特許協力条約に基づいて公開された国際出願

世界知的所有権機関
国際事務局

国際公開番号
WO 2010/041440 A1

国際公開日
2010年4月15日(15.04.2010)

(10) 国際公開番号
(21) 特許出願番号: PCT/JP2009/005209
(22) 国際出願日: 2009年10月7日(07.10.2009)

(25) 国際出願の言語: 日本語
(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2008-261975 2008年10月8日(08.10.2008) JP
特願2009-199656 2009年8月31日(31.08.2009) JP

(71) 出願人 (米国を除く全ての指定国について): パナソニック株式会社(PANASONIC CORPORATION)
(72) 発明者: および
発明者/出願人 (米国についてのみ): ン・チャン・ワ(NG, Chan Wah), 阿根(ASO, Kei-gho), LIM, Chun Keong Benjamin

(74) 代理人: 二瓶正敬(NIHEI, Masayuki); T 1600022 東京都新宿区新宿2-8-8とんみビル2F

(51) 国際特許分類: H04W 8/04 (2009.01) H04W 60/04 (2009.01) H04W 48/08 (2009.01)

(54) Title: INTERFACE SWITCHING SYSTEM, MOBILE NODE, PROXY NODE, AND MOBILE MANAGEMENT NODE

(41) 国際公開日
WO 2010/041440 1

(57) Abstract: Disclosed is a technique for preventing a packet loss and transferring a packet to the switched interface with the smallest delay when a mobile node performs switching of an interface to be used from one to another. According to the technique, when MN (200) communicates with MAG (WLAN) (232), a PBU message (301) has been transmitted from MAG (WLAN) (232) to LMA (220) and binding relating to a WLAN connection (242) is already registered in the LMS (220). When an interface switching event (300) is generated, the MN (200) transmits a binding in-advance registration message (302) for performing an in-advance registration of the binding to the MAG (WLAN) (232) via the WLAN connection (242). Upon detection of a disconnection (310) of the WLAN connection (242), the MAG (WLAN) (232) transmits a registration delete/trigger message (312a) to the LMA (220) so as to register in the LMA (220) for trigger, the in-advance registration binding registered in the MAG (WLAN) (232) and deletes the binding of the PBU message (301).

(57) 要約: モバイルノードが直交インタフェース切換えに応じてパケットを移動する際に、パケットを遅延防止に向けたロジックを基にしたアルゴリズムを用いる。これにより、MN200がMAGにメッセージを発送すると、パケットを事前に送信するバインドイング事前登録メッセージ302をWLANを介して242を送信する。MAGは、WLANでM242と接続する。その後、送信されたトリガーメッセージ312aをMAGに送信して、MAGはWLANを介して242を送信する。
添付公開書類：
国際調査報告（条約第2条(3)）
明細書

発明の名称:
インタフェース切換システム、モバイルノード、代理ノード及び移動管理ノード

技術分野

本発明は、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換えるためのインタフェース切換システムに関する。また本発明は、前記インタフェース切換システムにおける、モバイルノード、代理ノード及び移動管理ノードに関する。

背景技術

近年、多くのモバイル装置がインターネット・プロトコル（IP）を使用してお互いに通信を行っている。モビリティサポートをモバイル装置に提供するために、IETF（Internet Engineering Task Force）は、下記の非特許文書「Network Mobility Support in IPv6」と下記の非特許文書2に示されるような“Network Mobility Support in IPv6”を提案している。モバイルIPでは、各モバイルノード（モバイルホストやモバイルルータを含む。）はホームドメインを有する。モバイルノードは、ホームネットワークに接続（attach）すると、ホームアドレス（HOA）として知られるプライマリ・グローバル・アドレスを割り当てられる。また、モバイルノードは、アウェイ状態になると、すなわち他の外部ネットワークに接続（attach）すると、気付アドレス（C0A）として知られる一時的なグローバル・アドレスを割り当てられる。

モビリティサポートの概念では、モバイルノードは、外部ネットワークに接続（attach）していても、ホームアドレスあてで到達できる。非特許文書「IETFの標準は、ホームエージェント（HA）として知られるエンティティをホームネットワークに導入することにより、この到達性を実現している。モバイルノードは、気付アドレスをバインディング・アップデート（BU）メッ
セージとして知られるメッセージを用いてホームエージェントに登録する。この登録により、ホームエージェントは、モバイルノードのホームアドレスと気付アドレスの間にバインディングを生成することができる。ホームエージェントは、モバイルノードのホームアドレスあてのメッセージをインタシプトして、そのパケットをカプセル化してモバイルノードの気付アドレスあてに転送する。このパケットカプセル化では、ホームアドレスあてのパケットを新しい気付アドレスあてパケットのベイロードにセットし、パケットトトンネル化としても知られている。

【0004】非特許文献1に記載されているモビリティ管理方法では、モバイルホストのホームエージェントにおけるモバイルホストあての転送先情報として、IPv6ベースのトランスポートネットワーク経由で送信するIPv6のバインディング・アップデート（BU）シグナリングを使用して、モバイルホストのIPv6のCoAとIPv6のHoAのバインディングがモバイルホストからホームエージェントに通知される。同様に、非特許文献2に記載されているモビリティ管理方法では、ホームエージェントにおけるモバイルホストあての転送先情報として、IPv6のトランスポートネットワークのみを経由するIPv6のBUシグナリングを使用して、モバイルルータのIPv6のモバイルネットワーク・アドリフックスとモバイルルータのIPv6のCoAのバインディングがホームエージェントに通知される。

【0005】将来、IPv6のISP（Internet Service Providers）とIPv6のトランスポートネットワークが優位を占めるであろうが、これらのIPv6のサービス・プロバイダネットワークとトランスポート・プロバイダネットワークは、現在のIPv4のISPとIPv4のトランスポートネットワークとすぐに置き換わることはないであろう。IPv4とIPv6のトランスポート・ネットワークが混在する将来の第4世代（4G）の携帯電話ネットワークのモビリティ・アーキテクチャでは、ユビキタスなモビリティを実現するために、IPv4とIPv6の両方に対応したデュアルスタック（Dual Stack）のモバイルノードが必要である。
非特許文献「に記載されている方法では、IPV4とIPV6のプロトコル・スタックを有するモバイルノードに対してクライアントベースのIPV6モビリティサポートを提供するデュアルスタック・モバイルIPV6（Dual Stack Mobile IPv6：DSMIPv6）が言及されている。ここの提案による方法では、モバイルノードは、自身のIPV4／IPV6のホームアドレスインプリックスと、自身のIPV4／IPV6のCoAとの間のバインディングを生成して、このバインディングをIPV4／IPV6トランスポート・ネットワーク経由で登録することができる。DSMIPv6は、MIPv6を拡張して、IPV4クライアントとIPV4トランスポート・ネットワークをサポートする。3GPP（The Third Generation Partnership Project）システムは、上記のDSMIPv6をクライアントベースのモビリティサポートとして使用する。非特許文献7には、DSMIPv6を使用して、3GPPアーキテクチャ内をローミングする場合や、ローミングしない場合の種々のシナリオが示されている。

非特許文献「、非特許文献2及び非特許文献「に示されているクライアントベースのモビリティサポートは、モビリティの問題を解決しているが、幾つかの問題がある。その「つは、モバイルノードがBU（Binding Update）メッセージをホームエージェントに送信する必要があることである。このため、モバイルノードが高速で移動する場合、BUメッセージの数が膨大となる。また、モバイルノードが地理的にホームエージェントから遠く離れている場合、BUメッセージがホームエージェントに到達するまでに時間がかかること。そのため、ホームエージェントがモバイルノードのアップデートされた気付アドレスとしてにパケット転送を開始したときには、モバイルノードはその気付アドレスの場所には位置していないかもしれない。

この理由により、下記の非特許文献3、非特許文献6、特許文献7、特許文献8には、ネットワークベースのローカルモビリティ管理（Net JMM）を用いた提案が成されている。この提案によれば、モバイルノードは、ローカル・ネットワーク・ドメイン内で接続点（point of attachments）を変
更しても同じアドレスを継続して使用することができる。このため、モバイルノードがＢＵメッセージを頻繁にホームエージェントに送信する必要性を除去することができる。

[0009] Net JMMでは、「つのローカルモビリティ・アンカー（JMA）と、複数のモバイル・アクセストウェイ（MAG）と「つのAAA（Authentication, Authorization, and Accounting）サーバが設けられる。MAGは、モバイルノードが接続（attach）するアクセスルーティとして動作し、モバイルノードがMAGに接続（attach）することに、そのMAGは、まずモバイルノードの証明書（credentials）をAAAサーバに問い合わせて検証（verify）し、そのモバイルノードがローカル・ネットワーク・ドメインのサービスを使用する資格があることを保証する。幾つかの実装では、AAAサーバはまた、そのモバイルノードに割り当てるべきブリフィックスすなわちアドレスをMAGに通知する。この手法により、MAGは、HNＰ（Home Network Prefix）として知られる同じブリフィックスをモバイルノードに広告することができる。同時に、MAGはJMAをアップデートして、モバイルノードに割り当てられているブリフィックスあてに送信されたパケットが、モバイルノードが接続（attach）している適切なMAGにトンネル化されるようにしなければならない。このアップデートは、モバイルノードが使用するアドレスブリフィックスをMAGのアドレスにバインドするプロキシとしてU（PBU）メッセージをMAGがJMAに送信することにより実現される。

[0010] この手法はまた、MAGがモバイルノードのプロキシとしてBUMessageをJMAに送信し、また、JMAがローカル・ネットワーク・ドメインにおいてモバイルノードのホームエージェントとして動作するので、プロキシ・モバイルIP（PMIPv6）として知られる。この手法により、モバイルノードが現在、どのMAGに接続（attach）しているかに関係なく、モバイルノードは、同じHNＰ（Home Network Prefix）を参照し、このため、アドレスを変更しない。したがって、モバイルノードは、BUMessageを頻
繁にホームエージェントに送信する必要がない。

[001] ところで、現在の傾向では、種々の異なるワイヤレス技術が用いられ、多くのモバイル装置が多くの異なるアクセス・インタフェース（例えばUMTSセルラ・インタフェース、ワイヤレス・イーサネット（登録商標）802、「インタフェース、WiMAX（登録商標）802、「6インタフェース、ブルーテーブル（登録商標）インタフェース）を備えている。ローカルモビリティ管理では、そのような複数のインタフェースを有する装置をサポートする方法として、複数のブリフォックスすなわちアドレスを割り当てることが可能である。非特許文献3及び非特許文献6では、モバイルノードは、個々のインタフェースについて異なるブリフォックスを参照し、このブリフォックスは、モバイルノードが同じネットワーク・ドメイン内をローミングしている限りにおいて維持される。もし、そのモバイルノードが、現在外部ドメイン内をローミングしているモバイルIPv6のノードである場合、そのモバイルノードは、複数の気付アドレス（各ブリフォックスから「つの気付アドレス）を構成して自身のホームアドレスにバインドする必要がある。この意味は、モバイルノードがすべての利用可能なインタフェースを用いてホームエージェント及び通信相手（CN: Correspondent Node）と通信したい場合、例えば下記の非特許文献4及び非特許文献9に示されるようなメカニズムを用いて複数のメッセージをホームエージェントとCNに送信することを必要とするということである。

[002] ここで、ローカルモビリティ管理において複数のインタフェースを使用する場合の想定例として、モバイルノードが、安定した広い通信範囲のインタフェース（例えばセルラ・インタフェース）と、安定していない狭い通信範囲のインタフェース（例えばIEEE802、「ワイヤレス・インタフェース）を同時に接続（connect）する場合がある。通常、IEEE802、「ワイヤレス・インタフェースの方があが域幅が広い（通信コストが安いいので、モバイルノードは、データパケットがIEEE802、「ワイヤレス・インタフェース側に伝送されることを望む。しかしながら、IEEE802
2. 「ワイヤレス・インタフェースの通信範囲が限られているので、その接続（connection）は、安定したセルラ・インタフェースより頻繁に切断される。このような切断が起きた場合、パケットはセルラ・インタフェース側にリ・ダイレクトされなければならない。このリ・ダイレクションはシグナリングを必要とするので、シグナリングの遅延により、パケットが不可避的に失われる。

[003] ローカルモビリティ管理は、シグナリングの遅延によるパケットロスの機会を減少してはいるが、除去してはいない。ここで、モバイルノードがあるMAGから他のMAGに変更する場合を考えると、モバイルノードが前のMAGとの接続（connection）を失った時点から、JMAが新しいMAGからProxy Binding Updateメッセージを受信するまでにJMAに届いたそのモバイルノードあてのパケットが失われる。この問題を解決するための従来技術として、下記の特許文献「においては通知を送り返す方法が、また、下記の特許文献2にはパケット再送をトリガする方法が、また、下記の特許文献3にはコネクションを再確立する方法が提案されている。しかしながら、これらの場合においても何れも不可避的に、パケット配送の遅延を招き、このため、VoIP（Voice-Over-IP）のようなリアルタイムなアプリケーションにとって受け入れることはできない。

[004] 他の従来技術としては、高速ハンドオフ技術が下記の非特許文書5、特許文書4、特許文書5、特許文書6、特許文書9に開示されているものがある。この手法は、コネクションのロスを予測することと、IIMII802. 「ワイヤレス・インタフェースからセルラ・インタフェースにパケットのリ・ダイレクションするために空の信号を送信することを含む。しかしながら、コネクションのロスを予測することは正確でなく、リ・ダイレクションが早過ぎると、IIMII802. 「ワイヤレス・インタフェースを有効利用できない。

[005] マルチホームインでは、モバイルノードのホームアドレスあてはホームネットワークプリフィックスあてのフローをモバイルノードの複数のインタ
フェース経由で受信することができ、また、モバイルノードの「又は複数の
所望のインタフェースに対してフローの種類に応じて使用するインタフェー
スを選択するフロー種別ベースのルーティングを実現することができる。一
般的に、システムにおいてフロー種別ベースのルーティング・メカニズムの
セットアップは、モバイルノードがフィルタルール（ルーティングルール）
を付与することにより開始され、結果的には適切なネットワーク・エンティ
ティにより決定されるか又は許可される。もしマルチホーキングの目的が、
ホームアドレスして又はホームネットワークブリフィックスしてのフローの
帯域を集合するか又は増大させることにある場合、マルチホーキングのメカ
ニズムとは、ホームエージェントはJMAにおいて、ホームアドレスして
又はホームネットワークブリフィックスしてのフローがモバイルノードの複
数のインタフェース経由で到達できるという到達可能性（ε-achability）を
持ったパスを確立することである。もしマルチホーキングの目的が、モバイ
ルノードが所望の「又は複数のインタフェースに対してフロー種別ベースの
ルーティングを希望することにある場合、上記の到達可能性を持ったパスを
確立することに加えて、そのモバイルノードは、フロー種別ベースのフィル
タルールをHA又はJMAにセットアップする必要がある。重要な点は、フ
ロー種別ベースのフィルタルールがアンカーポイント（HA又はJMA）で
確立されるときには、このフィルタルールが通常のアドレスベース又はブリ
フィックスベースのルーティング・メカニズムよりも優先されるということ
である。

[0016] しかしながら、将来の3GPPアーキテクチャでは、PMIPv6がモバ
イルノードの各インタフェースのモビリティを管理するために使用され、か
つマルチホーキング機能に対応したDSMIPv6が、例えば帯域集合、負
荷分担、フロー種別ベース・ルーティングのようなモバイルノードのマリチ
ホーキングサポートを実現するために使用されるときは大いに考えられ
る。このようなPMIPv6とマルチホーキング機能に対応したDSMIPv6
を複合的に使用するハイブリッド・シナリオでは、非特許文献9、非特許文
献「0に示されているようなマルチホームング機能に対応したDSMIPv6が、PMIPv6モビリティ管理メカニズムによりインタフェースに割り当てられたホームネットワークブリフィックスに対して使用されるであろうことは考えられる。PMIPv6モビリティ管理メカニズムはモビリティ管理を効率的に提供することは知られている。しかし、マルチホームングのための方法は、DSMIPv6に対してより詳細に定義されている。このため、効率的なモビリティ管理とマルチホームングサポートは、両方のモビリティ管理メカニズムの複合的な動作により簡単に実現できる。 [0017] 次に、上記のPMIPv6とDSMIPv6の両方を使用するハイブリッド・シナリオにおいて、不安定なアクセスのインタフェースの切断に関する問題について図「8を参照して説明する。以下に、時系列的なシナリオを説明する。

