(12) STANDARD PATENT (11) Application No. AU 2016220252 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(74)

(56)

Title
Querying a data source on a network

International Patent Classification(s)
GOG6F 16/25 (2019.01) GOG6F 16/2455 (2019.01)
GOG6F 16/2452 (2019.01)
Application No: 2016220252 (22) Date of Filing: 2016.02.16
WIPO No: WO16/133880

Priority Data

Number (32) Date (33) Country
14/752,094 2015.06.26 us
62/117,588 2015.02.18 us
Publication Date: 2016.08.25

Accepted Journal Date: 2021.02.25

Applicant(s)
Ab Initio Technology LLC

Inventor(s)
Schechter, lan;Allin, Glenn John

Agent / Attorney
RnB IP Pty Ltd, PO Box 9530, Deakin, ACT, 2600, AU

Related Art
US 20090055370 A1
US 20010011371 A1

wO 2016/133880 A 1[I I N0F V000 000000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/133880 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

25 August 2016 (25.08.2016) WIPOIPCT
International Patent Classification: (81)
GO6F 17/30 (2006.01)
International Application Number:

PCT/US2016/018028

International Filing Date:
16 February 2016 (16.02.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/117,588 18 February 2015 (18.02.2015) US
14/752,094 26 June 2015 (26.06.2015) US

Applicant: AB INITIO TECHNOLOGY LLC [US/US];
201 Spring Street, Lexington, Massachusetts 02421 (US).

Inventors: SCHECHTER, Ian; 94 Brook Road, Sharon,
Massachusetts 02067 (US). ALLIN, Glenn John; 132 Mt.
Vernon Street, Arlington, Massachusetts 02476 (US).

Agent: GERRATANA, Frank L.; Fish & Richardson
P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-1022

(US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: QUERYING A DATA SOURCE ON A NETWORK

10 100

QUERY
EXT
N
12
DATA
PROCESSING
SYSTEM
104
R
FIG. 1

INSTRUCTIONS

ne

108

24

NETWORK
\\ .
106 //

(57) Abstract: Among other things, we describe a computer-implemented method, performed by a data processing system, of ex-
ecuting a computer program based on a query that is expressed in accordance with a query language applicable to a relational data-
base, the computer program executed based at least in part on data stored in a tangible, non-transitory computer-readable medium,
the executing including receiving a SQL query, where the SQL query includes an identifier associated with a resource that is external
to the data processing system, generating a computer program based on the SQL query, and executing the computer program, caus-
ing transmitting one or more instructions to the resource, the instructions defining operations other than operations of the SQL
query, and receiving data from the resource in response to the instructions.

10

15

20

25

WO 2016/133880 PCT/US2016/018028

OQUERYING A DATA SOURCE ON A NETWORK

CLAIM OF PRIORITY
This application claims priority to U.S. Patent Application Serial No. This
application claims priority to U.S. Patent Application Serial No. 14/752,094, filed on
June 26, 2015 which claims priority to U.S. Patent Application Serial No. 62/117,588,
filed on February 18, 2015, the entire contents of which are hereby incorporated by

reference.

BACKGROUND

This description relates to querying a data source on a network, e.g., using SQL or
another type of query language.

A query to a data source specifies data to be retrieved from the data source. The
query can be provided to the data source (e.g., a database) and a data processing system
associated with the data source (e.g., a database management system) can return the data
specified by the query. Various techniques can be used to parse the query to identify the
data in the data source specified by the query.

SUMMARY

Aspect 1 is a computer-implemented method, performed by a data processing
system, of executing a computer program based on a query that is expressed in
accordance with a query language applicable to a relational database, the computer
program executed based at least in part on data stored in a tangible, non-transitory
computer-readable medium, the executing including receiving a SQL query, where the
SQL query includes an identifier associated with a resource that is external to the data
processing system; generating a computer program based on the SQL query, including
identifying configuration data associated with the resource, the configuration data
specifying at least one value used in communicating with the resource; and executing the
computer program, based on the configuration data, the execution of the computer

program causing transmitting one or more instructions to the resource, the instructions

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

defining operations other than operations of the SQL query, and receiving data from the
resource in response to the instructions.

Aspect 2 is the method of aspect 1 in which the portion of the computer program
includes executable instructions that define a manner in which the resource is accessed,
where the executable instructions operate based on the configuration data provided to the
portion of the computer program.

Aspect 3 is the method of aspects 1 or 2 in which the configuration data is
specified in a catalog that can be updated based on a change to a data format used by the
resource.

Aspect 1 1s the method of any of aspects 1, 2, or 3, including generating parameter
values based on the configuration data; and providing the parameter values to a portion of
the computer program, the portion being capable of communicating with the resource; the
execution of the computer program being based on the parameter values.

Aspect 5 is the method of aspect 4 in which generating parameter values based on
the configuration data includes executing a parameter generator which generates a
parameter file in a format readable by the portion of the computer program, and in which
providing the parameter values to the portion of the computer program includes making
the parameter file available to the portion of the computer program.

Aspect 6 is the method of any of aspects 1 through 5 in which the SQL query
includes a SELECT statement that includes an argument, where at least a portion of the
argument corresponds to the identifier associated with the resource.

Aspect 7 is the method of any of aspects 1 through 6 in which the computer
program includes components representing operations of the SQL query.

Aspect 8 is the method of any of aspects 1 through 6 in which the computer
program is a dataflow graph and the portion of the computer program is a subgraph of the
dataflow graph.

Aspect 9 is the method of any of aspects 1 through 8 in which the resource is
accessed using an application programming interface (API) exposed by the resource.

Aspect 10 is the method of aspect 9 including causing functions of the API to be
executed in response to receiving the SQL query, the functions of the API being

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

executable at the resource, and the instructions transmitted to the resource causing the
functions of the API to be executed.

Aspect 11 is the method of any of aspects 1 through 10 including formatting the
data received from the external resource in the form of a database table.

Aspect 12 is the method of any of aspects 1 through 11 in which the resource is
not a relational database management system.

Aspect 13 is the method of any of aspects 1 through 12 in which the instructions
are transmitted to a facility of the resource that does not return results in response to a
SQL query.

Aspect 14 is the method of any of aspects 1 through 13 in which the data received
from the resource in response to the instructions includes data specified by the SQL
query.

Aspect 15 is the method of any of aspects 1 through 14 including identifying
records and fields in the data received from the resource in response to the instructions,
the records and fields identified based on a record format associated with the resource
that is external to the data processing system.

Other aspects can include corresponding apparatus, systems, and computer
readable storage devices.

Aspects can include one or more of the following advantages. A data processing
system can execute a query that references a resource external to the data processing
system (e.g., one available on the Internet) and is not a relational database management
system.

Data distributed across networks (e.g. large networks such as the Internet) can be
efficiently be made accessible by using database programming languages (e.g. SQL),
even though the data sources in the network may not be responsive to the database
language or may not be relational databases. This may provide a flexible search scheme
that can be especially adapted to the particular data sources and can thereby be used in
networks with data sources that are changing over time. In turn, this may allow
distributed networks to more rapidly be developed (e.g. by scaling up or down the
number of data sources, or by exchanging or modifying data sources) while maintaining

access to the data stored in the current data sources of the developed network.

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS
Figure 1 shows a data processing system that can process a query.
Figures 2A-2C show elements of the data processing system.
Figure 3 shows a user interface for executing a query.
Figure 4A shows a dataflow graph.
Figure 4B shows a subgraph of a dataflow graph.
Figure 4C shows executable code of a component.
Figures SA-5C show contents of a catalog of external resources.

Figure 6A-6D are flowcharts for processes associated with executing a query.

DESCRIPTION

A data processing system can convert a query (such as a SQL query) into a
computer program such as a dataflow graph. The computer program includes components
which, when executed, carry out operations (e.g., data processing operations) equivalent
to operations specified by the query.

Figure 1 shows a data processing system 100 that can process a query 102 to
generate results 104 specified by the query 102. The results 104 are based on data 106
received from an external resource 108 referenced by the original query 102. The data
processing system 100 receives the data 106 in response to instructions 110 that the data
processing system 100 generates based on the query 102 and sends to the external
resource 108.

A query 102 is used to retrieve data specified by the query. One type of query 102
is a structured query language (SQL) query. This description will use SQL queries as an
example, but the techniques described here could also be used with other types of queries
such as multidimensional expressions (MDX) queries.

A SQL query (also referred to as SQL statements) uses commands and syntax
defined by the structured query language (SQL). In general, a query is a statement that
specifies a subset of data in one or more datasets that are indicated in the query. The

specified subset can be returned by a system that processes the query to the system that

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

issued the query. The data specified by the query and returned in response to the query is
generally a portion of the total data stored in the dataset indicated by the query. An
example of a SQL query could be “SELECT last name FROM current_customers.” This
SQL query includes an operation, SELECT, which instructs a system executing the query
to retrieve data according to the arguments of the SELECT operation. In the syntax of
SQL, the arguments are “current_customers,” which is a set of data such as a database
table, and “last name,” which is a column of the database table. When a system interprets
the query and executes the operations of the query, the system will return the data of the
last name column (e.g., each portion of data contained in the last name column) in
response to the query. SQL is described in detail in “SQL Bible, 2°¢ Edition” by Alex
Kriegel and Boris Trukhnov, published April 7, 2008, ISBN 978-0470229064, hereby
incorporated by reference.

A typical example of a resource that returns data in response to a query is a
relational database. A relational database is a collection of one or more database tables
and a system that manages data processing operations such as interpreting SQL queries,
reading data from the tables, writing data to the tables, and performing other kinds of data
processing functions. A database table is a collection of data arranged in a) rows each
representing a record and b) columns each representing a category of data stored in the
rows. For example, a database table called “current customers” may have rows each
representing a current customer of a business and may have columns representing
categories of data such as name of the customer, address of the customer, last product
purchased by the customer, and so on.

