One embodiment relates to an adjustable stand for supporting plants for display in a container. The adjustable stand includes a base, configured for placement in the container; a plurality of risers extending generally upwardly from the base; a series of projections extending from each of the risers, and a platform having a portion configured to removably engage the projections on the risers. The projections are spaced apart from one another at predetermined intervals to define a plurality of elevations above the base. The platform removably engages the projections on the risers at each of the plurality of elevations.
ADJUSTABLE STAND FOR A PLANTER

BACKGROUND

[0001] The present invention relates generally to the field of adjustable brackets or stands for supporting plants and the like, and more particularly to an adjustable support for displaying various sized plants within various sized containers. Pots, planters, or other large containers are commonly used by landscapers and interior decorators. However, smaller plants or plants with shallow root systems may not require the full volume of the pot to accommodate them. So that such plants may be placed or displayed at an appropriate elevation such that they can be seen protruding from the pot, fillers are often used. Fillers such as blocks of foam, upended smaller pots, packing "peanuts", etc. may be used to raise the plants and avoid the need to fill the entire pot with dirt. The use of such fillers can be undesirable; however, if the arrangement of types of plants used in the pot are changed. Upended pots and blocks of foam may offer limited options for the height of the plant in the pot and foam "peanuts" and the like tend to cause a mess.

SUMMARY

[0002] One embodiment relates to an adjustable stand for supporting plants for display in a container. The adjustable stand includes a base, configured for placement in the container; a plurality of risers extending generally upwardly from the base; a series of projections extending from each of the risers, and a platform having a portion configured to removably engage the projections on the risers. The projections are spaced apart from one another at predetermined intervals to define a plurality of elevations above the base. The platform removably engages the projections on the risers at each of the plurality of elevations.

Another embodiment relates to an adjustable support for displaying plants in a container. The adjustable support includes a first elongated loop having substantially parallel sides that define a central region and end regions; a second elongated loop having substantially parallel sides that define a central region and end regions; a base with the end regions extending from the base to define risers; a series of supports defining a plurality of elevations above the base; and a platform having openings to receive the end regions of the loops and to engage the supports. The first elongated loop and the second elongated loop each have substantially parallel sides that define a central region and end regions. The end regions extend generally upwardly from the central region. The central regions of the first and second loops are coupled to one another to define the base. The series of supports extend along at least one of the parallel sides in the end regions of each loop from each of the risers. The platform engages the supports on each end region that correspond to any one of a plurality of predetermined elevation settings configured to display the plants in the container.

Another embodiment relates to an adjustable support for displaying plants in a container. The adjustable support includes a base; a plurality of risers extending upwardly from the base; and a platform having openings to receive the risers. The base has a plurality of feet configured to be supported on the container. The risers extend upwardly from the base and have supports positioned at least partially therealong at locations corresponding to predetermined display elevations for the plants. The platform has openings to receive the risers and to engage supports corresponding to any one of the predetermined display elevation. The risers are biased relative to a location of the openings in the platform to provide one of tension or compression on the platform.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a perspective view of a pot including a plant supported by an adjustable stand according to an exemplary embodiment.

[0006] FIG. 2 is an perspective view of an adjustable stand of FIG. 1 with a platform in a first position.

[0007] FIG. 3 is an perspective view of the adjustable stand of FIG. 1 with a platform in a second position.

[0008] FIG. 4 is an perspective view of the adjustable stand of FIG. 1 with a platform in a third position.

DETAILED DESCRIPTION

[0009] Referring to FIGS. 1, an adjustable stand 10 (e.g., rack, support, bracket, etc.) is shown according to an exemplary embodiment. Adjustable stand 10 is configured to be placed inside a relatively large pot or planter 12 and support a plant 14. Plants 14 used in pot 12 may have a shallow root system (e.g., less than 5-6 inches) that requires a space that is generally smaller than the volume of pot 12. Adjustable stand 10 may be adjusted to support plant 14 at a variety of heights or elevations. In this way, different plants may be placed in the pot and supported at a preferred height or elevation.

[0010] As shown in more detail in FIGS. 2-4, adjustable stand 10 includes a base 20, a plurality of risers 30 extending generally upwardly from base 20, a series of projections 40 extending from each of risers 30, and a platform 50 that engages projections 40. According to one exemplary embodiment, base 20 and risers 30 are formed by a first elongated loop 16 and a second elongated loop 18. Loops 16 and 18 are metal (e.g., wire, etc.) elongated loops that each have substantially parallel sides and are coupled together in an X-shape or pattern (e.g., substantially perpendicular to one another). According to one exemplary embodiment, loops 16 and 18 are coupled together with a clip 24. Clip 24 may be removed to allow loops 16 and 18 to be separated (e.g., for storage, transport, packaging, etc.). According to other exemplary embodiments, loops 16 and 18 may be permanently coupled together (e.g., by welding, etc.). Loops 16 and 18 have central regions that define base 20. The end regions of loops 16 and 18 extend upwardly from base 20 to define arms or risers 30. Portions of loops 16 and 18 may extend downwardly below base 20 to define supports or feet 22. According to an exemplary embodiment, feet 22 are formed between risers 30 and base 20. Providing feet 22 as far towards the outside of base 20 as reasonably possible is intended to form a generally stable support for adjustable stand 10.

