METHOD AND DEVICE FOR PERIODIC RINSING OF A WASTE WATER PIPE

VERFAHREN UND VORRICHTUNG ZUM PERIODISCHEN DURCHSPÜLEN EINER ABWASSER-ROHRLEITUNG

The invention relates to a method or device for periodically rinsing a waste water pipe (1), whereby an amount of water is collected in a reservoir (8) which is connected in a manner similar to that of a communicating vessel to an inlet end of the pipe (1) and which is periodically impinged upon by compressed air from a pressure vessel (9). Said water inlet pertaining to the reservoir (8) is blocked by means of a blocking device (13) in order to force a given amount of water using compressed air out of the reservoir (8) through said pipe (1).
Verfahren und Vorrichtung zum periodischen Durchspülen einer Abwasser-Rohrleitung

Die Erfindung betrifft ein Verfahren zum Durchspülen einer Abwasser-Rohrleitung mit Hilfe von Druckluft, wobei eine Wassermenge, die in einem Speicherbehälter gesammelt wird, der mit der Rohrleitung verbunden ist, in die Rohrleitung geleitet wird.

Weiters bezieht sich die Erfindung auf eine Vorrichtung zum Durchspülen einer Abwasser-Rohrleitung, wobei eine Wassermenge mit Hilfe von Druckluft durch die Rohrleitung geleitet wird, mit einem Kompressor und einem damit verbundenen Druckkessel, der mit der Rohrleitung über ein Ventil verbunden ist, und mit einem Speicherbehälter zum Sammeln der Wassermenge, die über einen Wasser-Zulauf zugeführt wird.

Die Abwasserleitungen müssen so ausgeführt sein, dass Kontrollen und Wartungsarbeiten (Videobefahrung, Spülung etc.) möglich sind. Üblicherweise sind hierzu die Leitungen geradlinig zu verlegen. An Knickpunkten (bei horizontalen bzw. vertikalen Richtungsänderungen) müssen Kontrollschächte angeordnet werden. In der Regel liegen diese Kontrollschächte abhängig von der jeweiligen Geländetyp in Abständen von 10 m bis 150 m vor. Diese Kontrollschächte verteuern die Errichtung der Abwasserleitungen zusätzlich, und überdies sind sie im Bereich von landwirtschaftlich genutzten Flächen störend. Wegen des geradlinigen Verlaufs der Abwasserleitungen zwischen den Schächten ergeben
sich auch oft außerordentlich große Verlegetiefen, bis zu mehreren Metern Tiefe, wogegen eine Tiefe von ca. 1,30 m im Hinblick auf die erforderliche Frostsicherheit zumeist ausreichend wäre. Im Übrigen stellen Kontrollschächte und Anschlussstücke potentielle Schwachpunkte im Hinblick auf die Gefahr von Undichtigkeiten, unterschiedliche Setzungen usw. dar.

Zur regelmäßigen Spülung von Kanälen, um Absetzungen und ein "Zuwachsen" zu verhindern, wurde bereits versucht, anstelle des kostenaufwendigen klassischen Abwasserkanals mit Kontrollschächten etc. eine dem Geländelauf folgende Abwasserleitung vorzusehen, die somit an Geländetiefpunkten auch Tiefstellen im Leitungsverlauf aufweist, in denen im Betrieb Abwasser in der Art eines Siphons vorhanden ist: Diese angesammelten Wassermengen werden periodisch mit der Abwasserleitung zugeführten Druckluftstößen durch die Abwasserleitung gedrückt, um eventuelle Ablagerungen in der Leitung wegzuspülen. Die Abwasserleitung wird hier zweckmäßigerweise als verschweißte Druckleitung ausgeführt, die in einer gerade für die Frostsicherheit ausreichenden Verlegetiefe angebracht wird, wobei keine Kontrollschächte nötig sind. Im Normalbetrieb rinnt, da die Leitung selbstverständlich, auch wenn sie bergauf und bergab verlegt wird, mit ihren Hochpunkten unterhalb der Drucklinie liegt, das Abwasser ohne Druck durch die Leitung.

