Title: DISTANCE MEASUREMENT APPARATUS AND RELATED METHODS

Abstract: A distance measurement apparatus arranged to measure the distance to an object (106) comprising a first sonic transmitter (100) arranged at a first distance (h1) from that object and a second sonic transmitter (102) arranged at a second distance (h2) from that object (100), wherein the first and second distances are different, the first (100) and second (102) transmitters being controlled by processing circuitry (108) and the first and second transmitters being arranged such that sonic pulses emitted, in use, are incident upon that object (106) and the apparatus further comprising at least one sonic receiver (100) arranged to receive a plurality of reflected sonic pulses and generate an output therefrom and the processing circuitry (108) being arranged to receive the output, determine the times since the first and second pulses were emitted and generate a distance to that object from the determined times.
DISTANCE MEASUREMENT APPARATUS AND RELATED METHODS

Field of the invention

This invention relates to a distance measurement apparatus and related methods. In particular, but not exclusively, the invention relates to an apparatus and method for measuring the level of a fluid in a tank, channel or the like. More specifically, but again not exclusively, an apparatus and a method for determining fluid flow based upon a level measurement are provided.

Background of the invention

Ultrasound is commonly used to measure distances to an object. In many embodiments this measurement is achieved by the transmission of an ultrasonic pulse from a transmitter and subsequently timing how long it takes for the reflection of that pulse to be received from the object. Often a transceiver is used wherein the transmitter is used both to generate the ultrasonic pulse and receive the reflection. The time that the pulse has taken to reach the object and return can be used to calculate the distance to the object if the speed of sound in the medium in which the sound pulse has been transmitted is known.

The accuracy of this technique is affected by various factors which include the component fluids, which would generally be gases, which make up the medium in which the sound pulse travels and the temperature of the medium. If either the component fluids or the temperature varies then the speed of sound changes and the calculation is inaccurate.
It is often necessary to measure the level of a liquid within a container and such level measurement provides one example of a distance measurement which has been made using ultrasound. In some situations, such as in a tank, this is useful to determine the volume of liquid in the container. In other situations, such as within a primary element of a flume or weir, this is useful to determine the rate at which fluid flows through the primary element.

In addition to measuring the level of fluid in a container or flume it is also known to use ultrasound to measure the distance to an object and be incorporated into devices such as collision detectors, distance measuring devices and the like.

In one particular application, given by way of example only but which is convenient to describe, measuring the rate of flow is becoming more important as companies are being monitored more closely as to how much waste they discharge and are being charged accordingly. It is therefore desirable to be as accurate as possible.

As discussed above one prior art technique of determining a level is to use an ultrasonic pulse. However, in an outside environment the temperature, and thus the speed of sound in air, varies by on the order of 50° Celcius over the operating conditions which may be experienced.

Techniques have been proposed which try to reduce this problem. Such techniques have included providing temperature sensors. However, simply providing a temperature sensor does not provide a suitable solution since direct radiated heat from the sun may cause a false reading, there may be too much lag in the reading taken by the sensor, etc.
It is known to provide shielding to shield the sensor from direct sunlight, however, such shielding can itself provide a further thermal mass which increases the lag experienced by the sensor.

It is also known to provide reference distances, by provision of a peg or the like. The reference distance can allow any measurements that have been taken to be corrected for temperature variation; since the reference distance is known then readings can be adjusted until calculations give the correct distance for the reference distance. However, such techniques are only accurate whilst the reference distance is accurate. Foreign bodies can become deposited on the peg, etc., for example, when a flood occurs, ice may form on the peg, etc. all of which can seriously affect the accuracy of readings taken.

Summary of the invention

According to a first aspect of the invention there is provided a distance measurement apparatus arranged to measure the distance to an object comprising a first sonic transmitter arranged at a first distance from that object and a second sonic transmitter arranged at a second distance from that object, wherein the first and second distances are different, the first and second transmitters being controlled by processing circuitry and the first and second transmitters being arranged such that sonic pulses emitted, in use, thereby are incident upon that object and the apparatus further comprising at least one sonic receiver arranged to receive a plurality of reflected sonic pulses and generate an output therefrom, and the processing circuitry being arranged to receive the output, determine the times since the first and second pulses were emitted and generate a distance to that object from the determined times.
Such an apparatus is thought to be advantageous because use of the two sensors allows a measurement of the distance to an object to be made which is generally insensitive to temperature.

