WO 2006/110991 A1 |0 000000 0 0O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 October 2006 (26.10.2006)

O 10 AN

(10) International Publication Number

WO 2006/110991 Al

(51) International Patent Classification:
HO04Q 7/32 (2006.01) GOGF 9/445 (2006.01)

(21) International Application Number:

PCT/CA2006/000481
(22) International Filing Date: 31 March 2006 (31.03.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/672,096 18 April 2005 (18.04.2005) US

(71) Applicant (for all designated States except US): RE-
SEARCH IN MOTION LIMITED [CA/CA]; 295
Phillip Street, Waterloo, ON N2L 3W8 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRITSCH,
Brindusa L. [CA/CA]; 9 Cherry Post Crescent, Toronto,
ON M9IC 2J9 (CA). BIBR, Viera [CA/CA]; 6479 Mc-
niven Road, Box 828, Kilbride, ON LOP 1G0O (CA).
BLAGOJEVIC, Vladimir [CA/GB]; Flat 71, 284 Deans-
gate, Manchester M34LLA (GB). GORING, Bryan R.

[CA/CA]; 1542 Morse Place, Milton, ON LIT 5V4 (CA).
SHENFIELD, Michael [CA/CA]; 38 Stockdale Crescent,
Richmond Hill, ON L4C 389 (CA). VITANOYV, Kamen
B. [CA/CA]; 5530 Glen Erin Dr., Unit 30, Mississauga,
ON L5M 6ES8 (CA).

Agent: OGILVY RENAULT LLP; Suite 1600, 45
O’connor Street, Ottawa, Ontario K1P 1A4 (CA).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR CONTROLLING SOFTWARE VERSION UPDATES

AD-REG -,

Update
Files
7

Al ; 5

D
P
J
Data Network

(\&j

Updates |~

— @ @&
r]

Display | /|

native 34

uiD

(57) Abstract: Methods and systems are provided for control-
ling asynchronous distribution and installation of software up-
dates affecting applications installed on terminal devices of a
wireless network. A versioning schema enforced by the appli-
cation development environment enables the runtime environ-
ment of a terminal device to evaluate a software update to iden-
tify potential compatibility issues and control installation of the
update.

WO 2006/110991 A1 I} 110 A0VOH0 00 00000000

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, ning of each regular issue of the PCT Gazette.
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

WO 2006/110991 PCT/CA2006/000481

10

15

20

25

30

l

METHOD AND SYSTEM FOR CONTROLLING SOFTWARE

VERSION UPDATES

TECHNICAL FIELD

The present invention relates to wireless
communications devices, and in particular to a method and
system for <controlling software version updates for

wireless terminal devices.

BACKGROUND OF THE INVENTION

The number and variety of wireless terminal devices,
such as mobile telephones, wireless—enabled laptops and
PDAs with wireless communication capabilities, self-service
kiosks and two-way pagers are rapidly increasing. Software
applications which run on these devices increase their
utility. For example, a mobile phone may include an
application which retrieves the weather for a range of
cities, or a PDA may include an application that allows a
user to shop for groceries. These software applications
take advantage of the connectivity to a network in order to

provide timely and useful services to users.

As 1s well known in the art, software application
developers frequently produce new and/or updated versions
of their software. Such software updates may be released
on a very frequent basis, as, for example, in the case of
patches to resolve defects in previously released software.
Major upgrades may be released on, for example, a yearly or
bi-yearly basis, and often provide new functions to enhance

the utility of a particular device.

However, while software developers may readily develop
and release software updates, actual implementation of

updates on all of the affected devices is highly complex.

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

- 2 -

For example, in a wireless network, connectivity 1is
frequently intermittent, so that a particular device may
not be connected to a network when an update is released.
In this case, some means is needed to enable the update to
be downloaded and installed at some later time. Even when
this is accomplished, some devices may lack resources (such
as sufficient memory) to download and successfully install
a particular update. In other cases, an application update
may require that a device's controller software be updated
before the application update is installed. In still other
cases, a series of application updates must be downloaded
and installed in a particular order. Thus, for example, an
application upgrade which provides a new feature, must be
installed before a service patch which corrects several

issues including a deficiency in the new feature.

Accordingly, methods and systems for controlling the
installation of software updates to wireless terminal

devices remains highly desirable.

SUMMARY OF THE INVENTION

Accordingly, an object of the present invention is to
provide methods and systems for controlling the
installation of software updates to wireless terminal

devices.