Mit einer solchen Anordnung können die Kosten für die Abwasserleitung auf die Hälfte der für herkömmliche Abwasserleitungen mit geradlinigen Strecken erforderlichen Kosten oder sogar darunter reduziert werden. Im Hinblick auf die im ländlichen Raum in der Regel notwendigen großen Längen fallen daher auch die zusätzlichen Kosten für die Druckluft-Station nicht mehr ins Gewicht.

Es hat sich jedoch gezeigt, dass bei einer derartigen Anordnung die an den Tiefpunktstellen angesammelten Wassermengen häufig zu gering sind und nicht für den gewünschten Spülereich herausreichen, wobei vor allem Absetzungen an der Leitung außerhalb dieser Tiefpunktstellen Probleme bereiten. Hinzu kommt, dass ein derartiges Spülen mit "Wasserpropfen" unter Anwendung von Druckluft bei Leitungsverläufen, wo keine derartigen Tiefpunktstellen mit Abwasseransammlungen gegeben sind, weil das Gelände nur abfallend und/oder eben ist, und auch in Leitungsabschnitten oberhalb der obersten Tiefpunktstelle im Leitungsverlauf nicht
möglich ist.

Das erfindungsgemäße Verfahren der eingangs angeführten Art ist demgemäß dadurch gekennzeichnet, dass der in der Art eines kommunizierenden Gefäßes mit der Rohrleitung verbundene, ausreichend druckfest ausgeführte, Speicherbehälter periodisch mit der Druckluft beaufschlagt wird, während der Wasser-Zulauf zum Speicherbehälter abgesperrt wird, um die Wassermenge mit Hilfe der Druckluft stoßartig aus dem Speicherbehälter in die Rohrleitung zu drücken.

In entsprechender Weise ist die erfindungsgemäße Vorrichtung der eingangs angeführten Art dadurch gekennzeichnet, dass der Druckkessel mit der Rohrleitung über den ausreichend druckfest ausgeführten Speicherbehälter, unter Zwischenschaltung des Ventils zwischen dem Druckkessel und dem Speicherbehälter verbunden ist, wobei im Wasser-Zulauf zum Speicherbehälter eine Absperreinrichtung, z.B. ein Schieber, angeordnet ist.

Mit den erfindungsgemäßen Maßnahmen wird der vorstehenden Zielsetzung in vorteilhafter Weise entsprochen. Der Speicherbehälter hat ein für die gewünschten Spülzwecke ausreichendes Wasservolumen, z.B. 2m³ (2000 Liter), je nach Querschnitt der

Der Speicherbehälter könnte an sich ein gesondert mit Wasser versorgter Behälter sein, der parallel zur Abwasserleitung vorliegt und im Bedarfsfall (beim Durchspülen) an diese angeschaltet wird, wobei dann die Abwasser-Rohrleitung oberhalb des Anschlusses des Speicherbehälters an die Abwasser-Rohrleitung abgesperrt werden müsste. Bevorzugt ist jedoch der Speicherbehälter in das Abwassersystem integriert, d.h. das Abwasser fließt von einem Speicherkanal, Vorlagebehälter etc. kommend über den Zulauf, d.h. die Zulaufleitung, durch den Speicherbehälter und von diesem weiter in die Abwasser-Druckleitung, u. zw. im Normalbetrieb. Dadurch wird das Abwasser selbst, das sich im Speicherbehälter sammelt, für die Spülzwecke genutzt. In diesem Fall wird zweckmäßigerverweise einfach vorgesehen, dass der Speicherbehälter siphonartig mit dem Eintrittsende der Rohrleitung verbunden ist. Denkbar wäre jedoch auch eine Ausführung, bei der der Speicherbehälter im Normalbetrieb kein Abwasser sammelt, sondern einfach vom Abwasser durchlaufen wird, wobei am Ausgang des Speicherbehälters ein für den Fall des Durchspüelens schließbares Absperrventil vorgesehen wird, um nach dem Schließen dieses Absperrventils die gewünschte Wassermenge im Speicherbehälter an-
sammeln zu können. Nach Erreichen des erforderlichen Niveaus im Speicherbehälter, was beispielsweise mit Hilfe eines Niveau-
standssensors festgestellt werden kann, wird das Absperrventil am Speicherbehälter-Ausgang geöffnet, nachdem im Zulauf zum
Speicherbehälter die Absperrreinrichtung geschlossen wurde, wobei das Öffnen des Absperrventils synchron mit dem Öffnen des Druck-
luft-Ventils in der Verbindung zwischen dem Speicherbehälter und dem Druckkessel erfolgt.