（1）MN200は最初に、WJANアクセスネットワーク「0」（及びMAG（WJAN）232を介してJMMドメイン2「0に接続（connect）しているアクティブなWJANインタフェースIF2を有するものとする。なお、3GPPではMNのことをUUE（User Equipment）と呼ぶ。JMMドメイン210は、3GPPのHPLMN（Home Public Land Mobile Network）に対応し、PMIPv6又は他のネットワークベースのモビリティ管理プロトコルが採用されている。また、アクティブなWJANインタフェースIF2を有するMN200のモビリティは、DSMIPv6とPMIPv6により管理されている。なお、当業者であれば、DSMIPv6とPMIPv6はそれぞれ、そのホストベースのモビリティ管理プロトコルとネットワークベースのモビリティ管理プロトコルでもよいことは明らかである。 [0078] （2）図「8において、MN200はまた、DSMIPv6を使用しているので、不図示のDHCP（Dynamic Host Configuration Protocol）サーバ又はDNS（Domain Name Server）などのあるサーバからJMA／HA220のアドレスを通知される。なお、JMA／HA220とは、JMAとHAの両方の機能を有する機能的モジュールとして示しており、3GPPコアネ
ネットワーク内に存在するPDNGエートウェイ（Packet Data Network Gateway）に対応している。JMA/HA220はPDN（Packet Data Network）「06に接続（connect）」している。MN200は、JMA/HA220のアドレスを通知されると、JMA/HA220とブートストラッピングを実行し、また、DSMIPv6シグナリングを実行するためにJMA/HA220とSA（Security Association）を確立する。MN200はブートストラッピングのプロセスにおいて、ホームアドレスHomeA（P1）を構成するためのホームブリフィックスP1をJMA/HA「05から取得する。」

[0019]（3）次に、ブートストラッピングのプロセスの後、MN200は、PMIPv6をもカニズムにより取得したブリフィックスP2を使用してWJANインタフェースIF2の気付アドレスCoS（P2）を構成するものとする。
WJANインタフェースIF2経由で取得したブリフィックスP2は、そのモビリティがPMIPv6をもカニズムにより管理されるブリフィックスであるものとする。さらに、ブリフィックスP2は、地理的にJMA/HA220をルートとし、また、JMA/HA220-MAG（WJAN）232間のPMIPv6モビリティ・シグナリング「0」で取り始められるものとする。シグナリング「0」はPBUメッセージとPBAメッセージを含む。ブリフィックスP2は、ももちろん外部ブリフィックスは、MAG（WJAN）232からMN200に対してはレイヤ2又はレイヤ3のWJANリンク「08経由で付与される。

[0020]（4）さらに、MN200は、アイドルモードの3GPPインタフェースI「0」を有するものとする。3GPPインタフェースI「0」は、LTe（Long Term Evolution）タイプのインタフェースが、又はUMTS（Universal Mobile Telecommunication System）タイプのインタフェースが、又は非特許文献8に記載されているような3G持ちのインタフェースでよい。アイドルモードとは、3Gアクセスネットワーク「07の基地局が変わっても、ネットワークに対して、その接続（attachment）を通知しないMN200のステートを言う。アイドルモードでは、省電力化のため、MN200はトラッ
キングエリアと呼ばれる大きなエリア単位で位置更新（location update）を実行する。

[0021]（5）次に、3GPPインタフェースI「がアイドルモードであるMN200が3GPPリンク「07経由で3Gアクセスネットワーク「07のMAG230（3GPP）に接続（attach）するものとする。ここでは、MN200は、この3GPPアクセスがアイドルモードであっても、MAG230（3GPP）から3GPPリンク「07経由でホームブリフィックスすなわちホームネットワークブリフィックスP1を通知されるものとする。
MAG230（3GPP）におけるホームブリフィックスP1は、PMIPv6モビリティ・シグナリング（PBUMessage+PBAメッセージ）「09により取得される。このため、3GPPアクセス経由で取得されたホームブリフィックスP1は、前述したプートストラッピングのプロセスにおいて取得されたホームブリフィックスP1と同じである。3GPPアーキテクチャでは、「J接続（attachment）のためのホームブリフィックスP1は、NAS（Non-Access Stratum）プロトコルを用いた接続手続き（attach procedure）の間に通知される。

[0022]（6）次に、MN200は、3GPPアクセスのattach procedureの間にホームブリフィックスP1を参照するとホームリンクを検知して、マルチホームング・パラメータを有するDSMIPv6ベースのBUMessage「「をWJANアクセスネットワーク「0「経由でJMA／HA220に送信するものとする。BUMessage「「はIPv6のモビリティ・シグナリングである。さらに、BUMessage「「は、気付アドレスC0A（P2）と、フロー識別子（FID）オプション内にフィルタルールが埋め込まれて添付されているものとする。BUMessage「「はさらに、バインディング識別子（BID）と、フロー記述サブオプション（flow description sub options）と、ホームアンドアウェイ登録（home and away registration）を示すHフラグを含む。

[0023]BUMessage「「は2つの目的を有する。第1の目的は、フィルタ
ルールがJMA／HA220に存在していなくても、非特許文献「0に記述されているように各インタフェースに対するIPD優先度に応じて、データパケットがホームリンク（3GPP）又はWJANリンクに選択的に配送されるように、ホームアンドアウェイ登録（フラグHニ「」）をJMA／HA220において生成することにあつる。第2の目的は、プリフィックスP1あてに来るすべてのパケットがWJANインタフェースIF2に配送されることを希望することをMN200がフィルタルールでLMA／HA220に示すことにあつる。理想的には、MN200は、WJANアクセスが利用可能なときには常に、すべてのフローがWJANアクセス経由で配送されることを希望する。ホームアンドアウェイ登録（Hニ「」）がJMA／HA220において生成されても、このようなフィルタルールにより、データフローはWJANアクセスのみを経由して配送される。ただし、WJANアクセスは、不安定であるものとする。

[0024]ここで重要な点は、MN200がこのBUメッセージ「「「を送信する際に、メッセージ内のIPDに高い優先度を設定することで、フィルタルールを設定しないようにできることにある。これがWJANアクセス経由をデフォルトの経路として設定する別の方法である。しかしながら、フィルタルールによりJMA／HA220における多くのアクションを記述できるので、フィルタルールを設定する方が望ましい。バインディング・キャッシュ・エントリ（BCミ）「「2は、マルチホームングが可能なJMA／HA220のBCミであって、HoA（P「）をCoA（P2）にバインドする登録、及びHニ「を有するDSMIPV6バインディングと、P1あてのパケットのデフォルトはCoA（P2）あてであることを示すフィルタルールを有する。

[0025]次に、図8における他の動作を説明する。

M200は、プリフィックスP2及びP1あて生成されるアドレスを使用して、PDNI06内の不図示の通信相手（Correspondent Node：CN）とコネクションをセットアップするかもしれない。プリフィックス
「は3GPPアクセス経由で参照され、プリフィックスP2はWNANアクセス経由で参照されるものとする。また、PDN「06内の複数のエンティティがMN200に接続（connect）しているときに、MN200は複数のPDNコネクションをセットアップしたいかもしれない。また、プリフィックスP1及びP2ごとにフローを分離して簡単なフローフィルタリングを実行したかもしれません。ここで、PDNコネクション、又はデフォルト・ベアラセッタップ又はコネクションとは、PDN「06からいくつかのサービスを得るために、JMA／HA220との間に生成するコネクションを言う。このようなシナリオにおいて、MN200は、あるプリフィックス（プリフィックスP2とする）に対してマルチホームイングを実現するために、BUメッセージ「「内にフィルタルールを記述してWJANパスをプリフィックスP2のフローのデフォルトパスとして指示する。このときのBC「「3内のフィルタルール（P2パケットのデフォルトパスH0A（P2））を図8に示す。このフィルタルールでは、プリフィックスP2のフローは常にWJANアクセス経由で配送される。

[0026] ここで、MN200は既に、JMA／HA220とのプートストラップを実行していて、プリフィックスP1及びP2からそれぞれH0A（P「）及びH0A（P2）を生成していたものとする。さらに、MN200はBUメッセージ「「内にフィルタルールを記述してWJANパスをプリフィックスP2のフローのデフォルトパスとして指示する。このときのBC「「3内のフィルタルール（P2パケットのデフォルトパスH0A（P2））を図8に示す。このフィルタルールでは、プリフィックスP2のフローは常にWJANアクセス経由で配送される。

[0027] このようなシナリオにおいて、モビリティ又は他の理由により、MN200は、WJANアクセス経由のコネクションを喪失（切断）するものとする。この場合、MN200は、安定した3GPPインターフェースI「をアクティブモードに切り換え、サービス要求メッセージを3GPPアクセスネットワーク「の00経由で不図示のMMミ（Mobility Management Entity）に送信する。MMミの機能は、非特許文献9に明確に説明されている。

[0028] MN200が3GPPインターフェースI「をアクティブモードに
切り換えると、JMA／H220ではBC、及びBCに示すように、すべてのフローは不安定なWANアクセス経由で送信されなければならないことを示すフィルタールール（P「パケット→CoA（P「）、P2パケット→HoA（P「）」がセットアップされているので，データパケットは3GPPアクセス経由では転送もルーティングもされない。ここで重要な点は，MN200が外部パインディング登録を示的に削除（すなわちHoAとCoAとのパインディングを除去）しなければ，フィルタールールベースのルーティングを実行することにある。そこで当業者であれば，3GPPコネクションの確立後に，MN200がフィルタールールを変更して3GPPパネルをそのフローのデフォルトパネルにセットアップできることが理解できるが，この場合には，そのような3GPPパネルへのフィルタールールをセットアップするか又は移動するには，ある程度の遅延が発生する。また，MN200が示的にフィルタールールを3GPPパネルへ移動すると，パケットロスが発生し，MN200はセッションの品質低下やサービスの品質低下を被る。安定したアクセスとのコネクション中にパケットロスが発生すると，リアルタイムなアプリケーション用のQoS（Quality of Service）の品質低下を招く。

[0029]（5）次の仮定として，安定した3GPPアクセスとのコネクション後にいくらかの時間が経過して，MN200が別のWLANアクセスを発見した場合，MN200は，BC、及びBCに示すように前のフィルタールールをリセットしたいかもしれない。この場合には，MN200は，明示的なフィルタールール・シグナリングで古いフィルタールールをリセットする必要がある。また安定した3GPPアクセスから，望ましいが安定しないWLANアクセスへのコネクションに戻ると，フィルタールールのターゲットが安定した3GPPアクセスのままなのでパケットロスが発生する。

[0030]また，MN200がアクティブなリアルタイム・アプリケーションを有し，かつその複数のコネクションを3GPPアクセスに移してさらにWLANアクセスに戻している間にローミングしている場合，複数のハンドオフが発生し，
ト時のパケットロスによりセッションの品質低下が発生する。

さらに、上記のパケットロスの問題は、一般的なシナリオに関して説明したが、非特許文献7、非特許文献8に示すように、MN200がHPJMN（Home Public Land Mobile Network）、又はVPLMN（Visited Public Land Mobile network）に接続（connect）しているとき、又はHPJMNとVPLMNに同時に接続（connect）しているときにも発生する。また、上記の問題は、MN200の3GPPインタフェースI「がアイドルモードのときについて説明したが、MN200のすべてのインタフェースが完全にアクティブモードで接続（connect）しているときにも発生する。

ここで他の従来技術として、特許文献「O [US Patent US7136645 B2]」には、モバイルノードがあるネットワークから別のネットワークにローミングしてインターネットにいるなどの理由により、モバイルノードが到達性のないとき、又はスペンドしているとき、又はネットワークアドレスを変更している場合に、モビリティ管理サーバ（HA又はローカルアンカー）がそのままのモバイルノードの関係を維持する方法が記載されている。しかしながら、関係を維持するにあたりパインディングを維持しても、そのパインティングが切断期間中にのみ使用される特別な目的のパインディングであってパケットロスの問題を解決するものでない場合には、パケットロスの問題を解決することがない。

また、特許文献「I [US Patent Application Publication US2009/0080451 A1]」には、あるデータフォーラムに対して他のフローより優先度を付与する方法が記載されている。特にこの方法は、優先度の取り扱いに関連する。しかしながら、この優先度の取り扱い方法は、フィルタルールに関連せず、切断中又は安定したアクセスへのハントオフ中のパケットロスの問題を解決することができない。

ト、例えば動作システムのイメージがブートアップ後にディスク又は揮発性メモリにセーブされ、モバイルノードが再ブートしたときにそのステートが取得されてそのステートを使用して直ぐに又は瞬時にスタートできる。特定のステートをストアして再使用する方法は、あるアクティブな期間及びアクティブでない期間を有するフィルタルールに適用することができる。しかしながら、上記の文献には、不安定なアクセスから突然に切断するときに、ストアしたステートがどのようにしてパケットロスを解決するのに役立つかについては記載されていない。

先行技術文献

特許文献

特許文献4：Yang et al., "System and Associated Mobile Node, Foreign A

非特許文献

このため、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換える場合に、切り換えタイミングが早すぎると切り換え前のインタフェースを有効利用できず、逆に切り換えタイミングが遅すぎるとパケットロスが発生するという問題点がある。

発明の概要

本発明は上記の問題点に鑑み、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換える場合に、パケットロスを防止して最小限の遅延でパケットを切り替え先のインタフェースに転送することができるようにインタフェース切換システム、モバイルノード、管理ノード及び移動管理ノードを提供することを目的とする。

本発明はまた、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換える場合に、パケットロスを防止して最小限の遅延でフロー種別ごとにパケットを切り替え先のインタフェースに転送することができるようにインタフェース切換システム、モバイルノード、管理ノード及び移動管理ノードを提供することを目的とする。

本発明は上記目的を達成するために、少なくとも第１及び第２のインタフェースを有するモバイルノードと移動管理ノードとの間の経路を、前記第１のインタフェース及び第１の代理ノードを経由する第２の経路から、前記第２のインタフェース及び第２の代理ノードを経由する第２の経路に切り替え
るインタフェース切換システムであって、

前記第「の代理ノードから前記移動管理ノードに対して、前記第「の経路を確立するための第「の転送情報を登録する手段と、

前記モバイルノードが、前記第「の経路の接続状況の変化を検出した場合に、前記第「の代理ノードに対して前記第2の経路を確立するための第2の転送情報を事前登録する手段を、

有する構成とした。

この構成により、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換える場合に、切り換え先の第2のバインディング登録を、切り換え先の第2の代理ノードが要求するのではなく、切り換え前の第「の代理ノード又はモバイルノードが要求するので、パケットロスを防止して最小限の遅延でパケットを切り換え先のインタフェースに転送することができる。

本発明は上記目的を達成するために、少なくとも第「及び第2のインタフェースを有するモバイルノードと移動管理ノードとの間の経路を、前記第「のインタフェース及び第「の代理ノードを経由する第「の経路から、前記第2のインタフェース及び第2の代理ノードを経由する第2の経路に切り換えインタフェース切換システムにおける前記モバイルノードであって、

前記第「の経路を介して通信中に、前記第「の経路の接続状況の変化を検出した場合に、前記第「の代理ノードに対して前記第2の経路を確立するための2の転送情報を事前登録する手段を、

有する構成とした。

本発明は上記目的を達成するために、少なくとも第「及び第2のインタフェースを有するモバイルノードと移動管理ノードとの間の経路を、前記第「
のインタフェース及び第「の代理ノードを経由する第「の経路から、前記第2のインタフェース及び第2の代理ノードを経由する第2の経路に切り換えるインタフェース切換システムにおける前記第「の代理ノードであって、

前記移動管理ノードに対して、前記第「の経路を確立するための第「の転送情報を登録するよう要求する手段と、

前記モバイルノードから、前記第2の経路を確立するための第2の転送情報を事前登録するメッセージを受信する手段と、

前記第「の経路から前記第2の経路に切り換えるイベントを検出した場合、前記第「の経路を無効化して、前記事前登録された第2の転送情報を有効化するよう要求する手段とを、