Thus, an aspect of the present invention provides a
method of <controlling asynchronous installation of a
software update on a terminal device of a wireless network.
According to the present invention, an update notification
message in respect of the software update is received by an
Application Gateway hosting the terminal device. The
update notification message includes a software identifier

uniquely identifying an application affected by the update;

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

- 3 -

a version number associated with the software update; and
an address of an update script on a data network accessible
by the terminal device. The update script is adapted to
install the software update on the terminal device. The
update notification message 1is logged 1in an wupdates
registry, and a notification message is forwarded to the
terminal device. The notification message includes the
software identifier, the version number and the address of
the update script, so that the terminal device can access
and execute the wupdate script to install the software

update.

A further aspect of the present invention provides a
method of controlling installation of a software update on
a terminal device of a wireless network. According to the
present invention, an update-notification message including
information respecting an available software update 1is
received by a runtime environment of the terminal device.
The update notification message comprises: a software
identifier uniquely identifying an application affected by
the update; a version number associated with the software
update; and an address of an update script on a data
network accessible by the terminal device, the update
script being adapted to install the software update on the
terminal device. A compatibility of the software update is
determined using the update version number. Thereafter,
the update script 1is accessed using the address, and

executed to install the software update.

A still further aspect of the present invention
provides a method of enabling controlled distribution of
software updates affecting an application installed on a
plurality of terminal devices of a wireless network.

According to the present invention a version schema is

10

15

20

25

WO 2006/110991 PCT/CA2006/000481

- 4 -

defined including a respective field for each one of a
plurality of aspects of the application. An initial value
of each field is defined when an initial application load
is released. For each successive software update affecting
the application, each aspect of the application affected by
the software update is identified, and the value of the

respective field i1s incremented.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the ©present
invention will become apparent from the following detailed
description, taken in combination with the appended

drawings, in which:

FIG. 1 is a block diagram schematically illustrating a

network system;

FIG. 2 1is a block diagram schematically illustrating
components and operation of an application development
environment in accordance with an aspect of the present

invention;

FIG. 3 1is a message flow diagram schematically
illustrating a process for publishing a software upgrade in

accordance with an aspect of the present invention;

FIG. 4 1s a message flow diagram schematically
illustrating a process for installing a software upgrade on
a terminal device in accordance with an embodiment of the

present invention; and

FIG. 5 1is a message flow diagram schematically
illustrating a process for installing a software upgrade on
a terminal device in accordance with another embodiment of

the present invention.

WO 2006/110991 PCT/CA2006/000481

10

15

20

25

30

._.5__

It will Dbe noted that throughout the appended
drawings, like features are identified by 1like reference

numerals.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides methods and systems for
controlling the distribution and installation of software
updates on wireless terminal devices. Embodiments of the
invention are described below, by way of example only, with

reference to FIGs. 1-5.

Referring to FIG. 1, a system in accordance with a
representative embodiment of the present invention
generally comprises an Application Gateway (AG) 2 coupled
between a wireless network 4 and a data network 6, such as
for example, the Internet. The system also has an online
registry 8 including: a profiles registry 10 containing,
for each subscriber's terminal device(s) 1l4a, 14b, 1l4c, a
listing of information identifying software applications
stored on the respective terminal device; and an updates
registry 12 containing information identifying any

available application updates.

The AG 2 generally operates to mediate message flows
between terminal devices 14a, 14b, 1l4c connected to the
wireless network 4 and data services accessible through the
data network 6 in the manner described in Applicant's co-
pending United States Patent Publications Nos. 2004/0215700
and 2004/0220998, both of which are incorporated herein by

reference.

The online registry 8 can be co-resident with the AG 2
or may be located remotely from the AG and accessed by the

AG via the data network 6. In the embodiment of FIG. 1,

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

6.

the online registry 8 includes a profiles registry 10 and
an updates registry 12. The profiles registry 10 contains
a profile for each one of a plurality of terminal devices.
Each profile contains, at a minimum, a listing of software
identifiers (SW-IDs) uniquely identifying the runtime
environment (RE) and each application installed on the
respective terminal device. A respective "current" version
number of each application installed on the terminal device
may also be stored in the online registry 8 in association
with the respective SW-ID, or may be stored in the terminal
device. A separate scripts registry 40 contains, for each
software update, one or more scripts designed for

implementing the software update on a terminal device.