A relational database table a kind of database table that stores data in the form of
tuples, each of which is made up of elements of data corresponding to attributes. A tuple
can take the form of a row in the relational database, and an attribute can take the form of
a column in the relational database. Thus, each tuple contains elements of data
(sometimes called attribute values) each corresponding to one of the attributes of the
database table. Further, a grouping of multiple tuples is sometimes called a relation.

A relational database management system (RDBMS) is a system that processes
instructions directed to creating and modifying data stored in the relational database. An

RDBMS includes functionality for interpreting a query and returning data specified by

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

the query. The combination of interpreting a query and returning data specified by the
query is sometimes referred to as executing the query. For example, some RDBMS
implementations include an engine which a) parses a SQL query, b) identifies operations
that are defined by the structured query language, ¢) identifies arguments of the
commands, and d) carries out (e.g., executes) the operations according to the arguments.

As described above, the SQL query “SELECT last name FROM
current_customers, includes an operation, SELECT, which instructs an RDBMS to
retrieve data according to the arguments of the SELECT operation. The arguments are
“current_customers,” which is a database table managed by the RDBMS, and
“last name,” which is a column of the database table. When the RDBMS interprets the
query and executes the operations of the query, the RDBMS will return the data of the
last name column (e.g., each portion of data contained in the last name column) in
response to the query. In some implementations of an RDBMS, a module called a query
planner will identify the operations to be carried out. In this way, SQL is a query
language applicable to a relational database, e.g., applicable to data maintained by an
RDBMS.

The external resource 108 is external to the data processing system 100. (Some
components of the data processing system 100 are shown in detail in figures 2A-2C). For
example, the external resource 108 could be a facility that communicates using a network
(e.g., the Internet). The data processing system 100 communicates with the external
resource 108 by sending data to, and receiving data from, a network. The external
resource 108 may include sets of data such as database tables, data files, or other data
structures stored on storage media, e.g., tangible, non-transitory computer-readable
media.

The data processing system 100 is capable of generating results 104 specified by
the query 102 even if the external resource 108 specified by the query 102 does not
include an RBDMS. Put another way, the external resource 108 need not be an RDBMS
or include an RDBMS among its components. Some examples of the external resource
108 will include an RDBMS while other examples of the external resource 108 will not

include an RDBMS.

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

In use, the data processing system 100 generates a computer program 108
(sometimes referred to as a data processing program) based on the query 102. For
example, the computer program 108 can be generated using an engine (e.g., an engine
that forms a subsystem of the data processing system 100) that takes a query as input and
produces a dataflow graph as output. Although a dataflow graph is used as an example
here, the computer program can be any kind of program that includes program code that
can be executed to carry out instructions represented by the program code.

In this way, a computer program such as the computer program 108 shown in
figure 1 can, when executed, produce the same output as the execution of the
corresponding query 102, e.g., by a database management system such as an RDBMS.
Thus, a query 102 can be written using a query language such as SQL. However, the
systems, e.g., subsystems of the data processing system 100, carrying out the
corresponding data processing operations can execute the computer program 108 in order
to perform operations that are equivalent to operations that would be performed by a
system (e.g., an RDBMS) that executed the query 102. (Generally, an RDBMS does not
have functionality capable of executing the computer program 108). When we say that
two operations are equivalent, we mean that the two operations produce substantially the
same output data when provided with the same input data. As an example, two operations
may produce exactly the same output data when provided with the same input data. As an
example, two operations provided with the same input data may produce output data that
only differs in data formatting, e.g., one operation may produce comma-delimited output
data, and an equivalent operation may produce tab-delimited output data that is otherwise
identical to the comma-delimited output data.

The data processing system 100 can generate results 104 specified by a query 102
even if the query 102 includes a reference 112 to a data source other than an RDBMS.
For example, the query 102 may reference an external resource 108 that is not an
RDBMS. Because the external resource 108 is not an RDBMS, the external resource 108
is not associated with functionality for interpreting queries, e.g., SQL queries. In some
implementations, the data processing system 100 can apply the query to data received

from the external resource 108 if the data processing system 100 has access to a record

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

format of data of the external resource 108. A record format (sometimes called a schema)
is a description of the organization of a body of data.

The external resource 108 could be any source of data that is external to the data
processing system 100. By external to the data processing system 100, we mean that the
resource is not one of the components of the data processing system 100. (Some
examples of components of the data processing system 100 are shown in detail in figures
2A-2C). For example, the external resource 108 could be a facility that communicates
using a network 114 (e.g., the Internet, represented here by a “cloud”). The data
processing system 100 communicates with the external resource 108 by sending data to,
and receiving data from, the network 114. In some examples, the external resource 108
could be a web site or another facility that communicates using Internet-based protocols
such as TCP/IP or UDP/IP.

In some implementations, the external resource 108 may include an RDBMS that
is not visible to the network 114. By this we mean that the external resource 108 may
include a relational database management system that stores data of the external resource
108, but the relational database management system does not accept queries such as SQL
queries that arrive by way of the network 114 except in limited cases (e.g., in cases such
as by way of a system administrator interface that allows a system administrator to
submit queries). For example, if the external resource 108 is a web site available on the
Internet, then the external resource 108 may have a “back-end” relational database that
stores data. In this example, the relational database does not accept SQL queries from a
web browser interface, a mobile application, or other access techniques in use by many or
most users of the external resource 108. Instead, the data of the external resource 108 is
primarily accessed by way of a technique that does not include a SQL query, such as a
hypertext transfer protocol (HTTP) request, or an instruction submitted by way of an
application programming interface (API, described below), or another technique.

Because the external resource 108 does not interpret the query 102, the data
processing system 100 determines instructions 110 to transmit to the external resource
108 that can be interpreted by the external resource 108. The instructions 110 are in a
form other than in the form of the original query 102. For example, if the original query

102 is a SQL query, the instructions 110 are not a SQL query (e.g., the instructions 110

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

do not contain SQL commands or arguments). The data processing system 100 can
determine what instructions 110 to send to the external resource 108 based on the query
102 and based on other information describing the external resource 108. In some
implementations, the data processing system 100 has modules used to interpret the query
102 and generate results 104 specified by the query 102. In some implementations, the
data processing system 100 generates a computer program that includes operations
corresponding to operations that perform the query 102 and, when executed, sends the
instructions 110 to the external resource 108.

Figures 2A-2C show elements of the data processing system 100 that can be used
to execute a query 102 that references an external resource 108. Referring to figure 2A,
hen the query 102 is received by the data processing system 100, the query 102 is
provided to a computer program generation engine 120. The computer program
generation engine 120 generates a computer program 132 that, when executed, carries out
operations corresponding to the query 102. For example, the query 102 may be a SQL
query, e.g., a query that contains one or more commands defined by the structured query
language and arguments associated with the operations. In this example, the computer
program 132 contains executable functionality that is equivalent to operations that
perform the SQL query. When the computer program 132 is executed (e.g., by an
execution engine 140), the computer program 132 executes based on the same arguments
defined in the SQL query.

The data processing system 100 can carry out operations that perform the query
102 (a process sometimes referred to as executing the query 102) using techniques that do
not rely on functionality of an RDBMS, e.g., query interpretation functionality of an
RDBMS, to carry out the operations. Instead, the query can be carried out by executing
the computer program 132. Once the computer program 132 is generated and configured,
no query interpretation functionality of a relational database is used to generate output
based on the query 102. Further, the data processing system 100 can execute the query
102 even if data sources identified in the query 102 are not databases that operate using
queries in the form of the query 102. For example, the external resource 108 may not be
configured to accept instructions specified in the form of SQL. If the query 102 is a SQL

query and references the external resource 108 then the data processing system 100 can

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

receive the query 102 and determine what operations should be performed, in response,
when the computer program 132 is configured and executed, so that the output of the
computer program 132 is equivalent to output of an execution of the query 102.

In this way, a SQL query can be used to retrieve data from systems other than
relational database systems. Because SQL is a common language used to specify queries,
many users know how to write SQL queries and many legacy systems are configured to
automatically generate SQL queries. The techniques described here allows users and
legacy systems to write or generate SQL queries, and the SQL queries can be carried out
to retrieve data from external resources that do not have functionality for interpreting
SQL queries. Further, data can be retrieved from an external resource by the data
processing system 100, rather than copying data from the external resource to a relational
database that executes SQL queries.

In some implementations, the computer program 132 includes a dataflow graph.
A dataflow graph is a computer program that contains components representing
operations to be performed on input data and links between the components (sometimes
called nodes) representing flows of data. The operations represented by the components
generate output data based on the input data by processing the input data. A component
can provide input data to and receive output data from other components if the
component is linked to the other components, in which each link between two
components represents a flow of data from one of the components to the other
component. A subset of components of a graph (e.g., one or more components of the
graph) is sometimes referred to as a subgraph of the graph.

When the dataflow graph is executed by a graph-based processing system, each of
the components is executed, e.g., a computer program or portion of a computer program
is executed and carries out the operation represented by the component. During execution
the dataflow graph receives input data which is processed (e.g., operated on by the
operations of the dataflow graph’s components) to generate output data.

Some or all of the components of a dataflow graph are each associated with
information for invoking executable program code to perform the operation associated
with the component. In some implementations, a data structure representing the dataflow

graph can include data referencing executable code. The data structure can be used to

- 10-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

instantiate the dataflow graph, by which we mean the data structure can be used to
execute code that carries out operations associated with the dataflow graph. For example,
a component may be associated with a reference to a computer program stored in
computer-readable storage containing computer-executable instructions for carrying out
the operation associated with the component, e.g., processing and outputting data.

