Title: EQUIPMENT FOR CONTINUOUS REGULATION OF THE FLOW RATE OF RECIPROCATING COMPRESSORS

Abstract: Equipment for continuous regulation of the flow rate for a reciprocating compressor, provided with at least one compression chamber (1) in which is slidably inserted a piston means (101) movable with a reciprocating motion, at least one inlet valve (2) for the fluid to be compressed and at least one outlet valve (4) for the compressed fluid being provided in the said chamber, the said outlet valve (4) being connected to a storage reservoir (10) for the compressed fluid, and the said inlet valve (2) being provided with translation means (502, 512) which can act on the obturator (302) of the said valve (2), the said translation means (502, 512) being movable in a direction perpendicular to the plane of the said obturator (302), and interacting with actuator means (3, 103, 203) which are movable in the said direction with a reciprocating motion by means of suitable operating means (303, 403); the said operating means (303, 403) make it possible to control the velocity of displacement of the said actuator means (3, 103, 203) in both directions of their movement, means (42) for detecting the position of the said actuator means (3, 103, 203), means (43) for detecting the position of the piston in the compression chamber and means (41) for detecting the pressure in the reservoir being provided, the said detection means (42, 43, 41) and the said operating means (303, 403) of the actuator means (3, 103, 203) being connected to a central processing unit (40).
For two-letter codes and other abbreviations, refer to the “Guidance Notes on Codes and Abbreviations” appearing at the beginning of each regular issue of the PCT Gazette.

Published:
- without international search report and to be republished upon receipt of that report
TITLE: EQUIPMENT FOR CONTINUOUS REGULATION OF THE FLOW RATE OF RECIPROCATING COMPRESSORS

DESCRIPTION

The present invention relates to reciprocating compressors, and in particular to equipment for continuous regulation of the flow rate in the said compressors.

There are various possible methods of regulating the flow rate: devices external to the compressor which may be considered are on/off operation, variation of the speed of the motor driving the compressor, a by-pass between the delivery and inlet, and inlet throttling, while devices forming part of the compressor itself which may be considered are idle/load operation, backflow control and the introduction of an additional dead space which may be constant or variable.

Regulation by means of additional dead space is provided by adding a dead space to the cylinder to enable the opening of the pressure valves to be delayed, thus reducing the flow rate; it is possible to carry out either step regulation, by adding various dead spaces of different capacities, or continuous (stepless) regulation, by using an additional dead space of variable capacity, as indicated in US 2002/0025263 A1.

Idle/load operation, which does not provide continuous regulation of the flow rate, is suitable when a storage reservoir is present in the system and a variation of the delivery pressure is acceptable; the pressure of the reservoir is controlled by a hysteresis regulator. Generally, the flow rate is regulated by actuators composed of pneumatic devices, which, by acting on a body (the pusher) present in each valve, enable the sealing element to be kept in a predetermined position (open), thus making the compressor idle (zero flow rate); when the said devices are inoperative, the compressor operates at maximum capacity.

The frequency of actuation of the pneumatic devices which operate the pushers of the inlet valves depends on the amplitude of the hysteresis, the volume of the reservoir and the maximum unbalance between the nominal flow rate and the minimum flow rate of the load; however, the said value must be limited to avoid
excessive wear on the pneumatic devices.

This type of control of the flow rate of compressors causes a decrease of the
global efficiency and of the power factor in the “idle operation” phase; furthermore,
the heat generated in the “idle operation” phase is not dissipated, and thus increases
the temperature of the sealing elements. Finally, the use of an actuator without
position control, its limited response time and rise time, together with the presence of
long pipes having limited cross sections and considerable dead space, and the
absence of synchronization of the movement with the compressor shaft gives rise to
a number of contacts at uncontrolled velocity between the sealing element and the
pusher, which reduce the reliability of the valves, causing wear on the pusher and the
breakage of the sealing element.

Backflow control is provided by delaying the closing of the inlet valve with
respect to the closing point in the case of maximum flow rate. The gas which has
entered the cylinder flows back into the inlet duct in a quantity proportional to the
portion of the compression stroke during which the inlet valves are kept open.

The use of continuous regulation permits the use of storage reservoirs of
limited capacity, since the pressure variations are practically absent. The actuation
methods used up to the present time for controlling the position of the sealing
element of the valves are of the pneumatic or oil hydraulic type.

Examples of some devices based on continuous backflow regulation are
described in the documents US 2004/0091365 A1 and US 5 988 985. These devices
use various actuation systems based on fluid which is supplied to a piston. Both
systems require a panel for regulating the pressure of the fluid used for the actuation.

The object of the present invention is therefore to provide equipment for the
continuous regulation of the flow rate in reciprocating compressors, by using
essentially simple means which limit the wear of the valve components.

