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ABSTRACT

For application to analog, mixed-signal, and custom digital circuits, a system and method to
do: global statistical optimization (GSQO), global statistical characterization (GSC), global
statistical design (GSD), and block-specific design. GSO can peform global yield
optimization on hundreds of variables, with no simplifying assumptions. GSC can capture
and display mappings from design variables to performance, across the whole design space.
GSC can handle hundreds of design variables in a reasonable time frame, e.g., in less than a
day, for a reasonable number of simulations, e.g., less than 100,000. GSC can capture
design variable interactions and other possible nonlinearities, explicitly capture uncertainties,
and intuitively display them. GSD can support the user's exploration of design-to-
performance mappings with fast feedback, thoroughly capturing design variable interactions
In the whole space, and allow for more efficiently created, more optimal designs. Block-
specific design should make it simple to design small circuit blocks, in less time and with

lower overhead than optimization through optimization.
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CROSS REFERENCE TO RELATED APPLICATION
[0001] This application claims benefit of priority of U.S. Provisional Patent Application
No. 61/033,078, filed March 3, 2008, which is incorporated herein by reference in its entirety.

[0002] The applicant acknowledges the participation of K.U. Leuven Research and

Development in the development of this invention.

FIELD OF THE INVENTION

[0003] The present invention relates generally to multi-parameter designs (MPDs)
and to tools used in selecting parameters of design variables of the MPD. The present
invention particularly relates to analog, mixed-signal, and custom digital electrical circuit
designs (ECDs) and to tools used in sizing devices of ECDs.

BACKGROUND OF THE INVENTION
[0004] Software tools are frequently used in the design of analog, mixed-signal and
custom digital circuits. In front-end design-for-yield, designers must choose device sizes
such that the maximum possible percentage of manufactured chips meet all specifications
such as, e.g., gain greater than 60B and a power consumption less than 1TmW. As such, the

designers strive to maximize the yield of ECDs.

[0005] The design-for-yield problem of an ECD can easily include thousands of
variables because there may be any number of devices in the ECD, each device having

features of adjustable sizes, and being subject to any number of process variables, which are
random in nature. The space of possible designs is very high as well, because there may be
any number of design variables (variable dimensions or sizes) per device. Environmental
variables such as, e.g., temperature and load conditions must be considered as well. Many
of these effects can be simulated simultaneously in any suitable electronic circuit simulator
such as, e.g., a Simulation Program with Integrated Circuit Emphasis (SPICE) software.
However, the design problem is hard to decompose into simpler problems because the

variables often have nonlinear interactions. All these variables impede a designer’s ability to
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understand the issues affecting yield early in the design stage, and therefore his ability to
choose device sizes that maximize yield.

[0006] In front-end design of ECDs, designers aim to choose a topology, i.e., devices
such as transistors, and their associated sizes, according to pre-determined goals. In front-
end design for yield, designers aim to set device sizes such that the maximum possible
percentage of manufactured chips meets all performance specifications (i.e., maximize yield).
Designers may even wish to further improve the ECD by increasing the margin of
performance from specifications, e.g., by maximizing process capability (Cpk). A variety of
tools can help the designer in achieving these goals. Such tools include simulators,

schematic editors, optimizers, characterizers, and design environments.

[0007] Circuit simulators such as, e.g., a SPICE program, are typically used to
estimate a design’s performances, yield, and / or Cpk. Schematic editors offer a means for
the designer to enter the topology into SPICE with visual feedback. Optimization tools, also
known as optimizers, can automatically try out different device sizes and obtain feedback
from estimations of circuit performance and yield from, for example, circuit simulation runs,
and report the best designs to the user. Characterization tools, also known as
characterizers, can gather and present, through a display module, ECD information to the
user to aid his insight into the problem and, as such, allow the designer to seize opportunities
for the design. Such characterization information can calculate the relative impact of design
variables on yield, performance metrics as a function of design variable, or any other suitable
characteristic value of the ECD. A design environment is a tool that can incorporates
together other design tools, but its core characteristic is that it provides the designer a means
to manage and try out different designs as efficiently and effectively as possible. The design

environment thus serves, among other things, as a designer feedback and input tool.

[0008] One way for the designer to choose circuit device sizes is to use a software-
based optimization tool such as, for example, those described in Computer-Aided Design of
Analog Integrated Circuits and Systems, R. Rutenbar, G. Gielen, and B. Antao, eds., |IEEE
Press, Piscataway, 2002. With feedback from a display module, the user sets up the
optimization problem, invokes an optimization run, and monitors progress and results that get
reported back via a database. Such a tool, whether applied ECDs or to multi-parameter

designs (MPDs), incorporates an optimization algorithm that traverses the space of possible
-
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designs, obtains feedback about a cost function associated to candidate designs of the ECD
(or MPD) through one or more simulators, or physical measurements, and returns the lowest-
possible cost designs within finite time (e.g., overnight) and computer resource constraints
(e.g., 5 CPUs available).