The use of two transmitters is advantageous because it increases the power transmitted within the system which should make the distance measurement less prone to error, more immune to noise, etc. Furthermore, determining the distance from at least one receiver is believed to be advantageous since this removes the need to synchronise the signals received from more than one receiver, does not introduce the possibility of different gains being applied by each receiver circuit, etc.

Generally, the first and second transmitters are caused to emit a sonic pulse at substantially the same time which helps reduce the complexity of the calculations that are performed in order to calculate the distance to the object. In other embodiments it would be possible to cause the first and second transmitters to generate sonic pulses at different times.

Conveniently, the first and second transducers are arranged to emit ultrasound.

In one embodiment, at least one of, and possibly both of the first and second transducers comprises a transceiver; i.e. a device which is arranged to act as both a receiver and a transmitter. As such, the receiver may be provided by the same device as one of the transmitters. Such a device may be convenient since it may provide the required functionality within a more compact space.

In other embodiments a receiver may be provided as a separate device from either of the transmitters. In such an embodiment it would be
convenient if the receiver were mounted at substantially the same distance from an object to be measured as one of the transmitters.

Generally both of the first and second transmitters are arranged such that they emit a sonic pulse which is generally along a line perpendicular to the object. However, it is convenient if the first and second transmitters are offset from one another, in a direction substantially transverse to a perpendicular line to the object to be measured from the transmitter. Such an arrangement is convenient as can prevent one of the two transmitters from obstructing the signal emitted by the other of the transmitters such as, for example, if the transmitters were in line with one another. Generally, the offset is small such that the or each receiver of the transmitted pulse still receives the plurality of sonic pulses along a line generally perpendicular to the object.

In some embodiments, the object to which a distance is to be measured comprises the surface of a liquid. Such an embodiment may provide a level measurement apparatus which would find utility in an apparatus such as determining the level of fluid in a tank.

The apparatus may be provided in association with a weir or flume and the object to which a distance is to be measured comprises the surface of a liquid flowing through the weir or flume. In such an embodiment, the processing circuitry may be arranged to calculate the flow of liquid through a channel in which the weir or flume is positioned.

According to a second aspect of the invention there is provided a method of measuring the distance to an object, the method comprising

1. timing a first time of flight of a first sonic pulse emitted from transmitter at a first distance from the object;
2. timing a second time of flight of a second sonic pulse emitted from transmitter at a second distance from the object;
3. using the first and second time of flights to calculate the distance from a receiver, used to receive the sonic pulses, to the object.

Generally, the method will cause the sonic pulses to be emitted from transmitters at substantially the same time which can help to reduce the complexity of the calculation of the distance to the object.

Conveniently, the sonic pulses comprise ultrasound.

The method may comprise using one of the transmitters as a receiver. Such a method can help to reduce the complexity of the apparatus needed and also help to simplify the calculations needed to determine the distance to the object.

The method may in particular measure the distance to the surface of a liquid; i.e. the object may comprise the surface of a liquid. Such a method may find application in measuring the level of a fluid in a tank or the like. In other embodiments the method may be used to determine the rate of flow of liquid in a channel.

The method of the second aspect of the invention may comprise and of the features discussed in relation to the first aspect of the invention.

According to a third aspect of the invention there is provided a kit comprising a first and a second transceiver which are arranged to be configured to provide either the first or second aspects of the invention.
According to a fourth aspect of the invention there is provided a machine readable medium containing instructions which when read by a processing circuitry cause that processing circuitry to provide the method of the second aspect of the invention.

