Title: CONTINUOUS PROCESS FOR PRODUCING ETHANOL USING RAW STARCH

Abstract: The present invention relates to methods for producing high levels of alcohol during fermentation of plant material, and to the high alcohol beer produced. The method can include adding substrate continuously or clarifying continuously. The present invention also relates to methods for producing high protein distiller’s dried grain from fermentation of plant material, and to the high protein distiller’s dried grain produced. The present invention further relates to reduced stack emissions from drying distillation products from the production of ethanol.
CONTINUOUS PROCESS FOR PRODUCING ETHANOL USING RAW STARCH

This is being filed on 10 March 2005, as a PCT International Patent application in the name of Broin and Associates, Inc., a U.S. national corporation, applicant for the designation of all countries except the US, and Steven M. Lewis, a U.S. citizen, applicant for the designation of the US only, and claims priority to U.S. Provisional Application Serial Nos. 60/552,108, filed March 10, 2004, 60/614,916, filed September 30, 2004, and 60/615,155, filed October 1, 2004.

Field of the Invention

The present invention relates to methods for producing high levels of alcohol during fermentation of plant material, and to the high alcohol beer produced. The method can include adding substrate continuously or clarifying continuously during fermentation. The present invention also relates to methods for producing high protein distiller’s dried grain from fermentation of plant material, and to the high protein distiller’s dried grain produced. The present invention further relates to reduced stack emissions from drying distillation products from the production of ethanol.

Background of the Invention

Numerous conventional methods exist for converting plant material to ethanol. However, these methods suffer from numerous inefficiencies. There remains a need for additional more effective methods for converting plant material to ethanol and for producing improved fermentation products.

Summary of the Invention

The present invention relates to methods for producing high levels of alcohol during fermentation of plant material, and to the high alcohol beer produced. The method can include adding substrate continuously or clarifying continuously. The present invention also relates to methods for producing high protein distiller’s dried grain from fermentation of plant material, and to the high protein distiller’s dried grain produced.
In an embodiment, the present invention relates to a process for producing ethanol from plant material (e.g., fractionated plant material). This method includes grinding the plant material (e.g., fractionated plant material) to produce ground plant material (e.g., fractionated plant material) including starch; saccharifying the starch, without cooking; fermenting the incubated starch; adding substrate continuously or clarifying continuously during fermentation; and recovering the ethanol from the fermentation. The present method can include varying the temperature during fermentation. The present method can include employing plant material (e.g., fractionated plant material) with a particle size such that more than 50% of the material fits through a sieve with a 0.5 mm mesh. The present method can yield a composition including at least 18 vol-% ethanol.

In an embodiment, the present invention relates to a process for producing high protein distiller's dried grain from plant material (e.g., fractionated plant material). This method includes grinding the plant material (e.g., fractionated plant material) to produce ground plant material (e.g., fractionated plant material) including starch; producing sugars from the starch without cooking; fermenting the uncooked sugars to yield a composition including ethanol; adding substrate continuously or clarifying continuously during fermentation; and recovering distiller’s dried grain from the fermentation. The distiller’s dried grain can include at least about 30% protein. The distiller’s dried grain can include increased levels of the protein zein.

In an embodiment, the present invention relates to a process of producing ethanol from corn. This process includes producing starch from corn and ethanol from the starch; producing dryer stack emissions including a significantly lower level of volatile organic compounds than conventional technologies.

Brief Description of the Figures

Figures 1A, 1B, 1C and 1D schematically illustrate that the present process is capable of achieving extremely high relative ethanol % when operating under a continuous clarification and continuous substrate addition mode of operation.
Detailed Description of the Invention

Definitions

As used herein, the phrase “without cooking” refers to a process for converting starch to ethanol without heat treatment for gelatinization and dextrinization of starch using alpha-amylase. Generally, for the process of the present invention, "without cooking" refers to maintaining a temperature below starch gelatinization temperatures, so that saccharification occurs directly from the raw native insoluble starch to soluble glucose while bypassing conventional starch gelatinization conditions. Starch gelatinization temperatures are typically in a range of 57 °C to 93 °C depending on the starch source and polymer type. In the method of the present invention, dextrinization of starch using conventional liquefaction techniques is not necessary for efficient fermentation of the carbohydrate in the grain.

As used herein, the phrase “plant material” refers to all or part of any plant (e.g., cereal grain), typically a material including starch. Suitable plant material includes grains such as maize (corn, e.g., whole ground corn), sorghum (milo), barley, wheat, rye, rice, and millet; and starchy root crops, tubers, or roots such as sweet potato and cassava. The plant material can be a mixture of such materials and byproducts of such materials, e.g., corn fiber, corn cobs, stover, or other cellulose and hemicellulose containing materials such as wood or plant residues. Suitable plant materials include corn, either standard corn or waxy corn.

As used herein, the phrase “fractionated plant material” refers to plant material that includes only a portion or fraction of the total plant material, typically a material including starch. Fractionated plant material can include fractionated grains such as fractionated maize (fractionated corn), fractionated sorghum (fractionated milo), fractionated barley, fractionated wheat, fractionated rye, fractionated rice, and fractionated millet; and fractionated starchy root crops, tubers, or roots such as fractionated sweet potato and fractionated cassava. Suitable fractionated plant materials include fractionated corn, either fractionated standard corn or fractionated waxy corn.

As used herein, the terms “saccharification” and “saccharifying” refer to the process of converting starch to smaller polysaccharides and eventually to monosaccharides, such as glucose. Conventional saccharification uses liquefaction of gelatinized starch to create soluble dextrinized substrate which glucoamylase
enzyme hydrolyzes to glucose. In the present method, saccharification refers to converting raw starch to glucose with enzymes, e.g., glucoamylase and acid fungal amylase (AFAU). According to the present method, the raw starch is not subjected to conventional liquefaction and gelatinization to create a conventional dextrinized substrate.

As used herein, a unit of acid fungal amylase activity (AFAU) refers to the standard Novozymes units for measuring acid fungal amylase activity. The Novozymes units are described in a Novozymes technical bulletin SOP No.: EB-SM-0259.02/01. Such units can be measured by detecting products of starch degradation by iodine titration. 1 unit is defined as the amount of enzyme that degrades 5.260 mg starch dry matter per hour under standard conditions.

As used herein, a unit of glucoamylase activity (GAU) refers to the standard Novozymes units for measuring glucoamylase activity. The Novozymes units and assays for determining glucoamylase activity are described in a publicly available Novozymes technical bulletin.

As used herein, a unit of amyloglucosidase activity (AGU) refers to the standard Novozymes units for measuring amyloglucosidase activity. The Novozymes units are described in a Novozymes technical bulletin SOP No.: EB-SM-0131.02/01. Such units can be measured by detecting conversion of maltose to glucose. The glucose can be determined using the glucose dehydrogenase reaction. 1 unit is defined as the amount of enzyme that catalyzes the conversion of 1 mmol maltose per minute under the given conditions.

As used herein, the term "about" modifying any amount refers to the variation in that amount encountered in real world conditions of producing sugars and ethanol, e.g., in the lab, pilot plant, or production facility. For example, an amount of an ingredient employed in a mixture when modified by "about" includes the variation and degree of care typically employed in measuring in an ethanol production plant or lab. For example, the amount of a component of a product when modified by "about" includes the variation between batches in an ethanol production plant or lab and the variation inherent in the analytical method. Whether or not modified by "about," the amounts include equivalents to those amounts. Any quantity stated herein and modified by "about" can also be employed in the present invention as the amount not modified by "about."
Converting Starch to Ethanol

The present invention relates to methods for producing high levels of alcohol during fermentation of plant material (e.g., fractionated plant material), and to the high alcohol beer produced. The method can include adding substrate continuously or clarifying continuously. The present invention also relates to methods for producing high protein distiller’s dried grain from fermentation of plant material (e.g., fractionated plant material), to the high protein distiller’s dried grain produced, and to the cleaner dryer stack emissions.

The present method converts starch from plant material (e.g., fractionated plant material) to ethanol. In an embodiment, the present method can include preparing the plant material (e.g., fractionated plant material) for saccharification, converting the prepared plant material (e.g., fractionated plant material) to sugars without cooking, and fermenting the sugars.

The plant material (e.g., fractionated plant material) can be prepared for saccharification by any a variety of methods, e.g., by grinding, to make the starch available for saccharification and fermentation. In an embodiment, the vegetable material can be ground so that a substantial portion, e.g., a majority, of the ground material fits through a sieve with a 0.1-0.5 mm screen. For example, in an embodiment, about 70% or more, of the ground vegetable material can fit through a sieve with a 0.1-0.5 mm screen. In an embodiment, the reduced plant material (e.g., fractionated plant material) can be mixed with liquid at about 20 to about 50 wt-% or about 25 to about 45 wt-% dry reduced plant material (e.g., fractionated plant material).