[0009] Optimization of ECDs can be challenging. The time required to simulate a
single design point (also referred to as a candidate design, which includes a set of sizes
attributable to devices of the ECD) at a single process corner / environmental point can take
minutes or more. To estimate yield for a single design using Monte Carlo simulation can
involve hundreds or more random samples from a process joint probability distribution
function (jpdf). Further, simulations at several environmental points for each process point
can be required. Therefore simulation can extend beyond several hours. This hinders the
applicability of yield optimization using naive Monte Carlo sampling (e.g., where the
optimizer’s cost function is —1.0 * yield) because it would allow only a highly limited number
of candidate designs to actually be examined within a reasonable time period. There are
other challenges too: the cost function is generally a blackbox, which means that it is
possibly nonconvex, possibly non-differentiable (and without easy access to derivatives), and
poSsibly non-continuous. Such characteristics preclude the use of existing optimization
algorithms that could otherwise take advantage of those properties. In other word, it is not

possible to use algorithms that exploit numerous simplifying assumptions.

[0010] Similarly problems in yield optimization, or robust design, or stochastic
optimization, exist in many technical fields beyond that of ECDs. In fact, such problems exist
in almost any engineering field in which parameterizable design problems exist, for which
simplifying assumptions cannot be made, and which have means of estimating a design's
cost functions such as with a dynamical systems simulator. Such technical fields include,
amongst others, automotive design, airfoil design, chemical process design, and robotics

design.

[0011] A locally optimal design is one that has lower cost than all its immediate
neighbors in design space. By contrast, a globally optimal design is one in which no other
designs in the whole space are better. A robust optimization problem can be classified into
global or local optimization, depending on whether a globally optimal solution is desired (or at

least targeted) or, a locally optimal solution is sufficient. A convex mapping is one in which
-3-
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there is only one locally optimal design in the whole space, and therefore it is also the
globally optimal design. Conversely, a nonconvex mapping means that there are more than
one locally optimal designs in design space. The present disclosure Is more related to
problems in which convex mappings cannot be assumed, because they need more than local
search algorithms to solve. Over the years, a wide variety of global blackbox aigorithms
have been developed, such as, for example, simulated annealing algorithms, evolutionary
algorithms, tabu search, branch & bound algorithm, iterated local search, particle swarm
optimization, and variants thereof. Local search algorithms are very numerous too and
include, for example, Newton-method derivatives, gradient descent, derivative-free pattern

search methods, etc.

[0012] In the field of yield optimization for transistor-precision circuits, most
approaches make simplifying assumptions (e.g., by assuming linearity of constraints, or by
modeling circuit performances with manually-set equations rather than simulation), or reduce
the scope of the problem (e.g., by doing only local yield optimization rather than full global
yield optimization, or by optimizing only on a few design variables rather than potentially
hundreds). There is no approach that can do full global yield optimization on hundreds of

variables with no simplifying assumptions.

[0013] With respect to ECD characterizers, there are just a few approaches that
allow, but only in part, to capture and display mappings of design variables to performance
metrics across the whole design space. One approach is merely to specify a center design
point (center candidate design), and then to do a sweep of one or more design variables
about that center design point, followed by simulating at each swept point. This is followed by
displaying a circuit response as a function of a given variable’s value, such as power versus
w1 (width of transistor 1). This can be done for one or several corners, which have values
for process and environmental points, e.g., nominal process point at a typical temperature
and power supply setting, or for 50 Monte Carlo samples of process points on 3
environmental corners each. As an example, with Monte Carlo samples, a graph can show
as the ordinate, statistical estimators such as yield, Cpk, or average value of a response (e.g.
average power) with abscissa showing on of the circuit's variable. Of course, the ordinate

can include several responses at once too.
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[0014] A simplified version of this approach is merely perturbation analysis, in which
for each design variable there are just one or two swept values with small perturbations from
the center design variable point. These sweep approaches are good in that they give the
user intuition of the circuit’s response as a variable is changed. However, a major issue is
that variable interactions are not captured. This can be a problem since interaction between
design variables often matter in circuit design (i.e., circuit design problems are not linearly
separable). A related approach is to sweep two design variables in all their combinations, to
obtain a grid of candidate designs, then to simulate and display the response such as with a
surface or contour plot. This can capture interactions of two variables at a time and give
interesting insights. However, if there are N variables then there would be an order N*
interactions to simulate on a grid and plot, which can be prohibitively expensive.
Furthermore, such a method ignores interactions of more than two variables. Additionally,
the resolution of the grid would have a large effect on the number of simulations. For
example, 5 values per variable would imply 25 samples (probably reasonable) for each two-
variable interaction but is not enough resolution to be interesting, but a higher resolution of
10 samples per variable means 100 samples (probably unreasonable) for each two-variable

interaction.