In general, the terminal devices can be any of a wide
variety of software-controlled wireless devices including
but not limited to wireless-enabled laptop computers 14a,
mobile or cellular telephones 14b, PDAs with wireless
communication capabilities 1l4c, self-service kiosks and
two-way pagers. As may be seen in FIG. 1, such devices
generally include a microprocessor 16 connected to an RF
section 18 for wireless communications, a memory 20 (at
least a portion of which will normally be non-volatile),
and a user interface (UI) 22 including a display 24 and one
or more user input devices (UID) 26, e.g. a keyboard,
thumb-wheel, stylus, microphone, etc.). The microprocessor
16 operates under software <control to ©provide the
functionality of the terminal device. Preferably, the
software is designed on a layered model, in which an RE 32
translates between application software 30 and the native
machine-language 34 of the terminal device to control the
terminal device hardware, and communicate with data
services. This layered software model, and the manner in

which it operates, 1is known from Applicant's co-pending

WO 2006/110991 PCT/CA2006/000481

10

15

20

25

30

- 7 -

United States Patent Publications Nos. 2004/0215700 and
2004/0220998. The RE can also maintain a terminal device
registry 28 (denoted “TD-REG” in FIG. 1) identifying each
application installed on the terminal device, and the
current version number of each application. Operation of
the RE to enable asynchronous distribution and installation
of software upgrades to terminal devices will be described

in detail below.

As described in Applicant's co-pending United States
Patent Publications Nos. 2004/0215700 and 2004/0220998,
operation of the AG 2 enables a software application
executing 1in a terminal device to communicate with data
services (not shown) offered through the data network 6.
This operation may, for example, include accessing and
downloading files from back-end data sources (not shown)
connected to the data network 6. As may be seen in FIG. 1,
and described 1in greater detail below, an application
developer (AD) 36 can also distribute and support new or
updated software through the data network 6. For example,
downloadable application software and installation scripts
can be stored in an application developer registry 38 which
can be accessed by users (either directly or indirectly)

through the data network 6.

Application Development Environment

Referring now to FIG. 2, the application developer

uses an application development toolkit (ADT) 52 of an

*application development environment (ADE) 50 running on a

computing device to <code, test, and debug application
software, in a manner generally known in the art. The
computing device can be a personal computer or laptop
connected or connectable to the data network or other

networked workstation. This same ADE is also used for

10

15

20

25

WO 2006/110991 PCT/CA2006/000481

- 8 -

developing subsequent updates of the application, again in
a manner known in the art. In accordance with the present
invention, the ADE 50 also includes a versioning module 70,
which automatically assigns a version number based on
changes made in the application source code during the
process of coding, testing, and debugging. The versioning
module 70 can also be used to generate an update script 60
which, when executed in a terminal device, will download

and install the update on the terminal device.

For example, the versioning module 70 can be used to

identify any of the following:

¢ changes in existing data components, such as data
structures, i.e. by adding or removing fields, or
changing field type definition; changes 1in global

variable definitions or enumerations;

e changes in existing messages, 1i.e. by adding or

removing fields, or changing field type definition;

e changes in existing application logic;

¢ new data components, messages or application logic

to be added to the application.

In each of these cases, the changes and additions
detected by the versioning module 70 are those relative to
the "current" version of the application (that is, the
initial release with any subsequently released updates
installed). As may be appreciated, detection of changes
can be performed by either real-time tracking of actions
(e.g. keystrokes) of the application developer during the
editing process using a revisions log 54, or by comparing

"before" and "after" versions of the application source

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

- 9 -

code or by any other means for comparing an updated version
of the application with a previous version of the
application to determine what changes have been made. In
either case, the versioning module 70 identifies new and/or
revised data components, messages, and application logic,
which are then written to one or more update files 58.
These update files 58 can then be saved to an update files
registry 42, which 1is preferably resident within the
application developer registry 38 as depicted in FIGS. 1
and 2. Alternatively, in the embodiment as shown in FIG.
2, a revisions log 54 tracks the changes made to the
application source code by the AD toolkit 52. It will be
appreciated that the versioning module 70 can contain the
revisions log 54 or the revisions log 54 can be a separate

module within the ADE 50.

In addition, an update script 60 can be generated to
control a terminal device to download and install the
update file(s) 58, as will be described in greater detail
below. The update script 60 can be saved to a scripts
registry 40, which 1is preferably resident within the

application developer registry 38 as depicted in FIG. 2.