Im Fall, dass im Speicherbehälter eine Abwassermenge gesammelt wird und enthalten ist, ist es für eine einfache Verbindung zur Abwasser-Rohrleitung zweckmäßig, wenn die Abwasser-Rohrlei-
tung an den Speicherbehälter über ein im Bodenbereich des Speicherbehälters an diesen anschließendes und von diesem auf ein Niveau etwas unterhalb der Oberseite des Speicherbehälters ansteigendes Leitungsstück angeschlossen ist.

Das Volumen des Speicherbehälters kann derart ausgelegt sein, dass beim Spülen der Rohrleitung mehrere Spülstöße hinte-
inander abgegeben werden, die je mit einer entsprechenden Wassermenge erfolgen, und in diesem Fall wird auch der Speicherbehälter mehrmals nacheinander mit Druckluft beauf-
schlagt.

Diese Ansteuerung kann ebenso wie im Fall eines einfachen Wasser-Spülstoßes durch eine elektronische Steuereinheit auto-
matisch veranlasst werden, welche mit einer Zeitmesseinheit (Uhr) versehen ist, und welche zumindest der Absperrreinrichtung im Wasser-Zulauf zum Speicherbehälter und dem Ventil zwischen dem Druckkessel und dem Speicherbehälter für eine automatische Betä-
tigung zugeordnet ist. Damit der Kompressor nur im Bedarfsfall den Druck im Druckkessel mit der gewünschten Höhe erzeugt, kann die Steuereinheit überdies auch dem Kompressor zugeordnet sein, um so automatisch den Druckaufbau erst unmittelbar vor einem Spülstoß zu bewirken, bevor dann die Absperrreinrichtung und das Ventil angesteuert werden.

Im Spülfall wird der Wasserpfropfen durch den Druck im Druckkessel in die Abwasser-Rohrleitung gedrückt, wobei er diese mit einer entsprechenden Geschwindigkeit, z.B. 6 oder 7 m/s oder mehr, durchströmt.

Die Erfindung wird nachstehend anhand von bevorzugten Aus-
führungsbeispielen, auf die sie jedoch nicht beschränkt sein soll, unter Bezugnahme auf die Zeichnung noch weiter erläutert.
Es zeigen:

Fig.1 einen schematischen Längenschnitt durch eine Abwasser-Rohrleitung im Gelände mit einer am oberen Ende angeordneten Spülstation;

Fig.2 die Spülstation der Leitungsanlage gemäß Fig.1 im demgegenüber vergrößerten Maßstab; und die

Fig.3, 4 und 5 diese Spülstation schematisch in verschiedenen Betriebsphasen, nämlich während des Normalbetriebs (Fig.3), während eines Spülbetriebs (Fig.4) sowie am Ende des Spülbetriebs (Fig.5).

In Fig.1 ist eine Abwasser-Rohrleitung (Druckleitung) 1 einem nur schematisch eingezeichneten Gelände verlauf 2 folgend veranschaulicht, wobei beispielhaft eine Tiefpunkttstelle 3 mit einer Art Siphon für das Abwasser in der Rohrleitung 1 dargestellt ist, wobei ein "Wasserpfropfen" erhalten wird. Wie sich gezeigt hat, reichen derartige Wasserpfropfen zumeist nicht aus, um die Abwasser-Rohrleitung 1 zu spülen, um so ein Ansetzen von Feststoffen und ein Zuwachsen der Leitung zu verhindern. Darüber hinaus ist auch oberhalb von derartigen Tiefpunkttstellen 3 ein Ansetzen von Feststoffen an der Leitung denkbar, so dass auch dort ein Spülen erforderlich ist. Entsprechendes gilt für Düker in der Rohrleitung 1, die beispielsweise unterhalb eines Hindernisses wie einem Flussbett, hindurchführen.