[0015] A third approach is to do space-filling sampling in the design variable range of
interest, to simulate at those samples, build regression models which map design variables
to performances (or yield, Cpk, etc) then, for two-dimensional and three-dimensional plots, to
simulate off the model itself. The benefit of this latter approach is that it can capture
interactions between design variables. It can also handle a large number of variables

(hundreds or more) if the range of each variable is very small, or it can handle a broad
ranges of design variables if there are few design variables (e.g. < 10). However, the
approach performs abysmally when the number of design variables is large and the range of
each design variable is large. That is, the regression models capture the true mapping poorly
because the mapping is highly nonlinear. More training samples are limited in the help they

can provide because simulation time is not negligible. There is an upper bound on the

number of simulation samples, typically 10,000 to 100,000, that can be for a larger circuit.

[0016] Another approach which tries to make better use of the simulation samples is

called an active-learning approach in which only some samples and simulations are taken to

-5-
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start with, models are built in accordance with the samples and simulation, and then more
samples and simulations are taken from the models’ regions of highest uncertainty. The loop
is then repeated. Unfortunately, these approaches introduce massive overhead in continual
rebuilding of models, and the final models are often inaccurate. Finally, it is unclear how to
incorporate statistical awareness into these characterization approaches in a general way.
For example, for model-building approaches, adding process variables can imply a ten-time
increase in the number of variables, which can be prohibitive when the number of input
variables for a model has a strong impact on its ability to predict. The challenge that remains
for characterization of MPD’s, and ECD’s in particular, is to capture and display mappings
from design variables to performance, across the whole design space (where there can be
hundreds of design variables), in reasonable time (e.g., in less than one day), in reasonable
number of simulations (e.g., in less than 100,000 simulations), and including capturing
design variable interactions, and other possible nonlinearities. Ideally, if the characterizer
has uncertainties in its mappings, it would report these explicitly (and as intuitively as

possible).

[0017] Existing circuit design environments have means for the user (designer) to
invoke single-variable sweeps, perturbation analysis, two-variable grid sweeps, model-
building characterization runs, optimization runs, and to get corresponding plots out. In
communication with the design environments, are one or more circuit simulators. There Is
also, typically means to manually change design variable values, e.g. by typing new design
variable values into a dialog box. Such circuit design environments have issues because the
user cannot quickly get insight into the whole design at once. That is, if the user wants to
understand the effect of sweeping one or more variables he has to invoke simulations, and
wait for the responses. There is also the risk of obtaining candidate designs for local optima
during design because the user may inadvertently focus on locally optimal regions, not
knowing that better design regions of design variables space. In sum, current design
environments’ functionality for trying new designs has feedback, and the feedback offered is

partial at best, causing inefficient and possibly suboptimal design.

[0018] In ECDs, there are many sorts of circuit types that are commonly reused, from
differential pairs and current mirrors up to operational amplifiers, to name a few. Especially

in the smallest blocks (also referred to as sub-blocks), designers find themselves spending
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considerable time finding the right sizes for the design, despite having designed such blocks
possibly dozens or even hundreds of times before. The reason they keep redesigning these
smallest blocks is that there can be slight variations in the ECD design problem. For
example, different manufacturing processes can give rise to different transistor models; there
can be different environmental conditions such as lowering power supply voltages; and there
can be different specifications such as lowering power consumption targets. Furthermore,
each block has a context within an ECD that can give rise to slightly different DC operating
points. As such, continually redesigning such trivial circuits takes time, which could be better
spent on more challenging design tasks if there were a means to design such sub-blocks
more quickly. Optimizers can be used but the designer typically doesn’'t know exactly what
specifications they want for each tiny block, and there is a tradeoff that can be explored
before the user knows what he wants. Additionally, setting up an optimization (single- or
multi-objective) can be more time-consuming than it would take the designer to just size the

block or sub-block manually.

[0019] Therefore, it is desirable to provide four tools: global statistical optimization
(GS0), global statistical characterization (GSC), global statistical design (GSD), and block-
specific design. GSO should do global yield optimization on hundreds of variables with no
simplifying assumptions. GSC should capture and display mappings from design variables
to performance: across the whole design space, handle hundreds of design variables, In
reasonable time (say <1 day), in reasonable number of simulations (say <100,000), capture
design variable interactions and other possible nonlinearities, explicitly capture uncertainties
and intuitively display them. GSD should support the user's exploration of design-to-

performance mappings with fast feedback, thoroughly capturing design variable interactions

In the whole space, and allow for more efficiently created, more optimal designs. Block-
specific design should make it trivial to design small circuit blocks, in a fashion that is

palatable for designers (e.g. with less time & overhead than optimization).