According to a fifth aspect of the invention there is provided a flow measurement apparatus arranged to be positioned above a channel comprising a first sonic transmitter arranged at a first height above a surface to be measured and a second sonic transmitter arranged at a second height above a surface to be measured, wherein the first and second heights are different, the first and second sensors being controlled by processing circuitry, the first and second sensors being arranged such that sonic pulses emitted, in use, thereby are incident upon that surface and the apparatus further comprising at least one sonic receiver arranged to receive a plurality of reflected sonic pulses and generate an output therefrom, and the processing circuitry being arranged to receive the output, determine the times since the first and second pulses were emitted and generate a distance to the surface from the determined times and being further arranged to calculate the flow of a liquid through the channel from the distance to the surface.

According to a sixth aspect of the invention there is provided a machine readable medium containing instructions which when read by a processing circuitry cause that processing circuitry to perform as the apparatus of the first or sixth aspects of the invention.

The machine readable medium referred to above may be any of the following: a floppy disk, a CD ROM/RAM, a DVD ROM/RAM (including -R/-RW or +R/+RW), an HD DVD, a Blu ray™ disc, a hard drive, a memory (including an SD card, a memory stick™, Flash card,
memory stick, etc or any semiconductor memory), a transmitted signal (including an Internet download, an FTP transfer, or the like), a wire.

Brief description of the drawings

There now follows, by way of example only, a detailed description of the invention with reference to the accompanying Figures of which:

- **Figure 1** schematically shows how an embodiment of the invention is arranged;

- **Figure 2** shows components of an embodiment of the invention;

- **Figure 3** schematically shows the outputs of a sensor of an embodiment of the invention;

- **Figure 4** is a schematic diagram of how an embodiment of the current invention may be used; and

- **Figure 5** is a flow chart outlining a method of using an embodiment of the invention.

Detailed description of the drawings

Figure 1 shows how a first sensor 100 and a second sensor 102 are arranged within a distance measurement apparatus 104 above a surface 106. In this embodiment the surface provides an object to which it is desired to know the distance. The surface could for example be the surface of a liquid in a tank, or in a channel or it could be part of an object that it is desired to avoid using a collision avoidance system, or the like.
The first sensor 100 is positioned at a first height hi above the surface and the second sensor 102 is positioned at a second height h2 above the surface.

5

In this embodiment both of the first sensor 100 and the second sensor 200 are transceivers; that is they are arranged to be both transmitters to transmit sonic pulses toward the surface 106 and also as receivers arranged to receive sonic pulses reflected from the surface 106. In other embodiments the first 100 and second 102 sensors need not be transceivers and could be a separate transmitter and a separate receiver. In some embodiments only a single receiver is provided.

In this embodiment, the first 100 and second 102 sensors are arranged to emit and receive ultrasonic sonic pulses. The pulses emitted by the sensors 100, 102 are substantially perpendicular to the surface 106. The second sensor 102 is offset, in a direction transverse a line perpendicular from the surface 106 to the second sensor 102, by a distance L. This offset ensures that the first sensor 100 does not obstruct the sonic pulse emitted by the second transmitter 102.

As seen from Figure 2 each of the first 100 and second 102 sensors is connected to processing circuitry 108. The processing circuitry 108 controls when the sensors 100, 102 emit a pulse and also processes the outputs generated by the sensors 100, 102 when they receive a reflected pulse 110 from the surface 106. In the embodiment being described the processing circuitry 108 is arranged to receive an output from only the first sensor 100. In other embodiments, the processing circuitry could be arranged to receive outputs from both sensors 100, 102 or could be arranged to receive the output from the second sensor 102.
The distance of offset L between the first and second sensors 100, 102 is small such that the reflected pulse 110 received but the first sensor 100 has still travelled substantially perpendicularly to the surface 106 to the first sensor 100. However the processing circuitry 108 may be arranged to apply a correction to its determination of the heights h₁ and/or h₂ to account for the offset L.

The processing circuitry will generally comprise a processor and associated memory which together are arranged to execute software to cause the processing circuitry to function as desired. In such embodiments, the processor may be, or may be similar to a Pentium™, or Athlon™ class processor. In other embodiments, the processing circuitry does not contain a processor and comprises dedicated circuitry (which might be analogue components and/or Field Programmable Gate Arrays (FPGA's) or the like arranged to provide the desired functionality.