[0011] A series of supports or projections 40 are shown to extend from risers 30. Projections 40 are spaced apart from each other at predetermined intervals to provide a series of elevations at which platform 50 may be supported. According to one exemplary embodiment, projections are substantially spherical bodies that are coupled (e.g., by welding, etc.) to risers 30 and extend outward from risers 30. According to other exemplary embodiments, projections 40 may be other forms such as L-shaped hooks, plates, shelves, cylindrical posts, etc. Projections 40 may extend inward (e.g., towards base 20) or outward (e.g., away from base 20). While the adjustable stand 10 shown in FIGS. 1-4 has projections 40
spaced apart to form four generally evenly distributed elevations, according to other exemplary embodiments more or fewer projections 40 may be provided or projections 40 may be unevenly distributed (e.g., to provide more elevations along a portion of the length of risers 30, etc.).

[0012] A platform 50 engages projections 40 and provides a shelf to support an object such as a potted plant. According to an exemplary embodiment, platform 50 is formed from metal wire (or other suitably durable material) similar to the wire that forms base 20 and risers 30. Platform 50 is shown to include a multitude of concentric circles 52 and a multitude of spokes 54 that extend generally from the middle of platform 50. Circles 52 and spokes 54 may be twisted together, welded together or otherwise coupled together. The open nature of platform 50 allows water from plants 14 displayed on adjustable stand 10 to drain through platform 50.

[0013] Circles 52 and spokes 54 form a multitude of openings 56 that are configured to receive risers 30. Platform 50 rests on projections 40 extending from risers 30. Projections engage an edge of openings 56 to support platform 50. In an exemplary embodiment shown in FIGS. 1-4, risers 30 are biased outward from base 20 and projections 40 and risers 30 engage the outermost circle 52 of platform 50. The tension on the platform 50 provided by the outward biasing of each of the multitude of risers 30 facilitates the removable coupling of platform 50 to the rest of adjustable stand 10 at one of the elevations provided by projections 40. According to various exemplary embodiments, projections 40 may extend inward and/or outward from risers 30 and risers 30 may be biased inward or outward to engage openings 56 in platform 50 in a variety of ways.

[0014] According to other alternative embodiments, the platform may have any of a variety of other shapes (e.g., square, rectangular, etc.), and with any of a wide variety of opening configurations (e.g., “basket-weave,” etc.), and may be made from a wide variety of materials (e.g., plastic, copper, etc.).

[0015] It is also important to note that the arrangement of the adjustable stand, as shown, are illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited herein. Many modifications are possible without departing from the scope of the invention unless specifically recited in the claims. Accordingly, all such modifications are intended to be included within the scope of the present disclosure as described herein. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and/or omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the exemplary embodiments of the present disclosure as expressed herein.

What is claimed is:

1. An adjustable stand for supporting plants for display in a container; the adjustable stand comprising:
a base, configured for placement in the container

2. The adjustable stand of claim 1 wherein the base comprises two pairs of wires arranged in the form of an X shape.

3. The adjustable stand of claim 2 wherein the risers comprise continuations of the pairs of wires extending upwardly from the base.

4. The adjustable stand of claim 3 wherein the continuations of the pairs of wires comprise a portion extending below the base to provide feet for the base.

5. The adjustable stand of claim 1 wherein the projections extend outwardly and the risers are biased in one of an inward or outward direction.

6. The adjustable stand of claim 5 wherein the platform comprises a plurality of concentric circles interconnected by a plurality of spokes.

7. The adjustable stand of claim 6 wherein the concentric circles and spokes of the platform define openings that receive the risers and constrain the position of the biased risers.

8. The adjustable stand of claim 7 wherein the concentric circles and the spokes are formed from wire.

9. The adjustable stand of claim 8 wherein a shape of the projections is substantially spherical to facilitate retention of the concentric circle wires between the riser and the projections.

10. An adjustable support for displaying plants in a container, comprising:
a first elongated loop having substantially parallel sides that define a central region and end regions, the end regions extending generally upward from the central region;
a second elongated loop having substantially parallel sides that define a central region and end regions, the end regions extending generally upward from the central region;
the central regions of the first and second loops coupled to one another to define a base with the end regions extending from the base to define risers;
a series of supports extending along at least one of the parallel sides in the end regions of each loop from each of the risers, the supports defining a plurality of elevations above the base;
a platform having openings to receive the end regions of the loops and to engage the supports on each end region that correspond to any one of a plurality of predetermined elevation settings configured to display the plants in the container.

11. The adjustable support of claim 10 wherein the loops comprise wire loops.

12. The adjustable support of claim 11 wherein the supports are projections extending from the risers.

13. The adjustable support of claim 10 wherein the platform comprises a framework and the openings are sized to receive the risers.
14. The adjustable support of claim 13 wherein the framework comprises a wire framework defining a circle and spoke pattern.

15. The adjustable support of claim 10 wherein the risers are biased relative to a location of the openings in the platform to provide one of tension or compression on the platform.

16. An adjustable support for displaying plants in a container, comprising:
 a base having a plurality of feet configured to be supported on the container;
 a plurality of risers extending upwardly from the base and having supports positioned at least partially therealong at locations corresponding to predetermined display elevations for the plants;
 a platform having openings to receive the risers and to engage supports corresponding to any one of the predetermined display elevations; wherein the risers are biased relative to a location of the openings in the platform to provide one of tension or compression on the platform.

17. The adjustable support of claim 16 wherein the base, feet and risers are formed by two pairs of wires joined in a substantially perpendicular orientation.

18. The adjustable support of claim 17 wherein the two pairs of wires are releasably secured in the substantially perpendicular orientation by a clip.

19. The adjustable support of claim 17 wherein the supports comprise projections extending from the risers.

20. The adjustable support of claim platform comprises a framework with openings configured to permit drainage from plants displayed thereon.