The present process can include converting reduced plant material (e.g., fractionated plant material) to sugars that can be fermented by a microorganism such as yeast. This conversion can be effected by saccharifying the reduced plant material (e.g., fractionated plant material) with an enzyme preparation, such as a saccharifying enzyme composition. A saccharifying enzyme composition can include any of a variety of known enzymes suitable for converting reduced plant material (e.g., fractionated plant material) to fermentable sugars, such as amylases (e.g., α-amylase and/or glucoamylase). In an embodiment, saccharification is conducted at a pH of about 6.0 or less, for example, about 4.5 to about 5.0, for example, about 4.5 to about 4.8.
The present process includes fermenting sugars from reduced plant material (e.g., fractionated plant material) to ethanol. Fermenting can be effected by a microorganism, such as yeast. In an embodiment, fermentation is conducted at a pH of about 6 or less, for example, about 4.5 to about 5, for example, about 4.5 to about 4.8. In an embodiment, the present method can include varying the pH. For example, fermentation can include filling the fermenter at pH of about 3 to about 4.5 during the first half of fill and at a pH of about 4.5 to about 6 (e.g., about 4.5 to about 4.8) during the second half of the fermenter fill cycle. In an embodiment, fermentation is conducted at a temperature of about 25 to about 40 °C or about 30 to about 35 °C. In an embodiment, during fermentation the temperature is decreased from about 40 °C to about 30 °C or about 25 °C, or from about 35 °C to about 30 °C, during the first half of the fermentation, and the temperature is held at the lower temperature for the second half of the fermentation. In an embodiment, fermentation is conducted for about 25 (e.g., 24) to about 150 hours, for example, for about 48 (e.g., 47) to about 96 hours.

The present process can include simultaneously converting reduced plant material (e.g., fractionated plant material) to sugars and fermenting those sugars with a microorganism such as yeast.

The product of the fermentation process is referred to herein as “beer”.

Ethanol can be recovered from the fermentation mixture, from the beer, by any of a variety of known processes, such as by distilling. The remaining stillage includes both liquid and solid material. The liquid and solid can be separated by, for example, centrifugation.

Preparing the Plant Material

The present method converts starch from plant material (e.g., fractionated plant material) to ethanol. The plant material (e.g., fractionated plant material) can be reduced by a variety of methods, e.g., by grinding, to make the starch available for saccharification and fermentation. Other methods of plant material reduction are available. For example, vegetable material, such as kernels of corn, can be ground with a ball mill, a roller mill, a hammer mill, or another mill known for grinding vegetable material, and/or other materials for the purposes of particle size reduction. The use of emulsion technology, rotary pulsation, and other means of particle size reduction can be employed to increase surface area of plant material (e.g.,
fractionated plant material) while raising the effectiveness of flowing the liquefied media. The prepared plant material (e.g., fractionated plant material) can be referred to as being or including "raw starch".

A fine grind exposes more surface area of the plant material (e.g., fractionated plant material), or vegetable material, and can facilitate saccharification and fermentation. In an embodiment, the vegetable material is ground so that a substantial portion, e.g., a majority, of the ground material fits through a sieve with a 0.1-0.5 mm screen. In an embodiment, about 35% or more of the ground vegetable material can fit through a sieve with a 0.1-0.5 mm screen. In an embodiment, about 35 to about 70% of the ground vegetable material can fit through a sieve with a 0.1-0.5 mm screen. In an embodiment, about 50% or more of the ground vegetable material can fit through a sieve with a 0.1-0.5 mm screen. In an embodiment, about 90% of the ground vegetable material can fit through a sieve with a 0.1-0.5 mm screen. In an embodiment, all of the ground vegetable material can fit through a sieve with a 0.1-0.5 mm screen. In an embodiment, the ground vegetable material has an average particle size of about 0.25 mm.

Plant Material Reduction

Preparing the plant material (e.g., fractionated plant material) can employ any of a variety of techniques for plant material (e.g., fractionated plant material) reduction. For example, the present method of preparing plant material (e.g., fractionated plant material) can employ emulsion technology, rotary pulsation, sonication, magnetostriction, ferromagnetic materials, or the like. These methods of plant material reduction can be employed for substrate pretreatment. Although not limiting to the present invention, it is believed that these methods can increase surface area of plant material (e.g., fractionated plant material) while raising the effectiveness of flowing of liquefied media (i.e. decreased viscosity). These methods can include electrical to mechanical, mechanical to electrical, pulse, and sound based vibrations at varying speeds. This can provide varying frequencies over a wide range of frequencies, which can be effective for pretreating the plant material (e.g., fractionated plant material) and/or reducing particle size.

Although not limiting to the present invention, it is believed that certain of these sonic methods create low pressure around a particle of plant material (e.g., fractionated plant material) and induce cavitation of the particle or disruption of the
particle structure. The cavitated or disrupted particle can increase availability of plant material (e.g., starch) to an enzyme, for example, by increasing surface area. It is believed that such pretreatment can decrease quantity of enzyme rates in the present method for ethanol production.

In an embodiment, the present method includes vibrating plant material (e.g., fractionated plant material) and cavitating the fluid containing the plant material. This can result in disrupting the plant material and/or decreasing the size of the plant material (e.g., fractionated plant material). In certain embodiments, the present method includes treating plant material (e.g., fractionated plant material) with emulsion technology, with rotary pulsation, with magnetostriction, or with ferromagnetic materials. This can result in disrupting the plant material and/or decreasing the size of the plant material (e.g., fractionated plant material). In an embodiment, the present method includes sonicating the plant material (e.g., fractionated plant material). This can result in disrupting the plant material and/or decreasing the size of the plant material (e.g., fractionated plant material).

In an embodiment, the present method can include employing sound waves for reducing plant material (e.g., fractionated plant material). The sound waves can be ultrasound. The present method can include sonicating the plant material (e.g., fractionated plant material). The method can include sonicating the plant material at a frequency (e.g., measured in kHz), power (e.g., measured in watts), and for a time effective to reduce (or to assist in reducing) the particle size to sizes described hereinabove. For example, the method can include sonicating the plant material (e.g., fractionated plant material) at 20,000 Hz and up to about 3000 W for a sufficient time and at a suitable temperature. Such sonicating can be carried out with commercially available apparatus, such as high powered ultrasonics available from ETREMA (Ames, IA).

In an embodiment, the present method can include employing rotary pulsation for reducing plant material (e.g., fractionated plant material). The method can include rotary pulsating the plant material (e.g., fractionated plant material) at a frequency (e.g., measured in Hz), power (e.g., measured in watts), and for a time effective to reduce (or to assist in reducing) the particle size to sizes described hereinabove. Such rotary pulsating can be carried out with known apparatus, such as apparatus described in U.S. Patent No. 6,648,500, the disclosure of which is incorporated herein by reference.
In an embodiment, the present method can include employing pulse wave technology for reducing plant material (e.g., fractionated plant material). The method can include rotary pulsing the plant material at a frequency (e.g., measured in Hz), power (e.g., measured in watts), and for a time effective to reduce (or to assist in reducing) the particle size to sizes described hereinabove. Such pulsing can be carried out with known apparatus, such as apparatus described in U.S. Patent No. 6,726,133, the disclosure of which is incorporated herein by reference.

Fractionation

In an embodiment, the vegetable material can be fractionated into one or more components. For example, a vegetable material such as a cereal grain or corn can be fractionated into components such as fiber (e.g., corn fiber), germ (e.g., corn germ), and a mixture of starch and protein (e.g., a mixture of corn starch and corn protein). One or a mixture of these components can be fermented in a process according to the present invention. Fractionation of corn or another plant material can be accomplished by any of a variety of methods or apparatus. For example, a system manufactured by Satake can be used to fractionate plant material such as corn.

In an embodiment, the germ and fiber components of the vegetable material can be fractionated and separated from the remaining portion of the vegetable material. In an embodiment, the remaining portion of the vegetable material (e.g., corn endosperm) can be further milled and reduced in particle size and then combined with the larger pieces of the fractioned germ and fiber components for fermenting.

In an embodiment, the vegetable material can be milled to access value added products (such as nutraceuticals, leutein, carotenoids, xanthophils, pectin, cellulose, lignin, mannose, xylose, arabinose, galactose, galacturonic acid, GABA, corn oil, albumins, globulins, prolamins, glutenelins, zein and the like).

Saccharification and Fermentation

Saccharification

The present process can include converting reduced plant material (e.g., fractionated plant material) to sugars that can be fermented by a microorganism such as yeast. This conversion can be effected by saccharifying the reduced plant
material (e.g., fractionated plant material) with any of a variety of known saccharifying enzyme compositions. In an embodiment, the saccharifying enzyme composition includes an amylase, such as an alpha amylase (e.g., an acid fungal amylase). The enzyme preparation can also include glucoamylase. The enzyme preparation need not, and, in an embodiment, does not include protease. However, ethanol production methods according to the present invention can conserve water by reusing process waters (backset) which may contain protease. In an embodiment, the present method employs acid fungal amylase for hydrolyzing raw starch.

Saccharifying can be conducted without cooking. For example, saccharifying can be conducted by mixing source of saccharifying enzyme composition (e.g., commercial enzyme), yeast, and fermentation ingredients with ground grain and process waters without cooking.

In an embodiment, saccharifying can include mixing the reduced plant material (e.g., fractionated plant material) with a liquid, which can form a slurry or suspension and adding saccharifying enzyme composition to the liquid. In an embodiment, the method includes mixing the reduced plant material (e.g., fractionated plant material) and liquid and then adding the saccharifying enzyme composition. Alternatively, adding enzyme composition can precede or occur simultaneously with mixing.

In an embodiment, the reduced plant material (e.g., fractionated plant material) can be mixed with liquid at about 20 to about 50 wt-%, about 25 to about 45 (e.g., 44) wt-%, about 30 to about 40 (e.g., 39) wt-%, or about 35 wt-% dry reduced plant material (e.g., fractionated plant material). As used herein, wt-% of reduced plant material in a liquid refers to the percentage of dry substance reduced plant material or dry solids. In an embodiment, the method of the present invention can convert raw or native starch (e.g., in dry reduced plant material) to ethanol at a faster rate at higher dry solids levels compared to conventional saccharification with cooking. Although not limiting to the present invention, it is believed that the present method can be practiced at higher dry solids levels because, unlike the conventional process, it does not include gelatinization, which increases viscosity.