有する構成とした。

[0045] 本発明は上記目的を達成するために、少なくとも第「及び第2のインタフェースを有するモバイルノードと移動管理ノードとの間の経路を、前記第「のインタフェース及び第「の代理ノードを経由する第「の経路から、前記第2のインタフェース及び第2の代理ノードを経由する第2の経路に切り換えるインタフェース切換システムにおける前記移動管理ノードであって、

前記第「の代理ノードから、前記第「の経路を確立するための第「の転送情報を登録する要求を受信して前記第「の転送情報を登録する手段と、

前記第「の代理ノード又は前記モバイルノードから、前記第「の転送情報を無効化して前記第2の転送情報を有効化する要求を受信して、前記第「の転送情報を有効化し、前記第2の転送情報を有効化する手段とを、

有する構成とした。

[0046] 本発明によれば、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換える場合に、パケットロスを防止して最小限の遅延でパケットを切り換え先のインタフェースに転送することができる。

また本発明によれば、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換える場合に、パケットロスを防止して最小限の遅延でフロー種別ごとにパケットを切り換え先のインタフェースに転送するこ
とができる。

図面の簡単な説明

[0047] [図1]本発明が想定するインタフェース切換システムを示す構成図
[図2]本発明の望ましい実施の形態におけるモバイルノードを機能的に示すブロック図
[図3]本発明の望ましい実施の形態におけるモバイル・アクセス・ゲートウェイを機能的に示すブロック図
[図4]本発明の望ましい実施の形態におけるローカル・モビリティ・アンカーを機能的に示すブロック図
[図5]本発明の第「の実施の形態における通信シーケンスを示す説明図
[図6]図5のバインディング事前登録メッセージのフォーマットの一例を示す説明図
[図7]図5の登録削除・トリガーメッセージのフォーマットの一例を示す説明図
[図8]第2の実施の形態の通信シーケンスを示す説明図
[図9]図8の転送メッセージのフォーマットの一例を示す説明図
[図10]図8の応答メッセージのフォーマットの一例を示す説明図
[図11]本発明が想定する他のシステムを示す構成図
[図12]第3の実施の形態の通信シーケンスを示す説明図
[図13]第4及び第5の実施の形態の通信シーケンスを示す説明図
[図14]第6の実施の形態の通信シーケンスを示す説明図
[図15]図14のトリガーメッセージのフォーマットの一例を示す説明図
[図16]第7の実施の形態のインタフェース切換システムを示す構成図
[図17]第7の実施の形態の通信シーケンスを示す説明図
[図18]第8の実施の形態におけるネットワークを示す説明図
[図19]第8の実施の形態における動作及び通信シーケンスを示す説明図
[図20]第9の実施の形態における動作及び通信シーケンスを示す説明図

発明を実施するための形態

[0048] 以下、図面を参照して本発明の実施の形態について説明する。
くシステム

図「は、本発明が想定するインターフェース切換システムを示す。MN200は複数のネットワーク・インタフェースの一例として、3GPPインターフェースIFとWJANインタフェースIF2（図5参照）を有し、ローカルモビリティ管理（JMM）ドメイン2「0をローミング中にインターフェースIF「又はIF2を使用してCN250と通信を行っている。JMMドメイン2「0は、MN200のホームエージェント（移動管理ノード）となるローカル・モビリティ・アンカー（JMA）220と、MN200の管理ノードとなる3GPPのモバイル・アクセス・ゲートウェイ（MAG（3GPP））230及びWJANのMAG（WJAN）232と、不図示のAAAサーバを有する。3GPPインターフェースIF「、WJANインターフェースIF2は、それぞれMAG（3GPP）230、MAG（WJAN）232との間でセルラ接続（connection）240、WJAN接続242を確立するものとする。ここで、WJAN接続242がセルラ接続240より帯域が広く、通信コストも低いので、MN200はWJAN接続242経由のルーティングの方を希望するものとする。ただし、セルラと比較して、WJANのアクセスネットワークは、通信範囲が狭く、また散在しているので、MN200は、WJAN接続242が失われたときに、最小限のパケットロス及び遅延で、WJAN接続242からセルラ接続240へのシームレスなハンドオーバを実現する。そこで、セルラとWJANは、単なる説明のためであって、本発明はこれには限定されない。

＜MNの構成ノ＞

図2はMN200の構成を機能的に示すブロック図である。MN200は、インターフェースIF「IF2を含む複数のネットワーク・インタフェース（以下、単にインタフェース）「0と、パケットをMN200内の関連プログラム又はインタフェース「0に転送するルーティング・ユニット「20と、ネットワーク層より上位の層のプロトコル及びプログラムを実行する上位層ブロック「30を有する。インタフェース「0は、通信メディア
を介して他のノードと通信するために必要なプログラム及びソフトウェアを実行する機能ブロックである。関連する技術分野において用いられている用語を使用すれば、インターフェース「0」は、レイヤ2（物理層）とレイヤ2（データリンク層）の通信コンポーネント、ファームウェア、ドライバ及び通信プロトコルを表す。

[0050] ルーティング・ユニット「2」は、パケットを上位層ブロック「3」内のどの適切なプログラムに渡して処理させるかを決定したり、インターフェース「0」内のどの適切なインタフェースに渡して転送させたりするかを決定する。ルーティング・ユニット「2」は、関連する技術分野において用いられている用語を使用すれば、レイヤ3（ネットワーク層）プロトコル、例えばIPv4又はIPv6（Internet Protocol version 4 or 6）の機能を表す。ルーティング・ユニット「2」は、パケットをシグナルイデータバス「9」を経由してインタフェース「0」の適切なインタフェースから受信したり、インタフェース「0」の適切なインタフェースに送信したりすることがである。また、ルーティング・ユニット「2」は、パケットをシグナルイデータバス「9」を経由して上位層ブロック「3」から受信したり、上位層ブロック「3」に送信したりすることができる。

[0051] 7位階ブロック「3」が実行するネットワーク層より上位の層のプロトコル及びプログラムは、トランスポート層とセッション層のプロトコル、例えばTCP（Transmission Control Protocol）、SCTP（Stream Control Transport Protocol）、UDP（User Datagram Protocol）と、他のノードと通信するために必要なプログラム及びソフトウェアを含む。

[0052] ルーティング・ユニット「2」は、ルーティング・テーブル「4」と、バインディング事前登録手段「5」と、事前登録バインディング・トリガ手段「6」を有する。ルーティング・テーブル「4」はルーティング・ユニット「2」に対して、パケットをインターフェース「0」のどのインタフェースにルーティングさせるかを示すルーティング・エントリ（例えば送信元アドレス、あて先アドレス）を含む。バインディング事前登録手段「5」は事前登
録バインディング・トリガ手段「6 0が本発明で追加したコア部分である。
バインディング事前登録手段「5 0は、ＢＵメッセージやＰＢＵメッセージのように無条件のバインディング登録要求メッセージではなく、アクティブ条件付きのバインディング登録（ある「つのブリフィックスを別のブリフィックスに関連付けるか、又はある「つのホームアドレスを別のホームアドレスに関連付ける転送先情報）を事前登録するメッセージをアクセスルータに送信し、また、この事前登録メッセージが存続期間を含む場合には、存続期間が満了したとき又は近傍の時点で存続期間をリフレッシュする。[053]

バインディング事前登録手段「5 0はまた、第8の実施の形態ではアクティブ期間及び非アクティブ期間を有するフロー種別の事前登録フィルタールールを登録し、さらに第9の実施の形態ではアクティブ期間及び非アクティブ期間を有するフロー種別の事前登録プロッキング・フィルタールールを登録する。事前登録バインディング・トリガ手段「6 0は、バインディング登録、フロー種別の事前登録フィルタールール又はフロー種別の事前登録プロッキング・フィルタールールを事前登録するメッセージを送信するようバインディング事前登録手段「5 0をトリガする。また、必要な場合には、アクセスルータに登録されている事前登録バインディング、フロー種別の事前登録フィルタールール又はフロー種別の事前登録プロッキング・フィルタールールをアクティブにするためのトリガ信号をアクセスルータに送信する。[054]

＜MAGの構成＞

図3は、MAG（3GPP）230、MAG（WJAN）232の構成を機能的に示すブロック図である。MAG230、232は、パケットを送受信するための「又は複数のネットワーク・インタフェース（以下、単にインタフェース）「「0bと、パケットをインタフェース「「0bのどの適切なインタフェースを介して転送させるかを決定するルーティング・ユニット「20bを有する。インタフェース「「0bも同じく、通信メディアを介して他のノードと通信するために必要なプログラム及びソフトウエアを実行する機能ブロックであり、レイヤ「（物理層）とレイヤ2（データリンク層）の
通信コンポーネント、ファームウェア、ドライバ及び通信プロトコルを表す。

【065】ルーティング・ユニット「20b」は、インタフェース「0」内のどの適切なインタフェースに渡して転送させるかを決定する。さらに、プロキシ・モバイルIP（PMIP）のMAGの機能を有し、関連する技術分野において用いられている用語を使用すれば、レイヤ3（ネットワーク層）プロトコル、例えばIPv4又はIPv6の機能を表す。ルーティング・ユニット120bは、パケットをシグナルイデータパス「92b」を経由してインタフェース「0」の適切なインタフェースから受信したり、インタフェース「0」に転送したりすることができる。

【066】ルーティング・ユニット「20b」は、プロキシ・バインディング・アップデート（PBU）手段「30b」と、ルーティング・テーブル「40b」と、事前登録バインディング・テーブル「50b」と、事前登録バインディング・トリガ手段「60b」を有する。PBU手段「30b」は、自身のMAG230、232に現在、接続（attach）しているMN200のためにPBUメッセージをJMA220に送信する。ルーティング・テーブル「40b」は、パケットをどのようにルーティングするかをルーティング・ユニット「20b」に指示するためのルーティング・エントリーを有し、例えばどのインタフェースを介して転送するかを示すパケットバラメータ（送信元アドレス及びあて先アドレス）を有する。

【067】事前登録バインディング・テーブル「50b」と事前登録バインディング・トリガ手段「60b」が固有で追加したコア部分である。事前登録バインディング・テーブル「50b」は、MN200により事前登録されたバインディング（事前登録バインディング、フロー種別の事前登録フィルタルール又はフロー種別の事前登録ブロッキング・フィルタルール）をストアしている。事前登録バインディング・トリガ手段「60b」は、特定のイベントが発生した場合に、事前登録バインディング・テーブル150bにストアされている事前登録バインディング、フロー種別の事前登録フィルタルール又はフロー
種別の事前登録ブロッキング・フィルタルールをアクティブし、また、必要な場合に事前登録バインディング、フロー種別の事前登録フィルタルール又はフロー種別の事前登録ブロッキング・フィルタルールを JMA220 に転送する。

< JMAの構成ノ

図4は JMA220 の構成を機能的に示すブロック図である。JMA220 は、パケットを送受信するための「又は複数のネットワーク・インタフェース（以下、単にインタフェース）「0cと、パケットをインタフェース「0bのどの適切なインタフェースを介して転送させるかを決定するルーティング・ユニット「20cを有する。インタフェース「0cも同じく、通信メディアクを介して他のノードと通信するために必要なプログラム及びソフトウェアを実行する機能ブロックであり、レイヤ（物理層）とレイヤ2（データリンク層）の通信コンポーネント、ファームウェア、ドライバ及び通信プロトコルを表す。

ルーティング・ユニット「20cは、インタフェース「0c内のどの適切なインタフェースに渡して転送させるかを決定する。さらに、プロキシ・モバイル IP（PMIP）の JMAの機能を有し、関連する技術分野において用いられている用語を使用すれば、レイヤ3（ネットワーク層）プロトコル、例えばIPv4又はIPv6の機能を表す。ルーティング・ユニット「20cは、パケットをシグナルイデータパス「92cを経由してインタフェース「0cの適切なインタフェースから受信したり、インタフェース「0cの適切なインタフェースに送信したりすることができる。

ルーティング・ユニット「20cは、プロキシ・バインディング・キャッシュ「30cと、ルーティング・テーブル「40cと、事前登録バインディング・テーブル「50cと、事前登録バインディング・トリガ手段「60cを有する。プロキシ・バインディング・キャッシュ「30cは、PMIPにしたがってMN200のプロキシ・バインディング登録を維持する。ルーティング・テーブル「40cは、パケットをどのようにルーティングするかを
ルーティング・ユニット 20c に指示するためのルーティング・エントリを有し、例えばどのインテフェースを介して転送するかを示すパケットパラメータ（送信元アドレス及びあて先アドレス）を有する。

0061] 事前登録バインディング・テーブル 50c と事前登録バインディング・トリガ手段 60c が木発明で追加したコア部分である。事前登録バインディング・テーブル 50c は MN200 と MAG230、232 により事前登録されたバインディング登録（事前登録バインディング、フロー種別の事情登録フィルタルール）をストアしている。事前登録バインディング・トリガ手段 60c は、特定のイベントが発生した場合に、事前登録バインティング・テーブル 50c にストアされている事前登録バインディング、フロー種別の事情登録フィルタルールをストアされている事前登録バインディング、フロー種別の事情登録フィルタルールをアクティブにする。

0062] ①第 3 の実施の形態ノ

図 5 は第 3 の実施の形態の通信シーケンスを示す。まず、MN200 は、MAG（WJAN）232 と通信中（接続中）であり、したがって、MAG（WJAN）232 から JMA220 に対して PBU メッセージ 30「が既に送信されている。JMA220 には既に WJAN 接続 242 に関するバインディングが登録されている。MN200 は、MAG（WJAN）232 と通信中にインテフェース切換イベント 300 が発生すると、セラ接続 240 に関するバインディング登録を事前登録するバインディング事前登録メッセージ 302 を WJAN 接続 242 を介して MAG（WJAN）232 に送信する。インテフェース切換イベント 300 と参照して、WJAN 接続 242 の信号強度が所定の閾値より低下した場合や、MN200 の移動速度を検知することにより WJAN 接続 242 が失われることを予測した場合や、MN200 が WJAN 接続 242 を介してリアルタイムな通信セッションを開始していて最小限のパケットロスや遅延などを希望する場合などのいずれか以上のイベントである。
[0063] バインディング事前登録メッセージ302は、MN200が現在のW-JAN接続242のバインディングの代わりにセルラ接続240を確立したいという希望を含む。ここで、代わりのセルラ接続240を識別する方法としては、様々な望ましい方法がある。例えばセルラ接続240とW-JAN接続242の各々に対してユニークなプリフィックスが割り当てられている場合にセルラ接続240のプリフィックスを使用するか、3GPPインターフェース1「のインタフェース識別子を使用する。バインディング事前登録メッセージ302はまた、セルラ接続240の事前登録バインディングをアクティブにする方法を示し、例えばW-JAN接続242が切断された時点で、MAG (W-JAN) 232が特定の信号を受信した時点などがある。事前登録バインディングをアクティブにする情報として示される。図5では、W-JAN接続242が切断（図の3「0」）された時点で事前登録バインディングをアクティブにするとしている。

[0064] MAG (W-JAN) 232は、セルラ接続240のバインディング事前登録メッセージ302を受信すると、その事前登録バインディングを事前登録バインディング・テーブル「50bに登録する。ここでは、セルラ接続240のバインディングが仮登録されただけであり、アクティブ（木登録）ではない。このため、MN200あてのパケットは継続して、MAG (W-JAN) 232とW-JAN接続242を経由して転送される。このW-JAN経由の転送は、W-JAN接続242が切断（図の3「0」)されるまで継続する。ここで、レイヤ2のアクセス技術では、アクセスルータは、モバイルノードが接続（connection）を失ったことを瞬時に検出すことができる。

[0065] MAG (W-JAN) 232は、W-JAN接続242の切断3「0」を検出すると、登録削除・トリガメッセージ3「2aをJMA220に送信する。登録削除・トリガメッセージ3「2aは2つの目的を有する。第1の目的は、MAG (W-JAN) 232に登録されているセルラ接続240の事前登録バインディングをJMA220に登録してトリガ（すなわち木登録）することであり、第2の目的は、MAG (W-JAN) 232からW-JANインターフェースを削除することである。
一スに割り当てられていたプリフィックスのバインディング登録（PBUMメッセージ30の内容）を削除することにある。このため、JMA220は、登録削除・トリガメッセージ3「2アを受信すると、MN200のWJAN接続242経由のデータパケットをセルラ接続240経由で転送する。なお、ここで言う登録削除とは、バインディング登録されている情報そのものを削除するのではなく、バインディングとしての登録を解除することを示してもよい。この場合、LMA220は、登録削除・トリガメッセージ3「2アを受信した際に、WJANインタフェースIF2に割り当てられていたプリフィックスのバインディング登録を、非アクティブ化（無効化）する。このため、WJANインタフェースIF2のプリフィックスに関するバインディング情報は保持され、MN200が再びWJAN接続242を確立した際にアクティブ化（有効化）される。つまり、登録の解除はされるものの、実際の情報は消されずに保持される。これにより、MN200のWJANが再接続した際にバインディング情報の再登録が不要となる。