In some examples, some or all components of a dataflow graph are each
associated with information for making data available to the program code. For example,
a component may be associated with function calls that can be invoked to deliver data to
the executable program associated with the component, or the component may be
associated with network ports that can receive data that is delivered to the executable
program associated with the component, or the component may be associated with
another technique for delivering data to the executable program associated with the
component. In this way, each component can receive, process, and output data.

In some examples, a dataflow graph is parameterizable, by which we mean a
dataflow graph can be configured using values of parameters when the dataflow graph is
prepared for execution. An instance of a dataflow graph that is provided parameter values
is sometimes called a parameterized instance of the dataflow graph. A parameter is a type
of data that can be changed to change the behavior of the program to which the parameter
belongs. For example, a value of a parameter can be provided to the program in order to
change the way the program processes input data to produce output data. In the case of a
dataflow graph, each component of a dataflow graph may be associated with one or more
parameters. Similarly, one or more of the parameters may be associated with a single
component or with multiple components.

One example of a graph-based system is described in detail in U.S. Publication
No. 2007/0011668, titled “Managing Parameters for Graph-Based Applications,”
incorporated herein by reference. A system for executing graph-based computations is
described in U.S. Patent 5,966,072, titled “Executing Computations Expressed as
Graphs,” incorporated herein by reference. Further, components of a dataflow graph can
be substituted for operations of a query 102. Techniques in accordance with this
substitution are further described in U.S. Publication No. 2011/0179014A1, titled
“Managing Data Queries,” and U.S. Publication No. 2012/0284255A1, also titled

-11-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

“Managing Data Queries,” incorporated herein by reference. In some implementations, a
dataflow graph can be produced from a query 102.

Referring to figure 2B, n some examples, the computer program 132 includes a
portion 134 that, when executed, communicates with the external resource 108. For
example, the portion 134 may include executable functionality (e.g., executable program
code) that is configured to transmit data to, and/or receive data from, the external
resource 108. When the 134 is executed (e.g., program code of the portion 134 is
interpreted and carried out by an execution engine), the computer program 134 transmits
data to and/or receives data from the external resource 108. In some implementations, the
portion 134 (as well as other portions of the computer program 132) may include
program code that was provided to the data processing system 100 and is retrieved based
on the identity of the external resource 108. For example, an application developer (not
shown) may have written the program code of the portion 134 to comply with technical
requirements of the external resource. In some implementations, the technical
requirements include an application programming interface (API), described below. In
some implementations, the portion 134 is a component of a dataflow graph, or a subgraph
of a dataflow graph.

In some implementations, the computer program generation engine 120 generates
the computer program 132 by accessing one or more pre-existing portions of a computer
program and assembling the portions to form the computer program 132. For example,
the computer program generation engine 120 may have access to a component library
126 that stores pre-existing components, e.g., pre-existing portions of executable program
code. For example, a pre-existing component may be a component suitable for inclusion
in a dataflow graph, or may be another graph (e.g., a subgraph) suitable for inclusion in a
dataflow graph.

In some implementations, the component library 126 may include pre-existing
components each of which corresponds to a particular kind of external resource 108. For
example, the component library 126 may include a component 124 that corresponds to an
external resource 108 indicated by the reference 112 in the query 102. In some examples,
the component 124 may have been developed by a developer for the purpose of enabling

the data processing system 100 to access the external resource 108 corresponding to the

- 12-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

reference 112. A component 124 can be chosen from the component library 126 based on
the identity of the external resource 108.

When the computer program generation engine 120 receives one or more
components 124 (e.g., from the component library 126), the computer program
generation engine 120 also configures the component 124 or components. In doing so,
the computer program generation engine 120 generates a computer program 132 with
configured portions. For example, the configured computer program 132 includes a
configured portion 134 corresponding to the component 124 or components that include
executable functionality for communicating with the external resource 108.

In some implementations, the configured portion 134 can be configured based on
properties 136 received by the computer program generation engine 120. The properties
136 include data describing characteristics of the external resource 108. The data is used
by the computer program 132 to determine how to send and receive data from the
external resource 108. In some examples, the external resource 108 may send and receive
data in a particular format. In these examples, the properties 136 can include a
specification of the format of data to be sent and received from the external resource 108.
In some examples, the external resource 108 may require the use of a credential such as a
username and/or password. In these examples, the properties 136 can include a
specification of the identifier. In some examples, the external resource 108 may be
accessible at a particular address or other location. For example, the external resource
108 may be accessible at a particular IP (Internet Protocol) address, or a particular server
name, or another type of address. In these examples, the properties 136 can include the
address information.

The properties 136 can be received from a source that can be updated, e.g, in
response to changes in operation of the external resource 108. For example, the properties
136 may be stored in a catalog 122 containing data representing properties corresponding
to external resources 108 with which the data processing system 100 is capable of
communicating. The catalog 122 could be a database, a flat file, or any other type of data
storage mechanism. In some implementations, the catalog 122 is can be read from and
written to by multiple entities at the same time. For example, the catalog 122 could be

implemented as a database or other data storage technique that has functionality for

- 13-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

managing concurrent data read and write operations. One example of functionality for
managing concurrent data read and write operations is the use of locks or semaphores that
indicate when a portion of data is being written to. One type of locking functionality that
could be used is two-phase locking, in which one or more locks are acquired, a read or
write operation is carried out, and then the locks are released. By managing concurrent
data read and write operations, a single catalog 122 can be used by many instances of the
generation engine 120. Further, a single catalog 122 can store properties 136 for many
types of external resources 108. The properties 136 associated with any of the external
resources 108 can be updated at any time, even if the number of external resources 108
supported by the catalog 122 is large enough such that the properties 136 are frequently
accessed (e.g., such that at least some properties stored in the catalog 136 are read from
or written to several times or more every second).

In some examples, if the external resource 108 changes in operation, any
executable code for communicating with the external resource 108 (e.g., executable code
that makes up part of an executable component 124) need not be changed; only the
properties are updated. For example, the external resource 108 may change the way in
which it provides output data to other systems. The properties 136 enable the computer
program generation engine 120 to configure the portion 134 of the configured computer
program 132 in a way that the configured portion 134 will be configured to accept data in
the format that will be received from the external resource 108. Further, the configured
computer program 132 can generate instructions 110 to be sent to the external resource
and, when interpreted by the external resource 108, will cause the external resource 108
to send back data 106 responsive to the instructions 110. The instructions 110 can be
formatted by the configured portion 134 based on a format of instructions specified by
the properties 136. In some implementations, the format of instructions is derived from
data stored in the catalog 122.

In some implementations, the catalog 122 includes information about record
formats of data 106 of external resources 108 with which the data processing system 100
is capable of communicating. For example, the computer program 132 can use a record
format 128 stored in the catalog 122 to interpret data 106 received from a corresponding

external resource 108. In some examples, a record format 128 stored in the catalog 122

- 14-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

specifies a structure of data 106 that is received from the external resource 108. The
record format may specify a structure of data in which the data is organized into records,
such that each record has multiple fields. The computer program 132 can use the record
format 128 to identify records and fields in data 106 received from the external resource
108. In some examples, the computer program 132 can use the record format 128 to
interpret the data 106, for example, to translate the records and fields of the datato a
different format (e.g., a format to be used in output of the computer program 132).

In some implementations, the computer program 132 can use the record format
128 of the catalog 122 to output data in a form that corresponds to the form expected of
results of a SQL query. In some examples, a relational database management system
returns data in the form of records and fields, e.g., in response to a SQL query. Thus, if
the computer program 132 can also identify records and fields in data 106 from an
external resource 108, the computer program 132 can provide output in the form of
records and fields in response to a SQL query. This can be performed even if the data 106
received from the external resource 108 does not take the form of data typically received
from a relational database, e.g., a database table.

In some implementations, the computer program 132 can be configured with
parameters. For example, the parameters may be values that can be changed to change the
behavior of the program. As a specific example, a parameter may be “filename” and the
value of the parameter could be the location of a file in a file system. The value of the
parameter can be changed to a location of a different file to configure the program to
access the different file. Two instances of the same program (e.g, instances of the same
executable program code) can be configured with different parameter values, which will
change the behavior of the two instances of the same program.

Referring to figure 2C, the computer program generation engine 120 can use the
properties to generate parameter values 138 which are used to configure the portion 134
of the configured computer program 132. In some examples, the computer program 132
may have a parameter corresponding to each of the properties 136. For example, the
computer program 132 may have a parameter called “record format” which is used to
determine what format in which the computer program 132 will receive data 106. The

computer program generation engine 120 can generate a parameter value 138 for the

-15-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

“record format” parameter based on the record format received as part of the properties
136 for the external resource 108. As another example, the computer program 132 may
have a parameter called “username” which is used to supply a username when connecting
to the external resource 108. The computer program generation engine 120 can generate a
parameter value 138 for the “username” parameter based on username data received as
part of the properties 136 for the external resource 108.

In some implementations, the parameter values 138 are provided to the computer
program 132 in the form of a parameter file in a format readable by the computer
program 132. For example, the parameter file may be formatted in a data manipulation
language (DML).

In some implementations, the computer program 132 is generated based on
executable code associated with the external resource 108. For example, the catalog 122
may specify a location of executable code that, when the executable code is configured
(e.g., using configuration data such as the properties 136), then the executable code can
be used to communicate with the external resource 108. In this way, if the executable
code is updated, e.g., by a system administrator or other entity who is authorized to
change executable code, the catalog 122 stores the location of the updated executable
code. When the computer program generation engine 120 generates the computer
program 132, the computer program generation engine 120 can access the catalog to
determine a location of the most up-to-date version of the executable code.

