reason,
the hard disk is easily made full, and another hard disk
must be added, or the computer itself must be changed.
However, when the ID is used, another hard disk or a new
computer are not necessary, and trouble caused by an
attaching/detaching process can be avoided.
More specifically, according to this ID, the ID can flexibly cope with changes in specification such as improvement of a CPU, and a situation, which considerably damages the utility for a user, i.e., failure in the compatibility of pieces of hardware caused by the difference between OSs or formats, can be avoided. By using this ID, hardware which has been regarded as a computer itself can be regarded as a simple man-machine interface (a so-called combination of a display, a keyboard, and the like), and the hardware is considered as home electronics such as a TV or a VTR, i.e., durable goods. Therefore, utility for the users is considerably improved, and makers increase additional values by devising designs and functions.

In addition, the waste disposal of computers at present has posed social problems. These problems are caused by excessive model changes in the computer industry in which a model becomes obsolescent within an average of three months. The ID according to the present invention removes the causes of the problems and releases the computer industry from oligopoly control to considerably improve the utility for users.

Although not described in this embodiment, an ID-GAME obtained by combining a game-dedicated CPU and various pieces of game software can be available.
When the ID according to this embodiment is combined with various functions as a multi-functional ID card, a more effective storage medium can be obtained.

According to the present invention, a storage medium having an electronic circuit portion serves as a central unit, and a main body serves as a peripheral unit, so that a system which is required by an owner of the storage medium can be arbitrarily constructed and a computer system having the storage medium, for example, a personal computer, a car navigation system, a multi-functional television set, or the like can be provided.

The present invention has been described with reference to the preferable embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be effected within the spirit and scope of the invention.
CLAIMS

1. A storage medium, comprising:
   an information storage unit for storing
   information; and
   an electronic circuit portion for processing
   information,
   wherein a program for controlling at least an
   external device is stored in the information storage
   unit, and said electronic circuit portion has control
   means for executing the program to control said external
device.

2. A storage medium according to claim 1, wherein
   said information storage unit stores the plurality
   of programs, and
   said electronic circuit portion further comprises
   determination means for determining the characteristics
   of said external device and selecting means for
   selectively executing the plurality of programs in
   correspondence with a determination result of said
determination means.

3. A storage medium according to claim 1, wherein
   said information storage unit stores the plurality
   of programs, and
said electronic circuit portion further comprises display instruction means for causing said external device to selectively display the plurality of programs and selecting means for selectively executing the plurality of programs in correspondence with selection instruction.

4. A storage medium according to claim 1 wherein said information storage unit further stores data used in the programs.

5. A storage medium according to claim 4, wherein the programs and/or data are stored as a non-overlapped structure such that the programs and/or data are separated in each part of function.

6. A storage medium according to claim 1, wherein said electronic circuit portion further comprises communication means for performing wireless communication with a host computer, and load means for downloading, when a desired program or data is not stored in said information storage unit, the program or data from said host computer through said communication means.
7. A storage medium according to claim 1, wherein
   said external device is an input/output device
   constituting a personal computer, and the programs
   include a system program and/or an application program.

8. A storage medium according to claim 4, wherein
   said external device is an input/output device
   constituting a car navigation system, the programs
   include a system program and/or an application program,
   and the data includes map data.

9. A storage medium according to claim 4, wherein
   said external device is an input/output device
   constituting a multi-functional smart card, the programs
   include a system program and/or an application program,
   and the data includes merchandise catalog data.

10. A storage medium according to claim 1, wherein
    said storage medium is an optical disk.

11. A computer system, comprising:
    a storage medium having an information storage
    unit for storing information; and
    an electronic circuit portion for processing
    information,
wherein a program for controlling at least said computer system is stored in said information storage unit of said storage medium, and said electronic circuit portion of said storage medium has control means for executing the program to control said computer system.

12. A computer system according to claim 11, wherein said information storage unit stores the plurality of programs, and said electronic circuit portion further comprises determination means for determining the characteristics of said computer system and selecting means for selectively executing the plurality of programs in correspondence with a determination result of said determination means.

13. A computer system according to claim 11, wherein said information storage unit stores the plurality of programs, and said electronic circuit portion further comprises display instruction means for causing said external device to selectively display the plurality of programs and selecting means for selectively executing the plurality of programs in correspondence with selection instruction.
14. A computer system according to claim 11, wherein said information storage unit further stores data used in the programs.

15. A computer system according to claim 14, wherein the programs and/or data are stored as a not-overlapped structure such that the programs and/or data are separated in each part of functions.

16. A computer system according to claim 11, wherein said electronic circuit portion further comprises communication means for performing wireless communication with a host computer, and load means for downloading, when a desired program or data is not stored in said information storage unit, the program or data from said host computer through said communication means.

17. A computer system according to claim 11, wherein said computer system includes a personal computer, a car navigation system, and a multi-functional smart card.