Demgemäß ist am oberen Ende der Rohrleitung 1 eine Spülstation 4 vorgesehen, über die das Abwasser, über eine Zulaufleitung 5, z.B. von einem Speicherkanal oder Vorlagebehälter kommend, der Abwasser-Rohrleitung 1 zugeführt wird.

Am unteren Ende der Abwasser-Rohrleitung 1 ist beispielsweise ein Auslaufschaucht 6 in einem Freispielkanal 7 vorgesehen.

Durch die mit Hilfe der Spülstation 4 bewerkstelligte regelmäßig Spülung unter Druck, z.B. einmal pro Woche, wie nachstehend anhand von Fig.2 noch näher erläutert werden wird, können in der Leitung 1 sich bildende Anlagerungen entfernt werden, und es verbleiben auch an den Tiefpunkten 3 keine störenden Ablagerungen.

Gemäß Fig.2 ist die Spülstation 4 mit einem Speicherbehälter 8 ausgeführt, der von einem Druckkessel 9, insbesondere einem Druckluftkessel, über eine Druckleitung 10, in der ein Ventil 11 angeordnet ist, mit Druck beaufschlagt werden kann. Zur Drucker-
zeugung dient ein an den Druckkessel 9 angeschlossener Kompressor 12.

Der Speicherbehälter 8 ist an den Zulauf 5 über eine Absperreinrichtung 13, vorzugsweise in Form eines Schiebers, ange- schlossen. Mit der Abwasser-Rohrleitung 1, die am oberen Ende in einer Höhe knapp unterhalb der Oberseite des Speicherbehälters 8 vorliegt, ist der Speicherbehälter 8 über ein vom Boden des Speicherbehälters 8 ausgehendes und von dort ansteigendes Leitungsstück 14 verbunden. Dadurch wird eine Art Siphon oder kommunizierendes Gefäß gebildet, wie durch das Wasserniveau bei 15 in Fig.2 ange- deutet ist.

Im Normalbetrieb fließt Abwasser von der Zulaufleitung 5 kommend, bei offener Absperreinrichtung 13, dem Speicherbehälter 8 zu, wo eine vorgegebene Abwassermenge gesammelt wird, etwa mit einem Volumen von 2000 Liter, und das Abwasser gelangt über das Leitungsstück 14 danach in die als Druckleitung ausgeführte Abwasser-Rohrleitung 1. Das Ventil 11 in der Verbindungsleitung 10 zum Druckkessel 9 ist während dieses Normalbetriebs geschlossen. Zum Spülen der Druckleitung 1 wird die Absperreinrichtung 13 geschlossen, und das Ventil 11 wird geöffnet, um den im Speicherbehälter 8 (sowie im Leitungsstück 14) vorhandenen Wasserpfpfen mit Druck, beispielsweise in der Größenordnung von 1 oder 2 bar, zu beaufschlagen. Dadurch wird dieser Wasserpfpfen, der in Fig.2 und auch in Fig.3 und 4 mit 16 bezeichnet ist, stoßartig durch die Abwasser-Rohrleitung 1 gedrückt, wobei er durch diese Leitung 1 mit einer Geschwindigkeit in der Größenordnung von zumindest 6 bis 7 m/s strömt. Dieser Wasserpfpfen 16 spült die An- und Ablagerungen in der Leitung 1 weg, so dass ein allmäßli- ches Zuwachsen der Leitung 1 aufgrund des Absetzens von Fest- stoffen an den Leitungswänden vermieden wird.

Je nach den Verhältnissen kann ein derartiges Spülen beispielsweise einmal pro Woche, gegebenenfalls jedoch, bei stark verunreinigten Abwässern, auch öfter durchgeführt werden.