[0066]ここで、JMA220がMN200のWJAN接続242経由で転送されるデータパケット3「4を受信する場合を考える。このとき、MN200は既にMAG（WJAN）232から切断されているので、従来技術では、データパケット3「4はMAG232へ転送されるが、MN200はすでにMAG232に接続していないため破棄される。一方、本発明では、JMA220には、MAG（WJAN）232に登録されていたセルラ接続240の事前登録バインディングが未登録されているので、データパケット3「4は転送経路3「6で示されるようにMAG230へ転送され、そしてMAG230は転送経路3「8で示されるようにセルラ接続240経由でMN200へ転送する。

[0067]この動作は、通常のPMIPv6動作と異なる。なお、通常のPMIPv6動作では、MAG（3GPP）230がPBUMメッセージ322を送信して、ハンドオフ指示フラグで、WLAN接続242に関連するプリフィックスを移すことを指示することを必要とする。これに対し、本実施の形態では
セルラ接続240の事前登録バインディングがアクティブにされると、「MA220」は、セルラ接続240のPDUメッセージ322を受信する前であっても、MAG（3GPP）230での転送を開始することができる。以下説明したように、本実施の形態によれば、WJAN接続242が失われても、MN200でのパケットは破棄されずに、最小限の遅延で別のセルラ接続240に転送される。

[0068] <バインディング事前登録メッセージノ>

図6はバインディング事前登録メッセージ302のフォーマットの一例を示す。このメッセージ302は、このメッセージ302がIPを使用する場合にはIPヘッダ「005」を含み、IPヘッダ「005」の役に実メッセージ「0」が続く。メッセージ302がレイヤ2のメカニズム経由で送信される場合には、IPヘッダ「005」は、レイヤ2フレームの適切なヘッダと置き換えられる。実メッセージ「0」は、メッセージタイプ「0」2とバインド先「0」4の各フィールドを含む。メッセージタイプ「0」2は、このメッセージ302がバインディング登録の事前登録であることを示す。バインド先「0」4は、事前登録バインディングのバインド先の情報（転送先情報）を示し、事前登録バインディングがアクティブになった際にパケットの転送先となる接続を示す。例としてはバインド先のネットワーク・ブリックス又はMAG、又はMN200のバインド先インタフェースなどを識別する情報（アドレスやIDなど）である。なお、このバインディング事前登録メッセージ302としては、MN200とMAG（WJAN）232へ接続する際に行われる接続手続き（Attach Procedure）の中でやり取られるシグナリングを用いてもよいし、MN200とMAG（WJAN）232との間でSA（Security Association）を確立するために行われるIKlav2（Internet Key Exchange）の中でやり取られるシグナリングを用いてもよい。また、BULEッセージを用いてもよい。

[0069] <登録削除・トリガメッセージノ>

図7は登録削除・トリガメッセージ320のフォーマットの一例を示す
このメッセージ3'2aは、JMA220に事前登録バインディングを登録してアクティブにする機能と、PMIPにおける登録削除のPBUMメッセージの機能を有する。メッセージ3'2aは、このメッセージ3'2aがIPを使用する場合にはIPヘッダ025を含み、IPヘッダ025の後に実メッセージ030が続く。メッセージ3'2aがレイヤ2のメカニズム経由で送信される場合には、IPヘッダ025は、レイヤ2フレームの適切なヘッダと置き換えられる。実メッセージ030は、メッセージタイプ032と、MNプリフィックス034と、バインド先036の各フィールドを含む。メッセージタイプ032は、このメッセージ3'2aが登録削除・トリガメッセージであることを示す。MNプリフィックス034は、メッセージ3'2aの送信元MAGが取り扱っているMN200のプリフィックスであって登録削除すべきプリフィックスを示す。バインド先036は事前登録バインディングのバインド先を示し、事前登録バインディングがアクティブになった際にパケットの転送先となる接続を示す。例としてはバインド先のネットワーク・プリフィックス又はMAG、又はMN200のバインド先インタフェースなどを識別する情報（アドレスやIDなど）である。なお、この登録削除・トリガメッセージ3'2aとしてPBUMメッセージを用いてもよい。

[0070]＜第2の実施の形態ノ＞

図8は第2の実施の形態の通信シーケンスを示す。MN200は、MAG（WJAN）232と通信中（接続中）であり、したがって、MAG（WJAN）232がJMA220に対してPBUMメッセージ30が既に送信されていて、JMA220には既にWJAN接続242に関するバインディングが登録されている。MN200は、MAG（WJAN）232と通信中にインタフェース切換イベント300が発生すると、バインディング事前登録メッセージ302をWJAN接続242を通じてMAG（WJAN）232に送信する。バインディング事前登録メッセージ302は、MN200が現在のWJAN接続242のバインディングの代わりにセララ接続240を
確立したいという希望を含む。なお、インタフェース切換イベントや代わりのセルラ接続240を識別する方法の例は、第「の実施の形態と同様である。バインディング事前登録メッセージ302はまた、セルラ接続240の事前登録バインディングをアクティブにする方法を示し、例えればW JAN接続242が切断された時点や、MAG (W JAN) 232が特定の信号を受信した時点で、事前登録バインディングをアクティブにする情報として示される。図8では、W JAN接続242が切断（図の30）された時点で事前登録バインディングをアクティブにするとしている。

[0071] MAG (W JAN) 232は、バインディング事前登録メッセージ302を受信すると、その内容を事前登録バインディング・テーブル「50 b」に登録するとともに、バインディング事前登録転送メッセージ304でJMA220に転送する。転送メッセージ304は2つの目的を有する。第「の目的は、JMA220におけるW JAN接続242に関するプリフィックスをセルラ接続240に関するプリフィックスに仮にバインディング登録することにある。このため、JMA220は、転送メッセージ304内の事前登録バインディングを事前登録バインディング・テーブル「50 cに登録する。この意味は、JMA220におけるセルラ接続240の事前登録バインディングがアクティブにされると、JMA220がMAG (W JAN) 232あてのパケットを代わりにMAG (3 GPP) 230あてにトンネル化するということである。

[0072] 転送メッセージ304の第2の目的は、JMA220に対して、セルラ接続240のプロキシとなるMAG (3 GPP) 230のアドレス又はアドレスを送く出ることができる情報（FQDN）などをMAG (W JAN) 232に通知するよう要求することにある。このため、JMA220は、応答メッセージ306をMAG (W JAN) 232に送信して、MAG (3 GPP) 230がセルラ接続240のプロキシノードであることを通知する。ここで、MAG (W JAN) 232がMAG (3 GPP) 230を知得する他の手段を有する場合には、転送メッセージ304はなくてもよし。この他の手
段としては、MN200がセルラ接続240に関するネットワーク・ブリフィックス、又は他のパラメータからMAG（3GPP）230のアドレス又はアドレスを導き出すことができる情報を知得するか、或いはドメイン20内の独立したサーバに問い合わせることにより知得し、バインディング事前登録メッセージ302を用いて明示的にMAG（WJAN）232へ通知することが考えられる。

これらのメッセージ302、304、306により、仮のバインディングがMAG（WJAN）232とJMA220の両方に登録されるが、未だアクティブではない。このため、MN200を介してパケットは継続して、MAG（WJAN）232とWJAN接続242を経由して転送される。このWJAN接続242が切断（図の30）されるまで継続する。ここで、レイヤ2のアクセス技術では、アクセスルータは、モバイルノードが接続（connection）を失ったことを瞬時に検出することができると

MAG（WJAN）232は、WJAN接続242の切断30を検出すと、セルラ接続240の事前登録バインディング登録をアクティブにするために、プロキシ・モバイルIPにより、WJAN接続242に関するバインディング登録（すなわちPBUメッセージ300の内容）を削除するよう要求するプロキシB（登録削除PBU）メッセージ32をJMA220に送信する。JMA220は、登録削除PBUメッセージ32を受信すると、MAG（WJAN）232からWJANインタフェース1F2に割り当てられていたブリフィックスのバインディング登録を削除し、また、セルラ接続240の事前登録バインディングをアクティブにする。なお、ここで言う登録削除とは、バインディング登録されている情報そのものを削除するでなく、バインディングとしての登録を解除することを示してもよい。この場合、JMA220は、登録削除PBUメッセージ32を受信した際に、WJANインタフェース1F2に割り当てられていたブリフィックスのバインディング登録を、非アクティブ化（無効化）する。このため、WJAN
Nインタフェース1F2のプリフィックスに関するバインディング情報は保持され、MN200が再びW JAN接続242を確立した際にアクティブ化（有効化）される。つまり、登録の解除はされるものの、実際の情報は消されずに保持される。これにより、MN200が再接続した際にバインディング情報の再登録が不要となる。

ここで、JMA220が登録削除PBUメッセージ3「2を受信する前に、W LAN接続242経由で転送するデータパケット314を受信したものとすると、JMA220は、セルラ接続240の事前登録バインディングがアクティブにされていないので、通常の動作としてデータパケット3「4をMAG（W JAN）232あてのデータパケット3「6にトンネル化する。そこで、MAG（W JAN）232は、データパケット3「6を受信したときには、セルラ接続240の事前登録バインディングがアクティブにされているので、データパケット3「6をインタセプトしてデータパケット3「8でMAG（3GPP）230に転送する。これにより、MAG（W JAN）232がW JAN接続242の切断3「0を検出した後にデータパケット3「6を受信した場合でも、MAG（3GPP）230へ転送することができるため、パケットロスを防ぐことができる。ここで、MAG（W JAN）232は、データパケット3「8の転送先のMAG（3GPP）230を応答メッセージ3「0又は他の手段で知っている。MAG（3GPP）230はそのデータパケット3「8をデータパケット320でMN200に転送する。

JMA220は、セルラ接続240の事前登録バインディングがアクティブにされているときに（すなわち登録削除PBUメッセージ3「2を受信した後に）データパケットを受信すると、そのデータパケットをMAG（W JAN）232の代わりにMAG（3GPP）230あてに転送する。この動作は、通常のPMIPv6動作と異なる。なお、通常のPMIPv6動作では、MAG（3GPP）230がセルラ接続240のPBUメッセージ322を送信して、ハンドオフ指示フラグで、W JAN接続242に関連するプ
リフィックスを移すことを指示することを必要とする。これに対し、本実施の形態では、セルラ接続240の事前登録バインディングがアクティブにされるとき、JMA220は、セルラ接続240のPBUメッセージ322を受信する前であっても、MAG（3GPP）230を次の転送を開始することができる。以上説明したように、本実施の形態によれば、WJAN接続242が失われても、MN200のパケットは破棄されずに、最小限の遅延で別のセルラ接続240に転送される。

[0077] バインディング事前登録転送メッセージ

図9はバインディング事前登録転送メッセージ304のフォーマットの一例を示す。このメッセージ304は、事前登録バインディングをJMA220に登録する機能と、メッセージ304内に記述されているバインド先を取り扱っているMAGに関する情報（アドレスなど）を、このメッセージの送信元に通知するようJMA220に要求する機能を有する。メッセージ304は、このメッセージ304がIPを使用する場合にはIPヘッダ「045を含み、IPヘッダ「045の役に実メッセージ「050が続く。実メッセージ「050は、メッセージタイプ「052と、MNプリフィックス「054と、バインド先「056の各フィールドを含む。メッセージタイプ「052は、このメッセージが事前登録転送メッセージ304であることを示す。MNプリフィックス「054は、このメッセージの送信元MAGが取り扱っているMN200のプリフィックスであって、事前登録バインディングがアクティブになったときに転送すべきプリフィックスを示す。バインド先「056は、事前登録バインディングのバインド先を示し、事前登録バインディングがアクティブになった際にパケットの転送先となる接続を示す。例としてはバインド先のネットワーク・プリフィックス又はMAG、又はMN200のバインド先インタフェースなどを識別する情報（アドレスやIDなど）である。なお、このバインディング事前登録転送メッセージ304としてPBUメッセージを用いてもよい。

[0078] 応答メッセージ
図「0は応答メッセージ306のフォーマットの一例を示す。メッセージ306は、このメッセージ306がIPを使用する場合にはIPヘッダ「065を含み、IPヘッダ「065の役に実メッセージ「070が続く。実メッセージ「070はメッセージタイプ「072とバイナード先「074の各フィールドを含む。メッセージタイプ「072は、このメッセージが応答メッセージ306であることを示す。バイナード先「074は、事前登録パインディングに記述されているバイナード先を扱っているMAGの実際のアドレスである。なお、この応答メッセージ306としてPBAメッセージを用いてもよい。」

| 0079 | 第3の実施の形態：バイナード先の変更ノ |
通常、モバイルノードは、事前登録パインディングとして不安定な接続を、安定している接続にパインドする。バイナード先（切り換え先インタフェース）の接続は安定しているので、事前登録パインディングがアクティブにされる前にバイナード先の接続が変更されることは殆どない。ただし、以下のようことが考えられる。図「「は、本発明が想定する他のシステムを示し、図「「では、図「に示す構成に対してセルラアクセスタイプのMAG（3GPP）430が追加されている。

| 0080 | 図「2は図「「における通信シーケンスを示し、MN200とMAG（3GPP）230の間のセルラ接続240をMN200とMAG（3GPP）430の間の新しいセルラ接続440にハンドオフする手順を含む。図「2におけるPBUメッセージ301と、インタフェース切換イベント300と、パインド事前登録メッセージ302と、転送メッセージ304と、応答メッセージ306は図8と同じであり、したがって、セルラ接続240の事前登録パインドングがMAG（WLAN）232の事前登録パインドング・テーブル「50bと、JMA220の事前登録パインドング・テーブル「50cの両方に登録されるが、未だアクティブではない。このため、MN200あてのパケットは継続して、MAG（WLAN）232とWLAN接続242を経由して転送される。また、JMA220からの応答メッセージ306は、MN200に転送される。」
セージ306によって、MAG232には、セルラ接続240はMAG230によって管理されていることが通知される。このセルラ接続240軽油の転送は、イベント5「0で示されるように、セルラ接続240がセルラ接続440へ切り替わるまで続ける。

[0081] セルラ接続240がセルラ接続440にハンドオフ（図の5「0）されると、新しいMAG（3GPP）430がセルラ接続440のPBUXメッセージ512をLMA220に送信して、セルラ接続240を新しいセルラ接続440にアップデートする。PBUXメッセージ5「2はJMA220に対し、MAG（3GPP）430が現在、MN200のセルラ接続を取り扱っている旨を指示する。JMA220は、既にセルラ接続240の事前登録バイニングが転送メッセージ304で登録されているので、この事前登録バイニングがPBUXメッセージ5「2により影響を受けるか否かを事前登録バイニングテーブル「30cでチェックする。

[0082] JMA220は、セルラ接続240の事前登録バイニングのバインド先が変更されていることを検出すると、新しい応答メッセージ5「4をMAG（WJAN）232に送信して、事前登録バイニングのバインド先がMAG（3GPP）230からMAG（3GPP）430に変更されていることを通知する。MAG（WJAN）232は、セルラ接続240の事前登録バイニングのバインド先が変更されてもそのバインド先が通知されているので、WJAN接続242の切断の後にJMA220から転送されてきたパケットを正しいMAG（3GPP）430に転送することができる。このため、WJAN接続242が失われても、MN200においてのパケットは破棄されずに、最小限の遅延で別のセルラ接続440に転送される。