SUMMARY OF THE INVENTION

[0020] In a first aspect of the invention, there is provided a method to optimize a
multi-parameter design (MPD) having design variables and performance metrics. The
method comprises the following steps. (a) Calculating, at a first set of design corners, a

performance value of each performance metric for each candidate design of a first set of

-7 -
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candidate designs. Each performance metric is a function of at least one of the design
variables. The design variables define a design variables space. The MPD has associated
thereto the first set of candidate designs, random variables, defining a random variables
space, and environmental variables, defining an environmental variables space. The random
variables space and the environmental variables space define design corners at which the
candidate designs can be evaluated. Each candidate design represents a combination of
design variables. (b) Calculating, for each performance value, a performance value
uncertainty. The performance value of each performance metric for each candidate design of
the first set of candidate designs, and its respective performance value uncertainty, define a
first set of data. (c) In accordance with the first set of data, building a model of each
performance metric to obtain a first set of models. Each model maps at least one design
variable to a model output and to a model output uncertainty. (d) Storing the first set of
models in a characterization database. (e) Displaying, for selection, one or more models of
the first set of models, and their model uncertainty. (f) In response to a selection of one or
more candidate designs, which defines selected candidate designs, and in accordance with
the one or more displayed models, performing the following steps. (i) Adding the selected
candidate designs to the first set of candidate designs, to obtain a second set of candidate
designs. (ii) Calculating, at a second set of design corners, a performance value, and a
performance value uncertainty, for each performance metric of each selected candidate
design. (iii) Adding the performance value, the performance value uncertainty of the selected
candidate designs to the first set of data, to obtain a second set of data. (iv) In accordance
with the second set of data, modifying the model of each performance metric, to obtain a
second set of models, each having a modified model uncertainty. (v) Displaying, for
inspection, one or more models of the second set of models. (vi) In accordance with the
second set of candidate designs, and in accordance with pre-determined search rules,
generating additional candidate designs by performing a search of the design variables
space. The search is biased towards optimality and uncertainty of the performance metrics.
(vii) Adding the additional candidate designs to the second set of candidate designs, to
obtain a third set of candidate designs. (viii) calculating, at a third set of design corners, a
performance value, and a performance value uncertainty, for each performance metric of
each additional candidate design. (ix) Adding the performance value and the performance
value uncertainty of the additional candidate designs to the second set of data, to obtain a

third set of data; and (x) in accordance with the third set of data, modifying the model of each
- 8 -
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performance metric and the model uncertainty of each model, to obtain a third set models.
Subsequently, the step (g), displaying, for inspection, one or more models of the third set of

models, is performed.

[0021] The method can further comprise a step of generating random candidate
designs, and the step of generating additional candidate designs can also in accordance with

the random candidate designs.

[0022] The step of performing the search of the design variables space can include a
step of performing an automated optimization of the performance metrics in the design
variables space, with the optimization being performed in accordance with pre-determined

optimization criteria.

[0023] The automated optimization can include optimizing a cost function, with the
cost function depending on at least one of the performance metrics, the pre-determined

optimization criteria including an optimum cost function value.

[0024] The automated optimization can include steps of forming an active learning
model (ALM) for each performance metric, and performing a multi-objective optimization in
accordance with the ALMs, with objectives of the multi-objective optimization being functions
of the models’ performance metric values and of the models’ uncertainties in performance

metric values.

[0025] At least one of the first set of models, the second set of models, and the third
set of models can include at least one regressor. The at least one regressor can include at
least one of: ensembles of linear models, ensembles of polynomials, ensembles of piecewise
polynomials, ensembles of splines, ensembles of feedforward neural networks, ensembles of
support vectors, ensembles of kernel-based machines, ensembles of classification and

regression trees, and ensembles of density estimations.

[0026] The step of displaying the one or more models of the first, second or third sets
of models and their related uncertainty can includes displaying the one or more models of the

first set of models and their related uncertainty in a graphical form or in a text form.
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[0027] The graphical form can include a two-dimensional plot of a performance
metric model, and its related uncertainty, as a function of a design variable. The related

uncertainty can include a lower confidence bound and an upper confidence bound.

[0028] The step of displaying one or more models of the first, second and third sets
of models can be a graphical plot of one design variable versus a second design variable

versus a performance metric model’s value.

[0029] The graphical plot can include at least one of a contour map and a three-
dimensional surface plot. The method can further include steps of identifying within a graph,
designs that meet performance constraints; and identifying within the same graph, designs

that fail to meet performance constraints.

[0030] The method can further comprise steps of calculating an impact of a portion of
the design variables on a characteristic of the MPD, in accordance with any one of the first,
second and third set of data; and displaying the impact of the portion of the design variables

on the characteristic. The characteristic can be a manufacturing yield of the MPD.

[0031] The step of calculating at any one of the first, second, and third set of design

corners can include automatically simulating the MPD at the respective set of design corners.