Zur Durchführung des Spülens in automatischer Weise ist zweckmäßig eine in Fig.2 schematisch bei 17 veranschaulichte elektronische Steuerseinrichtung oder Uhr 18 zugeordnet ist, und die zeitlich gesteuert z.B. einmal pro Woche zu einem bestimmten Zeitpunkt aktiv wird und dabei die Absperreinrichtung 13 schließt und das Ventil 11 öffnet, nachdem eine ausreichende Zeit vor der Kompressor 12
eingeschaltet wurde, um den Druckaufbau im Druckkessel 9 für das Spülen sicherzustellen. Die entsprechenden Steuerleitungen zur Absperreinrichtung 13, zum Ventil 11 und zum Kompressor 12 sind in Fig.2 bei 19, 20 bzw. 21 veranschaulicht.

Die Steuereinheit 17 kann dabei auch derart ausgebildet sein, dass der Speicherbehälter 8 mehrmals hintereinander - durch mehrmaliges Öffnen und Schließen des Ventils 11 - mit Druck beaufschlagt wird, um mehrere Wasserpfpfen hintereinander durch die Leitung 1 zu drücken. Hierzu kann der Speicherbehälter 8 mit einem entsprechend großen Volumen ausgebildet sein, und es wird jeweils nur ein Teilvolumen durch die Leitung 1 gedrückt; es ist aber auch denkbar, zwischen den einzelnen Wasserstoßen jeweils wieder Abwasser im Speicherbehälter 8 anzusammeln; dies wird vor allem dann zweckmäßig sein, wenn ein entsprechend starker Abwasserzufluss sichergestellt ist. Gegebenenfalls kann die Sammlung von entsprechenden Wassermengen auch mit Hilfe von in Fig.2 nicht näher gezeigten Füllstandssensoren überwacht werden, deren Ausgangssignale der Steuereinheit 17 zugeführt werden.

In Fig.3 ist schematisch der Normalbetrieb der Spülstation 4 gezeigt. Dabei ist das Ventil 11 geschlossen, die Absperrreinrichtung 13 hingegen offen, und das Abwasser fließt, vom Zulauf 5 kommend, frei durch die Anlage, wobei der erwähnte Wasserpfpfen 16 im Speicherbehälter 8 sowie im Leitungsstück 14 gebildet wird.

In Fig.4 ist der Zustand während des Spülbetriebs gezeigt, wobei die Absperrreinrichtung 13 geschlossen und das Ventil 11 geöffnet wurde. Die mit Hilfe des Kompressors 12 unter Druck gesetzte Luft im Druckbehälter 9 setzt den Wasserpfpfen 16 unter Druck und drückt ihn durch die Leitung 1. Währenddessen kann das Abwasser im Zulauf oberhalb der geschlossenen Absperrreinrichtung 13 gesammelt werden, was durch ein entsprechendes Speichervolumen 22 im Zulauf 5 sichergestellt wird.

In Fig.5 ist das Ende des Spülvorganges gezeigt, wobei der Wasserpfpfen (16 in Fig.3 und 4) die Spülstation 4 verlassen hat und in die Leitung 1 gedrückt wurde. Dieser Zustand kann auch gewünschtenfalls mit Hilfe eines am Boden des Speicherbehälters 8 angeordneten Sensors 23 festgestellt werden, der über eine Ausgangsleitung 24 mit der Speichereinheit 17 (s. Fig.2) verbunden ist, um dieser den Leerzustand des Speicherbehälters 8 zu melden. Die Speichereinheit 17 steuert daraufhin das Ventil 11 wieder zum Schließen sowie die Absperrreinrichtung 13 zum Öffnen an, so dass
Abwasser vom Zulauf 5 wieder in den Speicherbehälter 8 einströmen kann. Dadurch ist wieder der in Fig.3 veranschaulichte Normalbetrieb gegeben, indem sich zunächst der Wasserpfropfen 16 im Speicherbehälter 8 sowie im Leitungsstück 14 bildet, wonach das Abwasser wieder frei in die Leitung 1 weiterfließt.
Patentansprüche:

