METHODS AND APPARATUS FOR MATERIAL PROCESSING USING ATMOSPHERIC THERMAL PLASMA REACTOR

Abstract: Methods and apparatus provide for: producing a plasma plume within a plasma containment vessel from a source of plasma gas; feeding an elongate feedstock material having a longitudinal axis into the plasma containment vessel such that at least a distal end of the feedstock material is heated within the plasma plume; and spinning the feedstock material about the longitudinal axis as the distal end of the feedstock material advances into the plasma plume, where the feedstock material is a mixture of compounds that have been mixed, formed into the elongate shape, and at least partially sintered.
Published:
— with international search report (Art. 21(3))
METHODS AND APPARATUS FOR MATERIAL PROCESSING USING ATMOSPHERIC THERMAL PLASMA REACTOR

[0001] This application claims the benefit of priority under 35 U.S.C. § 120 of U.S. Application Serial No. 14/230914 filed on March 31, 2014 the content of which is relied upon and incorporated herein by reference in its entirety.

BACKGROUND

[0002] The present disclosure relates to methods and apparatus for material processing using a atmospheric thermal plasma reactor.

[0003] Glass substrates may be used in a variety of applications, including windows, high-performance display devices, and any number of other applications. The quality requirements for glass substrates have become more stringent as the demand for improved resolution, clarity, and performance increases. Glass quality may, however, be negatively impacted by various processing steps, from forming the glass melt to final packaging of the glass product.

[0004] One processing step that may result in reduced glass quality is the melting process, wherein the components of a glass batch material are mixed and heated in a melting apparatus. During this process, the components of the glass batch material melt and react, giving off reaction gases, which produce bubbles in the molten glass. Additionally, the melting process may produce an inhomogeneous glass melt having regions of differing chemical compositions. The first melt to form is often highly reactive with the refractory materials, which may lead to excessive wear of the apparatus and/or defects in the glass melt. Denser portions of the melt may
also sink to the bottom of the melting apparatus, leading to a sludge layer, which has different optical properties than the rest of the melt and is difficult to completely mix back into the overall melt. The sludge layer therefore results in inhomogeneous portions of the melt, referred to in the art and herein as chord. Finally, due to typically large processing volumes, it is possible that various glass batch materials may not completely melt. Any un-melted or partially melted materials are carried through the melting process and may later become defects in the glass product.

Current melting processes for producing high quality optical glass utilize high temperatures and stirring to remove bubbles from the glass melt. However, such processes may be cost prohibitive, as they require expensive metals and specially designed high temperature refractory materials for the processing equipment. Further, these costly melting systems require a long processing time and high energy expenditure as the reaction gases have a long distance to travel to escape the glass melt and the sludge layer must be mixed from the bottom of the melter tank into the rest of the glass melt in the tank, requiring a mixing motion over a long distance through a highly viscous fluid.

Alternative methods for preventing glass bubbles and inhomogeneous portions in the glass melt include processing the melt in smaller batches. In this manner, the gas bubbles have a shorter distance to travel to escape the melt and the sludge layer can be more easily incorporated into the rest of the melt. However, as with many small scale processes, these methods have various drawbacks such as increased processing time and expense.
Accordingly, there are needs in the art for techniques to improve the melting processes of glass batch material for producing high quality optical glass.

SUMMARY

The present disclosure relates to an area of material processing (for example, glass batch material) by means of atmospheric thermal plasma in which the material to be processed is dispensed as material feedstock (containing partially sintered material particles) into a plasma plume that is of a generally cylindrical configuration. For commercial purposes, it is important that the atmospheric thermal plasma process exhibits high throughput and sufficient thermal energy to achieve the desired thermal reaction.

Inductively coupled plasma (ICP) systems have been used for low pressure sputtering and etching systems on substrates. Inductively coupled atmospheric plasma material processing systems are generally constructed with small diameter coils or microwave waveguides which limit the plasma to a small volumetric column (typically about 5 mm in diameter). Even if such a system employs a relatively high power RF source (e.g., about 400 kW), at a very high equipment cost, only a low rate (e.g., 20 - 40 kg per hour) of particulate material may be processed through the plasma. In the glass batch processing context, practical production rates are at least one metric ton per day, which would barely be met using the conventional ICP system at peak production twenty four hours a day. In order to address the shortcomings of the processing rate, multiples of the equipment set up, energy, and maintenance costs would be required.
Another problem with the conventional ICP system is a limit on the permissible input particle sizes, typically about 90 μm or less. The free fall characteristics of such small particles in the ICP plasma system are such that sufficient heating of the particles may be achieved within a period of about 300 ms or less. If the particles were larger, and did not absorb enough heat to melt, then the once through-processed particles would have to be recycled through the system again, thereby reducing the throughput rate even further.