Once the computer program 132 is generated, an execution engine 140 receives
the computer program 132. The execution engine 140 then executes the computer
program 132, e.g., carries out instructions specified by program code associated with the
computer program 132. When executed, the computer program 132 (e.g., the configured
portion 134 of the computer program) generates instructions 110 and transmits the
instructions 110 to the external resource 108. In some implementations, the external
resource 108 exposes an API 142 (application programming interface) which is used to
send instructions to and receive data from the external resource 108. In general, the API
142 can be any facility which enables the computer program 132 to interact with the
external resource 108. For example, the API 142 may specify types of instructions that

the external resource 108 is configured to receive and carry out. An example of an

- 16-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

instruction typically specified by an API is a function call. A function is a portion of
executable program code. When using a function call, the computer program 132
transmits, as part of the instructions 110, the name of a function and arguments to be
passed to the function (e.g., used by the executable program code of the function). The
instructions 110 may include many function calls, or other types of instructions, or both.

In some implementations, if the computer program 132 is a dataflow graph, the
execution engine 140 includes a specialized operating system, sometimes called a graph
operating system. A graph operating system is a computer program capable of executing
the operations underlying individual components of a dataflow graph. For example, if a
component of a dataflow graph represents an operation to be carried out by a data
processing system, the graph operating system is tasked with instructing a data
processing system to carry out the operation.

After sending the instructions 110 to the external resource 108, the computer
program 132 receives data 106 from the external resource responsive to the instructions
110. The execution engine 140 then formats the received data 106 into results 104 of the
query 102. In this way, the data processing system 100 can execute the query 102 to
generate results 104 specified by the query.

In some implementations, the external resource 108 provides the data 106 in a
format such as JSON (JavaScript Object Notation), which specifies data in the form of
attribute-value pairs, or XML (Extensible Markup Language) which specifies data
demarcated by tags indicating a category for the data. In some implementations, the
record format 128 for the data 106 is stored in the catalog 122 in association with other
data associated with the external resource 108 and can be used to interpret the JSON or
XML data.

When the computer program 132 is executed by the execution engine 140, the
computer program 132 (e.g, the results 104) is equivalent to output of a system (other
than the execution engine 140) that executes the query 102 but does not execute the
configured computer program 132. In this way, the computer program 132 is an example
of a computer program that corresponds to the query 102. In some implementations, the
computer program 132 formats the results 104 in the form of a database table 144. In this

way, the data processing system 100 can execute a query 102, e.g., database query such

-17-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

as a SQL query) and provide the same kind of output that would be provided if a system
such as an RDBMS executed the query 102 and provided results specified by the query.

Further, while a SQL query is typically used to retrieve data stored in a database
table, the query 102 shown here can be used to retrieve data stored in any of several
possible forms. The data 106 received from the external resource 108 may be in a form
other than a database table (e.g., a relational database table), for example, a flat file. A
flat file is a data file that does not contain structural relationships between elements of
data. The data of the flat file may be capable of being represented in the form of records
and fields. In some examples, the data 106 received from the external resource 108 may
be in a format native to the external resource 108, by which we mean the data 106 may be
in a format used by the external resource 108 to store and process data.

Figure 3 shows a user interface 300 for executing a query. This user interface 300
is associated with data processing system 100 shown in figures 1 and 2. This user
interface 300 enables a user (not shown) to enter a SQL query 302 in a text box 304 of
the user interface 300. The SQL query 302 includes a ‘SELECT’ command 306 and an
argument 308 that is an identifier for a data source. Here, the argument 308 is
“web.wikipedia.” The argument “web.wikipedia” is associated with an external resource
(e.g., the external resource 108 shown in figure 1).

In some examples, the data processing system 100 may store a list of identifiers
and a list of external resources associated with each identifier. A number of techniques
could be used to associate identifiers with external resources. In some examples, referring
to figures 2B-2C, the catalog 122 may store a list of identifiers, each corresponding to an
external resource. For example, each identifier may correspond to references 112
included in queries 102 submitted to the data processing system 100. For example, the
reference 112 may be the argument 308 “web.wikipedia” shown in the query 300 in
figure 3. In this way, a reference 112 can be extracted from a query 102 and used to look
up a corresponding external resource in the catalog 122. Further, the catalog may
associate each identifier with a respective set of properties 136. The catalog 122 may
associate each identifier with a reference to one or more components in the component
library 126. In this way, a reference to an external resource can be used to identify, in the

catalog 122, a corresponding set of properties and a reference to a corresponding

- 18-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

component (e.g., a component 124 as shown in figures 2B-2C). As another example, the
component library 126 may store identifiers, e.g., may store an identifier for each
component 124, so that an identifier (such as the name of an external resource) can be
used to identify one or more corresponding components (e.g., a component 124 as shown
in figures 2B-2C).

As shown in figure 3, “web.wikipedia” is an identifier that references a web site
called WIKIPEDIA available on the Internet via hypertext transfer protocol (HTTP).
When a user clicks a Run Query button 310, the user interface 300 causes the data
processing system 100 (figure 1) to execute the SQL query 302.

Once the SQL query 302 is executed, the results 312 of the execution are shown
in the user interface 300. In this example, the results 312 are displayed in the form of a
database table. The results 312 include rows 314 and columns 316 containing elements of
data. Although the external resource associated with the argument 308 is not a relational
database, the data processing system 100 enables the query 302 to be executed using the
external resource (here, WIKIPEDIA) as a data source, and enables the results 312 to be
formatted as a database table. For example, the results 312 can be formatted as a database
table by identifying records and fields in the data returned by WIKIPEDIA. The
identification can be performed by using a record format 128 (figures 2B-2C) associated
with WIKIPEDIA. Here, the query 302 included a ‘where’ command 318 indicating a
criteria that must be satisfied by the results 312. The command 318 has an argument 320
of “subject = ‘SQL’” (this type of argument is sometimes referred to as a predicate)
which indicates that the results must include the term “SQL” in the text. Thus, the results
312 all include the term “SQL”.

Figure 4A shows a dataflow graph 400 generated in response to the execution of
the query 302. The dataflow graph 400 is an example of the configured computer
program 132 shown in figures 2A-2C. In some implementations, the dataflow graph 400
may be a subgraph of another dataflow graph containing other components. When the
query 302 is executed, the data processing system (figures 1 and 2) generates and
configures the dataflow graph 400. Further, the execution engine 140 (figures 2A-2C)
executes the dataflow graph 400 to generate the results 312 shown in figure 3. The

dataflow graph 400 includes a component 402 representing an external resource 108

-19-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

(figure 1) and a component 404 representing an input to the external resource 108. Here,
the component 402 represents WIKIPEDIA. For example, the components 402, 404 may
together be an example of the configured portion 134 shown in figures 2B-2C. When the
dataflow graph 400 is executed (e.g., by a graph operating system), the component 402
transmits instructions (e.g. the instructions 110 shown in figures 1 and 2) to the external
resource 108. The instructions are based on input data received from the input component
404. For example, WIKIPEDIA may expose a search query function which executes
plain text queries submitted via hyptertext transfer protocol (HTTP). In this example, the
component 402 is configured to transmit a plain text search query to WIKIPEDIA. For
example, the SQL query 302 included an argument 320 of “subject = ‘SQL’.” Here, the
input component 404 can be configured to provide the term “SQL” to the component 402
that communicates with WIKIPEDIA. In turn, the component 402 is configured to
transmit the term “SQL” (e.g., received from the input component 404) as part of the
plain text search query. In response to the plain text search query, the component 402
receives results via HTTP, which may be formatted according to hypertext markup
language (HTML). The component 402 is also configured to parse the received HTML
data and format the parsed data into a form such as a database table, e.g., the results 312
shown in figure 3.

In order to communicate with the WIKIPEDIA, the components 402, 404 are
configured using properties (e.g., the properties 136 shown in figures 2B-2C) specific to
WIKIPEDIA. For example, the properties 136 may include information describing the
format in which WIKIPEDIA provides search results, e.g., the particular HTML
formatting used in the search results. In this way, if WIKIPEDIA changes the format of
its output, the properties 136 (e.g., stored in the catalog 122 shown in figures 2B-2C) can
be updated (e.g., updated by an administrator user of the catalog 122) to reflect the
updated format. When the component 402 that communicates with WIKIPEDIA is
configured, the most recent version of the properties 136 can be accessed and used.

The components 402, 404 are configured with parameter values based on the
properties. As an example, the component 404 may have a parameter called “input_text,”

and so the component 404 can be configured to use the text string “SQL” as the value for

-20-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

the “input_text” parameter. In this way, the criteria defined by the argument 320 defined
in the SQL query is used when querying WIKIPEDIA.

In some implementations, the component 402 that communicates with an external
resource such as WIKIPEDIA is made up of multiple executable components. In some
examples, the component 402 may include one or more components that include
executable instructions for establishing a network connection with one or more network
resources. For example, the network resources may be servers that can provide data
originating from WIKIPEDIA.

In some examples, the component 402 may include one or more components that
include executable instructions for parsing data received from the external resource. For
example, data received from WIKIPEDIA may include both data responsive to the SQL
query 302 and other kinds of data, such as markup data (e.g., tags such as XML tags),
metadata such as data describing a size or character set of the received data, or other data
not responsive to the query. The components that include executable instructions for
parsing data received from the external resource can process the data received from the
external resource to separate the data responsive to the query from the data not responsive
to the query. The data not responsive to the query may be discarded or used for another
purpose. For example, data describing a size of the received data can be used to
determine that an expected quantity of data has been received from the external resource.

In some examples, the component 402 may include one or more components that
include executable instructions for formatting data received from the external resource.
For example, the component 402 may provide output data (e.g., to other portions of the
dataflow graph 400) that is formatted in a particular manner. The output data could be,
for example, formatted as multiple lines of text, or multiple elements of an array, or
another type of format. In some implementations, the components that include executable
instructions for formatting data received from the external resource can receive parsed
data (e.g., the data parsed by those components which include executable instructions for
parsing data received from the external resource) and format the parsed data in a format
specified for the output data of the dataflow graph 400. For example, the format specified
for the output data of the dataflow graph 400 may be a format of a database table.