[0083] 4.7.4.の実施の形態：バインド先のチェック

あるシステムによっては、MAG（WJAN）232にとって上記の事前登録バイニングを受け付ける前にMN200が本当にバインド先のセルラ接続240を有するか否かを検証（verify）する必要があるかもしれない。この証明は、MAG（WJAN）232が転送メッセージ304をJMA
220に送信する際に検証を要求して、肯定の応答メッセージ306をMAG(AWIAN)232から受信することにより実現することができる。また、代わりにMAG(AWIAN)232は、MN200のアクティブな接続に関して必要な情報を有するドメイン2「0内の他のノード、例えばAAAサーバーに問い合わせることができる。さらに他の方法として、MAG(AWIAN)232がテストメッセージをバインド先のセルラ接続240に送信する。MN200はこのテストメッセージを受信すると、応答することによりMN200が本当にバインド先のセルラ接続240を有することを示す。

さらに他の方法として、図3に示すようにMN200がバインディング事前登録メッセージ302aをバインド先のセルラ接続240経由でMAG(AWIAN)232に送信する。この場合、MAG230によって転送されるので、MAG(AWIAN)232が、MN200を検証したMAG230から転送されたバインディング事前登録メッセージ302aを受信した場合に、MN200の検証が完了する。加えて、この方法はまた、MAG(AWIAN)232がJMA220により、MAG(3GPP)230がセルラ接続240を取り扱っていることを通知される必要がないことを意味する。バインディング事前登録メッセージ302aの内容がMAG(3GPP)230により転送されるということは、MAG(AWIAN)232に対してMAG(3GPP)230がセルラ接続240を取り扱っていることを示す。

図3を参照して、MN200がバインディング事前登録メッセージ302aをバインド先のセルラ接続240経由でMAG(AWIAN)232に送信する場合について説明する。前述したインタフェース切換イベント300が発生すると、MN200はバインディング事前登録メッセージ302をMAG(AWIAN)232に直接に送信する代わりに、バインディング事前登録転送メッセージ304aをセルラ接続240経由でMAG(3GPP)230に送信する。MAG(3GPP)230は、事前登録転送メッセージ304aを受信すると、バインディング事前登録メッセージ302aをMAG(AWIAN)232に送信する。このため、事前登録バインディングがMA
G（3GPP）230経由でMAG（WJAN）232に送信されるので、MAG（WJAN）232は、MN200がセルラ接続240を有することを検証する必要がない。MAG（WJAN）232はまた、MAG（3GPP）230がセルラ接続240を取扱っていることを知得することができる。なお、この目的のためには、MAG（3GPP）230がバインディング事前登録メッセージ302aに識別キーで署名して、バインディング事前登録メッセージ302aが真であることをMAG（WLAN）232に示すことが望ましい。

[0086]＜第5の実施の例＞バインディングの変更先のチェックノ

図３はまた、MN200がバインディング事前登録メッセージ302aをバインディングの変更先のセルラ接続240経由でMAG（WJAN）232に送信する例として、図5を変形した例を示し、MN200とMAG（3GPP）230の間のセルラ接続240をMN200とMAG（3GPP）430の間の新しいセルラ接続440にハンドオフする様子を含む。図３における事前登録バインディングを再送する目的は、バインディングの变更先を実際に取扱っているMAG（3GPP）430になるようMAG（WJAN）232をアップデートすることにある。

[0087]MAG（3GPP）230からMAG（3GPP）430にハンドオフ（図の5「①」）されるとき、MAG（3GPP）430はPBUメッセージ6「6で」MA220をアップデートする。また、MN200は、バインディング事前登録転送メッセージ304bをセルラ接続240経由でMAG（3GPP）430に送信する。MAG（3GPP）430は、事前登録転送メッセージ304bを受信すると、バインディング事前登録メッセージ302bをMAG（WJAN）232に送信する。ここでは、セルラ接続440の事前登録バインディングがMAG（3GPP）430経由でMAG（WJAN）232に送信されるので、MAG（WJAN）232は、MN200がセルラ接続440を有することを検証する必要がない。MAG（WLAN）232はまた、MAG（3GPP）430がセルラ接続440を取扱ってい
ることを知得することができる。このため、W JAN接続2 4 2が失われても、MN2 0 0 0あとのパケットは破棄されずに、最小限の遅延で別のセルラ接続4 4 0に転送される。

第6の実施の形態：事前登録バインディング・トリガの変形ノ

上記の実施の形態では、接続（conection）が失われたことをMAGが瞬時に検出できるものと仮定しているが、レイヤ2のアクセス技術では一般的に真であり、基局局はアクセスポイントは、移動局が関連していないことを瞬時に知得する。しかしながら、MAGがこれを瞬時に知得できないアクセス技術や状況がある。一例として、W JAN接続2 4 2がPPP（Point-to-Point Protocol）トンネルであるケースがある。このケースは、MN2 0 0 0が、信頼できないW JANアクセスネットワーク（non-trusted WLAN access network）をローミングしていて、3G PPPのアクセス及び機能にアクセスするために、eP D G（evolved Packet Data Gateway）に対してPPPトンネルをセットアップするときに発生する。この場合には、MN2 0 0 0とMAG（W JAN）2 3 2との間のアクセスがPPPトンネルであるので、MN2 0 0 0が、信頼できないW JANアクセスネットワークとのW JAN接続2 4 2を失うと、MN2 0 0 0が、信頼できないW JANアクセスネットワークには位置していないことを知得するのにある程度の時間がかかる。この状況下では、接続ロスを検出して、事前登録バインディングをアクティブにするためのトリガとして役には立たず、他の方法を必要とする。

「つの望ましい方法は、図「4に示すように、MN2 0 0の事前バインディング・トリガ手段「6 0が、インターフェースが切断した際に事前登録バインディングをアクティブにするトリガ信号を、セルラ接続2 4 0、4 4 0経由で送信することである。ここで、図8に示したように、MN2 0 0は2つの接続として、すなわちMAG（3G PPP）2 3 0に対する安定した第「のセルラ接続2 4 0と、信頼できないW JANアクセスネットワークを経由したPPP接続がもしきれない安定していない第2のW JAN接続2 4 2を有する。図「4におけるP BUメッセージ3 0「と、インターフェース切換イベント
ト3 0 0と、バインディング事前登録メ ッセージ3 0 2と、転送メ ッセージ3 0 4と、応答メ ッセージ3 0 6は図8と同じであり、したがって、セルラ
接続2 4 0の事前登録バインディングがM AG (W J AN) 2 3 2とJ MA
2 2 0の両方に登録されるが、未だアクティブではない。このため、MN 2
0 0あてのパケットは、継続してM AG (W J AN) 2 3 2とW J AN接続
2 4 2を経由して転送される。また、J MA2 2 0からの応答メ ッセージ3
0 6によって、M AG2 3 2には、セルラ接続2 4 0はM AG2 3 0によっ
て管理されていることが通知される。

[0000] ここで、切断イベント3 "0"では、MN 2 0 0が、信頼できないW J AN
アクセスネットワークを経由したP P接続であるW J AN接続2 4 2を失
ったものとする。このため、M AG (W J AN) 2 3 2はこの切断イベント
3 "0"を直ぐに検出できず、MN 2 0 0のみがW J ANインタフェース1
F 2 Pで切断イベント3 "0"を直ぐに検出できる。そこで、MN 2 0 0はプ
ロキシ・モバイルIPにしたがって、M AG (3 G P P) 2 3 0に対して、
W J ANインタフェース1 F 2に割り当てされていたブリフィックスをM A
G (3 G P P) 2 3 0が引き継ぐように要求するバインディング登録引き継
ぎ要求メッセージ7 "2"を送信する。バインディング登録引き継ぎ要求メ ッ
セージ7 "2"の形態は、通常、レイヤ2のシグナリングを用いて送信される
が、当業者であれば、レイヤ3におけるNS (neighbor solicitation) メッ
セージや、D H C P (Dynamic Host Configuration Protocol) におけるメッ
セージなどの他の手段を用いて送信することができる。本発明ではさらに、
バインディング登録引き継ぎ要求メッセージ7 "2"で、セルラ接続2 4 0の
事前登録バインディングをアクティブにするトリガを送信する。

[0001] M AG (3 G P P) 2 3 0は、メッセージ7 "2"を受信すると、J MA2
2 0に対して、W J AN接続2 4 2のブリフィックスを引き継ぐことを要求
する適切なハンドオフ指示子を有するPB Uメッセージ7 "4"を送信する。
M AG (3 G P P) 2 3 0はまた、M AG (W L AN) 2 3 2に対して、セ
ルラ接続2 4 0の事前登録バインディングをアクティブにするトリガメ ッセ
一ジ7「6を送信する。セルラ接続240の事前登録バインディングをアクティブにするということは、WJAN接続242が最も使用されていないことを示している。このため、MAG (WJAN) 232は、登録削除PBUMメッセージ7「8」をJMA220に送信する。ここで、JMA220における事前登録バインディングがアクティブにされる時点は、登録削除PBUMメッセージ7「8」を受信した時点、又はPBUMメッセージ7「4」内のハンドオフ指示子を受信した時点である。

[0092]この効果について、JMA220によりインタセプトされるデータパケット720を例にして説明する。インタセプトされる時点は、切断イベント3「0」の後であってセルラ接続240のPBUMメッセージ7「4」を受信する前にある。この状況では、JMA220は、WJAN接続242が未だアクティブであることが示しており、インタセプトしたデータパケット720をMAG (WJAN) 232あてのデータパケット722にトンネル化する。MAG (WJAN) 232はこのデータパケット722を受信すると、セルラ接続240の事前登録バインディングが既にトリガ信号7「6」によりアクティブにされていることに気付く。このため、MAG (WJAN) 232はこのデータパケット722をデータパケット724でMAG (3GPP) 230に送信する。MAG (3GPP) 230はこのデータパケット724をデータパケット726でMN200に転送する。

[0093]以上説明したように、MN200がアクティブなセルラ接続240を使用して、MAG (WJAN) 232におけるセルラ接続240の事前登録バインディングをアクティブにしている。同様に、MAG (WJAN) 232がトリガ信号7「6」をMAG (WJAN) 232に送信するときに、同じトリガ（セルラ接続240のPBUMメッセージ7「4」）がJMA220に送信される。したがって、本実施の形態でも同様に、WJAN接続242が失われても、MN200あてのパケットは破棄されずに、最小限の遅延でセルラ接続240に転送される。

[0094]＜トリガメッセージノ
図「6はトリガメッセージ7「6のフォーマットの一例を示す。トリガメッセージ7「6は、バインド元のMAG（W）AN 232に登録されている事前登録バインディングをアクティブにするために使用される。トリガメッセージ7「6は、このメッセージ7「6がIPヘッダ「085を含み、IPヘッダ「085の役に実メッセージ「090が続く。メッセージ7「6がレイヤ2のメカニズム経由で送信される場合には、IPヘッダ「085は、レイヤ2フレームの適切なヘッダと置き換えられる。実メッセージ「090は、メッセージタイプ「092とトリガ信号フィールド「094を含む。メッセージタイプ「092は、このメッセージがトリガメッセージ7「6であることを示す。トリガ信号フィールド「094は、アクティブにする事前登録バインディングを示す。

[0095] 第7の実施の形態：インターネットが接続するドメインが異なるノ

上記の実施の形態ではいずれも、セルラ接続240のバインディング事前登録がローカル・モビリティ・アンカー・ポイントであるJMA220に転送される。このため、LMA220がハンドオフ用のPBUXメッセージ7「4を受信する前に、受信パケットをセルラ接続240にリ・ダイレクトできるようにして、不必要な遅延を防止することに役立つ。次に、図「6、図「7を参照して第7の実施の形態について説明する。第7の実施の形態では、MN200の3GPPインタフェース「WとWANインタフェース「Wがそれぞれ、異なるLMMドメイン8「0、820に接続（attach）している。

[0096] 図「6において、MN200は2つの異なるJMMドメイン8「0、820内をローミングしている。JMMドメイン8「0、820はグローバルなインターネット800に接続（connect）されている。JMMドメイン8「0はJMA82「とMAG（3GPP）83「を有し、MN200の3GPPインタフェース「Wは、MAG（3GPP）83「とセルラ接続84「を確立している。LMMドメイン820はLMA822とMAG（WLAN）832を有し、MN200のWANインタフェース「Wは、MAG（W
JAN) 8 3 2 と JAN接続 8 4 2 を確立している。JMA 8 2 "、8 2 2 はインターネット 8 0 0 に接続 (connect) されている。

[007] 前述したように、セルラ接続 8 4 「より JAN 再接続 8 4 2 の帯域が広く、通信コストも安いので、M N 2 0 0 は JAN接続 8 4 2 経由のパケット
・ルーティングを希望するものとする。ただし、セルラ・アクセスネットワークと比較して、JANアクセスネットワークの通信範囲は狭く、また散
在しているので、本実施の形態でも、最小限のパケットロス及び遅延で、ドメイン 8 2 0 、8 2 2 を跨がった JAN接続 8 4 2 からセルラ接続 8 4 「
へのシームレスなハンドオーバを実現する。ここでも、セルラ接続 8 4 「と
JAN接続 8 4 2 は、単に説明のためであって、他の接続でもよいことは
明らかである。

[008] 図 7 は第 7 の実施の形態の通信シーケンスを示す。第 7 の実施の形態と
同様に、M N 2 0 0 は、MAG (JAN) 8 3 2 と通信中にインタフェー
ス切換イベント 3 0 0 が発生すると、バインディング事前登録メッセージ 3
0 2 を JAN接続 8 4 2 を介して MAG (JAN) 8 3 2 に送信する。
バインディング事前登録メッセージ 3 0 2 は、M N 2 0 0 が JAN接続 8
4 2 の現在のバインディングの代わりにセルラ接続 8 4 「を確立したいとい
う希望を含む。また、MAG (JAN) 8 3 2 は、バインディング事前全
録メッセージ 3 0 2 を受信すると、その内容を転送メッセージ 3 0 4 で JMA
8 2 2 に転送する。ここで、JMA 8 2 2 は、転送メッセージ 3 0 4 内に
記述されている JAN接続 8 4 2 とセルラ接続 8 4 「の両方を取り扱って
いれば、第 2 の実施の形態と同様に応答メッセージ 3 0 6 を送信するが、こ
の例では、セルラ接続 8 4 「に関連するブリフィックスが JMM ドメイン 8
2 0 に属しないので、セルラ接続 8 4 「を取り扱っていないことを知得す
る。

[009] そこで、JMA 8 2 2 は、セルラ接続 8 4 「に関連するブリフィックスを
抽出する。ここで、ローミング契約が JMM ドメイン 8 「 0 、8 2 0 間で締
結されているものと仮定すると、JMA 8 2 2 は、M N 2 0 0 がセルラ接続
84「を有することを検証（verify）できる。検証処理9「0では、JMA822がJMMドメイン8「0側（バインド先）のJMA82「と通信することにより行われる。検証処理9「0はまた、JMMドメイン8「0、820内の不図示のAAAエンティティ経由で行われる。JMA822は、MN200がセルラ接続84「を有することを証明（verify）すると、応答メッセージ306をMAG (WLAN) 832に送信する。応答メッセージ306では、LMA822はMAG (WLAN) 832に対し、セルラ接続84「がバインド先のJMA82「でなく、バインド元のJMA822自身により取り扱われていることを通知する。

[0100]このバインド先のJMA82「ではない理由は複数ある。第1の理由は、ドメイン間の殆どのローミング契約では、選択されたエンティテイ間でのみ通信が許可されているからである。このため、バインド元のMAG (WLAN) 832は、バインド先のMAG (3GPP) 83「に対して直接にパケットを送信できないかもしれない。ここでは、バインド元のJMA822のみがバインド先のJMA82「と通信するためのセキュリティ対策を確立しているものとし、このため、セルラ接続84「の事前登録バインディングがアクティブにされると、パケットはバインド元のJMA822に転送される。第2の理由は、どこに位置するかのプライバシー（Location Privacy）に関するからである。このため、バインド元のJMA822自身は、バインド先のドメイン8「0内のどのMAGがセルラ接続84「を取り扱っているかを知得していない。第3の理由は、JMAは通常、JMMドメインの人り口及び出口のポイントであるからである。このため、バインド元のドメイン820から外に送信されるパケットは、バインド元のJMA822を通じなければならず、バインド先のドメイン8「0内に送信されるパケットは、バインド先のJMA82「を通過しなければならない。したがって、パケットのルートに関しては、バインド先のセルラ接続84「を取り扱っているMAGをバインド元のMAG (WLAN) 832やLMA822に通知しても利点はない。
記のシグナリングを経て、仮のバインディングがバインド元のMAG（WJAN）832とJMA822に登録されるが、未だアクティブではない。このため、MN200あてのパケットは継続して、MAG（WJAN）832とWJAN接続842を経由して転送され、このWJAN経由の転送は、WJAN接続842が切断（図の3「0」されるまで継続する。MAG（WJAN）832は、WJAN接続842の切断3「0」を検出しと、セルラ接続84「の事前登録バインディングをアクティブにするために、プロキシ・モバイルIPによりWJAN接続842の登録削除PBUメッセージ3「2」をJMA220に送信する。JMA220は、登録削除PBUメッセージ3「2」を受信すると、MAG（WJAN）832からWJANインタフェースIF2に割り当てられていたプリフィックスのバインディング登録（PBUメッセージ3「0」の内容）を削除し、また、セルラ接続84「の事前登録バインディングをアクティブにする。