1. Verfahren zum Durchspülen einer Abwasser-Rohrleitung (1) mit Hilfe von Druckluft, wobei eine Wassermenge, die in einem Speicherbehälter (8) gesammelt wird, der mit der Rohrleitung verbunden ist, in die Rohrleitung geleitet wird, dadurch gekennzeichnet, dass der in der Art eines kommunizierenden Gefäßes mit der Rohrleitung (1) verbundene, ausreichend druckfest ausgeführte Speicherbehälter (8) periodisch mit der Druckluft beaufschlagt wird, während der Wasser-Zulauf (5) zum Speicherbehälter abgesperrt wird, um die Wassermenge mit Hilfe der Druckluft stoßartig aus dem Speicherbehälter (8) in die Rohrleitung (1) zu drücken.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Druckluft mit einem Druck von ca. 2 bar dem Speicherbehälter (8) zugeführt wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Speicherbehälter (8) zur Abgabe von mehreren aufeinanderfolgenden Spülstößen mehrmals nacheinander mit Druckluft beaufschlagt wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Wassermenge aus dem Speicherbehälter (8) durch die Rohrleitung (1) mit einer Geschwindigkeit von ca. 6 m/s gedrückt wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Wassermenge ungefähr einmal pro Woche aus dem Speicherbehälter (8) in die Rohrleitung (1) gedrückt wird.

6. Vorrichtung zum Durchspülen einer Abwasser-Rohrleitung (1), wobei eine Wassermenge mit Hilfe von Druckluft durch die Rohrleitung (1) geleitet wird, mit einem Kompressor (12) und einem damit verbundenen Druckkessel (9), der mit der Rohrleitung (1) über ein Ventil (11) verbunden ist, und mit einem Speicherbehälter (8) zum Sammeln der Wassermenge, die über einen Wasser-Zulauf (5) zugeführt wird, dadurch gekennzeichnet, dass der Druckkessel (9) mit der Rohrleitung (1) über den ausreichend druckfest aus-
geführtten Speicherbehälter (8), unter Zwischenschaltung des Ventils (11) zwischen dem Druckkessel (9) und dem Speicherbehälter (8), verbunden ist, wobei im Wasser-Zulauf (5) zum Speicherbehälter (8) eine Absperreinrichtung (13), z.B. ein Schieber, angeordnet ist.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Speicherbehälter (8) siphonartig mit dem EINTRittsende der Rohrleitung (1) verbunden ist.

8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Speicherbehälter (8) ein für Drücke von zumindest 2 bar ausgelegter Druckbehälter ist.

9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Speicherbehälter (8) ein Beton-Druckbehälter ist.

10. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Speicherbehälter (8) ein Druckbehälter aus faser verstärktem Kunststoffmaterial ist.

11. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Speicherbehälter (8) ein metallischer Druckbehälter ist.

13. Vorrichtung nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, dass der Speicherbehälter (8) ein Volumen von 2m³ aufweist.

14. Vorrichtung nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, dass der Absperreinrichtung (13) im Wasser-Zulauf (5) zum Speicherbehälter (8) und dem Ventil (11) zwischen
dem Druckkessel (9) und dem Speicherbehälter (8) eine mit einer Uhr (18) versehene elektronische Steuereinheit (17) zur automatischen Betätigung zugeordnet ist.

15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Steuereinheit (17) auch den Kompressor (12) für einen automatisch aktivierten Druckaufbau im Druckkessel (9) vor der Betätigung der AbsperrEinrichtung (13) und des Ventils (11) ansteuert.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC | E03F9/00 | E03F1/00 |

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

| IPC | E03F |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:

Electronic data base consulted during the international search (name of data base and, where practical, search terms used):

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 3 590 836 A (KUNTZE ERNST ET AL)</td>
<td>1, 2, 6–8, 12, 14, 15</td>
</tr>
<tr>
<td></td>
<td>6 July 1971 (1971–07–06)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 21 – line 57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 2</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 4 391 288 A (NILSSON GOESTA)</td>
<td>9–11</td>
</tr>
<tr>
<td></td>
<td>cited in the application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 10 – line 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 58 – line 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>NL 1 003 187 C (JOH RANZIJN ENGINEERING B V)</td>
<td>1, 2, 15</td>
</tr>
<tr>
<td></td>
<td>page 3, line 15 – page 4, line 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