-21-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

One type of component made up of multiple components is called a subgraph.
Figure 4B shows an example of a subgraph 410 containing components 412a-g that make
up the component 402 that communicates with WIKIPEDIA. The components 412a-g
each include executable functionality that carries out a portion of the computational
operations needed to communicate with WIKIPEDIA. For example, one component 412a
is a “Call Web Service” component that includes executable code for communicating
with a server on a network, e.g., a server that uses hypertext transfer protocol (HTTP).
The “Call Web Service” component 412a transmits requests to the server and receives
data in response to the request. In some implementations, the “Call Web Service”
component 412a transmits a Simple Object Access Protocol (SOAP) request to the
external resource. In some implementations, “Call Web Service” component 412a
accesses an application programming interface (API) of the external resource.

The “Call Web Service” component 412a receives input specifying data to be
transmitted in a request.

A replicate component 412b and a reformat component 412¢ prepare the data to
be transmitted by the “Call Web Service” component 412a. For example, the replicate
component 412b may receive data from the input component 404 shown in Figure 4A. In
some implementations, the reformat component 412¢ can then remove data that is
inappropriate to transmit to the external resource. For example, some of the data may be
inappropriate to transmit to the external resource, e.g., some of the data could be a search
term that can be transmitted to search functionality of the external resource. In some
examples, some of the data could be data that is not appropriate to transmit to the external
resource. For example, the external resource may lack functionality for processing the
data in a manner that is responsive to the original query (e.g., the query 102 shown in
figure 1). As an example, some of the data may be a regular expression, and the external
resource may lack functionality for evaluating regular expressions received by the search
functionality of the external resource.

A second reformat component 412d changes a format of the data received from
the external resource, e.g., parses and formats the data provided as output by the “Call
Web Service” component 412a. For example, the data received from the “Call Web

Service” component 412a may be tagged data such as XML data. The reformat

-22-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

component 412d can extract the data demarcated by the tags and output he extracted data
in a format that does not use XML tags. The reformat component 412d may also remove
data not needed in the output data. For example, the data discarded may be XML tags, or
data demarcated by XML tags but that is not responsive to the query. In some
implementations, the reformat component 412d uses a record format 128 (figures 2B-2C)
to interpret the structure of the data received from the “Call Web Service” component
412a, e.g., identify records and fields in the data received from the “Call Web Service”
component 412a, before reformatting the data.

The replicate component 412b can also provide data to a third reformat
component 412e. In some implementations, this reformat component 412e identifies the
data that is inappropriate to transmit to the external resource that was remove by the first
reformat component 412¢. Here, the data that is inappropriate to transmit to the external
resource can be provided by the reformat component 412e to a join component 412f
which combines data received from two components.

The second reformat component 412d also provides its output to the join
component 412f. Thus, the join component 412f provides output representing input from
the second reformat component 412d and the third reformat component 412e.

A filter component 412g receives the output of the join component 412f. The
filter component 412g removes data not responsive to the query (e.g., the query 102
shown in figure 1). As an example, the “Call Web Service” component 412a may output
data not responsive to the original query because the “Call Web Service” component
412a was not provided one or more elements (e.g., portions) of the query. The one or
more elements of the query may be a regular expression, which may not be appropriate to
provide to the external resource represented by the “Call Web Service” component 412a.
Here, the filter component 412g could receive the regular expression (e.g., as output by
the third reformat component 412e to the join component 412f, and as removed by the
first reformat component 412¢ from the output provided to the “Call Web Service”
component 412a). The filter component 412g can filter the data first received from the
“Call Web Service” component 412a based on the regular expression. Although the

example of a regular expression is used here, the filter component 412g could filter the

-23-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

data based on other types of elements of the query or other types of criteria, e.g., criteria
not specified in the query.

Each of the components of the subgraph 410 shown in figure 4B has its own
executable code that is carried out when the subgraph 410 is executed. For example,
Figure 4C shows an example of the executable code 440 that makes up the Call Web
Service component 412 shown in figure 4B. The executable code 440 includes code 442
for formatting requests to the external resource, code 444 for parsing output from the
external resource, code 446 for transmitting a request to the external resource, and code
448 for providing output from the external resource to other components.

As described above with respect to figures 2B-2C, a catalog 122 contains data
corresponding to external resources 108 that the data processing system 100 is capable of
communicating with. The data stored in the catalog 108, e.g, the properties 136, is used to
configure a computer program 132.

As shown in figure SA, in some implementations, a user interface 500 can be used
to view and edit data stored in the catalog 122. The user interface 500 enables a user
(e.g., an administrator of the catalog 122) to view and edit the data for an entry 502 in the
catalog. An entry 502 of the catalog stores data relevant to a particular external resource,
e.g., WIKIPEDIA. Although one example of a user interface 500 and an entry 502 is
showed here, other types of catalogs may have other types of entries, and the other types
of entries may contain different kinds of data.

This entry 502 includes data such as general information 504a about the entry.
The entry 502 can also include a record format 504b of the external resource associated
with the entry 502, which specifies the format of data received from the external
resource, as described below. The entry 502 can also include indices 504c for the entry
which specifies names for data that can be used to query the external resource associated
with this entry 502, as described below. For example, the entry 502 can also include keys
504d for the entry. A key is used for data sources, such as relational databases, that store
data in the form of records. A key an attribute for which record’s stored value for the
attribute is unique. The entry 502 can also include parameters 504e for the entry. In some
implementations, referring to figure 2C, parameters. e.g., the parameters 138, are used to

configure a computer program 132. In some implementations, the parameters 504e

-24-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

include data values for the properties 136 shown in figures 2B-2C, which include data
describing characteristics of the external resource associated with this entry 502. For
example, the parameters 504e may include configuration data such as credentials (e.g., a
username and password) used to gain authorized access to an external resource 108. The
entry can also include permissions 504f for the entry 502, which indicate what entities
(e.g., what users of the user interface 500 such as administrators of the catalog 122) can
access and/or modify the entry 502. The entry can also include statistics 504g for the
entry 502, which specify statistical data about the external resource 108 associated with
this entry 502, e.g., statistical data such as the quantity of data available at the external
resource 108.

As shown in figure SA, the general information 504a of the entry includes a
reference 506 to a path of stored executable code. In some implementations, referring to
figure 1, the stored executable code is the portion 134 of the computer program 132 that
communicates with the external resource 108. The reference 506 can be used by the
generation engine 120 to access the stored executable code and use the stored executable
code to generate the computer program 132.

As shown in figure 5B, the entry 502 can also include a record format 504b of the
external resource associated with the entry 502. The record format 504b may be an
example of the record format 128 shown in figures 2B-2C. The record format 504b
specifies the format of data received from the external resource. For examine, the record
format 504b can include an embedded record format 508 and fields 510. The fields 510
specify names for data transmitted to and received from the external resource. For
example, here the fields 510 are “subject,” which is a name for data transmitted to
WIKIPEDIA (e.g., a subject used in a query to the encyclopedia), and “line” which is a
name for data received from WIKIPEDIA (e.g., lines of an encyclopedia entry
corresponding to a subject). The embedded record format 508 specifies format
information about the data provided to and received from the external resource. For
example, this embedded record format 508 indicates that the “subject” and “line” fields
are formatted using UTF-8, which is a particular kind of Unicode character encoding.

As shown in figure 5C, the entry 502 can also include indices 504c¢ for the entry

which specifies names for data that can be used to query the external resource associated

-25-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

with this entry 502. For example, this entry 502 has an index 514 called “subject.” Thus,
the external resource is configured to receive a data value for “subject” and return data
responsive to the data value. For example, WIKIPEDIA may be configured to return
encyclopedia entries where the data value appears in a “subject” field associated with
each entry.

Figure 6A shows a flowchart representing a procedure 600 for executing a query.
The procedure 600 can be carried out, for example, by components of the data processing
system 100 shown in figure 1.

The procedure receives 602 a SQL query. For example, the SQL query can be an
example of the query 102 shown in figure 1. The SQL query includes an identifier
associated with a resource that is external to the data processing system. Further, this
resource is not a relational database management system. The resource could be the
external resource 108 shown in figure 1. An example of an identifier is the argument 308
shown in figure 3.

The procedure generates 604 a computer program based on the SQL query. The
computer program could be the computer program 132 shown in figures 2A-2C. In some
examples, the computer program includes components representing operations of the
SQL query. In some examples, the computer program is a dataflow graph and the portion
of the computer program that communicates with the external resource is a component or
a subgraph of the dataflow graph. An example of a dataflow graph 400 is shown in figure
4A. In some implementations, the procedure 610 shown in figure 6B can be carried out
during the generation of the computer program, e.g., to configure one or more portions of
the computer program during generation of the computer program. In some
implementations, the procedure 630 shown in figure 6D can be carried out to generate a
data structure that can be used to instantiate the computer program, e.g., a dataflow
graph.

The procedure executes 606 the computer program, e.g., based on parameter
values used to configure the computer program. For example, the computer program may
be executed by the execution engine 140 shown in figures 2A-2C. In some
implementations, the execution of the computer program corresponds to the procedure

620 shown in figure 5C.

-26-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

Figure 6B shows a flowchart representing a procedure 610 used to configure a
portion of a computer program when generating a computer program. In some
implementations, the procedure 610 represents steps for generating 604 a computer
program as shown in figure 6A. The procedure 610 can be carried out, for example, by
components of the data processing system 100 shown in figure 1, such as the computer
program generation engine 120. In some implementations, a computer program is
generated by assembling multiple portions. Each portion may be configured while the
computer program is being assembled. This procedure 610 can be used to configure a
portion of the computer program being assembled.