図7では、MN200あての2種類のデータパケット930、950をJMA822が受信したことを示す。第1のデータパケット930は、JMA822によりWJAN接続842の登録削除PBUメッセージ3「2」の前に受信され、このため、JMA822は、データパケット930をデータパケット932でMAG（WJAN）832に転送する。ここで、MAG（WJAN）832は、セルラ接続84「の事前登録バインディングが既にアクティブにされ、また、MAG（WJAN）832のテーブル「30b」におけるその事前登録バインディングでは、「JMA822がセルラ接続84「を取り扱う」と指示しているので、そのデータパケット932をデータパケット934でバインド元のJMA822に送り返す。バインド元のJMA822はそのデータパケット934をデータパケット936でバインド先のJMA822に転送する。データパケット936は、バインド先のMAG（3GPP）83「あてのデータパケット938にトンネル化され、最終的に、MAG（3GPP）83「がそのデータパケット938をデータパケット940によってセルラ接続84「経由でMN200に転送する。
第2のデータパケット950は、JMA822によりWJAN接続842の登録削除PBUメッセージ「2の役に受信され、このため、JMA822は、セルラ接続84「の事前登録バイインティングが登録削除PBUメッセージ3「2により既にアクティブにされているので、データパケット950をデータパケット952でバインド先のJMA82「に転送する。データパケット950は、バインド先のMAG (3GPP)83「あでのデータパケット954にトンネル化され、最終的に、MAG (3GPP)83「がそのデータパケット954をデータパケット956によってセルラ接続84「経由でMN200に転送する。したがって、本実施の形態でも同様に、WJAN接続832が失われても、MN200あでのパケットは破棄されずに、最小限の遅延で別のセルラ接続84「に転送される。

次に、図8及び図9を参照して第8の実施の形態について詳しく説明する。第8の実施の形態では、MN200は、不安定なアクセス (WJANアクセスネットワーク「0」) 経由のコネクションを喪失したときに、フローマンデータのパケットロスを低減させるために3GPPアクセスへ転送先を切り替えるフロー種別を指定期事前登録フィルタルールをJMA/HAN220にセットする。さらに第8の実施の形態では、MN200は、事前登録フィルタルールを確立する必要性を決定して、フィルタルール事前登録メッセージを送信する。なお、図8に示す構成は、「背景技術」において既に説明したので、ここでは詳細な説明を省略する。なお、3GPPアクセスネットワーク「0」、WJANアクセスネットワーク「0」は、3GPPやWJAN、WiMAXなどの無線通信に利用可能なアクセスタイプであるがどのタイプであってもよい。例えば、WJANの代わりにWiMAXを利用することも考えられる。

図9は上記のフロー種別ごとの事前登録フィルタルールをセットするための通信シーケンスを示す。第8の実施の形態におけるシナリオにおいて、上記の事前登録フィルタルールをセットする場合とは、MN200が最初に
アクティブモードで不安定なWJANアクセス経由で確立されたコネクションと、アイドルモードで安定した３ＧＰＰアクセス経由で確立されたコネクションを有する場合である。さらに、MN200は次に、不安定なWJANアクセス経由の接続（connectivity）を喪失したときに、安定した３ＧＰＰアクセス経由のコネクションがアクティブモードに切り替わるものとする。

なお、図19において、MN200は３ＧＰＰインタフェースIFとWJANインタフェースIF2を有する。また、MN200は不安定なWJANアクセス経由でアクティブモードによって接続（connectivity）しているとともに、安定した３ＧＰＰアクセス経由でアイドルモードによって接続（connectivity）している。MAG（WJAN）232がこの不安定なWJANアクセスを管理（PBUMessage「2000a参照）しているとともに、MAG（3GPP）230がこの安定した３ＧＰＰアクセスを管理している。３ＧＰＰアーキテクチャでは、MAG232（WJAN）はePDG（evolvedPacketDataNetworkGateway）であり、MAG230（3GPP）はS-GW（ServingGateway）である。さらに、MN200のモビリティはJMA/HA220により管理されている。３ＧＰＰアーキテクチャでは、JMA/HA220はP-GW（PacketDataNetworkGateway）であり、MN200はUN（UserEquipment）である。

なお、ここでは、MN200は、JMA/HA220とのブートストラッピング後に、ホームアンドアウェイ登録（homeandawayregistration）をJMA/HA220に対して実行することを決定するものとする。さらに、MN200は、ホームアンドアウェイ登録（H＝１）とともに、フロー種別ごとのフィルタルールをJMA/HA220に事前登録するものとする。図9のステップ「200」は、決定処理を示し、シグナリングメッセージ「200」は、その登録メッセージを示す。シグナリングメッセージ「200」の内容は、付与されたH〇Aに対するホームアンドアウェイ登録（H＝１）と、現在のフィルタルールと、将来の不安定なWJANアクセス経由のコネクショ
ンの切断期間中に使用されるフロー種別ごとのフィルタールール（事前登録フィルタールール）を含む。

[0080] (3) MN200は、各インタフェースI'フ、IF2用の又は複数のHOAを構成した後、ステップ「200において現在のフィルタールールのセットを決定するものとする。ここでは、MN200は、両方のインタフェースI'フ、IF2経由のホームアンドウェイ登録（Hニフ）を行っていても、複数のFIDにより識別されるオーディオフロー、ビデオフロー及びデータフローのようなすべてのフローが不安定なW JANアクセス経由のみで送信されること（P2のデフォルトH0A（P2））を希望するフィルタールールを使用するものとする。MN200はステップ「200において、この現在アクティブなフィルタールールに加えて、不安定なW JANアクセス経由のコネクションの切断時にアクティブ化されるフロー種別ごとのフィルタールール（ここでは、P2のオーディオ及びビデオのフローが3GPPアクセス経由で送信されること（P2のオーディオフロー&P2のビデオフロー）H0A（Pフ）を希望するフィルタールールを使用するものとする）を事前に登録することを決定する。このフロー種別ごとの事前登録フィルタールールは、JMA/H220に通知されたときにはアクティブではなく、不安定なW JANアクセス経由のコネクションの切断時にアクティブ化される。

[0089] このフロー種別ごとの事前登録フィルタールールを通知する理由は、不安定なW JANアクセス経由のコネクションの切断時に、この事前登録フィルタールールが現在のフィルタールールより優先するようトリガする必要があるからである。そして、そのトリガによって、不安定なW JANアクセス経由のコネクションの切断中には、この事前登録フィルタールールが現在のフィルタールールより優先して使用される。もし、この事前登録フィルタールールがセットされない場合、JMA/H220においてパケットロスが発生する。その理由は、JMA/H220が安定している3GPPアクセス経由でルーティングすることを指示する有効なルーティングステートが存在しないものと判断するからである。この場合、JMA/H220は、不安定なW JAN
アクセス経由のコネクションが再びセットアップされるまで、すべてのフローのパケットをバッファリングする。このパケットは、ある時間の経過後にバッファのオーバフローにより破棄されるかもしれない。あるいは、バッファリングせずずに、破棄されるかもしれない。JMA/HANSは、フィルタルールがいったんセットされると、フィルタルールベースのルーティングに従うので、そのような問題が発生する。その問題の主要な理由は、JMA/HANSが不安定なWLANアクセス経由の切断中には正確なフィルタ管理手続きを有しないからであり、このため、事前登録フィルタルールを必要とする。基本的に、事前登録フィルタルールはJMA/HANSに対し、MN200が不安定なWJAN経由の接続性（Connectivity）を喪失している期間のフィルタ管理ルールを通知する。

以後のように着目すると、切断中にはパケットがルーティングできない場合にはバッファリングが発生するが、このバッファリングはリアルタイムなフロー（オーディオフロー及びビデオフロー）にとっては望ましくない。また、バッファリングはリアルタイムでないフロー（データフロー）にとってはアクセプトできるが、時間厳守のリアルタイムなフローにとっては、バッファリングは遅延とジッタを増大させるため、防止すべきである。

MN200は、このフロー種別ごとの事前登録フィルタルールがあらかじめ必要であると決定又は予測して、これを現在有効フィルタルールとともに送信することを決定する。この事前登録フィルタルールの特徴は、アクティブ化時点の境界が定義されていることにある。この事前登録フィルタルールは、不安定なWJANアクセスの切断中のみ、アクティブであることを必要とする。この事前登録フィルタルールはまた、アクティブ期間には現在のフィルタルールより優先度を有するが、現在のフィルタルールを除去しないことを特徴とする。この事前登録フィルタルールは、アクティブ期間後にはアクティブではないが、不安定なWJANアクセスの次の切断中に再び使用（アクティブ化）される。ステップ1200における決定処理では、MN200は、この事前登録フィルタルールが必要であると決定し、また、この事
前登録フィルタルールがアクティブ期間後の長い期間であってもJMA／HA 220において維持される必要があると決定する。

[0112] フロー種別ごとの事前登録フィルタルールが必要であるとMN200が決定する理由として、パケットロスを防止してQoSを向上させる必要のある種別のフロー（ビデオフロー及びオーディオフローなどのリアルタイムフロー）をMN200が不安定なWLANアクセス経由で有しているからであるとしてもよい。加えて、MN200は、上記の種別のフローに関連するセッション期間の間に複数の切断イベントが発生するであろうというネットワーク提供情報有するかもしれない。この場合、複数の切断イベントの期間、事前登録フィルタルールがJMA／HA 220において維持される必要がある。さらに、MN200は、あるサーバ、例えばANDSF（Access Network Discovery Selection Function）からの情報、又はMN200が収集した情報に基づいて、3GPPアクセス経由の安定したコネクションがJMMドメイン2「0では利用可能であり、かつ事前登録フィルタルールが複数の切断イベントの期間中に維持できると予測する。加えて、MN200は、ANDSF情報及び／又は自身の測定情報に基づいて、安定したインタフェース・アクセス・テクノロジー・ボリシーと安定したインタフェース・アクセスシステムが、安定しないインタフェースに関連するフローを切断中に転送するのに望ましく、その結果、事前登録フィルタルールがJMA／HA 220において具備されると予測する。

[0113] 次に、シグナリングメッセージ「20」の構造について説明する。ここで、MN200は2つのホームアドレスHoA（P'）、HoA（P2）を有する。HoA（P2）は、MAG（WLAN）232からJMA／HA 220に対するPMIPv6モビリティ・シグナリング「10」経由で取得されるプリフィックスP2から構成される。HoA（P'）は、MAG（3GPP）230からJMA／HA 220に対するPMIPv6モビリティ・シグナリング「109」経由で取得されるプリフィックスP1から構成される。MN200は、DSMIPv6ブートストラッピング手順を使用してHoA（
P①）、H〇A（P②）を取得した後、まず、プリフィックスP②から構成したH〇A（P②）に対してホームアンドアウェイ登録（H＝１）を生成する。MＮ２００は、プリフィックスP②に関連するアドレスをあて先とするフローに対して、ホームアンドアウェイ登録によるマルチホーミングの利点を得るために、プリフィックスP①から構成したH〇A（P①）をC〇AとしてH〇A（P②）にバインドし、さらにこのバインディングにHフラグを付す。

[0イ14] プリフィックスP②に関連するH〇A（P②）に対するパスの同時確立に加えて、MＮ２００は、可能であればWＪＡＮアクセスの使用を希望して、「プリフィックスP②に関連するフローに対しては、ＷＪＡＮアクセスがデフォルトの、すなわち望ましいアクセスである」という現在のフィルタールルを構築する。MＮ２００は、適切なフロー記述サブオプション付きのFＩDオプションを含ませて、FＩDにより記述されているすべてのフローがＷＪＡＮアクセス経由で配送されるべきであることを通知する。したがって、MＮ２００は、ホームアンドアウェイ・セマンティクスと、現在のフィルタールルと、事前登録フィルタールルを含むシグナリングメッセージ「20」を構築する。ここで、シグナリングメッセージ「20」は、追加のモビリティ・オプションとして埋め込まれた現在のフィルタールル及び事前登録フィルタールルを含むDSＭ１P⑥のBＵメッセージであるものとする。

[0イ15] 事前登録フィルタールルを送信するためのシグナリングメッセージ「20」（及び後述する第9の実施の形態における事前登録ブロッキング・フィルタールルを送信するためのシグナリングメッセージ「305」）は、例えば図6に示すバインディング事前登録メッセージと同様な構成でよい。この場合、図6に示すメッセージタイプ「02」は、事前登録フィルタールル（事前登録ブロッキング・フィルタールル）を含むメッセージであることを示す。また、バインド先「04」は、事前登録フィルタールル（事前登録ブロッキング・フィルタールル）そのものを含む。

[0イ16] MＮ２００がシグナリングメッセージ「20」に埋め込むフロー種別ごと
の事前登録フィルタルールとは、MN200が不安定なWJANアクセスを切断したときに、幾つかのPIDにより識別されるオーディオフローとビデオフローは、プリフィックスP1に関連するアドレスに送信される必要があるということである。シグナリングメッセージ「20」はさらに、この事前登録フィルタルールのアクティブ化時点と非アクティブ化時点に関するトリガを有する。このフロー種別ごとの事前登録フィルタルールは、不安定なWJANアクセスのPMIPv6バインディング登録が削除されたときにアクティブ化され、かつ不安定なコネクションすなわちWJANアクセス経由のPMIPv6バインディング登録が再確立されたときに非アクティブ化されるものとする。

の場合によっては、事前登録フィルタルールをアクティブ化及び非アクティブ化するために、それぞれ明示的なアクティブ化メッセージ及び非アクティブ化メッセージ（これらはPBUメッセージと関連づけられない）をMN200及びMAG（WJAN）232又はMAG（3GPP）230からJMA/HÀ220に送信することができる。このため、事前登録フィルタルールをアクティブ化及び非アクティブ化するために使用するシグナリングのタイプを明確に示したアクティブ化及び非アクティブ化のトリガが有用である。事前登録フィルタルールをアクティブ化及び非アクティブ化するメッセージのタイプを記述するメッセージとしては、図6に記載されているメッセージを使用することができる。ここで、MN200が再び不安定なアクセス経由で再接続するときには、同じプリフィックスP2が割り当てられることが想定される。

（4）図9において、DSMIPv6のシグナリングをホームアンドアウェイ登録と、現在のフィルタルールと事前登録フィルタルールとにより構築した後、その構築されたDSMIPv6ベースのシグナリングメッセージ「20」がJMA/HÀ220に送信される。シグナリングメッセージ「20」によりJMA/HÀ220には、現在のフィルタルールと、後でトリガされるフロー種別ごとの事前登録フィルタルールが生成される。現在のフィ
ルタルールと事前登録フィルタルールは別個に維持される。JMA／HA220は、シグナリングメッセージ「20」を受信すると、そのバインディングを保持するとともに、ステート「202」に示すように現在のフィルタルール（P2のデフォルトH0A（P2））をアクティブとして保持し、さらにフロー種別ごとの事前登録フィルタルール（P2オーディオ、ビデオフローH0A（P2））を非アクティブとして保持し、また、事前登録フィルタルールをアクティブ化及び非アクティブ化するルールを保持する。

[例1] なお、MN200が2つのホームアドレスH0A（P2）、H0A（P2）を構成する場合のシナリオは別のシナリオとして、MN200は、ブリフィックスP1のみを使用してH0A（P2）を構成し、ブリフィックスP2から不安定なWJANインタフェースIF2用に構成したCoA（P2）に対してホームアンドウェイ登録を確立するというシナリオも考えられる。このとき、現在のフィルタルールがJMA／HA220において確立された場合に、ステート「202」に示すようにブリフィックスP2に関連するフローはすべて、WJANアクセス経由で送信されるものとする。