The present invention therefore proposes equipment for continuous regulation
of the flow rate for a reciprocating compressor, provided with at least one
compression chamber in which is slidably inserted a piston means movable with a
reciprocating motion, at least one inlet valve for the fluid to be compressed and at
least one outlet valve for the compressed fluid being provided in the said chamber, the said outlet valve being connected to a storage reservoir for the compressed fluid, and the said inlet valve being provided with translation means which can act on the obturator of the said valve, the said translation means being movable in a direction perpendicular to the plane of the said obturator, and interacting with actuator means which are movable in the said direction with a reciprocating motion by means of suitable operating means; the said operating means make it possible to control the velocity of displacement of the said actuator means in both directions of their movement; means for detecting the position of the said actuator means, means for detecting the position of the piston in the compression chamber and means for detecting the pressure in the reservoir are provided, the said detection means and the said operating means of the actuator means being connected to a central processing unit.

In a preferred embodiment, the operating means of the said actuator means are electromechanical, and in particular they comprise two solenoids. The actuator means comprise a rod provided in its central portion with a radially projecting magnetizable portion, the said portion interacting with the said solenoids and being placed in equilibrium between the solenoids by the use of suitable resilient loading means. One end of the rod is connected to the said translation means of the sealing element, while its opposite end interacts with means for detecting its position.

Further advantages and characteristics will be made clearer by the following detailed description of an embodiment of the present invention, provided, by way of example and without restrictive intent, with reference to the attached sheets of drawings, in which:

Figure 1 is a schematic diagram of a compressor provided with the equipment according to the present invention;

Figure 2 is a view in lateral elevation with parts in section, representing a detail of an inlet valve of the compressor of Figure 1;

Figure 3 is an enlarged view in longitudinal section of a detail of Figure 2;

Figure 4 shows a detail in section relating to a variant embodiment of the
present invention;

Figure 5 is a graph of the variation of the position of the actuator of the inlet valve during a transition from a closed valve to an open valve state as a function of time;

Figure 6 is a pressure-volume diagram relating to the compressor provided with the equipment according to the invention; and

Figure 7 is a set of diagrams showing the variations of the signals and sealing positions of the valve and of the actuator.

Figure 1 shows schematically a compressor provided with the equipment according to the present invention; the compression chamber is indicated by 1. The said chamber 1 is substantially cylindrical, and into this chamber there is inserted a double-acting piston 101, connected by a rod 111 to the transmission shaft 20, which is connected by means of the pulley 21 and the belt 33 to the pulley 31 keyed to the shaft 32 of the geared motor 30; the shaft 20 is provided with a sensor 43 for detecting its position, connected to the central processing unit 40. The chamber 1 is provided with two inlet ports 201 and two outlet ports 301; each of the inlet ports is provided with an automatic valve 2, provided with actuator means 3, which are described and illustrated more fully below; on the said actuator means 3 there are placed a sensor 42 and control and monitoring means 45, which in turn are connected to the processing unit 40. The outlet ports 301 are also provided with automatic valves 4, through which the compressed fluid is discharged into the storage reservoir 10, the pressure of which is monitored by means of the sensor 41, which is also connected to the central processing unit 40, which also has an operator interface module 44.

Figure 2 shows the inlet valve assembly 2 more fully. The said valve 2 is placed on the port 201 of the chamber 1, and is enclosed in a containing body 102 provided at one end with a radial flange 122 which is connected by the fixing means 132 to the outer wall of the chamber 1, while its opposite end is provided with a bush 142 by which it is connected to the actuator means 3. Inside the port 201 there is placed a counter-seat 202 of the valve 2, comprising the passages 212 for the fluid
and the resilient loading means 222 for the sealing element 302, whose passages 312 are coaxial with the passages 212 of the counter-seat 202. Outside the sealing element 302 there is placed the seat 402, whose passages 412 are offset with respect to those of the sealing element and of the counter-seat. The prongs 512 of the pusher 502 pass through the said passages, the pusher being axially slidable with respect to the port 201, and being positioned coaxially with the projecting shaft 322 of the seat 402. Inside the pusher 502 there is a spring 342, one end of which bears on a flange 332 projecting from the shaft 322, while its other end bears on the closing surface 522 of the pusher 502.

The rod 103 extending from the actuator 3 bears axially on the outwardly directed face of the said closing surface 522, this rod passing substantially through the whole length of the said actuator 3, and having, substantially in its central portion, the moving element 203, in the form of a disc of magnetizable material keyed to the said rod 103, the said moving element being positioned between two solenoids 303 and 403, and being movable in a reciprocating way over a given path. Resilient loading means 213 and 223, which interact with the flanges 113 and 123 respectively of the rod 103, are provided in the actuator 3.