Suitable liquids include water and a mixture of water and process waters, such as stillage (backset), scrubber water, evaporator condensate or distillate, side stripper water from distillation, or other ethanol plant process waters. In an embodiment, the liquid includes water. In an embodiment, the liquid includes water
in a mixture with about 1 to about 70 vol-% stillage, about 15 to about 60 vol-% stillage, about 30 to about 50 vol-% stillage, or about 40 vol-% stillage.

In the conventional process employing gelatinization and liquefaction, stillage provides nutrients for efficient yeast fermentation, especially free amino nitrogen (FAN) required by yeast. The present invention can provide effective fermentation with reduced levels of stillage and even without added stillage. In an embodiment, the present method employs a preparation of plant material (e.g., fractionated plant material) that supplies sufficient quantity and quality of nitrogen for efficient fermentation under high gravity conditions (e.g., in the presence of high levels of reduced plant material). Thus, in an embodiment, no or only low levels of stillage can suffice.

However, the present method provides the flexibility to employ high levels of stillage if desired. The present method does not employ conventional liquefaction. Conventional liquefaction increases viscosity of the fermentation mixture and the resulting stillage. The present method produces lower viscosity stillage. Therefore, in an embodiment, increased levels of stillage can be employed in the present method without detrimental increases in viscosity of the fermentation mixture or resulting stillage.

Further, although not limiting to the present invention, it is believed that conventional saccharification and fermentation processes require added FAN due to undesirable "Maillard Reactions" which occur during high temperature gelatinization and liquefaction. The Maillard Reactions consume FAN during cooking. As a result, the conventional process requires adding stillage (or another source of FAN) to increase levels of FAN in fermentation. It is believed that the present process avoids temperature induced Maillard Reactions and provides increased levels of FAN in the reduced plant material, which are effectively utilized by the yeast in fermentation.

Saccharification can employ any of a variety of known enzyme sources (e.g., a microorganism) or compositions to produce fermentable sugars from the reduced plant material (e.g., fractionated plant material). In an embodiment, the saccharifying enzyme composition includes an amylase, such as an alpha amylase (e.g., an acid fungal amylase) or a glucoamylase.

In an embodiment, saccharification is conducted at a pH of about 6.0 or less, pH of about 3.0 to about 6.0, about 3.5 to about 6.0, about 4.0 to about 5.0, about 4.0
to about 4.5, about 4.5 to about 5.0, or about 4.5 to about 4.8. The initial pH of the
saccharification mixture can be adjusted by addition of, for example, ammonia,
sulfuric acid, phosphoric acid, process waters (e.g., stillage (backset), evaporator
condensate (distillate), side stripper bottoms, and the like), and the like. Activity of
certain saccharifying enzyme compositions (e.g., one including acid fungal amylase)
can be enhanced at pH lower than the above ranges.

In an embodiment, saccharification is conducted at a temperature of about 25
to about 40 °C or about 30 to about 35 °C.

In an embodiment, saccharifying can be carried out employing quantities of
saccharifying enzyme composition selected to maintain low concentrations of
dextrin in the fermentation broth. For example, the present process can employ
quantities of saccharifying enzyme composition selected to maintain maltotriose
(DP3) at levels at or below about 0.2 wt-% or at or below about 0.1 wt-%. For
example, the present process can employ quantities of saccharifying enzyme
composition selected to maintain dextrin with a degree of polymerization of 4 or
more (DP4+) at levels at or below about 1 wt-% or at or below about 0.5 wt-%.

In an embodiment, saccharifying can be carried out employing quantities of
saccharifying enzyme composition selected to maintain low concentrations of
maltose in the fermentation broth. For example, the present process can employ
quantities of saccharifying enzyme composition selected to maintain maltose at
levels at or below about 0.3 wt-%. For maintaining low levels of maltose, suitable
levels of acid fungal amylase and glucoamylase include about 0.05 to about 3
AFAU/gram dry solids reduced plant material (e.g., DSC) of acid fungal amylase
and about 1 to about 2.5 (e.g., 2.4) AGU per gram dry solids reduced plant material
(e.g., DSC) of glucoamylase. In an embodiment, the reaction mixture includes about
0.1 to about 2 AFAU/gram dry solids reduced plant material (e.g., DSC) of acid
fungal amylase and about 1 to about 2.5 AGU per gram dry solids reduced plant material
(e.g., DSC) of glucoamylase. In an embodiment, the reaction mixture includes about 1 to about 2 AFAU/gram dry solids reduced plant material
(e.g., DSC) of acid fungal amylase and about 1 to about 1.5 AGU per gram dry
solids reduced plant material (e.g., DSC) of glucoamylase.
Glucoamylase

In certain embodiments, the present method can employ a glucoamylase. Glucoamylase is also known as amyloglucosidase and has the systematic name 1,4-alpha-D-glucan glucohydrolase (E.C. 3.2.1.3). Glucoamylase refers to an enzyme that removes successive glucose units from the non-reducing ends of starch. For example, certain glucoamylases can hydrolyze both the linear and branched glucosidic linkages of starch, amylose, and amylpectin. A variety of suitable glucoamylases are known and commercially available. For example, suppliers such as Novozymes and Genencor provide glucoamylases. The glucoamylase can be of fungal origin.

The amount of glucoamylase employed in the present process can vary according to the enzymatic activity of the amylase preparation. Suitable amounts include about 0.05 to about 6.0 glucoamylase units (AGU) per gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 1 to about 6 AGU per gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 1 to about 3 AGU per gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 1 to about 2.5 (e.g., 2.4) AGU per gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 1 to about 2 AGU per gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 1 to about 1.5 AGU per gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 1.2 to about 1.5 AGU per gram dry solids reduced plant material (e.g., DSC).

Acid Fungal Amylase

In certain embodiments, the present method employs an \(\alpha \)-amylase. The \(\alpha \)-amylase can be one produced by fungi. The \(\alpha \)-amylase can be one characterized by its ability to hydrolyze carbohydrates under acidic conditions. An amylase produced by fungi and able to hydrolyze carbohydrates under acidic conditions is referred to herein as acid fungal amylase, and is also known as an acid stable fungal \(\alpha \)-amylase. Acid fungal amylase can catalyze the hydrolysis of partially hydrolyzed starch and large oligosaccharides to sugars such as glucose. The acid fungal amylase that can
be employed in the present process can be characterized by its ability to aid the hydrolysis of raw or native starch, enhancing the saccharification provided by glucoamylase. In an embodiment, the acid fungal amylase produces more maltose than conventional (e.g., bacterial) α-amylases.

Suitable acid fungal amylase can be isolated from any of a variety of fungal species, including Aspergillus, Rhizopus, Mucor, Candida, Coriolus, Endothia, Enthomophthora, Irpex, Penicillium, Sclerotium and Torulopsis species. In an embodiment, the acid fungal amylase is thermally stable and is isolated from Aspergillus species, such as A. niger, A. saitoi or A. oryzae, from Mucor species such as M. pusillus or M. miehei, or from Endothia species such as E. parasitica. In an embodiment, the acid fungal amylase is isolated from Aspergillus niger. The acid fungal amylase activity can be supplied as an activity in a glucoamylase preparation, or it can be added as a separate enzyme. A suitable acid fungal amylase can be obtained from Novozymes, for example in combination with glucoamylase.

The amount of acid fungal amylase employed in the present process can vary according to the enzymatic activity of the amylase preparation. Suitable amounts include about 0.1 to about 10 acid fungal amylase units (AFAU) per gram of dry solids reduced plant material (e.g., dry solids corn (DSC)). In an embodiment, the reaction mixture can include about 0.05 to about 3 AFAU/gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 0.1 to about 3 AFAU/gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 0.3 to about 3 AFAU/gram dry solids reduced plant material (e.g., DSC). In an embodiment, the reaction mixture can include about 1 to about 2 AFAU/gram dry solids reduced plant material (e.g., DSC).

Fermenting

The present process includes fermenting sugars from reduced plant material (e.g., fractionated plant material) to ethanol. Fermenting can be effected by a microorganism, such as yeast. The fermentation mixture need not, and in an embodiment does not, include protease. However, the process waters may contain protease. The amount of protease can be less than that used in the conventional process. According to the present invention, fermenting is conducted on a starch composition that has not been cooked. In an embodiment, the present fermentation
process produces potable alcohol. Potable alcohol has only acceptable, nontoxic levels of other alcohols, such as fusel oils. Fermenting can include contacting a mixture including sugars from the reduced plant material (e.g., fractionated plant material) with yeast under conditions suitable for growth of the yeast and production of ethanol. In an embodiment, fermenting employs the saccharification mixture.

Any of a variety of yeasts can be employed as the yeast starter in the present process. Suitable yeasts include any of a variety of commercially available yeasts, such as commercial strains of Saccharomyces cerevisiae. Suitable strains include "Fali" (Fleischmann's), Thermosac (Alltech), Ethanol Red (LeSafre), BioFerm AFT (North American Bioproducts), and the like. In an embodiment, the yeast is selected to provide rapid growth and fermentation rates in the presence of high temperature and high ethanol levels. In an embodiment, Fali yeast has been found to provide good performance as measured by final alcohol content of greater than 17% by volume.

The amount of yeast starter employed is selected to effectively produce a commercially significant quantity of ethanol in a suitable time, e.g., less than 75 hours.