[例2]（5）次に、MN200は、不安定なWJANアクセス経由のコネクションを喪失するものとする（イベント「203」）。MN200がこの不安定なコネクションを喪失したときに、MAG（WJAN）232は、この切断を検知して、ブリフィックスP2に関するPBU登録を削除するための登録削除PBUメッセージ「204をJMA／HA220に送信するものとする。

JMA／HA220は、PBU登録削除メッセージ「204を受信すると、フロー種別ごとの事前登録フィルタルールをアクティブ化するルールをチェックする。このアクティブ化ルールでは、ブリフィックスP2に関するPBU登録が削除されたので、JMA／HA220がこの事前登録フィルタルールをアクティブ化するものとする。事前登録フィルタルールがアクティブ化されると、JMA／HA220は、フィルタメンテナンステーブルのステートを、ステート1202からステート1205へ変更する。ステート1205では、現在のフィルタルールは非アクティブモードへの遷移し、事前登録フ
ィルタルールはアクティブモードへ変移する。

ここで重要な点は、フローユー別の事前登録フィルタルールがアクティブ化されても、現在のフィルタルールは除去されないということである。これにより、M N 2 0 0 が不安定なW J A N アクセス経由で再接続した場合でも、M N 2 0 0 は古い（現在の）フィルタルールを再登録する必要がなくなる。フローユー別の事前登録フィルタルールの特徴は、M N 2 0 0 が不安定なW J A N アクセス経由のコネクションを再確立したときに古い（現在の）フィルタルールが再びアクティブ化されるまで、古い（現在の）フィルタルールより優先することにある。J M A ／ H A 2 2 0 は、登録削除P B U メッセージ「2 0 4」を受信すると、プリフィックスP 1 に関するP B A メッセージ（不図示）をM A G W J A N 2 3 2 に送り返す。

（6）次に、不安定なW J A N アクセス経由のコネクションの切断後に、オーディオデータ「2 0 6」がJ M A ／ H A 2 2 0 に到着するものとする。そのオーディオフローは、ステート「2 0 5」に示すようにJ M A ／ H A 2 2 0 における事前登録フィルタルールに基づいて、安定した3 G P P アクセス経由で転送されるので、J M A ／ H A 2 2 0 は、ダウンリンク通知メソッド「2 0 7」をM A G (3 G P P) 2 3 0 あてに送信する。ここで、M N 2 0 0 の3 G P P インタフェースI ト則がアイドルモードであるので、ダウンリンク通知メソッド「2 0 7」はJ M A ／ H A 2 2 0 から送信される。M A G 2 3 0 (3 G P P) 2 3 0 は、3 G P P アーキテクチャではS － G W であって、オーディオパケットの到着を不図示のM M に通知する。M M はM N 2 0 0 を呼び出し、M N 2 0 0 にサービス要求メッセージ（不図示）を送信させる。M M はこのサービス要求メッセージを受信すると、M A G 2 3 0 (3 G P P) 2 3 0 に対し、M N 2 0 0 の3 G インタフェースI ト則をアクティブモードに切り換えるよう通知する。この動作により、M N 2 0 0 はM A G 2 3 0 (3 G P P) 2 3 0 からオーディオデータパケット「2 0 8」を受信する。このため、事前登録フィルタルールがアクティブ化されることにより、不安定なW J A N アクセスの切断がJ M A ／ H A 2 2 0 で検知されると直ぐ
に、遅延が問題となるオーディオトラフィックがMN200に到着する。したがって、事前登録フィルタールールが最も適切な時点でトリガされるので、遅延が問題となるオーディオトラフィックのパケットロスの問題を解決することができる。

[0124]（7）次に、不安定なW J A Nアクセスの切断中に、ブリフィックスP2に関連するアドレスあてのW ebデータ「209がJMA／HA220に到着するものとする。W ebデータ1209は、MN200にルーティングできない。その理由は、W ebデータ」209は、ステート「205に示すように事前登録フィルタールールにはその送信先が示されておらず、現在のフィルタールールに従うからである。JMA／HA220に到着したW ebデータ「209は、JMA／HA220でバッファリングされるかもしれない。

[0125]（9）L MA／HA220は、P BUメッセージ1212を受信すると、ステート「2「3に示すように事前登録フィルタールールを非アクティブ化し
て古いフィルタルールをアクティブ化する。オーディオフローとビデオフローを3GPPアクセス経由で送信するというフロー種別ごとの事前登録フィルタルールは非アクティブ化され、また、すべてのフローをWJANアクセス経由で送信するという古いフィルタルールがアクティブ化される。JMA／HA220がパケットメッセージ「2」を受信した後にJMA／HA220に生成されるステート「2」の内容は元のステート「2」02と同じであり、MN200が明示的なフィルタルール・シグナリングを送信しなくても元のフィルタルールがアクティブ化される。この理由は、フロー種別ごとの事前登録フィルタルールが、不安定なWJANアクセス経由のコネクションの切断中に高い優先度を有し、また、現在の（古い）フィルタルールを除去しないからである。元のフィルタルールが確立されると、JMA／HA220においてパッファリングされていたWebデータ「2」「4がMAG『W』JAN』232に送信される。

[0126] 本実施の形態におけるフロー種別ごとの事前登録フィルタルールはまた、MN200のアクティブモードであるすべてのインタフェース1「IF」親マネキンのドメイン2「に接続(connect)」していて、「又は複数の不安定なWJANアクセス経由のコネクションを喪失した場合にも適用することができる。例えばMN200は安定した3GPPアクセス経由のアクティブなコネクションと、安定しないWJANアクセス経由のアクティブなコネクションを有するかもしれないが、その後、安定しないWJANアクセス経由のコネクションを喪失するというシナリオに適用することができる。さらに実施の形態におけるフロー種別ごとの事前登録フィルタルールは、アクティブモードで3GPPアクセスへ接続しているMN200が、WJANアクセスへ接続したときに3GPPアクセスへの接続を切断して、通信に使用するインタフェースを3GPPインタフェースからWJANインタフェースへ切り替える場合にも適用することができる。

[0127] 事前登録フィルタルールを確立する他のシナリオとしては、MN200が2つのアクティブモードのインタフェース経由でJMMドメイン2「に接続
(connect)にして、ある接続されたインタフェースから、新しくパワーオンした第3のインタフェースに無線アクセス間ハンドオフ（Inter Radio Access Technology handoff）、又は垂直ハンドオフ（Vertical Handoff）を実行する場合が想定される。例えばMN200は最初に、3GPPインターフェース1とWiMAX（登録商標）インタフェース1F3を介してJMMドメイン2に接続（connect）していったものとする。次に、MN200は、WJANアクセスを発見して、より広い帯域、又はより安いコスト、又はより良いQoSをWJANインタフェース1F2経由で実現するためにWiMAXからWJANに垂直ハンドオフするものとする。このシナリオにおいて、垂直ハンドオフを実行中のWiMAXインタフェース1F3でのフローのパケットロスを防止するために、MN200がフロー種別ごとの事前登録フィルタルールをセットする必要があるかもしれない。

[0128]くフィルタルール事前登録メッセージの変形ノ

図9におけるシグナリングメッセージ「20」においては、フラグを用いてフロー種別ごとの事前登録フィルタルールを通知することができる。このフラグベースで事前登録フィルタルールを通知する方法が、事前登録フィルタルールを示して通知する方法の変形である。フラグはJMA／HA220に対し、すべてのリアルタイムフロー（オーディオ、ビデオ）を安定した3GPPアクセス経由で送信するよう通知する。このフラグを使用する方法によれば、シグナリングメッセージ「20」と内に事前登録フィルタルールを示的に埋め込む必要がない。不安定なWJANアクセスのコネクションが切断したときに、DSMIP6のBUメッセージ内のフラグにより、JMA／HA220に対し、すべてのリアルタイムフロー（オーディオ、ビデオ）を安定した3GPPアクセス経由で送信するよう通知する。ここで、このフラグの代わりに、新しいモビリティ・オプションで上記のフィルタ情報を伝送することもできる。リアルタイムフローが安定した3GPPアクセス経由で送信されて、不安定なWJANアクセスのコネクションが再び確立されると、古いフィルタルールが再びアクティブ化される。
変形例として、上記のフラグは、「JMA/HAA220」に対し、フロー種別ごとの事前登録フィルタールールを生成して維持するよう指示することができる。「JMA/HAA220」はその指示に基づいて適切なフロー種別ごとの事前登録フィルタールールを生成し、不安定なWJANアクセスのコネクションが切断したときにはいつでもその事前登録フィルタールールを使用することができる。このフラグにより事前登録フィルタールールを生成して維持するよう指示する方法は、事前登録フィルタールールに関連するシグナリングコストを低減させることができる。

<第9の実施の形態ノ>

この第9の実施の形態において、図「8及び図「9との相違点は、MN200がホームバンドアウェイ登録（H=「）を「JMA/HAA220」に対して実行していないことにある。そこで、第9の実施の形態では、ブリフィックスP2をMAG（WJAN）のアドレスにバインドするPMIPv6バインドイングの他に、ブリフィックスP2をブリフィックスP1にバインドする事前登録バインドイングと、事前登録フィルタールールとして、フロー種別ごとの事前登録ブロッキング・フィルタールールを「JMA/HAA220」において同時に確立する。事前登録ブロッキング・フィルタールールの特徴は、アクティブ化されるまで非アクティブであって、アクティブ期間中は、所定の種別とフロー（ここではデータフロー）が事前登録バインドイング（P2→P「）に基づいて、安定した3GPPアクセス経由で配送されることをブロックする（禁止する）ことにある。事前登録ブロッキング・フィルタールールを適用する理由は、不安定なWJANアクセス経由のコネクションが切断したときに、MN200が時間が問題とならないあるフロー（Non time critical flow/Non realtime flow）については、安定した、帯域を確保したい3GPPアクセス経由の配送を希望しないという想定があるからである。

このような事前登録ブロッキング・フィルタールールを使用することにより、MN200は、不安定なWLANアクセス経由のコネクションが切断したときに、時間が問題とならないフローを3GPPアクセスへ転送させる代わ
りにバッファリングさせることができる。事前登録ブロッキング・フィルタ
ルールは事前登録バイインディングより優先度が高く、事前登録ブロッキング
・フィルタルールで定義されているフローに関しては、事前登録バイインディ
ングルールを上書きする。さらに、MN200は、第8の実施の形態で述べ
た事前登録フィルタルールと同様に、事前登録ブロッキング・フィルタルー
ルを事前にセットして最適な時点でトリガされるようにセットする。事前登
録ブロッキング・フィルタルールは、アクティブ期間の経過後は、不安定な
W JANアクセス経由のコネクションが再び切断されるまで非アクティブ化
される。事前登録ブロッキング・フィルタルールのアクティブ期間は、不安
定なW JANアクセス経由のコネクションが切断されている期間である。

[033] MN200がなんらのフィルタルールもJMA/HA220にセットしな
い場合においても、JMA/HA220に事前登録バイインディング（P→
P「）と事前登録ブロッキング・フィルタルールを同時に送信して同時にト
リガする方法を適用することができる。この場合には、MN200はJMA/
HA220に対し、不安定なW JANアクセス経由のコネクションが切断
されている期間、事前登録バイインディング（P→P「）に基づいて、時間
に問題のあるフロー（オーディオ、ビデオのフロー）を安定したGPPア
クセス経由で転送させ、かつ事前登録ブロッキング・フィルタルールに基づ
いて、時間に問題のない他のフローをブロックさせる。事前登録ブロッキング
・フィルタルールは、そのアクティブ期間は、事前登録バイインディング（
P→P「）より優先する。

[033] 次に、図20を参照して第9の実施の形態における動作及び通信シーケン
スを説明する。図20に示す通信シーケンスのネットワーク構成は図「8と
同じであるので、その詳細な説明を省略する。ここで、MN200は、第8
の実施の形態のようなホームアンドアウェイ登録（H＝「）をJMA/HA
220に対して実行していない。MN200はまず、不安定なW JANアクセス
経由で参照したブリフィックスP2を使用してフローをセットアップし
、次いで不安定なW JANアクセス経由のコネクションが切断したときに、
フロー種別ごとのルーティングを実行するものとする。また、プリフィックス P2 は安定した 3GPP アクセス経由で参照されるものとする。

[034] また、M200 は、ステップ「304」において、事前登録バインディングと事前登録ブロッキング・フィルタルールの必要性を予測するものとする。すなわち、M200 は、プリフィックス P2 に関連するフローに関してはホームアンドアウェイ登録（H＝「）を JMA／HA220 に対して実行していないことを知得しているので、不安定な WLAN アクセス経由のコネクションが切断したときに、時間に問題のあるフローのパケットロスを防止するために、P2 を P1 にバインドするための事前登録バインディング（P2→P「）が必要であると予測する。ただし、時間に問題のないトラフィック（例えば Web トラフィック）に関しては、M200 は、不安定なアクセス経由のコネクションが切断しても安定した 3GPP アクセスへの転送を希望せずにブロックするための事前登録ブロッキング・フィルタルール送信を決定する。

登録ブロッキング・フィルタールールを送信する。

メッセージ「3 05」、「3 06」は、不安定なアクセスの切断時には、ブリフィックスP 2をブリフィックスP 1にバインドングをするための事前登録バインドングと、3 Gアクセス経由でデータフローが転送されるのをブロックするという事前登録ブロッキング・フィルタールールを有するものとする。P BUメッセージ「3 06」は、ブリフィックスP 2用のPMIPv 6バインドングを生成する。MAG (WLAN) 2 3 2からLMA/H A2 2 0へのP BUメッセージ「3 06で事前登録バインドングと事前登録ブロッキング・フィルタールールを送信する場合について説明したが、MAG (W LAN) 2 3 2 - J M A/H A2 2 0間の他のセキュアな信号を用いてもよい。

・P 2をM AG (W LAN) アドレスにバインドする通常のPMIPv 6登録[アクティブ]と、
・P 2をP 1にバインドする事前登録バインドング[非アクティブ]と、
・P 2データフローをブロックする事前登録ブロッキング・フィルタールール[非アクティブ]が管理される。事前登録ブロッキング・フィルタールールは、通常のフィルタ手順を用いてメッセージ「3 05で送信してもよい。例えば、メッセージ「3 05内のF I Dを用いてブロッキングルールを識別して、F I Dに関連するアクションがそのフローをブロックするか又はパッファリングするかを識別することができる。上記のF I Dに添付されるフロー記述サブオプションは、ブロックする必要のあるフローの記述を有する。

次に、MN2 0 0は、W LANアクセスとのアソシエーションを切断することを決定するものとする（イベント13 08）。この切断イベント「3 08のときに、M AG (W LAN) 2 3 2は、P BUメッセージ「3 0
6 による登録を削除するための登録削除 PBU メッセージ「309 を JMA／HA220 に送信する。JMA／HA220 は、登録削除 PBU メッセージ 「309 を受信すると、事前登録バインディングと事前登録ブロッキング・フィルタルールを管理するためのステート「30」を生成する。ステート「30」に基づいて、ブリフィックス P2 をブリフィックス P1 にバインドする事前登録バインディングと、ブリフィックス P2 のデータフローをブロックする事前登録ブロッキング・フィルタルールのみがアクティブ（通常の PMIPv6 登録は非アクティブとなる）となる。

[例39]　(5) 次の想定として、WJAN アクセス経由のコネクションが切断中に、ブリフィックス P2 に関連するあて先アドレスを有するオーディオデータ「30が JMA／HA220 に到着するものとする。この場合、ブリフィックス P2 用の通常の PMIPv6 登録は非アクティブであるので、ブリフィックス P2 をブリフィックス P1 にバインドする事前登録バインディングに基づいて、オーディオデータ「30は 3GPP パス経由でルーティングされることになる。このとき、JMA／HA220 は、ダウンリンクデータ通知メッセージ「32を MAG (3GPP) 230 に送信する。MAG (3GPP) 230は、オーディオデータを受信すると、不図示の MMNがそのオーディオデータを無線アクセスネットワーク経由で転送するよう通知するまでそのオーディオデータをパッファリングする。不図示の MMNが MN200 を呼び出し、MN200 がその呼び出し信号の受信後にサービス要求メッセージを不図示の MMN に送信する。不図示の MMN は、そのサービス要求メッセージを受信すると、MAG (3GPP) 230 に対してオーディオフローをルーティングするよう通知する。そして、MAG (3GPP) 230 はオーディオデータ「33を MN200 に送信する。