Figure 3 shows the actuator 3 of the inlet valve 2 in greater detail; identical numerals refer to identical parts. The rod 103 is composed of a plurality of sections interconnected with each other, comprising the end 133 intended to interact with the pusher 502 (see Figure 2), the portion 143 which carries the flange 113 interacting with the spring 213, and which is coupled by means of the screw 193 to the portion 153 to support the moving element 203 between the two solenoids 303 and 403, which are supported on their respective plates 313 and 413 by the fixing means 323 and 423 respectively. The actuator 3 comprises a cylindrical body 803 in which the control and monitoring probe 45 of the solenoids 303, 403 is inserted radially, this probe being connected to the central processing unit, indicated by 40 in Figure 1. At the end of the cylindrical body 803 facing the inlet valve 2 there is connected, by the fixing means 813, the head 703, which is provided axially with a cavity 723 for housing the spring 213, and with a threaded shank 713 intended to interact with the
bush 142 of the body 102 of the valve 2. The shank 713 and the cavity 723 are coaxial, and the channel 733, into which the end 133 of the rod 103 is inserted, passes through both of them.

The opposite end of the cylindrical body 803 of the actuator 3 comprises a cap 603 provided with a threaded axial hole 613, into which is inserted the block 503, which is also threaded; the said block has a cavity 513 facing towards the inside of the actuator, the spring 223 which interacts with the flange 123 of the rod 103 pressing into this cavity, and a cavity 543 facing the outside of the actuator 3, this cavity housing the plate 173 connected to the end 163 of the rod 103, which interacts with the sensor 42. The two cavities communicate by means of the channel 533, through which the end 163 of the rod 103 passes. The position of the block 503 can be fixed by means of the locking bolt 523.

Figure 4 shows a variant embodiment of the present invention; identical numerals refer to identical parts. In the figure, the block 503 is replaced by the block 903, which is provided with a flange 913, provided with sealing means 923, which bears on the cap 603 into which the said block 903 is screwed. The chamber 933 inside the block 903, into which the end 163 of the rod 103 penetrates, communicates by means of the hole 943 and the pipe 953 with the environment upstream of the valve described above; the chamber 933 is closed by the cap 963.

The operation of the equipment according to the present invention will be made clear by the following text, with particular reference to the figures described above and to the graphs in Figures 5 to 7. As stated in the introduction, one of the most important problems in the regulation of the flow rate of reciprocating compressors is that of the appropriate control of the means which act on the sealing element of the inlet valve in order to modify its opening and closing times. The response times of these means with respect to a given command and the extent of their impact on the sealing element are crucial factors in achieving the optimal operation of the inlet valve and consequently the optimal regulation of the compressor flow rate.

In the equipment according to the present invention, the solution is
implemented by providing the sealing element translation means, in this case the
pusher 502 of the valve 2 with its prongs 512 which act on the surface of the sealing
element 302, with actuator means operated in such a way as to enable their velocity
of displacement to be controlled in both directions of their movement, with markedly
reduced reaction times. In this case, the operation is provided by means of the two
solenoids 303 and 403 which cause the displacement of the moving element 203
which is fixed to the rod 103. The processing unit 40 detects the position of the piston
101 by means of the sensor 43 located on the shaft 20, and then coordinates the
movement of the rod 103. As shown in the graph of Figure 5, the rod 103 of the
actuator, in the transition from the closed to the open state of the valve, with the
moving element initially attached to the solenoid 403, as shown in Figure 2, moves
fairly rapidly towards the sealing element 302, which is already opening; its action
subsequently becomes markedly slower.

The moving part of the pneumatic actuator and consequently the pusher of the
inlet valve have a very slow movement, equal to several compression cycles, and
therefore a series of impacts occurs between the pusher and the valve obturator. The
high transition velocity of the electromechanical actuator makes it possible to
complete the whole of the compressor's loading cycle within a limited portion of the
operating cycle, thus controlling the velocity of the impact of the sealing element
against the valve seat, and avoiding the series of impacts between the pusher and the
sealing element.

Thus the regulation of the flow rate of the compressor is achieved while the
stress factors causing the deterioration of the sealing element 302 are kept to a
minimum; this is because the contact between its surface and the prongs 512 of the
pusher 502 always occurs at very low velocities, with a reasonably low degree of
impact. Furthermore, the central processing unit always has a precise confirmation of
the position of the rod 103, owing to the sensor 42, and the signal to the solenoids
303 and 403 can therefore be suitably regulated, by means of the control and
monitoring probe 45. It should be noted that the position of the rod 103 of the
actuator 3 can be regulated by means of the block 503, and similar the distance
between the solenoids 303, 403 can also be selected conveniently according to the travel required to actuate the pusher 502.