Yeast can be added to the fermentation by any of a variety of methods known for adding yeast to fermentation processes. For example, yeast starter can be added as a dry batch, or by conditioning/propagating. In an embodiment, yeast starter is added as a single inoculation. In an embodiment, yeast is added to the fermentation during the fermenter fill at a rate of 5 to 100 pounds of active dry yeast (ADY) per 100,000 gallons of fermentation mash. In an embodiment, the yeast can be acclimated or conditioned by incubating about 5 to 50 pounds of ADY per 10,000 gallon volume of fermenter volume in a prefermenter or propagation tank.

Incubation can be from 8 to 16 hours during the propagation stage, which is also aerated to encourage yeast growth. The prefermenter used to inoculate the main fermenter can be from 1 to 10% by volume capacity of the main fermenter, for example, from 2.5 to 5% by volume capacity relative to the main fermenter.

In an embodiment, the fermentation is conducted at a pH of about 6 or less, pH of about 3 to about 6, about 3 to about 4.5, about 3.5 to about 6, about 4 to about 5, about 4 to about 4.5, about 4.5 to about 5, or about 4.5 to about 4.8. The initial pH of the fermentation mixture can be adjusted by addition of, for example,
ammonia, sulfuric acid, phosphoric acid, process waters (e.g., stillage (backset), evaporator condensate (distillate), side stripper bottoms, and the like), and the like.

Although not limiting to the present invention, it is believed that known distillery yeast grow well over the pH range of 3 to 6, but are more tolerant of lower pH's down to 3.0 than most contaminant bacterial strains. Contaminating lactic and acetic acid bacteria grow best at pH of 5.0 and above. Thus, in the pH range of 3.0 to 4.5, it is believed that ethanol fermentation will predominate because yeast will grow better than contaminating bacteria.

In an embodiment, the present method can include varying the pH. It is believed that varying the pH can be conducted to reduce the likelihood of contamination early in fermentation and/or to increase yeast growth and fermentation during the latter stages of fermentation. For example, fermentation can include filling the fermenter at pH of about 3 to about 4.5 during the first half of fill. Fermentation can include increasing the slurry pH to pH of about 4.5 to about 6 during the second half of the fermenter fill cycle. Fermentation can include maintaining pH by adding fresh substrate slurry at the desired pH as described above. In an embodiment, during fermentation (after filling), pH is not adjusted. Rather, in this embodiment, the pH is determined by the pH of the components during filling.

In an embodiment, the pH is decreased to about five (5) or below in the corn process waters. In an embodiment, the pH is about pH 4 (e.g. 4.1) at the start of fermentation fill and is increased to about pH 5 (e.g. 5.2) toward the end of fermentation fill. In an embodiment, the method includes stopping pH control of the mash slurry after the yeast culture becomes established during the initial process of filling the fermenter, and then allowing the pH to drift up in the corn process waters during the end stages of filling the fermenter.

In an embodiment, fermentation is conducted for about to 25 (e.g., 24) to about to 150 hours, about 25 (e.g., 24) to about 96 hours, about 40 to about 96 hours, about 45 (e.g., 44) to about 96 hours, about 48 (e.g., 47) to about 96 hours. For example, fermentation can be conducted for about 30, about 40, about 50, about 60, or about 70 hours. For example, fermentation can be conducted for about 35, about 45, about 55, about 65, or about 75 hours.

In an embodiment, fermentation is conducted at a temperature of about 25 to about 40 °C or about 30 to about 35 °C. In an embodiment, during fermentation the
temperature is decreased from about 40 °C to about 30 °C or about 25 °C, or from about 35 °C to about 30 °C, during the first half of the fermentation, and the temperature is held at the lower temperature for the second half of the fermentation. In an embodiment, the temperature can be decreased as ethanol is produced. For example, in an embodiment, during fermentation the temperature can be as high as about 99 °F and then reduced to about 79 °F. This temperature reduction can be coordinated with increased ethanol titers (%) in the fermenter.

In an embodiment, the present method includes solids staging. Solids staging includes filling at a disproportionately higher level of solids during the initial phase of the fermenter fill cycle to increase initial fermentation rates. The solids concentration of the mash entering the fermenter can then be decreased as ethanol titers increase and/or as the fermenter fill cycle nears completion. In an embodiment, the solids concentration can be about 40% (e.g. 41%) during the first half of the fermentation fill. This can be decreased to about 25% after the fermenter is 50% full and continuing until the fermenter fill cycle is concluded. In the above example, such a strategy results in a full fermenter with solids at 33%.

It is believed that solids staging can accelerate enzyme hydrolysis rates and encourage a rapid onset to fermentation by using higher initial fill solids. It is believed that lowering solids in the last half of fill can reduce osmotic pressure related stress effects on the yeast. By maintaining overall fermenter fill solids within a specified range of fermentability, solids staging improves the capacity of the yeast to ferment high gravity mashess toward the end of fermentation.

Simultaneous Saccharification and Fermentation

The present process can include simultaneously converting reduced plant material (e.g., fractionated plant material) to sugars and fermenting those sugars with a microorganism such as yeast. Simultaneous saccharifying and fermenting can be conducted using the reagents and conditions described above for saccharifying and fermenting.

In an embodiment, saccharification and fermentation is conducted at a temperature of about 25 to about 40 °C or about 30 to about 35 °C. In an embodiment, during saccharification and fermentation the temperature is decreased from about 40 to about 25 °C or from about 35 to about 30 °C during the first half of
the saccharification, and the temperature is held at the lower temperature for the second half of the saccharification.

Although not limiting to the present invention, it is believed that higher temperatures early during saccharification and fermentation can increase conversion of starch to fermentable sugar when ethanol concentrations are low. This can aid in increasing ethanol yield. At higher ethanol concentrations, this alcohol can adversely affect the yeast. Thus, it is believed that lower temperatures later during saccharification and fermentation are beneficial to decrease stress on the yeast. This can aid in increasing ethanol yield.

Also not limiting to the present invention, it is believed that higher temperatures early during saccharification and fermentation can reduce viscosity during at least a portion of the fermentation. This can aid in temperature control. It is also believed that lower temperatures later during saccharification and fermentation are beneficial to reduce the formation of glucose after the yeast has stopped fermenting. Glucose formation late in fermentation can be detrimental to the color of the distillers dried grain co-product.

In an embodiment, saccharification and fermentation is conducted at a pH of about 6 or less, pH of about 3 to about 6, about 3.5 to about 6, about 4 to about 5, about 4 to about 4.5, about 4.5 to about 5, or about 4.5 to about 4.8. The initial pH of the saccharification and fermentation mixture can be adjusted by addition of, for example, ammonia, sulfuric acid, phosphoric acid, process waters (e.g., stillage (backsset), evaporator condensate (distillate), side stripper bottoms, and the like), and the like.

In an embodiment, saccharification and fermentation is conducted for about to 25 (e.g., 24) to about 150 hours, about 25 (e.g., 24) to about 72 hours, about 45 to about 55 hours, about 50 (e.g., 48) to about 96 hours, about 50 to about 75 hours, or about 60 to about 70 hours. For example, saccharification and fermentation can be conducted for about 30, about 40, about 50, about 60, or about 70 hours. For example, saccharification and fermentation can be conducted for about 35, about 45, about 55, about 65, or about 75 hours.

In an embodiment, simultaneous saccharifying and fermenting can be carried out employing quantities of enzyme and yeast selected to maintain high concentrations of yeast and high levels of budding of the yeast in the fermentation broth. For example, the present process can employ quantities of enzyme and yeast
selected to maintain yeast at or above about 200 cells/mL, at or above about 300 cells/mL, or at about 300 to about 600 cells/mL.

In an embodiment, simultaneous saccharifying and fermenting can be carried out employing quantities of enzyme and yeast selected for effective fermentation without added exogenous nitrogen; without added protease; and/or without added backset. Backset can be added, if desired, to consume process water and reduce the amount of wastewater produced by the process. In addition, the present process maintains low viscosity during saccharifying and fermenting.

In an embodiment, simultaneous saccharifying and fermenting can be carried out employing quantities of enzyme and yeast selected to maintain low concentrations of soluble sugar in the fermentation broth. In an embodiment, simultaneous saccharifying and fermenting can be carried out employing quantities of enzyme and yeast selected to maintain low concentrations of glucose in the fermentation broth. For example, the present process can employ quantities of enzyme and yeast selected to maintain glucose at levels at or below about 2 wt-%, at or below about 1 wt-%, at or below about 0.5 wt-%, or at or below about 0.1 wt-%. For example, the present process can employ quantities of enzyme and yeast selected to maintain glucose at levels at or below about 2 wt-% during saccharifying and fermenting. For example, the present process can employ quantities of enzyme and yeast selected to maintain glucose at levels at or below about 2 wt-% from hours 0-10 (or from 0 to about 15% of the time) of saccharifying and fermenting. For example, the present process can employ quantities of enzyme and yeast selected to maintain glucose at levels at or below about 1 wt-%, at or below about 0.5 wt-%, or at or below about 0.1 wt-% from hours 12-54 (or from about 15% to about 80% of the time) of saccharifying and fermenting. For example, the present process can employ quantities of enzyme and yeast selected to maintain glucose at levels at or below about 1 wt-% from hours 54-66 (or about from 80% to about 100% of the time) of saccharifying and fermenting.