[0032] Advantageously, the step of performing the search of the design variables
space can include a user (also referred to as a designer) creating new candidate designs.
The user can create new candidate designs by having a “current design” and selecting a
performance metric to plot and a design variable to plot. Then, the user examines a graphical
two-dimensional plot of a performance metric model’'s value, and its related uncertainty, as a
function of one design variable where all other design variables have the value the current
design. Subsequently, the user choose a new value for selected design variable, creates a
new CD based on the new value of the design variable, and sets the other design variable
values to those of the “current design”. The user can select a design variable to plot, given a
performance metric, by examining the relative impacts of design variables on the
performance metric, in the form of a bar plot or table and then clicking on the bar plot or table
entry corresponding to the design variable of interest. Further, the user can click on the bar
plot or table entry corresponding to the design variable of interest, and the graphical two-

- 10 -
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dimensional plot of performance metric model's value and uncertainty, versus the newly-
selected design variable, can be automatically plotted. The user can choose a new value for
the design variable by clicking on the plot of performance metric value and uncertainty,
versus the design variable, to have the new design variable’'s value corresponds to the

design-variable value on the plot where the user had clicked.

[0033] As further advantages, the user can create new candidate designs by having
a “current design”, selecting a performance metric to plot and two design variables to plot,
and examining a graphical plot of a performance metric model’'s value as a function of two
design variables where all other design variables have the value the current design. The user
can then choose a new value for either or both selected design variable, then create a new
CD based on the new value of those design variables and set the other design variable

values to those of the “current design”.

[0034] The advantages can be accomplished in accordance with a flow such as: 1.
the designer chooses “current metric’ = highest impact metric, using a performance metric
impact bar plot; 2. the designer chooses “current design variable” = highest impact design
variable on “current metric”, using a design variable impact bar plot; 3. a system auto-plots
“current performance metric” vs. “current design variable”, using performance models not
simulations; 4. the designer chooses “current metric value” = the value of “current design
variable” that gets the value of the model's “current metric’ as close as possible to its
specification value, without making other model metric values infeasible; 5. if all metric values
are feasible, the flow is stopped; 6. if all performance metrics have been tried, the flow is
stopped; 7. if “current metric value” is feasible, designer sets “current metric’ = next-highest-
impact metric, and goes to step 2; 8. if all design variables have been tried for this metric,
designer sets “current metric’ = next-highest-impact metric and goes to step 2; 9. the

designer sets “current design variable™ = next-highest-impact design variable on “current

metric’, and goes to step 3.

[0035] Other advantages provided by the present invention include the ability of the
user to click on a design variable presented in a design variable impact plot, to automatically
plot, in two-dimensions, a performance metric model, and its related uncertainty, as a
function of the selected design variable. Further, the user can click in the two-dimensional

plot to set cause the current design to take on the selected variable value (the one selected
-11 -
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by clicking). The same advantages can be provided though the plotting of a contour map or

a three-dimensional surface plot.

[0036] In a second aspect of the invention, there is provided a method to optimize a
multi-parameter design (MPD) having design variables and performance metrics. The
method comprises the following steps. (a) Calculating, at a first set of design corners, a
performance value of each performance metric for each candidate design of a first set of
candidate designs. Each performance metric is a function of at least one of the design
variables. The design variables define a design variables space. The MPD has associated
thereto the first set of candidate designs, random variables, defining a random variables
space, and environmental variables, defining an environmental variables space, the random
variables space and the environmental variables space defining design corners at which the
candidate designs can be evaluated. Each candidate design represents a combination of
design variables. (b) Calculating, for each performance value, a performance value
uncertainty, the performance value of each performance metric for each candidate design of
the first set of candidate designs, and its respective performance value uncertainty, defining
a first set of data. (c) In accordance with the first set of data, building a model of each
performance metric to obtain a first set of models. Each model maps at least one design
variable to a model output and to a model output uncertainty. (d) Storing the first set of
models in a characterization database. (e) Displaying, for selection, one or more models of
the first set of models, and their model uncertainty. And, (f) in response to a selection of one
or more candidate designs, which defines selected candidate designs, and in accordance
with the one or more displayed models performing the steps: (i) Adding the selected
candidate designs to the first set of candidate designs, to obtain a second set of candidate
designs. (ii) Calculating, at a second set of design corners, a performance value, and a
performance value uncertainty, for each performance metric of each selected candidate
design. (iii) Adding the performance value, the performance value uncertainty of the selected
candidate designs to the first set of data, to obtain a second set of data. (iv) In accordance
with the second set of data, modifying the model of each performance metric, to obtain a
second set of models, each having a modified model uncertainty; and (v) displaying, for

inspection, one or more models of the second set of models.