One or more embodiments disclosed herein provide a new material feed capability in a plasma containment vessel to thermally process the material. In the context of glass batch material processing, the compounds of the glass batch material are mixed to provide a homogeneous distribution of the compounds. Then the glass batch material is pressed and partially sintered to hold its shape as a feedstock, such as a generally cylindrical rod form. The feedstock is continuously inserted into a plasma containment vessel and the feedstock is rotated within the center of a plasma plume within the plasma containment vessel. Notably, this new approach for material introduction avoids at least some of the issues with conventional plasma processing because there is no need to introduce separate granulated powder into the plasma plume. As a distal end of the feedstock absorbs energy from the plasma plume, the feedstock melts and droplets of molten material (in this example glass material) are formed into spheres and flung from the feedstock due to centrifugal forces. The reactive gases boil off of the respective spheres of material. The liquid spheres are then rapidly quenched and collected or fed into a next processing stage (e.g., a pre-
The size distribution of the droplets is determined by the rotational speed of the feedstock within the thermal environment of the plasma plume.

[0012] The embodiments disclosed herein overcome the low particulate material processing rates of existing systems in order to provide industrial scale applications. The embodiments provide high volumes of plasma at atmospheric pressures, and produce adequate kinetic energy within the plasma plume to heat the material and achieve desired reactions, including melting and/or other thermally-based processes.

[0013] Other aspects, features, and advantages will be apparent to one skilled in the art from the description herein taken in conjunction with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

[0014] For the purposes of illustration, there are forms shown in the drawings that are presently preferred, it being understood, however, that the embodiments disclosed and described herein are not limited to the precise arrangements and instrumentalities shown.

[0015] FIG. 1 is a schematic illustration of a length of feedstock material, such as glass batch material, according to one or more embodiments of the present disclosure;

[0016] FIG. 2 is flow diagram illustrating processing steps for producing the feedstock material of FIG. 1 according to one or more embodiments of the present disclosure;

[0017] FIG. 3 is a side, schematic illustration of one or more embodiments of an apparatus for carrying out a process
for producing the feedstock material of FIG. 1 according to one or more embodiments of the present disclosure; and

[0018] FIG. 4 is a side, schematic illustration of one or more embodiments of a plasma containment vessel usable for thermally processing the feedstock material of FIG. 1 and/or other embodiments.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0019] With reference to the drawings wherein like numerals indicate like elements there is shown in FIG. 1 a feedstock material 10 produced in order to be thermally treated within a plasma thermal source. The feedstock material 10 may be composed of any suitable material, for example glass batch material. Although particular embodiments herein may be presented in the context of thermally treating glass batch material, the embodiments herein are not limited to glass batch material.

[0020] The feedstock material 10 denotes a mixture of precursor compounds and/or particles which, upon melting, reacting and/or other action, combine to form a particular, desired material. In the case of glass batch material, the precursor compounds may include silica, alumina, and various additional oxides, such as boron, magnesium, calcium, sodium, strontium, tin, or titanium oxides. For instance, the glass batch material may be a mixture of silica and/or alumina with one or more additional oxides. One skilled in the art will appreciate that glass batch material may take on a wide variety of specific combinations of compounds and substances.

[0021] With reference to FIGS. 1-3, the feedstock material 10 contains a plurality of precursor compounds that have been
mixed, formed into an elongate shape, and at least partially sintered. FIG. 2 is a flow diagram illustrating processing steps for producing the feedstock material 10 and FIG. 3 is a side, schematic illustration of one or more embodiments of a feedstock processing mechanism 300 for carrying out a process for producing an extruded source of the feedstock material 10. At step 150 of the process flow, the plurality of precursor compounds are mixed. By way of example, the precursor compounds may be directed to producing glass and contain one or more of SiO₂, Al₂O₃, B₂O₃, MgO, CaCO₃, SrCO₃, SnO₂ and/or various mixtures thereof. The precursor compounds may be mixed in a batch feeder, mixer, and/or batch sifter 302, where the precursor compounds are thoroughly mixed and any agglomerates are broken up (step 152).