In an embodiment, simultaneous saccharifying and fermenting can be carried out employing quantities of enzyme and yeast selected to maintain low concentrations of maltose (DP2) in the fermentation broth. For example, the present process can employ quantities of enzyme and yeast selected to maintain maltose at levels at or below about 0.5 wt-% or at or below about 0.2 wt-%.
In an embodiment, simultaneous saccharifying and fermenting can be carried out employing quantities of enzyme and yeast selected to maintain low concentrations of dextrin in the fermentation broth. For example, the present process can employ quantities of enzyme and yeast selected to maintain maltotriose (DP3) at levels at or below about 0.5 wt-%, at or below about 0.2 wt-%, or at or below about 0.1 wt-%. For example, the present process can employ quantities of enzyme and yeast selected to maintain dextrin with a degree of polymerization of 4 or more (DP4+) at levels at or below about 1 wt-% or at or below about 0.5 wt-%.

In an embodiment, simultaneous saccharifying and fermenting can be carried out employing quantities of enzyme and yeast selected to maintain low concentrations of fusel oils in the fermentation broth. For example, the present process can employ quantities of enzyme and yeast selected to maintain fusel oils at levels at or below about 0.4 to about 0.5 wt-%.

For example, simultaneous saccharifying and fermenting can employ acid fungal amylase at about 0.05 to about 10 AFAU per gram of dry solids reduced plant material (e.g., DSC) and glucoamylase at about 0.5 to about 6 AGU per gram dry solids reduced plant material (e.g., DSC). For example, simultaneous saccharifying and fermenting can employ acid fungal amylase at about 0.1 to about 10 AFAU per gram of dry solids reduced plant material (e.g., DSC) and glucoamylase at about 0.5 to about 6 AGU per gram dry solids reduced plant material (e.g., DSC). For example, simultaneous saccharifying and fermenting can employ acid fungal amylase at about 0.3 to about 3 AFAU per gram of dry solids reduced plant material (e.g., DSC) and glucoamylase at about 1 to about 3 AGU per gram dry solids reduced plant material (e.g., DSC). For example, simultaneous saccharifying and fermenting can employ acid fungal amylase at about 1 to about 2 AFAU per gram of dry solids reduced plant material (e.g., DSC) and glucoamylase at about 1 to about 1.5 AGU per gram dry solids reduced plant material (e.g., DSC).

Additional Ingredients for Saccharification and/or Fermentation

The saccharification and/or fermentation mixture can include additional ingredients to increase the effectiveness of the process. For example, the mixture can include added nutrients (e.g., yeast micronutrients), antibiotics, salts, added enzymes, and the like. Nutrients can be derived from stillage or backset added to the liquid. Suitable salts can include zinc or magnesium salts, such as zinc sulfate,
magnesium sulfate, and the like. Suitable added enzymes include those added to conventional processes, such as protease, phytase, cellulase, hemicellulase, exo- and endo-glucanase, xylanase, and the like.

5 Recovering Ethanol from the Beer

The product of the fermentation process is referred to herein as “beer”. For example, fermenting corn produces “corn beer”. Ethanol can be recovered from the fermentation mixture, from the beer, by any of a variety of known processes. For example, ethanol can be recovered by distillation.

The remaining stillage includes both liquid and solid material. The liquid and solid can be separated by, for example, centrifugation. The recovered liquid, thin stillage, can be employed as at least part of the liquid for forming the saccharification and fermentation mixture for subsequent batches or runs.

The recovered solids, distiller’s dried grain, include unfermented grain solids and spent yeast solids. Thin stillage can be concentrated to a syrup, which can be added to the distiller’s dried grain and the mixture then dried to form distiller’s dried grain plus solubles. Distiller’s dried grain and/or distiller’s dried grain plus solubles can be sold as animal feed.

20 Burn-out of Residual Starches for Subsequent Secondary Fermentation

In an embodiment, the present method can include heat treatment of the beer or stillage, e.g., between the beer well and distillation. In an embodiment, the present method can include heat treatment of the beer or stillage and enzyme addition, e.g., between the beer well and distillation. This heat treatment can convert starches to dextrins and sugars for subsequent fermentation in a process known as burn-out. Such a treatment step can also reduce fouling of distillation trays and evaporator heat exchange surfaces. In an embodiment, heat treatment staging can be performed on whole stillage or thin stillage. Following enzymatic treatment of the residual starches, in an embodiment, the resulting dextrins and sugars can be fermented within the main fermentation process as recycled backset or processed in a separate fermentation train to produce ethanol. In an embodiment, the liquefaction and saccharification on whole stillage or thin stillage produced by centrifugation can be accelerated after distillation.
Fractionation of Solids from Fermentation

Large pieces of germ and fiber can ferment the residual starch in the fermenter. After fermentation, the fractions could be removed prior to or after distillation. Removal can be effected with a surface skimmer before to distillation. In an embodiment, screening can be performed on the beer. The screened material can then be separated from the ethanol/water mix by, for example, centrifugation and rotary steam drum drying, which can remove the residual ethanol from the cake. In embodiments in which the larger fiber and germ pieces are removed prior to bulk beer distillation, a separate stripper column for the fiber germ stream can be utilized. Alternatively, fiber and germ could be removed by screening the whole stillage after distillation.

In an embodiment, all the components are blended and dried together. The fiber and germ can be removed from the finished product by aspiration and/or size classification. The fiber from the DDGS can be aspirated. Removal of fiber by aspiration after drying can increase the amount of oil and protein in the residual DDGS, for example, by 0.2 to 1.9% and 0.4 to 1.4%, respectively. The amount of NDF in the residual DDGS can decrease, for example, by 0.1 to 2.8%.

In an embodiment, fractionation can employ the larger fiber and germ pieces to increase the particle size of that part of the DDGS derived from the endosperm, as well as to improve syrup carrying capacity. A ring dryer disintegrator can provide some particle size reduction and homogenization.

Methods and Systems for Drying Wet Cake to Make Distiller’s Dried Grains

The beer produced by fermentation includes ethanol, other liquids, and solid material. Centrifugation and/or distillation of the beer can yield solids known as wet cake and liquids known as thin stillage. The wet cake can be dried to produce distiller’s dried grain. The thin stillage can be concentrated to a syrup, which can be added to the wet cake or distiller’s dried grain and the mixture then dried to form distiller’s dried grain plus solubles. The present method can include drying the wet cake to produce distiller’s dried grain. The present method can include drying the syrup plus distiller’s dried grain to produce distiller’s dried grain plus solubles. The distiller’s dried grain can be produced from whole grain (e.g., corn) or from fractionated grain (e.g., corn). The present method can produce high protein...
distiller's dried grain and/or distiller's dried grain with improved physical characteristics. Such distiller's dried grains are described hereinbelow.

Conventional ethanol production processes employed drum dryers. Advantageously, in an embodiment, the present method and system can employ a flash or ring dryer. Flash or ring dryers have not previously been employed in processes like the present one. Configurations of flash and ring dryers are known. Briefly, a flash or ring dryer can include a vertical column through which a pre-heated air stream moves the wet cake. For example, a flash or ring dryer can include one or more inlets that provide entry of heat or heated air into the dryer. This dries the wet cake. The dried wet cake is transported to the top of a column. In a ring dryer, further drying can be accomplished by moving the wet cake through one or more rings connected to the column. For example, a ring dryer can include one or more inlets through which heated air enters a ring structure which propels or circulates the wet cake in or around the ring structure. The dried wet cake can then be pneumatically conveyed to down-stream separating equipment such as a cyclone or dust collector.

The present method can include employing a flash dryer to dry (i.e., flash drying) the wet cake and to produce distiller's dried grain. The present method can include employing a flash dryer to dry (i.e., flash drying) the syrup plus distiller's dried grain to produce distiller's dried grain plus solubles. Employing a flash dryer can produce high protein distiller's dried grain and/or distiller's dried grain with improved physical characteristics. Such distiller's dried grains are described hereinbelow.

The present method can include employing a ring dryer to dry (i.e., ring drying) the wet cake and to produce distiller's dried grain. The present method can include employing a ring dryer (i.e., ring drying) to dry the syrup plus distiller's dried grain to produce distiller's dried grain plus solubles. Employing a ring dryer can produce high protein distiller's dried grain and/or distiller's dried grain with improved physical characteristics. Such distiller's dried grains are described hereinbelow.

The present method can include employing a fluid bed dryer to dry (i.e., fluid bed drying) the wet cake and to produce distiller's dried grain. The present method can include employing a fluid bed dryer to dry (i.e., fluid bed drying) the syrup plus distiller's dried grain to produce distiller's dried grain plus solubles. Employing a
fluid bed dryer can produce high protein distiller's dried grain and/or distiller's dried grain with improved physical characteristics. Such distiller's dried grains are described hereinbelow.

The present method can include adding syrup (backset or thin stillage) to the wet cake before, during, or after drying. In an embodiment, the present method includes adding syrup (backset or thin stillage) to the wet cake during drying. For example, the method can include mixing wet cake and syrup in the dryer. For example, the method can include flowing or injecting syrup into the flash, ring, or fluid bed dryer. In an embodiment, the present method includes adding syrup into the column or ring of the dryer in the presence of wet cake and/or distiller's dried grain.

Although not limiting to the present invention, it is believed that flash and/or ring dryers differ from rotary or drum dryers by providing decreased exposure of wet cake to high temperatures of the drying process. A rotary or drum dryer generally has high temperature metal that is in prolonged contact with the wet cake product. It is believed that prolonged contact of this high temperature metal with the wet cake can result in browned, burned, or denatured distiller's dried grains or distiller's dried grains plus solubles. Further, the internal air temperature can be higher in a rotary or drum dryer.