If desired, a script editor module or update script
editor 56 can be provided to enable the application
developer to either compose the update script 60 manually,

or to review and edit an auto-generated update script.

The update script 60 may conveniently be developed in
a structured language, such as Java, JavaScript or XML,
which thereby enables the device to access one or more
back-end data sources, via the data network 6, during the
update process. This enables the update script 60 to
access and download the update file(s) 58 as needed, during

execution. This facilitates the asynchronous distribution

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

.10.

of the update, because the update script 60 can "pull" the
necessary update files 58 from the back-end data source(s)
during execution. Furthermore, in certain implementations,
the notification message for the upgrade could contain
enough information to enable the RE in the terminal device

to pull the application updates itself.

Versioning Schema

As mentioned above, the versioning module 70
automatically assigns a respective version number to the
initial release and each update of an application. In the
case of an initial release, any desired "initial" version
number can be used. However, following its initial
release, each subsequent update 1is assigned an auto-
generated version number based on the type of changes made
by that update. This arrangement has a number of
advantages. For example, because each version number is
assigned by the versioning module 70, consistency between
version numbers is enforced. This means, for example, that
a terminal device’s RE can use the version number of an
update to determine whether any other updates must be
installed first. Another advantage is that the RE of a
terminal device can evaluate the version number of an
update to detect potential compatibility issues, before

attempting to install the update.

Both of these functions are enabled by a versioning
schema that formats the version number into multiple
fields, with each field representing a respective different
aspect of the application. For example, the versioning
module 1is designed to detect changes in existing data
components, messages or logic, as well as the addition of
new data components, messages or logic. In principle, each

of these elements can be represented by a respective field

WO 2006/110991 PCT/CA2006/000481
- 11 -

of the version number. However, in practice it has been
found that satisfactory performance can be obtained using a
three-field schema of the form "Data.Messages.Features", as

described in Table 1 below.

Table 1

Field Description

Data Changes in existing Data definitions. This
may include, for example: changes in data
components (e.g. to add or remove a data
field, of change a field type definition);

persistent global variables; or enumerations.

Messages Changes in Existing Messages used by the

application. This may include, for example,
changes in message components (e.g. to add or
remove a field, change a field type

definition, or change a mapping).

Features Addition of features of the application. This

may, for example, include additions or changes
to application logic, screens and/or globals;
addition of new messages; and/or addition of

data components or fields.

With this versioning schema, each field of the version
number can be assigned an initial wvalue (e.g. D=1, M=1,
F=0) for the initial release of the application.
Thereafter, for each update release, the versioning module
automatically generates'a respective version number for the

update, by incrementing the value of the applicable fields.

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

12

For example, consider an application which is released
bearing the version number "1.1.0", as described above.
Following initial release, the application developer
produces an application update, which modifies existing
data fields, and adds new application logic. These changes
will be reflected in the update's version number by
incrementing the Data and Features fields. Thus, the first
update's version number will be 2.1.1. Following release
of the first update, its version number (2.1.1) becomes the
"current" version number of the application, against which
the next released application update will be compared.
Thus, for example, consider a second application update,
which modifies the format of an existing message. This
change will be reflected in the second update's version
number by incrementing the Messages field, so that the

second update's version number will be 2.2.1.

As will be appreciated, this pattern can be continued
for any number of updates, each of which may affect any one
or more aspects of the application. It will also be
appreciated that the version number schema can be extended
to provide finer granularity. For example, the Features
field could be replaced by a set of fields respectively
indicating the addition of new data, messages Or
application logic. In another example, a field could be
added to the version number to indicate whether or not the
RE must be updated before installation of the application
update.

It will also be appreciated that the present invention
is not limited to applications per se. For example, the
versioning number schema, and the updating methods
described herein may equally be applied to the RE itself,
thereby enabling controlled updating of the RE.

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

13

Asynchronous Software Distribution

Referring to FIG. 3, when the application developer
(AD) 36 1issues a software release (of either an initial
software load or an update), the versioning module assigns
a version number, and stores the update script(s) and
update file(s) in the AD registry 38. The AD 36 then sends
an update notification message to the AG 2. The update
notification message preferably includes a software
identifier (SW-ID) uniquely identifying the application,
the version number, and a link (e.g. a URL) to the update
script stored in the scripts registry 40. When the AG 2
receives the update notification message from the AD 36,
the AG 2 logs the update by storing the software 1ID,
version number and script URL in the updates registry 12.
Once the update has be logged by the AG 2, asynchronous
distribution to users' terminal devices can be accomplished
in a number of ways. Two representative distribution
scenarios are described below with reference to FIGs. 4 and

5.