[0022] The mixed precursor compounds may be fed into a powder tray 304, which funnels the mixed precursor compounds into a rotating powder die 306. A powder ram 308 operates in conjunction with the powder die 306 in order to apply pressure to the mixed precursor compounds and to shape the mixed precursor compounds into an elongate shape (step 154). A compression force of compaction may be from about 20 psi to 200 psi.

[0023] The pressed precursor compounds are next heated in order to at least partially sinter the precursor compounds into the feedstock material 10 (step 156). By way of example, the feedstock processing mechanism 300 may include an inductive heating mechanism 310 comprising a coil 312 about a central axis. The coil 312 may be wound about a graphite susceptor 314 through which the pressed precursor compounds pass. Activation of the coil 312 causes the graphite susceptor 314 to heat up, which in turn heats the pressed
precursor compounds as such material passes through the graphite suscepter 314 (and the coil 312) along the central axis thereof. The heating is controlled in order to achieve at least partial sintering of the pressed precursor compounds. For example, an inductive heating mechanism 310 may operate to heat the pressed precursor compounds to between about 500 - 1000 °C. This may be achieved by applying an AC power source to the coil 312 of sufficient magnitude, such as from about 10 kW to 500 kW (depending on the desired material throughput). A frequency of the AC power provided to the inductive heating mechanism 310 (i.e., to the coil 312) may range from about 50 kHz to 500 kHz.

[0024] The parameters of the mixing, sifting, pressing, and/or heating may be adjusted in order to attain a feedstock material 10 of desired diameter, mechanical strength, and/or thermal reactivity. For example, the feedstock processing mechanism 300 may be adjusted to produce a feedstock material 10 having a diameter of one of: (i) between about 5 mm - 50 mm; (ii) between about 10 mm - 40 mm; and (iii) between about 20 mm - 30 mm.

[0025] The extruded feedstock material 10 may be produced beforehand and stored for later use in a plasma reactor (step 158), or the feedstock processing mechanism 300 may be integrated with the plasma reactor such that the extruded feedstock 10 may be fed in a continuous process into the plasma reactor.

[0026] Reference is now made to FIG. 4, which is a side, schematic illustration of one or more embodiments of a plasma containment vessel 200 usable for thermally processing the feedstock material 10 of FIGS. 1-3 and/or other embodiments. The plasma containment vessel 200 includes at least one wall
member 202 defining an inner volume 218 having a central axis, an inlet end 204, and an opposing outlet end 206. The at least one wall member 202 may be formed from a suitable non-conductive, non-corrosive, high temperature, dielectric material, such as high temperature ceramic materials, quartz, preferably with an ultra-low coefficient of thermal expansion. In order to permit cooling of one or more components of the plasma containment vessel 200, the wall member 202 may include one or more internal channels operating to carry cooling fluid therethrough. In this regard, the internal channels may be accessed via respective inlet/outlets that are in fluid communication with the one or more sources of cooling fluid (not shown).

[0027] The plasma containment vessel 200 may include a mechanism configured to receive a source of RF power (not shown) having characteristics sufficient to produce an electromagnetic field within the plasma containment vessel 200 for maintaining a plasma plume 220 from a source of plasma gas (not shown). For example, the mechanism may include an induction coil 210 disposed about the central axis of the plasma containment vessel 200, and the coil 210 may be operable to receive the source of RF power and produce the electromagnetic field. By way of example, the RF power may be of a characteristic such that the electromagnetic field exhibits a frequency of at least one of: (i) at least 1 MHz, (ii) at least 3 MHz, (iii) at least 4 MHz, (iv) at least 5 MHz, (v) at least 10 MHz, (vi) at least 15 MHz, (vii) at least 20 MHz, (viii) at least 30 MHz, (ix) at least 40 MHz, and (x) between about 1 to 50 MHz. The RF power may be at a power level from about 5 kW to 1 MW (or other suitable power level).
A material inlet 250 may be disposed at the inlet end 204 of the plasma containment vessel 200, where the material inlet 250 may operate to receive the elongate feedstock material 10. Thus, the feedstock material 10 is introduced into the plasma containment vessel 200, where a distal end 12 of the feedstock 10 encounters the plasma plume 220. The plasma plume 220 is of sufficient thermal energy to cause at least a thermal reaction of the feedstock material 10. In particular, the plasma plume 220 may be of a substantially cylindrical shape, and may be of sufficient thermal energy, to cause the distal end 12 of the feedstock material 10 to melt, thereby producing respective substantially spherical droplets 14.