The procedure identifies 614 configuration data associated with an external
resource. For example, the external resource could be the external resource 108 shown in
figures 1 and 2. The configuration data specifies information used by a computer program
to access the external resource and receive data from the external resource. In some
implementations, the configuration data specifies a format of data to be received from the
resource, e.g., the record format 128 shown in figures 2B-2C. In some implementations,
the configuration data specifies data used to access the resource on a network. For
example, the configuration data can contain credentials, such as a username and
password, used to obtain authorized access to data of the external resource, and/or the
configuration data can contain a network address such as a host name or uniform resource
locator (URL), and/or the configuration data can contain other kinds of data. For
example, the configuration data could be an example of the properties 136 shown in
figures 2B-2C. In some examples, the configuration data is specified in a catalog that can
be updated based on a change to a data format used by the resource.

The procedure generates 616 parameter values based on the configuration data.
For example, the parameter values may be the parameter values 138 shown in figures 2C.
In some implementations, a parameter generator receives data and generates a parameter
file in a format readable by the computer program. The parameter file is then provided to
the computer program. For example, the parameter generator could be a portion of the
computer program generation engine 120 shown in figure 1. The data received by the

parameter generator could be data of the properties 136 shown in figures 2B-2C. For

-27-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

example, the parameter generator may parse the properties 136 to determine the
parameter values 138.

The procedure provides 516 parameter values to a portion of the computer
program. The portion is capable of communicating with the resource. For example, the
portion of the computer program may be the configured portion 134 shown in figures 2B-
2C. The portion of the computer program includes executable instructions that define a
manner in which the resource is accessed. Further, the executable instructions operate
based on the parameters provided to the portion of the computer program.

The procedure 610 can be carried out for any portion of a computer program
being generated. Once all portions of the computer program have been configured, the
computer program is ready for execution.

Figure 6C shows a flowchart representing a procedure 620 for executing a
computer program that corresponds to a query. In some implementations, the procedure
represents steps for executing 606 a computer program as shown in figure 6A. The
procedure 620 can be carried out, for example, by components of the data processing
system 100 shown in figure 1, such as the computer program execution engine 140. The
computer program could be the computer program 132 shown in figures 2A-2C. For
example, the procedure 620 can be initiated when the computer program execution
engine 140 receives the computer program 132 and carries out operations corresponding
to executable code of the computer program 132.

The execution of the computer program causes one or more instructions to be
transmitted 622 to an external resource. For example, the external resource can be the
external resource 108 shown in figures 1 and 2. The instructions define operations other
than operations of a SQL query corresponding to the computer program. For example, the
instructions may be the instructions 110 shown in figure 1. In some examples, the
instructions are transmitted to a facility of the external resource that does not return
results in response to a SQL query, e.g., the instructions are not transmitted to a facility of
the external resource that receives a SQL query as input, evaluates the SQL query, and
responds with data specified by the SQL query. In this way, in some examples, the
instructions do not include SQL instructions such as SQL commands or arguments. In

some implementations, the resource is accessed using an application programming

-08-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

interface (API) exposed by the resource. An example of the API 142 is shown in figure
2C.

The execution of the computer program causes data to be received 624 from the
resource in response to the instructions. For example, the data could be the results 104
shown in figure 1. The results may be formatted in the form of a database table, e.g., the
database table 144 shown in figure 1. The data received from the resource in response to
the instructions includes data specified by the SQL query. In this way, the received data
is the same as data that would have been received from the external resource if the
resource were provided a SQL query and, in response, the external resource returned data
specified by the SQL query.

Figure 6D shows a flowchart representing a procedure 630 for generating a data
structure in a computer instantiating a datatlow graph that corresponds to a query. For
example, the dataflow graph could be the computer program 132 shown in figures 2A-
2C. An example of dataflow graph 400 that corresponds to a query is shown in figure 4A.

A request to a query planner based on the query is generated 632. A query planner
is a system that generates data that represents steps that can be carried out to execute a
query. A query planner often generates the data in the form of steps that can be carried
out by an RDBMS.

A query plan generated by the query planner based on the request is received 634.
A query plan is data that represents a description of one or more steps to be performed by
a system managing a relational database, e.g., an RDBMS.

A data source is identified 636, e.g, based on the query. The data source can be an
external resource, e.g., the external resource 108 shown in figures 1 and 2. The
identification could be made based on a reference represented in the query, e.g., the
reference 112 shown in figure 1. In some examples, the data source is identified based on
an argument in the query.

An executing system other than a system managing a relational database is
identified 638. The executing system could be a system that executes dataflow graphs.
For example, the executing system could be the execution engine 140 shown in figures
2A-2C. In contrast, an example of a system managing a relational database is an

RDBMS.

-29-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

A data structure instantiating a dataflow graph is generated 640. As described
above with respect to figures 2A-2C, a dataflow graph is a computer program that
contains components representing operations to be performed on input data and links
between the components (sometimes called nodes) representing flows of data.

The data structure includes a node that represents at least one operation to be
executed. The node is associated with information usable by an executing system to
invoke executable program code to perform the operation. The node is also associated
with information usable by an executing system to make data available to the program
code. At least one link of the dataflow graph represents output data of an operation of the
node being provided as input data to an operation of another node of the dataflow graph.

The operation is chosen based on a step described by the query plan. In some
implementations, the operation includes accessing data available at the data source. For
example, the component 402 of the graph 400 shown in figure 4A is an example of a
node that accesses data available at a data source external to the system executing the
dataflow graph.

When the generated 640 dataflow graph is executed, program code based on the
dataflow graph can be executed on the identified executing system. Further, data can be
received from the data source. For example, the data can be received 624 as shown in
figure 6C.

In some implementations of the procedures 600, 610, 620, 630 an API is used.
When an API is used, the procedure 600 includes causing functions of the API to be
executed in response to receiving the SQL query. The functions of the API are executable
at the external resource. Further, the instructions transmitted to the resource (e.g., in the
procedure 620 shown in figure 5C) cause the functions of the API to be executed. In this
way, a SQL query can be used to query a resource that is not a relational database
management system and does not interpret SQL queries.

The generation engine 120 and/or execution engine 140 shown in figure 1 may be
hosted, for example, on one or more general-purpose computers under the control of a
suitable operating system, such as a version of the UNIX operating system. For example,
this can include a multiple-node parallel computing environment including a

configuration of computer systems using multiple central processing units (CPUs) or

-30-

10

15

20

25

30

WO 2016/133880 PCT/US2016/018028

processor cores, either local (e.g., multiprocessor systems such as symmetric multi-
processing (SMP) computers), or locally distributed (e.g., multiple processors coupled as
clusters or massively parallel processing (MPP) systems, or remote, or remotely
distributed (e.g., multiple processors coupled via a local area network (LAN) and/or
wide-area network (WAN)), or any combination thereof.

The user interface 300 shown in figure 3 may be part of a development
environment. The development environment is, in some implementations, a system for
developing applications as dataflow graphs. Dataflow graphs made in accordance with
this system provide methods for getting information into and out of individual processes
represented by graph components, for moving information between the processes, and for
defining a running order for the processes. This system includes algorithms that choose
interprocess communication methods from any available methods (for example,
communication paths according to the links of the graph can use TCP/IP or UNIX
domain sockets, or use shared memory to pass data between the processes).

The techniques described above can be implemented using a computing system
executing suitable software. For example, the software may include procedures in one or
more computer programs that execute on one or more programmed or programmable
computing system (which may be of various architectures such as distributed,
client/server, or grid) each including at least one processor, at least one data storage
system (including volatile and/or non-volatile memory and/or storage elements), at least
one user interface (for receiving input using at least one input device or port, and for
providing output using at least one output device or port). The software may include one
or more modules of a larger program, for example, that provides services related to the
design, configuration, and execution of dataflow graphs. The modules of the program
(e.g., elements of a dataflow graph) can be implemented as data structures or other
organized data conforming to a data model stored in a data repository.

The software may be provided on a tangible, non-transitory medium, such as a
CD-ROM or other computer-readable medium (e.g., readable by a general or special
purpose computing system or device), or delivered (e.g., encoded in a propagated signal)
over a communication medium of a network to a tangible, non-transitory medium of a

computing system where it is executed. Some or all of the processing may be performed

-31-

10

15

20

WO 2016/133880 PCT/US2016/018028

on a special purpose computer, or using special-purpose hardware, such as coprocessors
or field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated
circuits (ASICs). The processing may be implemented in a distributed manner in which
different parts of the computation specified by the software are performed by different
computing elements. Each such computer program is preferably stored on or
downloaded to a computer-readable storage medium (e.g., solid state memory or media,
or magnetic or optical media) of a storage device accessible by a general or special
purpose programmable computer, for configuring and operating the computer when the
storage device medium is read by the computer to perform the processing described
herein. The inventive system may also be considered to be implemented as a tangible,
non-transitory medium, configured with a computer program, where the medium so
configured causes a computer to operate in a specific and predefined manner to perform
one or more of the processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, is
to be understood that the foregoing description is intended to illustrate and not to limit the
scope of the invention, which is defined by the scope of the following claims.
Accordingly, other embodiments are also within the scope of the following claims. For
example, various modifications may be made without departing from the scope of the
invention. Additionally, some of the steps described above may be order independent,

and thus can be performed in an order different from that described.