Accordingly, in an embodiment, the present method can include drying the wet cake or wet cake plus syrup for a shorter time than employed with a rotary or drum dryer, and obtaining distiller's dried grain or distiller's dried grain plus solubles that has been sufficiently dried. Accordingly, in an embodiment, the present method can include drying the wet cake or wet cake plus syrup at a lower temperature than employed with a rotary or drum dryer, and obtaining distiller's dried grain or distiller's dried grain plus solubles that has been sufficiently dried. In an embodiment, the method includes changing the drying temperature during drying.

Although not limiting to the present invention, in certain embodiments, such drying systems and methods can provide one or more advantages such as decreased energy consumption in drying, decreased leakage from the drying system.

An embodiment of this invention is the use of flash or ring dryer(s) to change the conditions inside the dryer system to increase or decrease temperature. An embodiment of this invention is the use of flash or ring dryer(s) to change the conditions inside the dryer system to increase or decrease the moisture. An
embodiment of this invention is the use of flash or ring dryer(s) to change the conditions inside the dryer system to increase or decrease recycle speed. An embodiment of this invention is the use of flash or ring dryer(s) to change the conditions inside the dryer system to increase or decrease the feed rate into the dryer system.

Continuous Fermentation

The present process can be run via a batch or continuous process. A continuous process includes moving (pumping) the saccharifying and/or fermenting mixtures through a series of vessels (e.g., tanks) to provide a sufficient duration for the process. For example, a multiple stage fermentation system can be employed for a continuous process with 48-96 hours residence time. For example, reduced plant material (e.g., fractionated plant material) can be fed into the top of a first vessel for saccharifying and fermenting. Partially incubated and fermented mixture can then be drawn out of the bottom of the first vessel and fed in to the top of a second vessel, and so on.

Although not limiting to the present invention, it is believed that the present method is more suitable than conventional methods for running as a continuous process. It is believed that the present process provides reduced opportunity for growth of contaminating organisms in a continuous process. At present, the majority of dry grind ethanol facilities employ batch fermentation technology. This is in part due to the difficulty of preventing losses due to contamination in these conventional processes. For efficient continuous fermentation using traditional liquefaction technology, the conventional belief is that a separate saccharification stage prior to fermentation is necessary to pre-saccharify the mash for fermentation. Such pre-saccharification insures that there is adequate fermentable glucose for the continuous fermentation process.

The present method achieves efficient production of high concentrations of ethanol without a liquefaction or saccharification stage prior to fermentation. This is surprising since this conventional wisdom teaches that it is necessary to have adequate levels of fermentable sugar available during the fermentation process when practiced in a continuous mode. In contrast the present method can provide low concentrations of glucose and efficient fermentation. In the present method, it appears that the glucose is consumed rapidly by the fermenting yeast cell. It is
believed that such low glucose levels reduce stress on the yeast, such as stress
casted by osmotic inhibition and bacterial contamination pressures. According to
the present invention, ethanol levels greater than 18% by volume can be achieved in
about 45 to about 96 hours.

5

Fermentation with Continuous Substrate Addition and Continuous
Clarification

In an embodiment, ethanol production can take place in a single fermenter
that can be adapted to discharge a portion of its contents to a centrifuge operating in
a continuous mode. The centrifuge operating in a continuous mode can be capable
of recovering unfermented substrate and yeast cells as centrifuge cake, which can be
recycled to the fermenter. The clarified centrate, which is depleted of fermentable
carbohydrate or fermenting organism, can be sent to a stripper column for recovery
of ethanol. In an embodiment, the liquids can be cooled and recycled to the
fermenter as process water to dilute and maintain fermenter ethanol content at
approximately ten percent (10%).

As substrate is continuously converted to alcohol and recovered in
distillation, the method can include adding substrate to the ongoing fermentation.
Such a system can operate on a continuous basis, maintaining “isoethanol”
conditions by balancing the rate of adding fermentable substrate with the rate at
which substrate is converted to ethanol and removed by the continuous distillation
process. Adding fresh substrate can be accomplished by metering into the
fermenter. The rate of adding fresh substrate can depend on the rate of fermentation,
the quantity and quality of unfermented material recycled in the centrifuge cake, and
the quantity and quality of process water recycled after distillation of the centrate
fraction.

In an embodiment, the system operates at a high rate of ethanol productivity
achievable by maintaining low alcohol content in the fermentation, high cell counts
of fermenting yeast cells, and high fermentable substrate concentration.

30 Saccharifying enzyme (e.g., glucoamylase) activity can be maintained by the recycle
of enzyme with the cake fraction to maintain enzyme levels. Since the method of
the present invention maintains low levels of carbohydrate throughout fermentation,
even with cereal derived substrates, it is possible to distill off a fraction of the
alcohol without unacceptably reducing fermentable sugar. In the process of the

26
present invention unfermented substrate remains in the form of insoluble solids and is recovered and recycled in the centrifuge cake stream and is not exposed to the thermal degradation conditions present in distillation.

The present invention can use any of a variety of methods of clarifying. In an embodiment, clarifying can employ a membrane system, which can contain unfermented starches or enzymes and allow release or separation of a fraction containing ethanol. In an embodiment, clarifying can employ a membrane system, which can contain unfermented starches and enzymes and allow release or separation of a fraction containing ethanol. In an embodiment, clarifying can employ a membrane bioreactor system, which can contain unfermented starches and enzymes and allow release or separation of a fraction containing ethanol. The membrane or membrane bioreactor system can allow the clarified ethanol portion to be directed to a stripper column for recovery of ethanol while unfermented substrate and yeast cells can recycle to the fermenter.

In an embodiment, the present invention can produce a total cumulative greater than about 9 vol-% (e.g. 9.9) ethanol in about 12 hours, about 17 vol-% (e.g. 17.7) ethanol in about 18 hours, about 27 vol-% (e.g. 27.4) ethanol in about 24 hours, about 33 vol-% (e.g. 34.0) ethanol in about 30 hours, about 38 vol-% (e.g. 39.3) ethanol in about 36 hours, 40 vol-% ethanol in about 40 hours, about 42 vol-% (e.g. 43.0) ethanol in about 42 hours; about 43 vol-% (e.g. 44.9) ethanol in about 48 hours; about 44 vol-% (e.g. 45.4) ethanol in about 60 hours; and about 44 vol-% (e.g. 45.4) ethanol in about 72 hours.

Endosperm, Fiber, and Germ Fermentation

In an embodiment, the present process can ferment a portion of a reduced plant material, such as corn. For example, the process can ferment at least one of endosperm, fiber, or germ. The present process can increase ethanol production from such a portion of corn. In an embodiment, the present process can saccharify and ferment endosperm. Endosperm fermentation is lower in free amino nitrogen (FAN) towards the beginning of fermentation due to the removal of germ, which contains FAN. The present process can, for example, preserve the FAN quality of the endosperm compared to conventional high temperature liquefaction. An
embodyment of the present invention includes the use of endosperm FAN, which can increase flexibility and efficiency of fermentation.

In an embodiment, the present process can employ endogenous enzyme activity in the grain. In an embodiment, dramatic increase in FAN in whole corn and defibered corn fermentations are reached compared to the initial mash slurry.

Conventional grain dry milling operations separate germ (containing oil) and bran or pericarp (fiber fraction) from the endosperm (starch and protein) portion of the grain using a series of steps and procedures. These steps and procedures include: grain cleaning, tempering, degerming, particle size reduction, roller milling, aspirating, and sifting. This process differs from the traditional wet milling of grains (commonly corn) which are more expensive and water intensive, but capable of achieving cleaner separations of the components of the grain. Dry milling processes offer a version of separating components using lower capital costs for facilities. Also, these processes require less water for operation. The tempering process in dry milling requires less water than required in wet milling.

The competitiveness of dry grain fractionation processes is enhanced when the process of the present invention is utilized for ethanol conversion of these fractions. Traditionally dry milling processes produce various grades of each fraction (germ, bran, and endosperm). In an embodiment, the present method provides bran and endosperm fractions that can be more readily fermented. Depending on the desired purity of each fraction, the fractions can either be pooled to create composites of each stream, or the fractions can be processed individually.

Yeast uses FAN in the present process. In the conventional liquefaction process, FAN levels fall throughout fermentation as yeast cells assimilate and metabolize available FAN during the course of fermentation. Toward the end of fermentation in the conventional process, FAN levels rise illustrating the liberation of cellular FAN coinciding with death and lysis of yeast cells. In contrast, FAN utilization kinetics in the raw starch process is more rapid. FAN levels reach a minimum at least 24 hours earlier, and then begin increasing dramatically. Some of the increase of FAN is due to yeast cell death resulting from the accelerated fermentation.
High Alcohol Beer

The present invention also relates to a high alcohol beer. In an embodiment, the process of the present invention produces beer containing greater than 18 vol-% ethanol. The present process can produce such a high alcohol beer in about 40 to about 96 hours or about 45 to about 96 hours. In an embodiment, the beer includes 18 vol-% to about 23 vol-% ethanol. For example, the present method can produce alcohol contents in the fermenter of 18 to 23 % by volume in about 45 to 96 hours.

By way of further example, the present method can produce alcohol content in the fermenter of 18 to 23 % by volume in about 45 to 96 hours. In certain embodiments, the majority of the alcohol (80% or more of the final concentration) is produced in the first 45 hours. Then, an additional 2 to 5 vol-% alcohol can be produced in the final 12-48 hours. Concentrations of ethanol up to 23 vol-% can be achieved with fermentation time up to 96 hours. It can be economically advantageous to harvest after 48 to 72 hours of fermentation to increase fermenter productivity.