FIG. 4 illustrates an asynchronous distribution
scenario which is initiated by the AG 2, for example, in
response to receipt of the update notification message from
the AD 36. In this case, the AG 2 uses the software ID
(e.g. contained in the update notification) to search the
profiles registry 10. This search returns information
(e.g. device IDs) identifying all terminal devices on which
the application has been installed. The AG 2 can then
generate and send a notification message to each of the
identified terminal devices. The notification message may,
for example, contain the software ID and version number of
the update, as well as a link (e.g. a URL) to the update
script stored in a scripts portion 40 of application

developer registry 38.

WO 2006/110991 PCT/CA2006/000481
- 14 -

Upon receipt of the notification message, the Runtime
Environment (RE) can extract the software ID and version
number from the message, and use this information to
determine whether or not the update can be safely installed

5 on the terminal device. This evaluation may take the form

of the following compatibility checks:

. Compare the "new" version number with the current
version number saved in the terminal device registry

(TD-REG) 28 to identify which aspects of the

10 application are changed by the update. This function
can, for example, be accomplished by field-wise
subtraction of the new and current version numbers.

For example, consider a case in which the current

version number is "2.2.1", and the new version number

15 contained in the notification message 1is "2.3.2".
Field-wise subtraction of the current version number

from the new version number vyields "0.1.1", which
indicates that the wupdate involves: no changes to

existing data components; a change to at least one

20 existing message; and adds at least one new feature.

. Determine whether any intervening updates must be
installed before the "current" update identified in
the notification message. This can be done using the
subtraction result calculated above. In particular,

25 if any field of the subtraction result has a value
greater than "1", then there is at least one update

that must be installed before the "current" update.

In general, addition of new features will not create
any compatibility issues. However, changes to existing
30 data components or messages can have compatibility

problems, because it there is a possibility that user-data

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

_15__

saved in the memory may not be compatible with the revised
data and/or message definitions. In such cases,
installation of the update will require conversion of the
saved data, and the ability to perform such conversion may
be limited by the hardware capabilities of the terminal
device. In addition, data conversion carries a risk that
some data may be corrupted or lost, and thus it is possible
that the user may prefer to not install the update, even if
the required conversion function is within the abilities of

the terminal device.

Accordingly, 1if the RE determines that the update
affects existing data components and/or existing messages,
then the RE can provide a warning message to the user,
indicating that an wupdate 1is available but that its
installation may cause a loss or corruption of data. The
user can then choose whether or not the update should be
installed. Alternatively, the update script defined by the
application developer using the AD tool may perform data

transformations on incompatible updates.

When (or if) the user elects to install the update, or
if the RE determines that there are no compatibility issues
(i.e. the update ONLY adds new features), the RE can
initiate installation of the update by opening the 1link
(URL) contained in the update notification message, and
thereby access and download the update script. Upon
successful download of the update script from the scripts
portion 40 of the application developer registry (AD-REG)
38, the RE can then launch the script, which then controls
the downloading and installation of the update files from
an update files portion 42 of the application developer

registry 38.

10

15

20

25

30

WO 2006/110991 PCT/CA2006/000481

16

Upon successful installation of the wupdate, the RE
then updates the "current" version number of the
application stored in the terminal device registry, using
the update version number received in the update
notification message, and sends an update complete message
to the AG 2. On receipt of the update complete message,
the AG 2 updates the device profile with the new version
number, to thereby indicate that the software update has

been successfully installed on the terminal device 14b.

A limitation of the scenario depicted in FIG. 4 1is
that the AG 2 initiates the update distribution scenario
(e.g. 1in response to receipt of the update notification
message from the AD 36) by sending notifications to every
terminal device on which the affected software is
installed. This can result in an undesirable flooding of
notification messages into the network, which may tax
wireless network Dbandwidth. In addition some terminal
devices may not be connected when the AG sends the
notifications, with the result that the "disconnected"”
terminal device could miss the update. These problems can
be overcome by the asynchronous distribution scenario

described below with reference to FIG. 5.