Figure 4 schematically shows one possible embodiment in which the distance measurement apparatus may be used. In this embodiment the distance measurement apparatus is providing a flow measurement apparatus.

Figure 4 shows a channel 400 through which a liquid 402 flows. The channel 400 comprises a contraction 404 which causes liquid flowing in a fast flowing manner at an entry end region 406 of the channel to change to a slow moving liquid at an exit end region 408 via a hydraulic jump. In such an arrangement, the depth of the liquid 402 in the entry end region 406 is directly proportional to the speed of the liquid. Thus, if the level of the liquid is determined the flow of the liquid can be calculated. Thus, a level measurement apparatus 104 as described in relation to Figures 1 and 2, may be positioned above the entry end region 406.
In use (which is described in relation to the flow chart of Figure 5), the processing circuitry is arranged to cause both of the sensors 100, 102 to emit a pulse at substantially the same time 500. In one embodiment, a pin (i.e. an input) which causes each of the sensors 100, 102 to emit a pulse when a voltage is applied thereto, are connected to one another to ensure that both of the sensors 100, 102 emit a pulse at the same time.

As will be seen from Figure 2 the pulse emitted from the second sensor 102 travels a distance of 2hl + Δh before it is received at the first sensor 100. The pulse emitted from the first sensor 100 travels a distance of 2hl before it is received back at the first sensor 100.

Such pulses are schematically shown in Figure 3. A region 300 to the left of the Figure indicates a time when the sensor 100 is still ringing after emitting the pulse. A first pulse 302 is received 502 at time 1 corresponding to a path travelled of 2hl and a second pulse 304 is received 504 at time 2 corresponding to a path travelled of 2hl + Δh.

The distance between the two sensors 100, 102 (i.e. Δh) is known and as such the time difference between the first pulse 302 and the second pulse 304 is the time taken for the pulse to travel a distance of Δh. Therefore, the speed of sound in the current air conditions could be calculated and used to calibrate the time it takes the either of the pulses to reach the first sensor 100. Should the current speed of sound be determined, it would be appropriate to calculate it at step 506. However, in other embodiments, the speed of sound need not be calculated and subsequent calculations may be simply based upon the times that the pulses are received. Such a time based calculation inherently uses the actual speed of sound in the current conditions.
The first pulse 302 travels a distance of $2h$, and the second pulse 304 travels a distance of $2h + \Delta h$. Thus, the distance from either of the sensors 100, 102 to the surface 106 can be determined. This determination effectively uses the actual speed of sound in air for the present conditions it is calibrated according to the current conditions irrespective of the surrounding temperature or solar radiation patterns.

In the embodiment being described, it is the first sensor 100 which receives the pulses 302, 304 but this need not be the case and it would be possible for the second sensor 102, or indeed both, to act as a receiver.

In the embodiment shown in Figure 4, the surface 106 is provided by the surface of the liquid 402 and knowing the distance from either of the sensors 100, 102 to the liquid surface allows the depth of the liquid in the channel 400 to be determined from the geometry of the channel 400.

Since the flow rate in the depth of the liquid in the exit end region 408 of the channel 400 is proportional to the flow rate knowing the depth of the liquid allows the flow rate to be determined and the processing circuitry is further arranged to perform this calculation.
1. A distance measurement apparatus arranged to measure the distance to an object comprising a first sonic transmitter arranged at a first distance from that object and a second sonic transmitter arranged at a second distance from that object, wherein the first and second distances are different, the first and second transmitters being controlled by processing circuitry and the first and second transmitters being arranged such that sonic pulses emitted, in use, thereby are incident upon that object and the apparatus further comprising at least one sonic receiver arranged to receive a plurality of reflected sonic pulses and generate an output therefrom and the processing circuitry being arranged to receive the output, determine the times since the first and second pulses were emitted and generate a distance to that object from the determined times.

2. A distance measurement apparatus according to claim 1 wherein the first and second transmitters emit a sonic pulse at substantially the same time.

3. A distance measurement apparatus according to claim 1 wherein the first and second transmitters emit a sonic pulse at different times.