The present beer can include this high level of ethanol even when it includes high levels of residual starch. For example, the present beer can include ethanol at 18 to 23 vol-% when it contains 0 to 30% residual starch. The present beer can contain residual starches as low as 0% to as high as 20% residual starch.

By conventional measures, high levels of residual starch indicate inefficient fermentation, which yields only low levels of ethanol. In contrast, although not limiting to the present invention, it is believed that the present method results in fewer Maillard type reaction products and more efficient yeast fermentation (e.g., reduced levels of secondary metabolites). This is believed to be due to the low glucose levels and low temperatures of the present method compared to conventional saccharification and liquefaction. Thus, the present method can produce more alcohol even with higher levels of residual starch.

In an embodiment, the present beer includes fewer residual byproducts than conventional beers, even though residual starch can be higher. For example, residual glucose, maltose, and higher dextrins (DP3+) can be as much as 0.8 wt-% lower than in conventional beers produced under similar fermentation conditions. By way of further example, residual glycerol can be as much as 0.7 wt-% less. Lactic acid and fusel oils can also be significantly reduced. For example, the present beer can include less than or equal to about 0.2 wt-% glucose, about 0.4 wt-%, about
0.1 wt-% DP3, undetectable DP4+, 0.7 wt-% glycerol, about 0.01 wt-% lactic acid, and/or about 0.4 wt-% fusel oils.

Distiller’s Dried Grain

High Protein Distiller’s Dried Grain

The present invention also relates to a distiller’s dried grain product. The distiller’s dried grain can also include elevated levels of one or more of protein, fat, fiber (e.g., neutral detergent fiber (NDF)), and starch. For example, the present distiller’s dried grain can include 34 or more wt-% protein, about 25 to about 60 wt-% protein, about 25 to about 50 wt-% protein, or about 30 to about 45 wt-% protein. In certain circumstances the amount of protein is about 1 to about 2 wt-% more protein than produced by the conventional process. For example, the distiller’s dried grain can include 15 or more wt-% fat, about 13 to about 17 wt-% fat, or about 1 to about 6 wt-% more fat than produced by the conventional process. For example, the distiller’s dried grain can include 31 or more wt-% fiber, about 23 to about 37 wt-% fiber, or about 3 to about 13 wt-% more fiber than produced by the conventional process. For example, the distiller’s dried grain can include 12 or more wt-% starch, about 1 to about 23 wt-% starch, or about 1 to about 18 wt-% more starch than produced by the conventional process.

In an embodiment, the present distiller’s dried grain includes elevated levels of B vitamins, vitamin C, vitamin E, folic acid, and/or vitamin A, compared to conventional distiller’s dried grain products. The present distiller’s dried grain has a richer gold color compared to conventional distiller’s dried grain products.

Distiller’s Dried Grain With Improved Physical Characteristics

The present invention also relates to a distiller’s dried grain with one or more improved physical characteristics, such as decreased caking or compaction or increased ability to flow. The present process can produce such an improved distiller’s dried grain.

Although not limiting to the present invention, it is believed that the present process can produce fermentation solids including higher molecular weight forms of carbohydrates. Such fermentation solids can, it is believed, exhibit a higher glass transition temperature (i.e. higher \(T_g \) values) compared to solids from the conventional process. For example, residual starches can have a high \(T_g \) value.
Thus, through control of starch content in the DDG and DDGS, the present process can manufacture DDG or DDGS with target T_g values.

Further, according to the present invention, adding an alkaline syrup blend (e.g., syrup plus added lime or other alkaline material) to the fermentation solids (e.g., distiller’s dried grains) can provide decreased caking or compaction or increase ability to flow to the distiller’s dried grain with solubles (DDGS).

Although not limiting to the present invention, it is believed that organic acids such as lactic, acetic, and succinic acids which are produced in fermentation have a lower T_g value than their corresponding calcium salts. Maintenance of residual carbohydrate in higher molecular weight form, or addition of lime to form calcium salts of organic acids, are two strategies for forming higher T_g value co-products that will be less likely to undergo the glass transition, resulting in the deleterious phenomenon known as caking.

In an embodiment, DDG or DDGS of or produced by the method of the present invention flows more readily than DDG or DDGS produced by the conventional process.

Although not limiting to the present invention, it is believed that process of the present invention can need not destroy protein in the fermented plant material (e.g., fractionated plant material). Corn contains prolamins, such as zein. Grain sorghum, for example, contains a class of zein-like proteins known as kafirins, which resemble zein in amino acid composition. The thermal degradation that occurs during liquefaction, distillation, and high temperature drying produces DDG and DDGS including significant amounts of degraded protein. It is believed that the process of the present invention can provides improved levels of the prolamin fraction of cereal grains.

It is believed that extended exposure to high alcohol concentrations that can be achieved by the present process can condition the proteins in the plant material (e.g., fractionated plant material). This can solubilize some of the proteins. For example, it is believed that in distillation the ethanol concentration reaches levels that can solubilize prolamins (e.g., zein) in the beer. Upon the removal, or “stripping,” of ethanol from the beer, prolamins (such as zein) can be recovered in concentrated form in DDG and DDGS. The resulting high protein content of DDG and DDGS can be advantageous for various end uses of DDG and DDGS, for example in further processing or compounding.
In an embodiment, efficient fermentation of the present process removes from the DDG or DDGS non zein components such as starch. Fractionating the plant material, e.g., corn, can also increase levels of proteins, such as zein, in the DDG or DDGS. For example, removing the bran and germ fractions prior to fermentation can concentrate zein in the substrate. Zein in corn is isolated in the endosperm. Fermentation of zein enriched endosperm results in concentration of the zein in the residuals from fermentation.

In an embodiment, the present method can operate on fractionated plant material (such as endosperm, fiber, other parts of cereal grain) to provide a protein enriched solid product from fermentation. For example, the present method operated on fractionated plant material can produce a DDG enriched in prolamin, such as zein.

In an embodiment, the process of the present invention can provide DDG and DDGS with different, predetermined T_g values. The process of the present invention can ferment fractions containing high, medium, or low levels of zein, thus varying the glass transition temperature of the resulting DDG or DDGS. The resulting co-product T_g can be directly proportional to the prolamin protein (such as zein) content. The process of the current invention is desirable for the fermentation of high protein corn. This also allows production of DDG and DDGS with a higher prolamin (zein) content.

Residual starch remaining at the end of fermentation preferentially segregates into the thin stillage fraction, which is subsequently evaporated to produce syrup. The wet cake fraction produced by the present method, which can be dried separately to produce DDG, can be higher in prolamin protein (such as zein) than conventional DDG. The present process allows syrup and wet cake blend ratios to be varied. This results in DDG/DDGS with varying ratios of prolamin protein (such as zein) and residual starch. As the residual starch in the wet cake reduces the protein in the wet cake increases. This indicates an inverse relationship. A similar response occurs in the syrup fraction.

It is believed that starch can segregate into the liquid fraction. The amount of starch in the DDGS can be varied by blending syrup at rates ranging from 0 lbs. dry weight of syrup solids to 1.2 lbs. of syrup solids per lb. of wet cake solids before, and various times during drying to create the final DDGS product. The disproportionate segregation of residual starches into the backset or thin stillage
fraction can provide both the aforementioned burn-out and secondary fermentation to be performed on these fractions. Since the thin stillage is evaporated to produce syrup, the centrifuge mass balance also enables DDGS production at various T_g values depending on the desired properties and their dependence on T_g.

Emissions

The present invention has emissions benefits. Emissions benefits result in the reduction in byproducts created in the ethanol manufacturing process. There is a marked reduction in extraction of fats and oils in the mash from the germ fraction of cereal grains. There is a reduction of byproducts from Maillard reactions typically formed during cooking and liquefaction. And there is a reduction in fermentation byproducts. These observations result in reduced emissions during the recovery of co-products. The concentration and emission rates of volatile organic compounds (VOC), carbon monoxide (CO), nitric oxide compounds (NOx), sulfur oxides (SO2), and other emissions are considerably lower. See Table 1. Note that other manufacturers have attempted to lower emissions by manufacturing wet cake instead of drying to DDG or DDGS.

The present invention also relates to volatile organic compounds (VOC), such as those produced by drying products of a fermentation process. The present method includes producing ethanol, distiller's dried grain, and additional useful fermentation products with production of lower levels of VOC compared to conventional processes. For example, in the present method, drying distillation products (e.g., spent grain) produces reduced levels of VOC.

Conventional fermentation processes using corn, for example, produces about 2.1 pounds of VOC's from drying distillation products from each ton of corn processed. The actual stack emissions can be less due to pollution control equipment. The present method results in at least 30% reduction in VOC production to about 1.47 or less pounds per ton of corn processed. These emissions reductions are unexpected yet highly significant, and provide for more efficient use of emissions reduction control technology, such as thermal oxidizers.

VOC produced by fermentation processes include ethanol, acetic acid, formaldehyde, methanol, acetaldehyde, acrolein, furfural, lactic acid, formic acid, and glycerol.
The present invention also relates to carbon monoxide (CO), such as those produced by drying products of a fermentation process. The present method includes producing ethanol, distiller’s dried grain, and additional useful fermentation products with production of lower levels of CO compared to conventional processes. For example, in the present method, drying distillation products (e.g., spent grain) produces reduced levels of CO.

Conventional fermentation processes using corn, for example, produces about 1.4 pounds of CO’s from drying distillation products from each ton of corn processed. The actual stack emissions can be less due to pollution control equipment. The present method results in a 30% reduction in CO production to about 0.98 or less pounds per ton of corn processed. These emissions reductions are unexpected yet highly significant, and provide for more efficient use of emissions reduction control technology, such as thermal oxidizers.