*Special categories of cited documents:

- A: Document defining the general state of the art which is not considered to be of particular relevance
- E: Earlier document but published on or after the international filing date
- L: Document which may throw doubts on priority claim(s) or which is needed to establish the publication date of another citation or other special reason (as specified)
- O: Document referring to an oral disclaimer, use, exhibition or other means
- R: Document published prior to the international filing date but later than the priority date claimed

- T: Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- X: Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Y: Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- S: Document member of the same patent family

Date of the actual completion of the international search: 5 January 2001

Date of mailing of the international search report: 12/01/2001

Name and mailing address of the ISA:

Tel. (+31–70) 340–2040, Tx 31 651 epo nl.
Fax. (+37–70) 340–3016

Authorized officer: Urbahn, S
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH 453235 A</td>
<td>14-06-1968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1609181 A</td>
<td>23-10-1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1609182 A</td>
<td>19-02-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1504252 A</td>
<td>15-02-1968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 52212 A</td>
<td>20-12-1966</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 6615529 A,B</td>
<td>12-06-1967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 384055 B</td>
<td>25-09-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 905680 A</td>
<td>15-02-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 883740 A</td>
<td>01-10-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 654366 A</td>
<td>14-02-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3049714 T</td>
<td>12-02-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 8034961 U</td>
<td>23-12-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 56381 A,B</td>
<td>11-02-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0034590 A</td>
<td>02-09-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2065739 A,B</td>
<td>01-07-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 8020218 T</td>
<td>29-04-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 810449 A,B</td>
<td>10-02-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7905094 A</td>
<td>12-12-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8002855 A</td>
<td>24-12-1980</td>
</tr>
</tbody>
</table>

NL 1003187 C 25-11-1997 NONE
A. KLASSEIFIZIERUNG DES ANMELDUNGSSEGENSTANDES

IPK 7 E03F9/00 E03F1/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERT GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)

IPK 7 E03F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 3 590 836 A (KUNTZE ERNST ET AL) 6. Juli 1971 (1971-07-06) Spalte 3, Zeile 21 - Zeile 57 Abbildung 2</td>
<td>1,2,6-8, 12,14,15</td>
</tr>
<tr>
<td>A</td>
<td>----</td>
<td>9-11</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind in der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam angesehen ist
 E Älteres Dokument, das jedoch erst am oder nach dem internationa... (Fortsetzung)

Datum des Abschlusses der internationalen Recherche: 5. Januar 2001

Absendetermin des internationalen Recherchenberichts: 12/01/2001

Name und Postanschrift der Internationalen Recherchenbehörde:

Europäisches Patentamt, P.P. 8516 Patentlaan 2 NL - 2230 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter: Urbahn, S
<table>
<thead>
<tr>
<th>Im Recherchebericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglieder der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH 453235 A</td>
<td>14-06-1968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1609181 A</td>
<td>23-10-1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1609182 A</td>
<td>19-02-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1504252 A</td>
<td>15-02-1968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 52212 A</td>
<td>20-12-1966</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 6615529 A,B</td>
<td>12-06-1967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 384055 B</td>
<td>25-09-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 905680 A</td>
<td>15-02-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 883740 A</td>
<td>01-10-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 654366 A</td>
<td>14-02-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3049714 T</td>
<td>12-02-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 8034961 U</td>
<td>23-12-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 56381 A,B,</td>
<td>11-02-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0034590 A</td>
<td>02-09-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2065739 A,B</td>
<td>01-07-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 8020218 T</td>
<td>29-04-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 810449 A,B,</td>
<td>10-02-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7905094 A</td>
<td>12-12-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WD 8002855 A</td>
<td>24-12-1980</td>
</tr>
<tr>
<td>NL 1003187 C</td>
<td>25-11-1997</td>
<td>KEINE</td>
<td></td>
</tr>
</tbody>
</table>