18. A computer system according to claim 11, wherein said storage medium is an optical disk.
FIG. 2
FIG. 4

- DIRECTORY
- OS 1
- OS 2
- OS 3
- ...
- APPLICATION 1
- APPLICATION 2
- ...
- DATA REGION
FIG. 5

1. ID (CIRCUIT PORTION)
2. S51: DISK INSERTED INTO DRIVE?
   - NO
   - YES: CHECK PC MODEL
3. S52: CHECK PC MODEL
4. S53: INSTRUCT TO LOAD OS CORRESPONDING TO MODEL
5. S54: IS LOADING ENDED?
   - NO
   - YES: START OS
6. PC
7. PC 11: OPTICAL DISK DRIVE UNIT
8. ID (DISK)
9. DMA
10. START OS
11. BUFFER MEMORY
FIG. 6

S61: IS DISK INSERTED INTO DRIVE?
- YES
- NO

S62: DISPLAY OS SELECTION SCREEN

S63: SELECTION?
- YES
- NO

S64: IS OS ON DISK?
- YES
- NO

S66: LOAD EXTERNAL OS THROUGH WARELESS COMMUNICATION

S65: INSTRUCT TO LOAD SELECTED OS

S67: IS LOADING ENDED?
- YES
- NO

S68: START OS

PC

13 DISPLAY UNIT

15 MOUSE

11 OPTICAL DISK DRIVE UNIT

ID (DISK)

3

16 BUFFER MEMORY

DMA

RADIO COMMUNICATION
FIG. 7

SET FOR CAR NAVIGATION

OPTICAL DISK DRIVE UNIT

ID INTERFACE

BUFFER MEMORY

33 DISPLAY UNIT

TOUCH PANEL

SPEAKER

MICROPHONE
FIG. 8

3

DIRECTORY
OS
APPLICATION
MAP DATA

ZOOM PROCESS
SHORTEST ROUTE
SEARCHING PROCESS
PREDICTED TIME
CALCULATION PROCESS

•
•
•
FIG. 10

SET FOR TELEVISION

OPTICAL DISK DRIVE UNIT

TELEVISION SET

REMOTE CONTROLLER

ID INTERFACE

BUFFER MEMORY
FIG. 13

ID (CIRCUIT PORTION)

S131
IS DISK INSERTED INTO DRIVE?

S132
LOAD PROGRAM (OS, APPLICATION)

S133
EXECUTE PROGRAM (OS, APPLICATION)

S134
DISPLAY CATALOG

S135
IS MERCHANDIZE SELECTED?

1ST
S136
PERFORM AUTOMATIC CALLING TO MAKER TO ORDER MERCHANDIZE

S137
ORDER OK?

2ND
S140
IS PROCESS COMPLETED?

DISPLAY "DISABLE ORDER"

S139
PERFORM AUTOMATIC CALLING TO CREDIT COMPANY TO MAKE ORDER REPORT

S138
YES

DISPLAY "ORDER OK"

S141
ORDER OK?

Television Set

OPTICAL DISK DRIVE UNIT

BUFFER MEMORY

REMOTE CONTROLLER

Television Set
**INTERNATIONAL SEARCH REPORT**

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC 6 G11B/24

According to international Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 G11B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 193 635 A (OMRON TATEISI ELECTRONICS) CO 10 September 1986</td>
<td>1,2,4,5, 9,11,12, 14,15</td>
</tr>
<tr>
<td></td>
<td>see abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 1, paragraph 1 - page 5, paragraph 1; figures 1-4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 0 190 733 A (TOKYO SHIBAURA ELECTRIC CO) 13 August 1986</td>
<td>1,2,4,5, 9,11,12, 14,15</td>
</tr>
<tr>
<td></td>
<td>see page 1, line 12 - page 3, line 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 4, line 23 - page 6, line 26; figures 1-5</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 0 662 674 A (FRANCE TELECOM ;POSTE (FR)) 12 July 1995</td>
<td>1,3,11, 13</td>
</tr>
<tr>
<td></td>
<td>see abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see column 1, line 3 - column 2, line 50</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

Date of the actual completion of the international search: 7 October 1998

Date of mailing of the international search report: 14/10/1998

Name and mailing address of the ISA
European Patent Office, P.B. 5816 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-3040, Tx 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer: Annibal, P
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 545 532 A (HEWLETT PACKARD CO)</td>
<td>1, 11</td>
</tr>
<tr>
<td></td>
<td>9 June 1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2-10, 12-18</td>
</tr>
<tr>
<td>P, A</td>
<td>PATENT ABSTRACTS OF JAPAN</td>
<td>1-18</td>
</tr>
<tr>
<td></td>
<td>vol. 098, no. 001, 30 January 1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&amp; JP 09 245381 A (SONY CORP), 19 September 1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see abstract</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>EP 0193635 A</td>
<td>10-09-1986</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 0190733 A</td>
<td>13-08-1986</td>
<td>JP 61177585 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3684932 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8055175 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5282771 A</td>
</tr>
</tbody>
</table>