Figure 4 shows a variant which provides an alternative to the system regulating the position of the rod 103 described above. A chamber 933 maintains an equilibrium between the forces acting on the moving part, when a pressurized fluid is present at the end of the rod 133; the said chamber 933, which is connected by means of a pipe 953 to the environment upstream of the corresponding valve, makes it possible to cancel out the effect of a variation of pressure in the environment upstream of the valve in which is immersed the terminal part of the rod 133 in contact with the pusher. Because there is a difference between the inlet diameter and the outlet diameter, providing a guaranteed cross section equal to that of the rod 133, the resultant of the forces acting on the rod is zero.

Figure 6 shows the effect of the continuous regulation on the PV diagram of the reciprocating compressor; it should be noted that keeping the inlet valve open at the start of compression reduces the flow rate of the machine (Diagram B) by comparison with the maximum flow rate operation (Diagram A).

With reference to the operation of a reciprocating compressor with step regulation of the "idle/load" type, Figure 7 shows the variation of the signal (Diagram C) obtained from the sensor 43, the signal for switching the machine to idle (Diagram D) and the signal indicating the positions of the sealing element of the valve (Diagram E) and of the moving element (Diagram F) of the actuator 3.

The moving part of the actuator starts its positioning not on the rising edge of the signal (D), but on the edge of the signal from the sensor 43 (C), in order to avoid a high contact force caused by the high internal pressure of the cylinder: in this situation, the inlet valve is already open, because the contact pressure due to the impact between the pusher and the sealing element is absent.

Similarly, during the return of the actuator rod, a phenomenon found in pneumatic actuators is avoided, owing to the limited return velocity: the moving part of the pneumatic actuator and consequently the pusher of the inlet valve have a very slow movement, equal to several compression cycles, and therefore a series of
impacts occurs between the pusher and the sealing element of the valve. The high transition velocity of the electromechanical actuator makes it possible to complete the whole of the compressor's loading cycle within a limited portion of the operating cycle, thus controlling the speed of the impact of the sealing element against the valve seat, and avoiding the series of impacts between the pusher and the sealing element.
CLAIMS

1. Equipment for continuous regulation of the flow rate for a reciprocating compressor, provided with at least one compression chamber (1) in which is slidably inserted a piston means (101) movable with a reciprocating motion, at least one inlet valve (2) for the fluid to be compressed and at least one outlet valve (4) for the compressed fluid being provided in the said chamber, the said outlet valve (4) being connected to a storage reservoir (10) for the compressed fluid, and the said inlet valve (2) being provided with translation means (502, 512) which can act on the obturator (302) of the said valve (2), the said translation means (502, 512) being movable in a direction perpendicular to the plane of the said sealing element (302), and interacting with actuator means (3, 103, 203) which are movable in the said direction with a reciprocating motion by means of suitable operating means (303, 403), characterized in that the said operating means (303, 403) make it possible to control the velocity of displacement of the said actuator means (3, 103, 203) in both directions of their movement, means (42) for detecting the position of the said actuator means (3, 103, 203), means (43) for detecting the position of the piston in the compression chamber and means (41) for detecting the pressure in the reservoir being provided, the said detection means (42, 43, 41) and the said operating means (303, 403) of the actuator means (3, 103, 203) being connected to a central processing unit (40).

2. Equipment according to Claim 1, in which the operating means (303, 403) of the said actuator means (3, 103, 203) are electromechanical.

3. Equipment according to Claim 2, in which the said actuator means comprise a rod (103) provided in its central portion with a moving element (203) which is radially projecting and magnetizable, the said moving element interacting with two solenoids (303, 403) and being placed in equilibrium between the latter, using suitable resilient loading means (213, 223).
4. Equipment according to Claim 3, in which the said rod (103) has one end (133) interacting with the said translation means (502, 512) of the sealing element (302), while its opposite end (163, 173) interacts with means (42) for detecting its position.

5. Equipment according to Claim 3 or 4, in which the said resilient loading means (213, 223) are loaded in a regulatable way with respect to the said rod (103).

6. Equipment according to Claim 5, in which the said means of regulating the resilient loading means comprise a movable body (503) in contact with the resilient loading means (223) and located at the end of the said actuator means (3) opposite the end facing the said valve (2), means (523) being provided for locking the movable body (503).

7. Equipment according to Claim 5, in which the said means of regulation comprise a chamber (933) in which is inserted the end (163) of the said rod (103) opposite the end (133) which interacts with the translation means (502, 522), the said chamber being in fluid communication (943, 953) with the environment upstream of the said valve (2).