In the distribution scenario illustrated in FIG. 5,
asynchronous distribution 1is triggered by the terminal
device. In the illustrated example, the triggering event
is when the terminal device logs onto the AG 2, although
other events may also be used. For example, the RE could
send a message to the AG 2 to check for updates in
accordance with a predetermined schedule, or when an
application is launched on the terminal device 14b. In any
case, the AG 2 responds to the terminal device 14b by

accessing the terminal device's profile to identify each

10

15

20

25

WO 2006/110991 PCT/CA2006/000481

17

application installed on the terminal device 14b, and the
current version number. This information is then used to
search the updates registry 12 to identify any logged
update affecting the terminal device 14b, and the
corresponding update version numbers. Comparison between
the current and update version numbers then enables the AG
2 to determine whether there are any updates for the

terminal device 1l4b which have not yet been installed.

The AG 2 then formulates an appropriate update
notification message for each un-installed update, which 1is
forwarded to the terminal device 14b. Subsequent
processing by the terminal device 14b to examine the update
notification message and install wupdates follows the
process described above with reference to FIG. 4, that is,
the terminal device 14b checks compatibility, and then
installs the update by opening a link (URL) to download a
script from the AD-REG 38. Executing the script on the
terminal device enables access and downloading of the
updates files stored in the AD-REG 38. When the update is
complete, the terminal device signals the completion of the
update to the AG 2 by communicating to the AG the software
ID and the version number. The AG then updates the profile
in the profiles registry 10 by communicating the software

ID and the version number to the profiles registry 10.

The embodiments of the invention described above are
intended to be exemplary only. The scope of the invention
is therefore intended to be limited solely by the scope of
the appended claims.

WO 2006/110991 PCT/CA2006/000481

WE CLAIM:

1. A method of controlling asynchronous installation of
a software update on a terminal device of a wireless

network, the method comprising steps of:

receiving an update notification message in respect
of the software update, the update notification

message comprising:

a software identifier wuniquely identifying an

application affected by the update;

a version number associated with the software

update; and

an address of an update script on a data network
accessible by the terminal device, the
update script being adapted to install the

software update on the terminal device;

logging the update notification message in an updates

registry; and

forwarding a notification message to the terminal
device, the notification message including the
software identifier, the version number and the

address of the update script.

2. A method as claimed in claim 1, wherein the data
network is an Internet Protocol (IP) network, and the
address o©of an update script comprises a Uniform
Resource Locator (URL) address of the update script

on the IP network.

3. A method as claimed in claim 1, wherein the step of
logging the update notification message in a registry

comprises a step of storing at least the software

WO 2006/110991 PCT/CA2006/000481
- 19 —

identifier, the version number and the address of the

update script in the updates registry.

4, A method as claimed in claim 1, wherein the step of
forwarding the notification message comprises steps

of:

searching a profiles registry containing information
identifying each application installed on each
one of a plurality of terminal devices, to
identify each terminal device which is affected

by the software update; and

sending the notification message to each identified

terminal device.

5. A method as claimed in claim 4, wherein the profiles
registry comprises a plurality of profiles, each
profile being associated with a respective terminal
device and containing, for each application installed
on the respective terminal device, the respective
software identifier of the application, and a current
version number indicative of a version of the
installed application, and wherein the step of
searching the profiles registry comprises a step of
identifying each terminal device for which the
software identifier of the update matches that of an

application installed on the terminal device.

6. A method as claimed in claim 5, further comprising a
step of identifying each terminal device for which at
least one field of the version number associated with
the software update is greater than a corresponding

field of the current version number.

WO 2006/110991 PCT/CA2006/000481

- 20 -

7. A method as claimed in claim 1, wherein the step of
forwarding the notification message comprises steps

of:
receiving a message from the terminal device;

accessing a profile associated with the device, the
profile containing information identifying

software installed on the terminal device;

searching the updates registry using the profile to
identify any software updates affecting software

installed on the terminal device; and

sending a notification message to the terminal device

in respect of each identified software update.

8. A method as claimed in claim 7, wherein the profile
contains, for each software application installed on
the terminal device, the respective software
identifier, and a current version number indicative
of a version of the software application, and wherein
the step of searching the updates registry further

comprises steps of:

comparing the version number associated with the
software update with the current version number;

and

identifying each software update for which at least
one field of the associated version number is
greater than a corresponding field of the current

version number.

9. A method as claimed in claim 1 wherein the script is
further adapted to perform a data transformation on

an incompatible update.

WO 2006/110991 PCT/CA2006/000481

10.

11.

12.