4. A distance measurement apparatus according to any preceding claim wherein the sonic pulse is an ultrasound pulse.

5. A distance measurement apparatus according to any preceding claims wherein at least one of the sonic transmitters is also a receiver.

6. A distance measurement apparatus according to claim 5 wherein the first and second sonic transmitters are also receivers.
7. A distance measuring apparatus according to claim 1 wherein a sonic receiver is mounted at substantially the same distance from the object as one of the transmitters.

8. A distance measuring apparatus according to any preceding claim wherein the first and second transmitters are arranged such that they emit a sonic pulse which travels along a line substantially perpendicular to the object.

9. A distance measuring apparatus according to any preceding claim in which the first and second transmitters are offset from one another, in a direction substantially transverse a perpendicular line between one of the first and second transmitters and the object.

10. A distance measuring apparatus according to claim 9 in which the offset is small such that a reflected sonic pulse received by the receiver has travelled substantially along a line perpendicularly to the receiver from the object.

11. A distance measuring apparatus according to claim 9 or 10 in which the processing circuitry is arranged to take in to account the offset when determining the distance to that object from either the first and/or second transmitter.

12. A distance measuring apparatus according to any preceding claim wherein the object to which a distance is to be measured comprises a surface of a liquid.

13. A distance measuring apparatus according to claim 12 in which the surface of a liquid is flowing through a weir or flume.
14. A distance measuring apparatus according to claim 13 wherein the processing circuitry is further arranged to utilise the distance measured calculate the flow of liquid through a channel in which the weir or flume is positioned.

15. A method of measuring the distance to an object, the method comprising:

- timing a first time of flight of a first sonic pulse emitted from a transmitter at a first distance from the object;
- timing a second time of flight of a second sonic pulse emitted from a transmitter at a second distance from the object, and
- using the first and second times of flight to calculate the distance from a receiver, used to receive the sonic pulses, to the object.

16. A method according to claim 15 wherein the sonic pulses are emitted from one or more transmitters at substantially the same time.

17. A method according to claim 15 or claim 16 wherein the sonic pulses comprise ultrasound.

18. A method (a) according to any one of claims 15 to 17 wherein at least one of the transmitters in a receiver.

19. The method (a) according to any one of claims 15 to 18 wherein the method is utilised in measuring the level of a fluid in a tank or in determining the rate of flow of liquid in a channel.

20. A kit comprising a first and a second transceiver which are arranged to be configured to provide either or both of an apparatus according to any one of claims 1 to 14 or be used in a method according to any one of claims 15 to 19.
21. A machine readable medium containing instructions that when read by a processing circuitry cause that processing circuitry to provide the method of any one of claims 15 to 20.

22. A flow measurement apparatus arranged to be positioned above a channel the apparatus comprising a first sonic transmitter arranged at a first height above a surface to be measured and a second sonic transmitter arranged at a second height above the surface to be measured, wherein the first and second heights are different, the first and second transmitters being controlled by processing circuitry, the first and second sensors being arranged such that sonic pulses emitted in use are incident upon the surface to be measured and the apparatus further comprising at least one sonic receiver arranged to receive a plurality of reflected sonic pulses and generate an output therefrom, the processing circuitry being arranged to receive the output, determine the times since the first and second pulses were emitted and generate a distance to the surface from the determined time and further calculating the flow of a liquid through the channel from the distance to the surface.

23. A machine readable medium containing instructions which when read by processing circuitry cause that processing circuitry to perform as the apparatus of claim 22 or claims 1 to 14.

24. A machine readable medium according to claim 24 wherein the machine readable medium comprises any of the follow; a floppy disk, a CD ROM/RAM, a DVD ROM/RAM (including -R/-RW or +R/+RW) an HD DVD, a Blu Ray™ disc a hard drive memory (including an SD card, a memory stick™, flash card; or any semiconductor memory) a transmitted signal (including an internet download, a FTP transfer or the like) or a wire.
25. A distance measurement apparatus arranged to measure the distance to an object compressing
at least a first signal transmitter;
at least a first signal receiver;
at least one of a second signal transmitter and a second signal receiver, the or each signal transmitters being arranged to emit at least one signal incident in use on the object and the or each signal receivers being arranged to receive the or each signal;
the or each transmitter and the or each receiver being controlled by processing circuitry
wherein the or each signal transmitter and the or each signal receivers are arranged such that there is a distance between first and second transmitters or a distance between first and second receivers such that the processing circuitry can determine the times between transmissions and receipt of the or each signal and generate a distance to the object from the determined times.