By way of example, the plasma containment vessel 200 may further include a rotation assembly 252 disposed in communication with the material inlet 250 and operating to permit the feedstock material 10 to spin about the longitudinal axis as the distal end 12 of the feedstock material 10 advances into the plasma plume 220. The rotation assembly 252 may be operable to spin the feedstock material 10 about the longitudinal axis at a sufficient speed to cause the melt to separate from the distal end 12 of the feedstock material 10, in response to centrifugal force, and to form the substantially spherical droplets 14. The rotational assembly 252 may include a feed tube 254 in coaxial orientation with a bearing assembly 256 (such as a ball bearing arrangement), which permits the feedstock material 10 to be guided within, and rotated by, the feed tube 254.

A controller (such a microprocessor controlled mechanism, not shown) may operate to control the rotation assembly 252 in order to vary a rate at which the feedstock
material 10 spins, thereby controlling a size of the droplets 14. By way of example, the rotation assembly 252 may spin the feedstock material 10 at a rate of one of: (i) between about 500 rpm - 50,000 rpm; (ii) between about 1000 rpm - 40,000 rpm; (iii) between about 1400 rpm - 30,000 rpm; (iv) between about 2000 rpm - 20,000 rpm; and (v) between about 5000 rpm - 10,000 rpm. These spin rates may produce droplets having a size of one of: (i) between about 1 urn - 5000 urn; (ii) between about 50 urn - 2000 urn; (iii) between about 100 urn - 1000 urn; (iv) between about 50 urn - 200 urn; and (v) about 100 urn.

[0031] It is noted that the size of the droplets 14 may also be affected by a temperature of the plasma plume 220. In accordance with one or more embodiments, a controller (not shown) may operate to control a power level of the RF power, thereby controlling an intensity of the electromagnetic field within the plasma containment vessel 200 and a temperature of the plasma plume 220. By way of example, the plasma plume may have a temperature ranging from one of: (i) about 9,000 K to about 18,000 K; (ii) about 11,000 K to about 15,000 K; and (iii) at least about 11,000 K.

[0032] The plasma plume is preferably of sufficient thermal energy to cause the droplets 14 from the feedstock material to thermally react. Examples of the types of thermal reactions contemplated herein include, at least one of: (i) at least partially melting the droplets 14 of material, (ii) at least partially melting at least one of the droplets 14 of material and one or more further materials thereby forming coated material particles, and (iii) at least partially melting the droplets 14 of material to form substantially homogeneous, spheroid-shaped intermediate particles.
Those skilled in the art will appreciate that the types of thermal reactions (and/or other reactions) within the plasma containment vessel 200 may include any number of additional reactions as would be evident from the state of the art. By way of example, the feedstock material may be at least partially melted with a further material that comprises silver, copper, tin, silicon or another semiconductor material, including the respective metal or metal oxide, etc. to form coated glass batch material particles. Glass particles coated with silver or copper, for instance, may have antibacterial properties, and glass particles coated with tin oxide may be photoactive.

The thermally reacted material is accumulated in a collection vessel 170. After collection, the thermally reacted material may be subjected to additional and/or optional processing steps.

The conventional approaches to prepare batch material, for example to make glass via a plasma process, requires special steps in order to reduce or eliminate fining and stirring. These steps may include a mixing step and a spray-drying step for a binding operation to produce agglomerates of the appropriate size to allow plasma energy absorption as the particles drop through the plasma. In accordance with the embodiments herein, however, such preparation and particle selection is not necessary since the precursor compounds are mixed to provide even distribution of the compounds throughout the batch, and the precursor compounds are pressed and partially sintered into a rod to be fed into the plasma plume. This mechanism permits a continuous feed process at a higher throughput without the aforementioned, complex preparation procedure. Therefore,
specific selection of particle sizes (e.g., < 90 um) are not required for plasma processing. Further, spray-drying for binding and producing agglomerates are not required for plasma processing. Still further, multiple recycling of material for additional plasma processing is not required. Indeed, high material throughput is achieved since the compacted rod of batch material with high bulk density is processed (as opposed to isolated individual particles), where the droplet production rate is significantly higher than in conventional plasma systems processing powder. The embodiments herein also provide reactive gas dissipation before glass particles are placed in a pre-melter, which reduces the need for fining. In addition, homogenization of the precursor compounds in the extrusion yields a uniform glass density in the glass particles prior to inclusion in the pre-melter reducing the need for stirring.