-32-

12 Jan 2021

2016220252

What is claimed is:

1. A computer-implemented method, performed by a data processing system, of
executing a computer program based on a query that is expressed in accordance with a query
language applicable to a relational database, the computer program executed based at least in
part on data stored in a tangible, non-transitory computer-readable medium, the executing
including:

receiving a SQL query, where the SQL query includes an identifier associated with a
resource that is external to the data processing system;

generating a computer program based on the SQL query, including:

identifying a data source based on the SQL query;
identifying an executing system other than a system managing a relational
database;
generating a request to a query planner based on the query; providing the request
to the query planner;
receiving a query plan generated by the query planner based on the request, the
query plan including a description of one or more steps to be performed by a system
managing a relational database;
generating a data structure instantiating a dataflow graph that includes:
a first node that represents at least one operation to be executed,
the first node associated with information usable by an executing system
to invoke executable program code to perform the operation,
the first node associated with information usable by an executing system
to make data available to the program code, and
the operation chosen based on an step described by the query plan, and
at least one link that represents output data of an operation of the first node
being provided as input data to an operation of a second node of the dataflow
graph;

identifying configuration data associated with the resource, the configuration data
specitfying at least one value used in communicating with the resource; and

executing the computer program, based on the configuration data, the execution of the

computer program causing:

-33-

12 Jan 2021

2016220252

transmitting one or more instructions to the resource, the instructions defining
operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

2. The method of claim 1 in which:

(a) the portion of the computer program includes executable instructions that define a
manner in which the resource is accessed, where the executable instructions operate based on the
configuration data provided to the portion of the computer program; and/or

(b) the configuration data is specified in a catalog that can be updated based on a change
to a data format used by the resource; and/or

(c) the SQL query includes a SELECT statement that includes an argument, where at
least a portion of the argument corresponds to the identifier associated with the resource; and/or

(d) the computer program includes components representing operations of the SQL
query; and/or

(e) the computer program is a dataflow graph and the portion of the computer program
is a subgraph of the dataflow graph; and/or

(f) the resource is accessed using an application programming interface (API) exposed
by the resource; and/or

(g) the resource is not a relational database management system; and/or

(h) the instructions are transmitted to a facility of the resource that does not return
results in response to a SQL query; and/or

(1) the data received from the resource in response to the instructions includes data

specified by the SQL query.

3. The method of claim 1 including:

(a) generating parameter values based on the configuration data; and providing the
parameter values to a portion of the computer program, the portion being capable of
communicating with the resource; the execution of the computer program being based on the
parameter values; and/or

(b) formatting the data received from the external resource in the form of a database

table; and/or

-34 -

12 Jan 2021

2016220252

(c) identifying records and fields in the data received from the resource in response to
the instructions, the records and fields identified based on a record format associated with the

resource that is external to the data processing system.

4. The method of claim 3 in which generating parameter values based on the
configuration data includes executing a parameter generator which generates a parameter file in
a format readable by the portion of the computer program, and

in which providing the parameter values to the portion of the computer program

includes making the parameter file available to the portion of the computer program.

5. The method of claim 2 including:
causing functions of the API to be executed in response to receiving the SQL query,
the functions of the API being executable at the resource, and the instructions transmitted

to the resource causing the functions of the API to be executed.

6. A data processing system capable of executing a computer program based on a
query that is expressed in accordance with a query language applicable to a relational database,
the computer program executed based at least in part on data stored in a tangible, non-transitory
computer-readable medium, the data processing system configured to perform operations
including:

receiving a SQL query, where the SQL query includes an identifier associated with a
resource that is external to the data processing system;

generating a computer program based on the SQL query, including:

identifying a data source based on the SQL query;

identifying an executing system other than a system managing a relational
database;

generating a request to a query planner based on the query; providing the request
to the query planner;

receiving a query plan generated by the query planner based on the request, the
query plan including a description of one or more steps to be performed by a system

managing a relational database;

-35-

12 Jan 2021

2016220252

generating a data structure instantiating a dataflow graph that includes:

a first node that represents at least one operation to be executed,

the first node associated with information usable by an executing system
to invoke executable program code to perform the operation,

the first node associated with information usable by an executing system
to make data available to the program code, and

the operation chosen based on an step described by the query plan, and

at least one link that represents output data of an operation of the first node
being provided as input data to an operation of a second node of the dataflow

graph;

identifying configuration data associated with the resource, the configuration data
specitfying at least one value used in communicating with the resource; and

executing the computer program, based on the configuration data, the execution of the
computer program causing:

transmitting one or more instructions to the resource, the instructions defining
operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

7. A non-transitory computer readable storage device storing instructions that enable
a data processing system to execute a computer program based on a query that is expressed in
accordance with a query language applicable to a relational database, the computer program
executed based at least in part on data stored in a tangible, non- transitory computer-readable
medium, the instructions causing the data processing system to perform operations including:
receiving a SQL query, where the SQL query includes an identifier associated with a
resource that is external to the data processing system;
generating a computer program based on the SQL query, including:
identifying a data source based on the SQL query;
identifying an executing system other than a system managing a relational
database;
generating a request to a query planner based on the query; providing the request

to the query planner;

236 -

12 Jan 2021

2016220252

receiving a query plan generated by the query planner based on the request, the
query plan including a description of one or more steps to be performed by a system
managing a relational database;
generating a data structure instantiating a dataflow graph that includes:
a first node that represents at least one operation to be executed,
the first node associated with information usable by an executing system
to invoke executable program code to perform the operation,
the first node associated with information usable by an executing system
to make data available to the program code, and
the operation chosen based on an step described by the query plan, and
at least one link that represents output data of an operation of the first node
being provided as input data to an operation of a second node of the dataflow

graph;

identifying configuration data associated with the resource, the configuration data
specitfying at least one value used in communicating with the resource; and
executing the computer program, based on the configuration data, the execution of the

computer program causing:

transmitting one or more instructions to the resource, the instructions defining
operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

8. A data processing system capable of executing a computer program based on a
query that is expressed in accordance with a query language applicable to a relational database,
the computer program executed based at least in part on data stored in a tangible, non-transitory
computer-readable medium, the data processing system including:

means for receiving a SQL query, where the SQL query includes an identifier associated
with a resource that is external to the data processing system;

means for generating a computer program based on the SQL query, including:

identifying a data source based on the SQL query;
identifying an executing system other than a system managing a relational
database;

-37 -

12 Jan 2021

2016220252

generating a request to a query planner based on the query; providing the request
to the query planner;
receiving a query plan generated by the query planner based on the request, the
query plan including a description of one or more steps to be performed by a system
managing a relational database;
generating a data structure instantiating a dataflow graph that includes:
a first node that represents at least one operation to be executed,
the first node associated with information usable by an executing system
to invoke executable program code to perform the operation,
the first node associated with information usable by an executing system
to make data available to the program code, and
the operation chosen based on an step described by the query plan, and
at least one link that represents output data of an operation of the first node
being provided as input data to an operation of a second node of the dataflow
graph;
identifying configuration data associated with the resource, the configuration data

specifying at least one value used in communicating with the resource; and

means for executing the computer program, based on the configuration data, the
execution of the computer program causing:
transmitting one or more instructions to the resource, the instructions defining
operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

9. The system of claim 6, or the computer readable storage device of claim 7 in

which:

(a) the computer program includes executable instructions that define a manner in which
the resource is accessed, where the executable instructions operate based on the configuration
data provided to the portion of the computer program; and/or

(b) the configuration data is specified in a catalog that can be updated based on a change
to a data format used by the resource; and/or

(c) the SQL query includes a SELECT statement that includes an argument, where at

-38 -

12 Jan 2021

2016220252

least a portion of the argument corresponds to the identifier associated with the resource; and/or

(d) the computer program includes components representing operations of the SQL
query; and/or

(e) the computer program is a dataflow graph and a subgraph of the dataflow graph
performs the transmitting of the one or more instructions to the resource; and/or

(f) the resource is accessed using an application programming interface (API) exposed
by the resource; and/or

(g) the resource is not a relational database management system; and/or

(h) the instructions are transmitted to a facility of the resource that does not return
results in response to a SQL query; and/or

(1) the data received from the resource in response to the instructions includes data

specified by the SQL query.

10. The system of claim 6, or the computer readable storage device of claim 7, the
operations including generating parameter values based on the configuration data; and

providing the parameter values to a portion of the computer program, the portion being
capable of communicating with the resource;

the execution of the computer program being based on the parameter values.

11. The system or the computer readable storage device of claim 10 in which
generating parameter values based on the configuration data includes executing a parameter
generator which generates a parameter file in a format readable by the portion of the computer
program, and

in which providing the parameter values to the portion of the computer program

includes making the parameter file available to the portion of the computer program.

12. The system or the computer readable storage device of claim 9, the operations
including
causing functions of the API to be executed in response to receiving the SQL

query,

the functions of the API being executable at the resource, and the instructions

-390 .

12 Jan 2021

2016220252

transmitted to the resource causing the functions of the API to be executed.

13. The system of claim 6, or the computer readable storage device of claim
7,including:
(a) formatting the data received from the external resource in the form of a database
table; sand/or
(b) identifying records and fields in the data received from the resource in response to the
instructions, the records and fields identified based on a record format associated with the

resource that is external to the data processing system.

14. A computer-implemented method, performed by a data processing system, of
executing a computer program based on a query that is expressed in accordance with a query
language applicable to a relational database, the computer program executed based at least in
part on data stored in a tangible, non-transitory computer-readable medium, the executing
including:

receiving a SQL query, where the SQL query includes an identifier associated with a
resource that is external to the data processing system;

generating the computer program based on the SQL query, including:

identifying a catalog including at least one entry associated with the resource,
the at least one entry representing configuration data usable to configure a computer
program to transmit instructions to the resource for the purpose of receiving data,
generating a request to a query planner based on the SQL query,

providing the request to the query planner,

receiving a query plan generated by the query planner based on the request, the
query plan including a description of one or more steps to be performed by a system
managing a relational database, and

generating the computer program based on the query plan, wherein at least a
portion of the generated computer program is configured to communicate with the
resource based on the at least one entry of the catalog;
receiving, from the identified catalog, the configuration data; and

executing the computer program on an executing system, based on the configuration data,

- 40 -

12 Jan 2021

2016220252

the execution of the computer program causing:

transmitting one or more instructions to the resource, the instructions defining
operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

15. The method of claim 14 in which generating the computer program based on the
SQL query includes:

generating a data structure instantiating a dataflow graph that includes: a first node that

represents at least one operation to be executed,

the first node associated with information usable by an executing system to invoke
executable program code to perform the operation,

the first node associated with information usable by an executing system to make data
available to the program code,

the operation chosen based on a step described by the query plan, and

at least one link that represents output data of an operation of the first node being

provided as input data to an operation of a second node of the dataflow graph.