26. A method of measuring the distance to an object, the method comprising
timing a first time of flight of a signal emitted from a first transmitter at a first distance from the object to a first receiver
timing a second time of flight from either a second transmitter at a second distance from the object to the first receiver or from the first transmitter to a second receiver at a second distance from the object using the first and second times of flight to calculate a distance from the or each receiver to the object.

27. A distance measurement apparatus arranged to measure the distance to an object utilising at least one signal transmitter and at least one signal receiver wherein the measurement of the distance to the object is substantially insensitive to temperature.
1. A distance measurement apparatus arranged to measure the distance to an object comprising a first sonic transmitter arranged at a first distance from that object and a second sonic transmitter arranged at a second distance from that object, wherein the first and second distances are different, the first and second transmitters being controlled by processing circuitry and the first and second transmitters being arranged such that sonic pulses emitted, in use, thereby are incident upon that object and the apparatus further comprising at least one sonic receiver arranged to receive a plurality of reflected sonic pulses and generate an output therefrom and the processing circuitry being arranged to receive the output, determine the times since the first and second pulses were emitted and generate a distance to that object from the determined times.

2. A distance measurement apparatus according to claim 1 wherein the object comprises a surface of a liquid.

3. A distance measurement apparatus according to claim 1 wherein the first and second transmitters emit a sonic pulse at substantially the same time.

4. A distance measurement apparatus according to claim 1 wherein the first and second transmitters emit a sonic pulse at different times.

5. A distance measurement apparatus according to any preceding claim wherein the sonic pulse is an ultrasound pulse.

6. A distance measurement apparatus according to any preceding claims wherein at least one of the sonic transmitters is also a receiver.
7. A distance measurement apparatus according to claim 6 wherein
the first and second sonic transmitters are also receivers.

8. A distance measuring apparatus according to claim 1 wherein a
sonic receiver is mounted at substantially the same distance from the
object as one of the transmitters.

9. A distance measuring apparatus according to any preceding claim
wherein the first and second transmitters are arranged such that they emit
a sonic pulse which travels along a line substantially perpendicular to the
object.

10. A distance measuring apparatus according to any preceding claim
in which the first and second transmitters are offset from one another, in
a direction substantially transverse a perpendicular line between one of
the first and second transmitters and the object.

11. A distance measuring apparatus according to claim 10 in which the
offset is small such that a reflected sonic pulse received by the receiver
has travelled substantially along a line perpendicularly to the receiver
from the object.

12. A distance measuring apparatus according to claim 10 or 11 in
which the processing circuitry is arranged to take into account the offset
when determining the distance to that object from either the first and/or
second transmitter.

13. A distance measuring apparatus according to any preceding claim
wherein the object to which a distance is to be measured comprises a
surface of a liquid.
14. A distance measuring apparatus according to claim 13 in which the surface of a liquid is flowing through a weir or flume.

15. A distance measuring apparatus according to claim 14 wherein the processing circuitry is further arranged to utilise the distance measured to calculate the flow of liquid through a channel in which the weir or flume is positioned,

16. A method of measuring the distance to an object, the method comprising:

- timing a first time of flight of a first sonic pulse emitted from a transmitter at a first distance from the object;
- timing a second time of flight of a second sonic pulse emitted from a transmitter at a second distance from the object, and
- using the first and second times of flight to calculate the distance from a receiver, used to receive the sonic pulses, to the object.

17. A method according to claim 16 wherein the sonic pulses are emitted from one or more transmitters at substantially the same time.