[例40]　(6) 次の想定として、WJAN アクセス経由のコネクションが切断中に、ブリフィックス P2 に関連するあて先アドレスを有する Web データ「314 が LMA／HA220 に到着するものとする。この場合、ブリフィックス P2 のデータフローをブロックする事前登録ブロッキング・フィルタルール
ルに基づいて、Webデータ「3」「4」はJMA/HA220においてブロックされるか又はバッファリングされる。ここで、もし事前登録ブロッキング・フィルタルールがセットされていなければ、Webデータ「3」「4」は安定した3Gアクセス経由で送信されるが、これは望ましくない。ここで重要な点は、事前登録ブロッキング・フィルタルールがWebデータ「3」「4」に適用されるので、事前登録ブロッキング・フィルタルールが事前登録バインティングより優先することにある。このため、Webデータ「3」「4」は、事前登録ブロッキング・フィルタルールに基づいてブロック（3Gアクセス経由の転送を禁止）される。

[0441] （7）次の想定として、ある時間の経過後に、MN200がWJANアクセスネットワーク、「0」を参照して、それに再び接続(connect)するよう開始するものとする（ステップ「3」「5」）。ステップ「3」「5」の後、MN200は、接続信号（attachment signal）「3」「6」をMAG(WLAN)232に送信する。MAG(WLAN)232はePDGでよい。MAG(WLAN)232は、attachment signal「3」「6」を受信するとPBUメッセージ「3」「7」をJMA/HA220に送信する。PBUメッセージ「3」「7」は、プリフィックスP2用の登録要求であるものとする。一般的な仮定として、プリフィックスP2をプリフィックスP1にパインドするための事前登録バインティングがJMA/HA220に存在するので、PBUメッセージ「3」「7」のプリフィックスP2は、JMA/HA220によりMN200に付与されるものとする。JMA/HA220は、PBUメッセージ「3」「7」を受信すると、ステート「3」「8」に示すように事前登録バインティングと事前登録ブロッキング・フィルタルールを非アクティブ、通常のPMIPv6登録をアクティブに変更する。プリフィックスP2用のPMIPv6登録が回復した後は、JMA/HA220にバッファリングされていたWebデータ「3」「4」は、Webデータ「3」「9」のように、望ましいWJANアクセス経由で送信することができる。

[0442] 以上、本発明について、望ましい実施の形態について説明したが、本発明
の範囲を逸脱しない範囲で種々の変形が可能であることは明らかである。例えば、上記の実施の形態では、MN200が「つの事前登録バインディングを登録する場合について説明したが、複数の事前登録バインディングを登録することもできる。例えば、図「において、MN200は、WJAN接続をセルラ接続にバインドする事前登録バインディングをMAG（WJAN）232に登録すると同時に、セルラ接続が240にバインドする事前登録バインディングをMAG（3GPP）230に登録することができる。

【0143】また、望ましい実施の形態では、ネットワークベースのローカルモビリティ管理のドメインについて説明したが、HMIP（Hierarchical Mobile IPv）を使用するローカルモビリティ管理のドメインにも本発明を適用することができる。また、ローカルモビリティ管理のないドメインをMN200がローミングしている場合にも本発明を適用することができる。

【0144】後者の場合、MN200が2つのアクセスルータに接続（connect）しているものとする。MN200は本発明を使用して、第「のアクセスルータに対して、MN200が第「のアクセスルータと接続（connect）して構成した第「のアドレスを、MN200が第2のアクセスルータと接続（connect）して構成した第2のアドレスにバインドする事前登録バインディングなどをセットアップする。この事前登録バインディングなどは、第「のアクセスルータがMN200の接続が失われたことを検出するまでアクティブでなく、第「のアクセスルータがMN200の接続が失われたことを検出するとアクティブになる。第「のアクセスルータによりインターセプトされたパケットは、第2のアクセスルータを通じてMN200の第2のアドレスにルーティングされる。ここで、この手法は、FMIPv6（Fast Mobile IPv6）と異なることは明らかである。FMIPv6のバインディング登録は、即、アクティブであるが、本発明の事前登録バインディングなどは、トリガされるまでアクティブでないこととはならない。このため、MN200は本発明を使用して事前登録バインディングなどをセットアップしても、現在の接続が失われるまで現在の接続を継
続して使用する。この動作は、FMIPでは実現できない。

なお、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集成回路である「S」をとして実現される。これらは個別に「チップ化されてもよいし、一部Xはすべてを含むように「チップ化されてもよい。ここでは、「S」が、集積度の違いにより、「IC、システム」のSR、スーパー」SI、ウルトラ」SIと呼称されることもある。また、集積回路化の手法は「SI」に限るものではなく、専用回路又は汎用プロセッサで実現してもよい。SI製造後に、プログラムすることが可能なFPGA（Field Programmable Gate Array）や、「SI」内部の回路セルの接続や設定を再構成可能なコンフィギュレーブル・プロセッサーを利用してもよい。さらには、半導体技術の進歩又は派生する別技術により「SI」に置き換わる集成回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。例えば、バイオ技術の適用などが可能性としてあり得る。

産業上の利用可能性

本発明は、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換える場合に、パケットを防ぐように小さな遅延でパケットを切り換えた場合のインタフェースに転送することができるという効果を有し、ネットワークベースのローカルモビリティ管理ネットワークなどに利用することが可能である。

また本発明は、複数のインタフェースを有するモバイルノードが使用インタフェースを切り換える場合に、フロー種別ごとのパケットを防ぐように小さな遅延でパケットを切り換えた場合のインタフェースに転送することができるという効果を有し、ネットワークベースとクライアントベースのモビリティ管理プロトコルを使用するモバイルノードに対応したネットワークなどに利用することが可能である。
請求の範囲

[請求項①] 少なくとも第「及び第2のインタフェースを有するモバイルノードと移動管理ノードとの間の経路を、前記第「のインタフェース及び第「の代理ノードを経由する第「の経路から、前記第2のインタフェース及び第2の代理ノードを経由する第2の経路に切り換えるインタフェース切換システムであって、

前記第「の代理ノードから前記移動管理ノードに対して、前記第「の経路を確立するための第「の転送情報を登録する手段と、

前記モバイルノードが、前記第「の経路の接続状況の変化を検出した場合に、前記第「の代理ノードに対して前記第2の経路を確立するための第2の転送情報を事前登録する手段とを、

前記第「の代理ノード又は前記モバイルノードが、前記第「の経路から前記第2の経路に切り換えるイベントを検出した場合に、前記移動管理ノードに対して前記第「の転送情報を無効化して、前記記事前登録された第2の転送情報を有効化するよう要求する手段とを、

有するインタフェース切換システム。

[請求項②] 前記移動管理ノードが、前記事前登録された第2の転送情報を有効化する要求を受信した後は、前記第「の代理ノード経由のパケットを前記第2の代理ノード経由に切り換えて転送することを特徴とする請求項①に記載のインタフェース切換システム。

[請求項③] 前記第「の代理ノードが、前記事前登録された第2の転送情報を有効化するよう要求するメッセージを送信した後に前記移動管理ノードから受信した前記第「の代理ノード経由のパケットをインタセプトして前記第2の代理ノードに転送し、

前記第2の代理ノードが、前記転送されたパケットを前記モバイルノードの第2のインタフェースに転送することを特徴とする請求項②又は2に記載のインタフェース切換システム。

[請求項④] 前記モバイルノードから前記第「の代理ノードに対して、前記第2
の経路を確立するための第2の転送情報を事前登録する場合には、前記第2の代理ノード経由で事前登録することを特徴とする請求項「に記載のインタフェース切換システム。

[請求項5] 前記第2の転送情報は、前記第2の経路を介する転送を許可するフローの種別、又は前記第2の経路を介する転送を禁止するフローの種別を含むことを特徴とする請求項「に記載のインタフェース切換システム。

[請求項6] 少なくとも第7及び第2のインタフェースを有するモバイルノードと移動管理ノードとの間の経路を、前記第7のインタフェース及び第2の代理ノードを経由する第2の経路から、前記第7のインタフェース及び第2の代理ノードを経由する第2の経路に切り換えるインタフェース切換システムにおける前記モバイルノードであって、前記第7の経路を介して通信中に、前記第7の経路の接続状況の変化を検出した場合において前記第7の代理ノードに対して前記第2の経路を確立するための第2の転送情報を事前登録する手段を、有するモバイルノード。

[請求項7] 前記第7の経路から前記第2の経路に切り換えるイベントを検出した場合において前記第7の代理ノードから前記移動管理ノードに対して前記第7の経路のために確立していた第7の転送情報を無効化して、前記事前登録された第2の転送情報を有効化するよう要求する手段をさらに有することを特徴とする請求項6に記載のモバイルノード。

[請求項8] 前記第7の代理ノードに対して、前記第2の経路を確立するための第2の転送情報を事前登録する場合において前記第2の代理ノード経由で事前登録することを特徴とする請求項6又は7に記載のモバイルノード。

[請求項9] 前記第2の転送情報は、前記第2の経路を介する転送を許可するフローの種別、又は前記第2の経路を介する転送を禁止するフローの種別を含むことを特徴とする請求項6に記載のモバイルノード。
[請求項10] 少なくとも第1及び第2のインタフェースを有するモバイルノードと移動管理ノードとの間の経路を、前記第1のインタフェース及び第1の代理ノードを経由する第1の経路から、前記第2のインタフェース及び第2の代理ノードを経由する第2の経路に切り換えるインタフェース切換システムにおける前記第1の代理ノードであって、

前記移動管理ノードに対して、前記第1の経路を確立するための第1の転送情報を登録するよう要求する手段と、

前記モバイルノードから、前記第2の経路を確立するための第2の転送情報を事前登録するメッセージを受信する手段と、

前記第1の経路から前記第2の経路に切り換えるイベントを検出した場合に、前記移動管理ノードに対して前記第1の転送情報を無効化して、前記事前登録された第2の転送情報を有効化するよう要求する手段とを、

有する代理ノード。

[請求項11] 前記モバイルノードにより事前登録された第2の転送情報の内容を前記移動管理ノードに転送し、前記第2の代理ノードの情報を通知するよう要求することを特徴とする請求項10に記載の代理ノード。

[請求項12] 前記事前登録された第2の転送情報を有効化する要求を前記移動管理ノードに送信した後に前記移動管理ノードから受信した前記第1の代理ノード経由のパケットをインタセプトして前記第2の代理ノードに転送することを特徴とする請求項10又は11に記載の代理ノード。

[請求項13] 前記第2の転送情報は、前記第2の経路を介する転送を許可するフローの種別、又は前記第2の経路を介する転送を禁止するフローの種別を含むことを特徴とする請求項10に記載の代理ノード。

[請求項14] 少なくとも第1及び第2のインタフェースを有するモバイルノードと移動管理ノードとの間の経路を、前記第1のインタフェース及び第1の代理ノードを経由する第1の経路から、前記第2のインタフェー
ス及び第2の代理ノードを経由する第2の経路に切り換えるインタフェース切換システムにおける前記移動管理ノードであって、

前記第「の代理ノードから、前記第「の経路を確立するための第「の転送情報を登録する要求を受信して前記第「の転送情報を登録する手段と、

前記第「の代理ノード又は前記モバイルノードから、前記第「の転送情報を無効化して前記第2の経路を確立するための第2の転送情報を有効化する要求を受信して、前記第「の転送情報を無効化し、前記第2の転送情報を有効化する手段とを、

有する移動管理ノード。

[請求項15] 前記事前登録された第2の転送情報を有効化する要求を受け信した後は、前記第「の代理ノード経由のパケットを前記第2の代理ノード経由に切り換えて転送することを特徴とする請求項「4に記載の移動管理ノード。

[請求項16] 前記第2の転送情報は、前記第2の経路を介する転送を許可するフローの種別、又は前記第2の経路を介する転送を禁止するフローの種別を含むことを特徴とする請求項「4又は「5に記載の移動管理ノード。
図1

ネットワーク構成図

CN 250
LMA 220
LMMドメイン
MAG (3GPP) 230
MAG (WLAN) 232
MN 200

接続番号:
210 230 240 242
モバイルノード

上位層ブロック

130

ルーティング・ユニット

ルーティング・テーブル

バインディング事前登録手段

事前登録バインディング・トリガ手段

ネットワーク・インターフェース

110

120

140

150

160

192

194

200
バインディング事前登録メッセージ

IPヘッダ

メッセージタイプ

バインド先
登録削除トリガ

IPヘッダ

メッセージタイプ

MNプリフィックス

バインド先
バインディング事前登録
転送メッセージ

IPヘッダ

メッセージタイプ

MNプリフィックス

バインド先
応答メッセージ

IPヘッダ

メッセージタイプ

バインド先
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H04W 0/04 (2009.01) i. H04W 0/8/18 (2009.01) i. H04W 0/04 (2009.01) i. H04W 0/04 (2009.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04W 0/04, H04W 0/18, H04W 0/04, H04W 0/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2008/053914 A1 (Matsushita Electric Industrial Co., Ltd.) , 08 May 2008 (08.05.2008), paragraphs [0005] to [0042] & EP 2045977 A1</td>
<td>1-6, 8, 9, 14-1 6, 7, 10-13</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search 26 October r. 2009 (26.10.09)

Date of mailing of the international search report 10 November , 2009 (10.11.09)

Name and mailing address of the ISA/ Japanese Patent Office

Facsimile No.

Form PCT/ISA/210 (second sheet) (April 2007)
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2009/005209

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2005/109944 A1 (Mitsubishi Electric Corp.), 17 November 2005 (17.11.2005), claim 1 (Family: none)</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>JP 2007-96932 A (Mitsubishi Electric Corp.), 12 April 2007 (12.04.2007), claim 1 (Family: none)</td>
<td>1-16</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP2009／005209

A． 発明の属する分野の分類（国際特許分類（IPC））
 IntCl H04W8/04(2009. 01)i, H04W48/18 (2009. 01)i, H04W60/04 (2009. 01)i, H04W80/04(2009. 01)i

B． 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
 IntCl H04W8/04, H04W48/18, H04W60/04, H04W80/04

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922-1996年
日本国公開実用新案公報 1971-2009年
日本国実用新案登録公報 1996-2009年
日本国登録実用新案公報 1994-2009年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C． 関連すると認められる文献

| カテゴリー | 引用文献名及び一部の箇所が連携するときは、その関連する箇所の表示 | 関連する
請求項の番号 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2006-246481 A（三洋電子株式会社）2006. 09. 14</td>
<td>1-6, 8, 9, 14-16, 7, 10-13</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2008/053914 Al（松下電器産業株式会社）2008. 05. 08</td>
<td>1-6, 8, 9, 14-16, 7, 10-13</td>
</tr>
<tr>
<td>A</td>
<td>EP 2045977 Al</td>
<td></td>
</tr>
</tbody>
</table>

洋 C欄の続きにも文献が挙げられている。 　ヴァレントータミリーに関する別紙を参照。

引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
「IE」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「p」国際出願日以前、かつ優先権の主張の基礎となる出願の日以降に公表された文献

国際調査を完了した日 26/10/2009
国際調査報告の発送日 10/11/2009

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

電話番号 03-3581-1101 内線 3534

様式PCT／ISA／210（第2ページ）（2007年4月）
国際洞査報告
国際出検番号 PCT／JP2009／005209

<table>
<thead>
<tr>
<th>引用文献のテキスト</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請大項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2006-141023 A (三雄電子株式会社) 2006.06.01</td>
<td>4,8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2008-48267 A (富上通株式会社) 2008.02.28</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>wo 2005/109944 Al (三菱電機株式会社) 2005.11.17</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>請求項1 (ァミリーなし)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2007-96932 A (三菱電機株式会社) 2007.04.12</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>請求項1 (ァミリーなし)</td>
<td></td>
</tr>
</tbody>
</table>

様式PCTノISAノ210（第2ページの続き）（2007年4月）