- 12 -
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[0037] In a third aspect of the invention, there is provided a computer-readable
medium having recorded thereon statements and instructions for execution by a computer to
carry out a method to optimize a multi-parameter design (MPD) having design variables and
performance metrics. The method comprises the following steps. (a) Calculating, at a first set
of design corners, a performance value of each performance metric for each candidate
design of a first set of candidate designs. Each performance metric is a function of at least
one of the design variables. The design variables define a design variables space. The MPD
has associated thereto the first set of candidate designs, random variables, defining a
random variables space, and environmental variables, defining an environmental variables
space. The random variables space and the environmental variables space define design
corners at which the candidate designs can be evaluated. Each candidate design represents
a combination of design variables. (b) Calculating, for each performance value, a
performance value uncertainty. The performance value of each performance metric for each
candidate design of the first set of candidate designs, and its respective performance value
uncertainty, define a first set of data. (c) In accordance with the first set of data, building a
model of each performance metric to obtain a first set of models. Each model maps at least
one design variable to a model output and to a model output uncertainty. (d) Storing the first
set of models in a characterization database. (e) Displaying, for selection, one or more
models of the first set of models, and their model uncertainty. (f) In response to a selection of
one or more candidate designs, which defines selected candidate designs, and In
accordance with the one or more displayed models, performing the following steps. (i)
Adding the selected candidate designs to the first set of candidate designs, to obtain a
second set of candidate designs. (ii) Calculating, at a second set of design corners, a
performance value, and a performance value uncertainty, for each performance metric of
each selected candidate design. (iii) Adding the performance value, the performance value
uncertainty of the selected candidate designs to the first set of data, to obtain a second set of
data. (iv) In accordance with the second set of data, modifying the model of each
performance metric, to obtain a second set of models, each having a modified model
uncertainty. (v) Displaying, for inspection, one or more models of the second set of models.
(vi) In accordance with the second set of candidate designs, and in accordance with pre-
determined search rules, generating additional candidate designs by performing a search of
the design variables space. The search is biased towards optimality and uncertainty of the

performance metrics. (vii) Adding the additional candidate designs to the second set of
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candidate designs, to obtain a third set of candidate designs. (viii) calculating, at a third set of
design corners, a performance value, and a performance value uncertainty, for each
performance metric of each additional candidate design. (ix) Adding the performance value
and the performance value uncertainty of the additional candidate designs to the second set
of data, to obtain a third set of data; and (x) in accordance with the third set of data,
modifying the model of each performance metric and the model uncertainty of each model, to
obtain a third set models. Subsequently, the step (g), displaying, for inspection, one or more
models of the third set of models, is performed.

[0038] There present disclosure relates to four complementary design tools that can
be used in the field of multi-parameter design, which includes electrical circuit design. These
design tools include (1) an optimization tool that can perform automated sizing across an
entire, pre-determined design variables space; (2) a characterization tool that can, among
other things, capture and display mappings from design variables to performance metrics
across the whole design space; (3) a design environment tool that can, among other things,
allow the designer to quickly try new designs based on feedback from the characterization
tool; and (4) and a block-specific tool which allows quick re-use of commonly-used design
blocks. In this disclosure, the design tool builds on the characterization tool, which builds on
the optimization tool. The block-specific tool is an instantiation of the design tool, but for a
particular portion of the MPD.

[0039] The present invention is related to tools for global statistical optimization
(GSO0), global statistical characterization (GSC), global statistical design (GSD), and “block-
specific tools™ which meet the challenges outlined above, such that they can be applied to a

broader range of circuit design problems, including analog, mixed-signal or custom digital
circuit design problems.

[0040] GSO is enabled by a combination of complementary techniques which allow it
to do global yield optimization on hundreds of variables with no simplifying assumptions:
corners not statistics, “structural homotopy” (defined later), and model-building optimization
including biases to regions of optimality and uncertainty.

[0041] GSC builds on GSO by using GSO’s samples and simulations, and because it
uses GSO it explicitly biases for both optimality and uncertainty (unlike past techniques
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which either do not bias at all, or bias for just uncertainty). With this more aggressive bias,
GSC can adequately model the regions of design space that the user finds interesting. |t
ensures that models mapping design variables to performances or cost are available to the
user; and sweeps, 2d plots, etc based on the models are available as well. Relative impacts

of different variables on different outputs is also useful.

[0042] GSD leverages the new visualizations offered by GSC within the context of an
interactive design environment. The characterization info of GSC can be reframed as
“design guidance” information within GSD that gives insight with quick feedback. For
example, impact & sweep information etc can now be viewed as which variables to change,
and how to change their values, in order to improve the design. Furthermore, GSD closes
the design loop by offering a means for the user to try new design points out, and quickly get

feedback about them.

[0043] “Block-specific tools” in the present disclosure use the interactive environment
of GSD, and are enabled by GSC. But it is applied to smaller circuit blocks, blocks with so
few variables that one can apply simpler sampling techniques for the design variables (and
other variables), such as full factorial sampling from the design of experiments (DOE)
literature. Databases are typically stored for convenient reuse multiple times later, within the

context of designing larger blocks.