18. A method according to claim 16 or claim 17 wherein the sonic pulses comprise ultrasound.

19. A method (a) according to any one of claims 16 to 18 wherein at least one of the transmitters in a receiver.

20. The method (a) according to any one of claims 16 to 19 wherein the method is utilised in measuring the level of a fluid in a tank or in determining the rate of flow of liquid in a channel.
21. A kit comprising a first and a second transceiver which are arranged to be configured to provide either or both of an apparatus according to any one of claims 1 to 15 or be used in a method according to any one of claims 16 to 20.

22. A machine readable medium containing instructions that, when read by a processing circuitry cause that processing circuitry to provide the method of any one of claims 16 to 20.

23. A flow measurement apparatus arranged to be positioned above a channel the apparatus comprising a first sonic transmitter arranged at a first height above a surface to be measured and a second sonic transmitter arranged at a second height above the surface to be measured, wherein the first and second heights are different, the first and second transmitters being controlled by processing circuitry, the first and second sensors being arranged such that sonic pulses emitted in use are incident upon the surface to be measured and the apparatus further comprising at least one sonic receiver arranged to receive a plurality of reflected sonic pulses and generate an output therefrom, the processing circuitry being arranged to receive the output, determine the times since the first and second pulses were emitted and generate a distance to the surface from the determined time and further calculating the flow of a liquid through the channel from the distance to the surface.

24. A machine readable medium containing instructions which when read by processing circuitry cause that processing circuitry to perform as the apparatus of claim 23 or claims 1 to 15.

25. A machine readable medium according to claim 24 wherein the machine readable medium comprises any of the follow; a floppy disk, a CD ROM/RAM, a DVD ROM/RAM (including -R/-RW or +R/+RW) an
HD DVD, a Blu Ray™ disc, a hard drive memory (including an SD card, a memory stick™, flash card; or any semiconductor memory) a transmitted signal (including an internet download, a FTP transfer or the like) or a wire.

26. A distance measurement apparatus arranged to measure the distance to an object compressing
 at least a first signal transmitter;
 at least a first signal receiver;
 at least one of a second signal transmitter and a second signal receiver, the or each signal transmitters being arranged to emit at least one signal incident in use on the object and the or each signal receivers being arranged to receive the or each signal;
 the or each transmitter and the or each receiver being controlled by processing circuitry
 wherein the or each signal transmitter and the or each signal receivers are arranged such that there is a distance between first and second transmitters or a distance between first and second receivers such that the processing circuitry can determine the times between transmissions and receipt of the or each signal and generate a distance to the object from the determined times.

27. A method of measuring the distance to an object, the method comprising
 timing a first time of flight of a signal emitted from a first transmitter at a first distance from the object to a first receiver
 timing a second time of flight from either a second transmitter at a second distance from the object to the first receiver or from the first transmitter to a second receiver at a second distance from the object using the first and second times of flight to calculate a distance from the or each receiver to the object.
3/3

1. Emit pulse from first and second sensors together (500)
2. Receive first pulse at first sensor (502)
3. Receive second pulse at first sensor (504)
4. Calculate speed of sound in air (506)
5. Calculate distance from first sensor to surface using speed of sound (508)
6. Determine flow rate from height of surface (510)

Fig. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G01F23/296 G01S15/10

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GOIF GOIS

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB 236 023 A (ALEXANDER BEHM) 2 July 1925 (1925-07-02) the whole document</td>
<td>1-27</td>
</tr>
</tbody>
</table>

G Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "Z" document member of the same patent family

Date of the actual completion of the international search

7 August 2008

Date of mailing of the international search report

18/08/2008

Name and mailing address of the ISA/
European Patent Office, PB, 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, TX 31 651 epo nl,
Fax. (+31-70) 340-3016

Authorized officer

Gonzalez Moreno, θ
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2006215492 A1</td>
<td>28-09-2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1346049 A</td>
<td>24-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10108218 A1</td>
<td>02-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20020024493 A</td>
<td>30-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5265100 A</td>
<td>24-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1454309 A</td>
<td>05-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60007562 D1</td>
<td>05-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1295092 A1</td>
<td>26-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1050239 A1</td>
<td>07-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004503764 T</td>
<td>05-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0196822 A1</td>
<td>20-12-2001</td>
</tr>
<tr>
<td>GB 236023 A</td>
<td>02-07-1925</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)