21

A method of controlling installation of a software
update on a terminal device of a wireless network,

the method comprising steps of:

receiving an update-notification message comprising
information respecting an available software
update, the update notification message

comprising:

a software identifier uniquely identifying an

application affected by the update;

a version number associated with the software

update; and

an address of an update script on a data network
accessible by the terminal device, the
update script being adapted to install the

software update on the terminal device;

determining a compatibility of the software update

using the update version number;
accessing the update script using the address; and

executing the update script.

A method as claimed in claim 10, wherein the step of
determining a compatibility of the software update
comprises a step of comparing the update version
number to a current version number of the affected

application.

A method as claimed in claim 11, wherein the update
and current version numbers are defined in accordance
with a version schema comprising a respective field
for each one of a plurality of aspects of the

application, and wherein the step of comparing the

WO 2006/110991 PCT/CA2006/000481

13.

14.

15.

l6.

- 22 -

update version number to the current version number
comprises a step of subtracting a value of each field
of the current version number from the value of the

corresponding field of the update version number.

A method as claimed in claim 12, further comprising,
if a numerical value of any field of the subtraction
result is greater than 1, a step of determining that
at least one other software update must be installed

prior to installation of the software update.

A method as claimed in claim 12, wherein the version
schema comprises at least one "Data" field
corresponding to data components of the application,
and wherein the step of determining a compatibility
of the software update comprises, if the numerical
value of the "Data" field of the subtraction result
is greater than "0", determining that the software
update may require conversion of user data stored on

the terminal device.

A method as claimed in claim 12, wherein the version
schema comprises at least one "Messages" field
corresponding to message components of the
application, and wherein the step of determining a
compatibility of the software update comprises, if
the numerical value of the "Messages" field of the
subtraction result is greater than "0", determining
that the software update may require conversion of

user messages stored on the terminal device.

A method as claimed in claim 12, wherein the version
schema comprises at least one "RE" field

corresponding to a runtime environment of the

WO 2006/110991 PCT/CA2006/000481

17.

18.

19.

- 23 -

application, and wherein the step of determining a
compatibility of the software update comprises, if
the numerical wvalue of the "RE" field of the
subtraction result is greater than "0", determining
that a runtime environment of the application must be

updated before the software update.

A method as claimed in claim 10 wherein the script is
further adapted to perform a data transformation on

an incompatible update.

A system for controlling asynchronous installation of
a software update on a terminal device of a wireless

network, the system comprising:

a computing device connected to a data network for
communicating with an application gateway
mediating the data network and the wireless

network;

an application development environment running on the
computing device for enabling the application to
be updated and for further enabling update
scripts and update files to be uploaded to an
application developer registry that is accessible
through the data network for subsequent
downloading by the terminal device via the

application gateway.

The system as claimed in claim 18 further comprising

an online registry including:

a profiles registry containing, for each terminal
device, a listing of information identifying
software applications stored on the terminal

device; and

WO 2006/110991 PCT/CA2006/000481

20.

21.

22.

24

an updates registry containing information

identifying any available application updates.

The system as claimed in c¢laim 18 wherein the
terminal device comprises a memory for storing a
terminal device registry identifying software
applications loaded on the terminal devices and a
version number corresponding to each of the software

applications loaded on the terminal device.

The system as claimed in «c¢laim 18 wherein the
application development environment comprises a
versioning module for assigning a version number

based on changes made to the software application.

The system as claimed in claim 19 wherein the online

registry is co-resident with the application gateway.

WO 2006/110991

Figure 1

AD

36

Data Network

uP

Application(s)

native 34

30

Wireless Network

f18

RF Section

Y

Memory

1/5
AD-REG
/k 38
40
Update
Fil
iles 42
/
6

Y

Ul
Display

TN

uib

PCT/CA2006/000481

).

OL-REG.

Profiles

Updates

a

f10

f12

TD-REG.)
SW-ID | Ver#
XXX 1.1.0
yyy 1.2.1
"/

WO 2006/110991 PCT/CA2006/000481
Figure 2 2/5
f 50
4 ADE
Versioning
TN Mo7ioule
Revisions Update Script
AD Log Editor
Toolkit 24 56
52 Update files Update Script
— 58 60
-

[

(AD-REG)

P Update Files
\ /)

L

42

40

PCT/CA2006/000481

WO 2006/110991

3/5

4

-
(74N ‘#18A ‘Ql-MS)erepdn-boT
-
N
sejepdn sajyoid [~ 01 ov
'934-10 - 8

(78N ‘#IBA ‘Ql-MS)ANION

9¢

(g 190)s9)14- >

21015 #19A)s8l4-aNn
-
(#19ANduoS-an
1o\ ubissy
av
- = OF] siduos sal4 |- c¥
alepdn