[0044] Even GSO databases from larger circuits cand be generated once and stored,
to save the designer time, such as commonly used operational amplifiers. A repository of
databases for different topologies and technologies could be built up over time. In fact, this

directly leads to a hierarchical design methodology, in which GSC databases from sub-
blocks can be used for generating the GSC databases of parent blocks. The process of

creating GSC databases for ever-larger blocks continues upwards until the top-level block, at

which point the top-level design is completed.

[0045] The present invention provides a method of capturing the mappings from
design variables to performance(s) or cost function(s) via active learning in which the bias to
new sample points incorporates both (a) uncertainty and (b) optimality. The method can do

optimization, e.g. by minimizing cost function(s).

-15 -

..........



CA 02656850 2009-03-03

[0046] The present invention also provides a method of capturing the mappings from
design variables to performance(s) or cost function(s) via active learning in which new
sample points are periodically generated by random sampling in the space, and other sample

points are generated by optimization operators.

[0047] The present invention also provides characterization or design environment,
which uses regression models that map design variables to performance(s) or cost
function(s). Most of the variables can be across a broad region of the design variable space
and the mapping accounts for variable interactions. There can be a means for the user to
select one or more variables, which are subsequently “current selected variables”. There can
be bar plots which differentiate design variables, such as providing variables “impacts” or
other rankings on performance(s) or cost function(s), and the user can interact with the bar
plots to select one or more variables(s), e.g. via clicking, ctri-click, shift-click etc. There can
be an underlying “current design point”. If one variable Is selected, a plot can be displayed
which shows >=1 selected performance(s) or cost function(s) on the y axis and the variable
on the x-axis (one 2d sweep plot, or one 2d sweep plot for each performance). There is a
means for the user to select / change the performances or cost functions. If two or more
variables are selected, then a plot can be displayed which shows a contour / surface / etc 3d
plot, where the x and y axes are the first two design variables selected, and the z-axis is the
selected performance or cost function. If more than one performance or cost function is
selected then multiple plots may be shown simultaneously. There is a means for the user to
select / change the performances or cost functions. The user can have a means to easily
simulate the “current design point® on one or more corners. The user can have a means to

easlly do simulations that sweep across the selected design variable on one or more corners,
with other values set to “current design point”. The results can be reported on the sweep

plot, comparing the model’s response and the simulation response.

[0048] Further, the user can have a means to easily do simulations across a 2d grid
of two selected design variables on one or more corners, with other values set to “current
design point”. The user can have a means to easily do other analyses on the “current design
point”, such as Monte Carlo sampling. The user can click on the sweep plot, and that can

cause a change of the value of the x-variable of the sweep plot in the “current design point”.
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[0049] The user can click on the plot (e.g. contour plot), and that can cause a change
of the two design variables in the plot in the “current design point”. The user can have a
means to easily change all values of the “current design point” to a “suggested design point”
which is the point that can be found by optimizing on the regression models to minimize cost

etc.

[0050] The samples for training the regression models can come from the method of
capturing the mappings from design variables to performance(s) or cost function(s) via active
learning in which the bias to new sample points incorporates both (a) uncertainty and (b)
optimality. The samples for training the regression models can come from method of
capturing the mappings from design variables to performance(s) or cost function(s) via active
learning in which new sample points are periodically generated by random sampling in the
space, and other sample points are generated by optimization operators. The samples for
training the regression models can come from an optimizer that explores the design space

globally. The optimizer can be such that it solves a yield optimization problem.

[0051] Further, the models and / or training data for models, and possibly other data
can be stored in any suitable type of database.

[0052] Further still, other users can simultaneously use the characterization or design
environment, which uses regression models that map design variables to performance(s) or
cost function(s) via a shared database. Furthermore, the optimizer can suggest designs to
the user(s). The samples for training the regression models can come from an experimental
design such as full-factorial, fractional factorial, Latin Hypercube, etc. The user(s) can have a

means to analyze the performance tradeoff. The user(s) can use the performance tradeoff
visualization to set a “current design point”.

[0053] The present invention also provides a method of optimization in which
different versions of an optimization problem are all solved simultaneously, each with a
different degree of loosening of the true optimization problem. There is a means to promote
designs from looser optimization problems to tighter optimization problems. The loosest
optimization problem periodically can get periodically injected with fully-random design
points. Some of the new design candidates are generated by leveraging some form of

model-building optimization. The number of "corners” determines how loose the optimization
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problem is; where a corner includes values for manufacturing process variables,
environmental variables, and / or other uncontrollable variables. The samples for training the
regression models come from the method of optimization in which different versions of an
optimization problem are all solved simultaneously, each with a different degree of loosening
of the true optimization problem. There can be a means to promote designs from looser

optimization problems to tighter optimization problems.

[0054] The present invention also provides systems to implement the methods of the

present invention.