[0036] Although the disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the embodiments herein. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present application.
CLAIMS:

1. An apparatus, comprising:
 a plasma containment vessel having at least one wall member defining an inner volume having a central axis, an inlet end, and an opposing outlet end;
 a mechanism configured to receive a source of RF power having characteristics sufficient to produce an electromagnetic field within the plasma containment vessel for maintaining a plasma plume from a source of plasma gas;
 a material inlet disposed at the inlet end of the plasma containment vessel and operating to receive an elongate feedstock material having a longitudinal axis;
 a rotation assembly disposed in communication with the material inlet and operating to permit the feedstock material to spin about the longitudinal axis as a distal end of the feedstock material advances into the plasma plume,
 wherein the feedstock material is a mixture of compounds that have been mixed, formed into the elongate shape, and at least partially sintered.

2. The apparatus of claim 1, wherein:
 the plasma plume is of a substantially cylindrical shape, and is of sufficient thermal energy to cause the distal end of the feedstock material to melt; and
 the rotation assembly is operable to spin the feedstock material about the longitudinal axis at a sufficient speed to cause the melt to separate from the distal end of the feedstock material, in response to centrifugal force, and to form respective substantially spherical droplets.
3. The apparatus of claim 2, further comprising a controller operating to control the rotation assembly to vary a rate at which the feedstock material spins, thereby controlling a size of the droplets.

4. The apparatus of claim 2, wherein the size of the droplets is one of: (i) between about 10 urn - 5000 urn; (ii) between about 50 urn - 2000 urn; (iii) between about 100 urn - 1000 urn; (iv) between about 50 urn - 200 urn; and (v) about 100 urn.

5. The apparatus of claim 1, wherein the rotation assembly spins the feedstock material at a rate one of: (i) between about 500 rpm - 50,000 rpm; (ii) between about 1000 rpm - 40,000 rpm; (iii) between about 1400 rpm - 30,000 rpm; (iv) between about 2000 rpm - 20,000 rpm; and (v) between about 5000 rpm - 10,000 rpm.

6. The apparatus of claim 1, further comprising a controller operating to control a power level of the RF power, to thereby control an intensity of the electromagnetic field and a temperature of the plasma plume.

7. The apparatus of claim 1, wherein the mechanism includes an induction coil disposed about the central axis of the plasma containment vessel, and operable to receive the source of RF power and produce the electromagnetic field.

8. The apparatus of claim 1, wherein the RF power is of a characteristic such that the electromagnetic field exhibits a frequency of at least one of: (i) at least 1 MHz, (ii) at least 3 MHz, (iii) at least 4 MHz, (iv) at least 5 MHz, (v) at
least 10 MHz, (vi) at least 15 MHz, (vii) at least 20 MHz, (viii) at least 30 MHz, (ix) at least 40 MHz, and (x) between about 1 to 50 MHz.

9. The apparatus of claim 1, further comprising a feedstock processing mechanism upstream from the material inlet, wherein the feedstock processing mechanism operates to substantially continuously receive, mix, press, and at least partially sinter the compounds into the feedstock material as the feedstock material is fed into the plasma containment vessel.

10. The apparatus of claim 9, wherein the feedstock processing mechanism includes a rotating powder die and powder ram operating to press the mixed precursor compounds to between about 20 psi - 200 psi.

11. The apparatus of claim 9, wherein the feedstock processing mechanism includes an inductive heating mechanism comprising a coil about a central axis, the pressed precursor compounds passing through the coil along the central axis thereof and being at least partially sintered therein.

12. The apparatus of claim 11, wherein the inductive heating mechanism operates to heat the pressed precursor compounds to between about 500 - 1000 °C.

13. The apparatus of claim 9, wherein the feedstock processing mechanism produces the feedstock having a diameter of one of: (i) between about 5 mm - 50 mm; (ii) between about 10 mm - 40 mm; and (iii) between about 20 mm - 30 mm.
14. A method, comprising:

producing a plasma plume within a plasma containment vessel from a source of plasma gas;

feeding an elongate feedstock material having a longitudinal axis into the plasma containment vessel such that at least a distal end of the feedstock material is heated within the plasma plume; and

spinning the feedstock material about the longitudinal axis as the distal end of the feedstock material advances into the plasma plume,

wherein the feedstock material is a mixture of compounds that have been mixed, formed into the elongate shape, and at least partially sintered.