TABLE 1: Emissions Reductions

<table>
<thead>
<tr>
<th>Emission Type</th>
<th>Units</th>
<th>Conventional Run</th>
<th>Invention Process</th>
<th>Emissions Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC Concentration</td>
<td>ppmv lb/dscf</td>
<td>663</td>
<td>459.65</td>
<td>30.67</td>
</tr>
<tr>
<td>Emission Rate</td>
<td>lb/hr</td>
<td>13.35</td>
<td>7.91</td>
<td>40.75</td>
</tr>
<tr>
<td>CO Concentration</td>
<td>ppmv lb/dscf</td>
<td>434</td>
<td>234.13</td>
<td>46.05</td>
</tr>
<tr>
<td>Emission Rate</td>
<td>lb/hr</td>
<td>9.1</td>
<td>4.94</td>
<td>45.71</td>
</tr>
</tbody>
</table>

The present invention may be better understood with reference to the following examples. These examples are intended to be representative of specific embodiments of the invention, and are not intended as limiting the scope of the invention.
EXAMPLES

Example 1 – The Present Method Produced High Ethanol Yields Using Continuous Substrate Addition and Continuous Clarification.

The present invention demonstrated high ethanol production in a model of raw starch hydrolysis with regular or continuous substrate addition and regular or continuous clarification.

Materials and Methods

The liquid fraction was analyzed for ethanol content. The cells and corn solids were reconstituted as a fermentation mixture and fermented further. After a 6 hour interval of fermentation, centrifugation, recovery of the liquid fraction, and reconstitution of the fermentation were repeated.

Results and Discussion

The present invention produced high levels of ethanol. This model of raw starch hydrolysis with regular or continuous substrate addition and regular or continuous clarification resulted in ethanol yields of approximately 45% in a forty eight hour fermentation (Figures 1). An example showing how ethanol was produced using a laboratory model with regular clarification and substrate addition steps in 6 hour intervals is shown in the series of graphs labeled Figures 1A, 1B, 1C, & 1D. This modeled continuous substrate addition and continuous clarification. Glucoamylase (or glucoamylase plus acid fungal amylase) activity was maintained by adding back an equivalent amount of enzyme as that lost during the decantation step. Fresh ground corn substrate was also added during each clarification step.

Table 7 (below) shows a schematic of the production of alcohol during each time period, the amount of supernatant (centrate) decanted, and the composition of the mash after resuspension of the cake with an equivalent volume of fresh water as the volume removed from decantation. Extremely fast rates of alcohol production were observed with this process. It is also possible to perform the clarification step using a continuous membrane reactor in place of a centrifuge.
Table 7: Schematic of a "Model XHG CSA CCRSH" Process

<table>
<thead>
<tr>
<th>Time After Initial</th>
<th>Residual Carbohydrates</th>
<th>By-products</th>
<th>Net EIOH</th>
<th>Total EIOH</th>
<th>% EIOH Produced</th>
<th>% EIOH Produced</th>
<th>% of Ethanol</th>
<th>% of Alcohol</th>
<th>Mix of Carbohydrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Hour Results</td>
<td>DP4+ + GS3 + Mat + Fruct + Glycerol + Lactic Acid</td>
<td>99.5</td>
<td>6.5</td>
<td>3.0</td>
<td>0.75</td>
<td>0.0</td>
<td>ND</td>
<td>NO</td>
<td>0.04</td>
</tr>
<tr>
<td>3 Hour Results</td>
<td>DP4+ + GS3 + Mat + Fruct + Glycerol + Lactic Acid</td>
<td>79.5</td>
<td>21.5</td>
<td>3.0</td>
<td>0.75</td>
<td>0.0</td>
<td>ND</td>
<td>NO</td>
<td>0.04</td>
</tr>
<tr>
<td>6 Hour Results</td>
<td>DP4+ + GS3 + Mat + Fruct + Glycerol + Lactic Acid</td>
<td>59.5</td>
<td>40.5</td>
<td>3.0</td>
<td>0.75</td>
<td>0.0</td>
<td>ND</td>
<td>NO</td>
<td>0.04</td>
</tr>
<tr>
<td>9 Hour Results</td>
<td>DP4+ + GS3 + Mat + Fruct + Glycerol + Lactic Acid</td>
<td>39.5</td>
<td>60.5</td>
<td>3.0</td>
<td>0.75</td>
<td>0.0</td>
<td>ND</td>
<td>NO</td>
<td>0.04</td>
</tr>
<tr>
<td>12 Hour Results</td>
<td>DP4+ + GS3 + Mat + Fruct + Glycerol + Lactic Acid</td>
<td>19.5</td>
<td>80.5</td>
<td>3.0</td>
<td>0.75</td>
<td>0.0</td>
<td>ND</td>
<td>NO</td>
<td>0.04</td>
</tr>
<tr>
<td>15 Hour Results</td>
<td>DP4+ + GS3 + Mat + Fruct + Glycerol + Lactic Acid</td>
<td>9.5</td>
<td>90.5</td>
<td>3.0</td>
<td>0.75</td>
<td>0.0</td>
<td>ND</td>
<td>NO</td>
<td>0.04</td>
</tr>
<tr>
<td>18 Hour Results</td>
<td>DP4+ + GS3 + Mat + Fruct + Glycerol + Lactic Acid</td>
<td>0.5</td>
<td>99.5</td>
<td>3.0</td>
<td>0.75</td>
<td>0.0</td>
<td>ND</td>
<td>NO</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: DP4+ = Diacetone Pyranose; GS3 = Glyceraldehyde; Mat = Maltose; Fruct = Fructose; Glycerol = Glycerol; Lactic Acid = Lactic Acid; EIOH = Ethanol; % EIOH = Percent Ethanol; % of Ethanol = Percent of Ethanol Produced; % of Alcohol = Percent of Alcohol Produced; Mix of Carbohydrates = Mix of Carbohydrates Produced; NT = Not Tested; Test % Ethanol/Alcohol = Test Percent Ethanol/Alcohol.
It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing “a compound” includes a mixture of two or more compounds. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.

All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains.

The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
WE CLAIM:

1. A process for producing ethanol from plant material, comprising:
 reducing the plant material to produce material comprising starch;
 the reduced plant material having particle size such that at least about
 50% of the particles fit through a sieve with a 0.1-0.5 mm mesh;
 saccharifying the starch, without cooking, with an enzyme composition;
 fermenting the incubated starch to yield a composition comprising at least 15
 vol-% ethanol;
 fermenting comprising reducing temperature of fermenting mixture;
 and
 recovering the ethanol and co-products from the fermentation;
 fermenting comprising adding substrate continuously and clarifying
 continuously.

2. The process of claim 1, wherein plant material comprises corn, which
 comprises high amyllopectin starch.

3. The process of claim 1, wherein the plant material comprises corn,
 sorghum, millet, wheat, barley, rye, or mixtures thereof.

4. The process of claim 3, wherein the corn comprises waxy corn.

5. The process of claim 3, wherein the corn comprises high protein corn.

6. The process of claim 3, wherein the corn comprises #2 yellow dent
 corn.

7. The process of claim 1, comprising reducing the plant material with
 hammer mill, roller mill, or both hammer mill and roller mill.

8. The process of claim 7, comprising reducing the plant material to
 produce plant material of a size that at least 35% of the reduced plant material fits
 through a 0.1-0.5 mm screen.
9. The process of claim 1, comprising decreasing temperature during saccharifying, fermenting, or simultaneous saccharifying and fermenting.

10. The process of claim 1, comprising reducing temperature from about 40 °C and to about 25 °C during saccharifying, fermenting, or simultaneous saccharifying and fermenting.

11. The process of claim 1, comprising saccharifying, fermenting, or simultaneous saccharifying and fermenting at pH of about 4.1 to about 5.3.

12. The process of claim 1, comprising increasing pH from about 4 to about 5.3 during saccharifying, fermenting, or simultaneous saccharifying and fermenting.

13. The process of claim 1, wherein the enzyme composition comprises alpha amylase, glucoamylase, protease, or mixtures thereof.

14. The process of claim 1, comprising saccharifying, fermenting, or both saccharifying and fermenting with about 0.1 to about 10 acid fungal amylase units (AFAU) per gram of dry solids reduced plant material and about 0.1 to about 6 glucoamylase units (AGU) per gram dry solids reduced plant material.

15. The process of claim 1, comprising starting saccharifying, fermenting, or both saccharifying and fermenting with about 25 to about 45 wt-% reduced plant material in water.

16. The process of claim 1, comprising producing greater than 18 vol-% ethanol in about 48 to 96 hours.

17. The process of claim 1, further comprising recovering the solids from the fermentation.

18. The process of claim 17, comprising recovering distiller’s dried grain.
19. The process of claim 17, wherein the distiller's dried grain comprises at least about 30% protein.

20. A process for producing ethanol from plant material, comprising:
reducing the plant material to produce material comprising starch;
the reduced plant material having particle size such that at least about 50% of the particles fit through a sieve with a 0.1-0.5 mm mesh;
saccharifying the starch, without cooking, with an enzyme composition;
fermenting the incubated starch to yield a composition comprising at least 15 vol-% ethanol;
fermenting comprising reducing temperature of fermenting mixture;
fermenting comprising adding substrate continuously and clarifying continuously;
recovering the ethanol and co-products from the fermentation; and
drying a co-product by ring drying, flash drying, or fluid bed drying.