[0055] Other aspects and features of the present invention will become apparent to
those ordinarily skilled in the art upon review of the following description of specific

embodiments of the invention in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0056] Embodiments of the present invention will now be described, by way of
example only, with reference to the attached Figures, wherein:
Fig. 1 shows a exemplary generic system of the present invention;
Fig. 2 shows an exemplary system of the present invention, as applicable to statistical
design of ECDs;
Fig. 3 shows an exemplary system of the present invention for small block-specific tools;
Fig. 4 shows a hierarchical organization of blocks in a design;
Fig. 5 shows an example of how hierarchical design can be accomplished bu upwards
propagation of GSC databases;
Fig. 6 shows a flowchart of an exemplary method of the present invention;
Fig. 7 shows how at a given node in a hierarchy of blocks, the GSC database and/or
sized design(s) can be created via a combination of GSO / DOE, GSC, and GSD
iInvolving the designer;
Fig. 8 shows how at a given node in the hierarchy of blocks, sized design(s) can be
created by using sub-blocks' GSC databases but without GSO/DOE or GSD at the node

itself:
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Fig. 9 shows how at a given node in the hierarchy of blocks, the GSC database and/or
sized design(s) can be created in a fully automated fashion;

Fig. 10 shows is a general flow for an optimization algorithm;

Fig. 11 shows an embodiment of global statistical optimization (GSO) of the present
invention, including structural homotopy and model-building optimization

Fig. 12 shown illustrates how multi-objective optimization aims to maximize uncertainty
and minimize cost as it progresses (for inner loop of model-building optimization);

Figs. 13 and 14 shown an exemplary conceptual usage of the global statistical design
tool;

Fig. 15 shown a user interface of global statistical design with a two-dimensional sweep
plot; and

Fig. 16 shows a user interface of global statistical design with a three-dimensional

contour plot.

DETAILED DESCRIPTION

[0057] There present invention relates to four complementary design tools that can
be used in the field of MPD, which includes ECD. These design tools include (1) an
optimization tool that can perform automated sizing across an entire, pre-determined design
variables space; (2) a characterization tool that can, among other things, capture and display
mappings from design variables to performance metrics across the whole design space; (3) a
design environment tool that can, among other things, allow the designer to quickly try new
designs based on feedback from the characterization tool; and (4) and a block-specific tool
which allows quick re-use of commonly-used design blocks. In this disclosure, the design

tool builds on the characterization tool, which builds on the optimization tool. The block-
specific tool is an instantiation of the design tool, but for a particular portion of the MPD.

[0058] Generally, the present disclosure provides a method and system for global
statistical optimization (GSO), global statistical characterization (GSC), global statistical
design (GSD), and block-specific tools. GSD builds on GSC, which builds on GSO (or DOE
for small blocks). The invention is applicable to electrical circuit design (ECD) but also to

other fields involving multi-parameter design.

[0059] Fig. 1 shows an exemplary system 100 of the present invention, used in

optimizing a MPD. The system 100 includes a problem setup module and database 102 that
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includes particulars of the MPD to be optimized, as well as problem setup data. The problem
setup database 102 is in communication with a group of modules 103 that includes a global
optimization module 104, a global characterization module 106, a global design module 108,
and, optionally, other modules 110, such as, for example, a Monte Carlo sampling module. A
display module 112 is in communication with the group of modules 103, which can be
controlled by a designer through a user input module 114 that can include a keyboard, a
pointing device, and/or any other suitable type of input devices. The designer interacts with
the group of modules 103 (also referred to as a set of tools) which collectively are used to
create, analyze, size, and/or optimize the MPD. The group of modules 103 takes as input
the problem setup database 102, which can also be used to store results that can be used as
input to future MPDs. The global optimization module 104, can be used to carry out global
optimization. As will be understood by the skilled worker, the global optimization module 104
can be replaced, for simple MPDs, with a design of experiments module. Global optimization
is achieved in concert with the evaluation module 116 that evaluates candidate designs of
the MPD at design corners (i.e., at various process and/or environmental points). A designer
(or a team of designers) can interact with the group of modules 103 through the user input
module, and receive feedback from the group of modules 103, through the display module
112. The final output of the system 100 can include one or more sized designs 118, a
simulation results database, and / or a characterization results database, which can all be
stored in the problem setup database 102. As stated above, the system 100 can be used In
relation to MPDs such as ECDs, and can also be used in, for example, chemical process
design, and mechanical design. Further, as will be understood by the skilled worker, the

system 100 can be used in non-statistical design as well.

[0060] Fig. 2 shows a system 200, which is an instantiation of the system 100 of Fig.
1, specifically for statistical design of large circuit blocks (e.g., large ECDs). The system 200
has a group of modules 203 that includes a global statistical optimization (GSO) module 204,
a global statistical characterization (GSC) module 206, a global statistical design (GSD)
module 208, and, optionally, other design related modules 210, which can include, for
example, schematic editors, simulation waveform viewers, and Monte Carlo samplers The
GSC module 206 can output a GSC models of the ECD to the ECD problem setup database
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