15. The method of claim 14, wherein the feedstock material is a glass batch material.

16. The method of claim 14, wherein the plasma plume is of a substantially cylindrical shape, and is of sufficient thermal energy to cause the distal end of the feedstock material to melt.

17. The method of claim 16, wherein step of spinning the feedstock material about the longitudinal axis includes spinning at a sufficient speed to cause the melt to separate from the distal end of the feedstock material, in response to centrifugal force, and to form respective substantially spherical droplets.

18. The method of claim 17, further comprising controlling a rate at which the feedstock material spins, thereby controlling a size of the droplets.
19. The method of claim 17, wherein the size of the droplets is one of: (i) between about 10 urn - 5000 urn; (ii) between about 50 urn - 2000 urn; (iii) between about 100 urn - 1000 urn; (iv) between about 50 urn - 200 urn; and (v) about 100 urn.

20. The method of claim 14, wherein the rate of spinning the feedstock material is one of: (i) between about 500 rpm - 50,000 rpm; (ii) between about 1000 rpm - 40,000 rpm; (iii) between about 1400 rpm - 30,000 rpm; (iv) between about 2000 rpm - 20,000 rpm; and (v) between about 5000 rpm - 10,000 rpm.

21. The method of claim 14, further comprising controlling a temperature of the plasma plume thereby controlling a size of the droplets.

22. The method of claim 21, wherein the plasma plume has a temperature ranging from one of: (i) about 9,000 K to about 18,000 K; (ii) about 11,000 K to about 15,000 K; and (iii) at least about 11,000 K.

23. The method of claim 17, wherein the plasma plume is of sufficient thermal energy to cause the droplets from the feedstock material to thermally react.

24. The method of claim 23, wherein at least one of: the thermal reaction includes at least partially melting the droplets of material, the thermal reaction includes at least partially melting at least one of the droplets of material and one or more
further materials thereby forming coated droplets of material, and

the thermal reaction includes at least partially melting the droplets of material to form substantially homogeneous, spheroid-shaped intermediate particles.

25. The method of claim 14, further comprising producing the feedstock material by substantially continuously receiving, mixing, pressing, and at least partially sintering precursor compounds into the feedstock material as the feedstock material is fed into the plasma containment vessel.

26. The method of claim 25, wherein the pressing step includes pressing the mixed precursor compounds to between about 20 psi - 200 psi.

27. The method of claim 25, wherein the heating step includes heating the pressed precursor compounds to between about 500 - 1000 °C.

28. The method of claim 25, wherein the feedstock has a diameter of one of: (i) between about 5 mm - 50 mm; (ii) between about 10 mm - 40 mm; and (iii) between about 20 mm - 30 mm.
FIG. 1

FIG. 2

150
MIX PRECURSOR COMPOUNDS

152
SIFT THE PRECURSOR COMPOUNDS – BREAK AGGLOMERATES

154
APPLY PRESSURE AND SHAPE THE PRECURSOR COMPOUNDS

156
SINTER AND FORM A FEEDSTOCK MATERIAL

158
PROCESS THE FEEDSTOCK IN A PLASMA REACTOR
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H01J37/32

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H05H H01J C03B C04B B23K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 2 629 573 Al (AUBERT & DUVAL ACIERIES [FR]; UNIV CLERMONT FERRAND II [FR]) 6 October 1989 (1989-10-06) figure 1 page 1, line 3 - line 4 page 3, line 26 - line 29 page 4, line 2 - line 6 page 4, line 11 - line 27 page 5, line 8 - line 13 page 8, line 1 - page 9, line 21</td>
<td>1,6-8, 14-16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which establishes the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 A document member of the same patent family

Date of the actual completion of the international search

17 June 2015

Date of mailing of the international search report

23/06/2015

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Hochstrasser, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FR 2629573</td>
<td>06-10-1989</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2607492 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2196956 A</td>
</tr>
<tr>
<td>US 2008173641</td>
<td>24-07-2008</td>
<td>US 2008173641 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014287162 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2008121173 A2</td>
</tr>
</tbody>
</table>