U — _ 8¢

'O34-av

¢ ainbi4

PCT/CA2006/000481

WO 2006/110991

4/5

oy

g
(#I9A 'Al-MS)31y01d 81epdn | g
(#49A ‘Al-mS)ereidwios sjepdn
< 1duog
$9|l} 8)epdn pEOJUMOpP/SSB0Y ajnoax3y
(1duog) pepjumog
—
(74N)Mu usdo
ajepdn Jejsy
(79N ‘#I8A ‘QI-MS)AINON
—P
(@i ®o1neq)uiniey
A
(aI-ms)yotess
r Sa|i4 ¢l RS ()
SIS | | o endn b zp |s9vepdn| |semoid 0L C | oy avk - ﬁ
. - . _ 8 4
93y4-av U ge 934-10 T —

 ainbi4

PCT/CA2006/000481

WO 2006/110991

5/5

1)

g
(#19A 'Al-MS)alyoid alepdn (- —
(#19A ‘al-mS)e191dwoo sjepdn
< Jduog
sa|l} 8)epdn pPEOJUMOP/SS800Y 9)noex3]
(1duog) pedlumoq >
e}
(7"9N)Miu uedo
ajepdn |iejsuj
1 § v
(79N ‘#I8A ‘QI-MS)AmON
S# 1IN
atedwon
€ . 1] '
(79N ‘#I8A‘ai-ms)uinyay
-
(QI-ms)yosessg
. (] '
m“ JOA JUBLINYD ‘gI-MShoenxg
(gr-921n8Q) 9)y0id uadp -
(Q1-s01n8Qg)uobo
M\ 2l
s9|l4 1\ 2¥
SIS | f o ondn sepepdn | |semog [— OF 2| ov ar, _ |HH
8¢ 8 —
‘93AY-av =5 '93Y-10 ~]
m G

;ﬂ)

e
LL

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2006/000481

A

CLASSIFICATION OF SUBJECT MATTER
IPC: H040Q 7/32 (2006.01) , GO6F 9/445 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC: HO4L 29 (2006.01), HO4M1/725 (2006.01), HO4Q 7/32 (2006.01), GO6F 9/445 (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Epodoc, Delphion, Canadian Patent Database. Terms used: wireless, cellular, software, application(s), update, download, install,
notification, message, flag, version, log, registry.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2004/0203693 (Mehta et al.) 14 October 2004 (14-10-2004)
A US 2003/0186689 (Herle et al.) 2 October 2003 (02-10-2003)
A EP 1,489,501 (Herle et al.) 22 December 2004 (22-12-2004)
A US 6,304,881 (Halim et al.) 16 October 2001 (16-10-2001)
A US 5,896,566 (Averbuch et al.) 20 April 1999 (20-04-1999)
[] Further documents are listed in the continuation of Box C. [X] See patent famuly annex.
* Special categories of citec documents “T later document published after the international filing date or priarity
date and not in conflict with the ap}ﬁhcauon but cited to understand
“A” document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevence
“X” document of particular relevance; the claimed invention cannot be
“E” earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive
filing date step when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is “Y” document of particular relevance; the claimed invention cannot be
cited to establish the publication date of another citation or other considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination
being cbvious to a person skilled in the art
“O” document referring to an oral disclosure, use, exhibition or other means
“&” document member of the same patent family
“pr document published prior to the international filing date but later than

the priority date claimac

Date of the actual completion of the international search

18 July 2006 (18-07-2006)

Date of mailing of the international search report

24 July 2006 (24-07-2006)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001(819)953-2476

Authorized officer

Andrew O'Malley (819) 953-3481

Form PCT/ISA/210 (second sheet) (April 2005)

Page 2 of 3

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CA2006/000481

Patent Document Publication
Cited in Search Report Date

1US2004203693 14-10-2004
US2003186689 02-10-2003
EP1489501 22-12-2004
US6304881 16-10-2001
US5896566 20-04-1999

Patent Family
Member(s)

NONE
US2003027563 Al

CN1620168 A
1US2004261073 Al

US2002059256 Al
WO945451 A2

NONE

Publication
Date

06-02-2003

25-05-2005
23-12-2004

16-05-2002
10-09-1999

Form PCT/ISA/210 (patent family annex) (April 2005)

Page 3 of 3

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