16. A data processing system including a hardware processor and memory, the data
processing system capable of executing a computer program based on a query that is expressed
in accordance with a query language applicable to a relational database, the computer program
executed based at least in part on data stored in a tangible, non- transitory computer-readable
medium, the data processing system configured to perform operations including:

receiving a SQL query, where the SQL query includes an identifier associated with a
resource that is external to the data processing system;

generating the computer program based on the SQL query, including:

identifying a catalog including at least one entry associated with the resource, the at

least one entry representing configuration data usable to configure a computer program

to transmit instructions to the resource for the purpose of receiving data,
generating a request to a query planner based on the SQL query, providing the

request to the query planner,

-4] -

12 Jan 2021

2016220252

receiving a query plan generated by the query planner based on the request, the
query plan including a description of one or more steps to be performed by a system
managing a relational database, and

generating the computer program based on the query plan, wherein at least a
portion of the generated computer program is configured to communicate with the
resource based on the at least one entry of the catalog;

receiving, from the identified catalog, the configuration data; and

executing the computer program on the identified executing system, based on the
configuration data, the execution of the computer program causing:

transmitting one or more instructions to the resource, the instructions defining
operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

17. A non-transitory computer readable storage device storing instructions that enable
a data processing system to execute a computer program based on a query that is expressed in
accordance with a query language applicable to a relational database, the computer program
executed based at least in part on data stored in a tangible, non- transitory computer-readable
medium, the instructions causing the data processing system to perform operations including:
receiving a SQL query, where the SQL query includes an identifier associated with a
resource that is external to the data processing system;
generating the computer program based on the SQL query, including: identifying a
catalog including at least one entry associated with the
resource, the at least one entry representing configuration data usable to configure a
computer program to transmit instructions to the resource for the purpose of receiving
data,
generating a request to a query planner based on the SQL query, providing the
request to the query planner,
receiving a query plan generated by the query planner based on the request, the
query plan including a description of one or more steps to be performed by a system
managing a relational database, and

generating the computer program based on the query plan, wherein at least a

_42 -

12 Jan 2021

2016220252

portion of the generated computer program is configured to communicate with the
resource based on the at least one entry of the catalog;

receiving, from the identified catalog, the configuration data; and executing the
computer program on an executing system, based on the

configuration data, the execution of the computer program causing:

transmitting one or more instructions to the resource, the instructions defining
operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

18. A data processing system capable of executing a computer program based on a
query that is expressed in accordance with a query language applicable to a relational database,
the computer program executed based at least in part on data stored in a tangible, non-transitory
computer-readable medium, the data processing system including:

means for receiving a SQL query, where the SQL query includes an identifier associated
with a resource that is external to the data processing system;

means for generating the computer program based on the SQL query, including:

identifying a catalog including at least one entry associated with the

resource, the at least one entry representing configuration data usable to configure a

computer program to transmit instructions to the resource for the purpose of receiving

data,
generating a request to a query planner based on the SQL query, providing the
request to the query planner,
receiving a query plan generated by the query planner based on the request, the
query plan including a description of one or more steps to be performed by a
system managing a relational database, and
generating the computer program based on the query plan, wherein at least a
portion of the generated computer program is configured to communicate with the
resource based on the at least one entry of the catalog;

receiving, from the identified catalog, the configuration data; and

means for executing the computer program on an executing system, based on the

-S43 -

12 Jan 2021

2016220252

configuration data, the execution of the computer program causing:
transmitting one or more instructions to the resource, the instructions defining
operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

19. The method of claim 14, or the system of claim 16, or the computer readable

storage device of claim 17, in which:

(a) the computer program includes executable instructions that define a manner in which
the resource is accessed, where the executable instructions operate based on the configuration
data provided to the portion of the computer program; and/or

(b) the configuration data is specified in a catalog that can be updated based on a change
to a data format used by the resource; and/or

(c) the SQL query includes a SELECT statement that includes an argument, where at
least a portion of the argument corresponds to the identifier associated with the resource; and/or

(d) the computer program includes components representing operations of the SQL
query; and/or

(e) the computer program is a dataflow graph and a subgraph of the dataflow graph
performs the transmitting of the one or more instructions to the resource; and/or

(f) the resource is accessed using an application programming interface (API) exposed
by the resource; and/or

(g) the resource is not a relational database management system; and/or

(h) the instructions are transmitted to a facility of the resource that does not return
results in response to a SQL query; and/or

(1) the data received from the resource in response to the instructions includes data

specified by the SQL query.

20. The method of claim 14, or the system of claim 16, or the computer readable
storage device of claim 17, the method or operations including

generating parameter values based on the configuration data; and

providing the parameter values to a portion of the computer program, the portion being

capable of communicating with the resource;

_44 -

12 Jan 2021

2016220252

the execution of the computer program being based on the parameter values.

21. The method, or system, or computer readable storage device of claim 20 in which
generating parameter values based on the configuration data includes executing a parameter
generator which generates a parameter file in a format readable by the portion of the computer

program, and

in which providing the parameter values to the portion of the computer program

includes making the parameter file available to the portion of the computer program.

22. The method, or system, or computer readable storage device of claim 19, the
method or operations including
causing functions of the API to be executed in response to receiving the SQL query,
the functions of the API being executable at the resource, and the instructions transmitted

to the resource causing the functions of the API to be executed.

23. The method of claim 14, or the system of claim 16, or the computer readable
storage device of claim 17, including:
(a) formatting the data received from the external resource in the form of a database
table; and/or
(b) identifying records and fields in the data received from the resource in response to
the instructions, the records and ficlds identified based on a record format associated with the

resource that is external to the data processing system.

- 45 -

PCT/US2016/018028

WO 2016/133880

1/15

SLNS3y

¥

’
0

i

L Ol
90
N
yiva
y g WILSAS
P (" yuomian ONISSIO0Hd
.. viIva
7 /
30} I
SNOHOMMLENI
il ot
7
00}

&

3
AHID

¢0k

SUBSTITUTE SHEET (RULE 26)

WO 2016/133880 PCT/US2016/018028
2/18

10
A
{ A
102 120
N \
QUERY
GENERATION
EXT ENGINE
\‘
10
o 10
/ \ 4 NSTRUCTIONS
RESULTS |- REATON 1, o
AT
N
1%
FIG. 2A

SUBSTITUTE SHEET (RULE 26)

WO 2016/133880 PCT/US2016/018028
3/15

0
f A \
126
N\
COMPONENT
LIBRARY
124 13% 122
0 2 Ej/ - :
: C PROPERTIES
. - CATALOG
_ | GENERATION
c ENGINE RECORD FORNAT
3 \\
p 128
104 14
y N\ NsTRuCTioNsp
RESULTS | L o
DATA
N
108
FIG. 28

SUBSTITUTE SHEET (RULE 26)

WO 2016/133880

4/15

PCT/US2016/018028

SUBSTITUTE SHEET (RULE 26)

[A \
126
N\
COMPONENT
LIBRARY
124 19 10
102 0 Ej/ - :
< < PROPERTIES
. « CATALOG
- GENERATION
\ ENGINE /’3/38 RECORD FORMAT
AN
X A
p | PARAMETERS 8
...... i '\
12
104 40
y N\ NsTRuCTioNsp
Ap; s 1 P2
RESULTS | L o
DATA
—— Y
1
FlG. 2C

WO 2016/133880 PCT/US2016/018028

5/18

300 35)6 3?8
> Ao nfio ODBC Viewer (20.) // /
Elgtg"%ssi\l T Query: [SELECT *fom webuwipedia | BXRous
TraceFle | Where subject 'SQL W __ |~
Sowse T DN T Iterqtlons
[OWse Trace Level /‘318 250 1(Single Query) [+
Disconnect View Config | 302 01 Show Types
Last Error < 304~ 310N
Show | Show | Show || Connection | | i
Tables | Types |Schema| Info RunQuery
316~
subectne —
SQL (saL (" ss kju ‘s "S-QeL", [4]) (Structured Query Language [9] (6] [7] 8])is a

special-purpose programming language designed for managing data held ina
relational database management system (RDBMS).

SQL

Originally based upon relational algebra and tuple realtional calculus, SQL consists

of a data definition and a data manipulation language. The scope of SQL includes data
insert, query, update and delete, schema creation and modification, and data access
control. Athough SQL is often described as, and to a great extent is, a declarative
language (4GL), it also includes procedural elements,

SQL

SQL was one of the first commercial languages for Edgar F. Codd's relational model,
as described in his influential 1970 paper "A Relational Mode! of Data for Large Shared
Data Banks". [9] Despite not entirely adhering to the relational model as described

by Codd, it became the most widely used database language. [10] [11]

SQL

SQL became a standard of the American National Institute (ANSI) in 1986, and one of
the Intemational Organization for Standards (ISO) in 1987. [12] Since 1 hen the
standand has been enhanced severaltimes wih added features. But code s no
completely portable among different database systems, which can lead to vendor
lock-in. The different makers do not perfectly follow the standard, they add extensions,
and the standard is sometimes ambiguous.

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2016/133880

6/15

PCT/US2016/018028

SQL

SQL was initially developed at IBM by Donald D. Chamberlin and Raymond F. Boyce
inthe early 1970s. This version, initially called SEQUEL (Structured English Query
Language), was designed to manipulate and retrieve data stored in [BM's original
quasi-relational database management system, System R, which a group at [BM San
Jose Research Laboratory had developed during the 1970s. [13] the acronym
SEQUEL was later changed to SQL because "SEQUEL" was a trademark of the
UK-based Hawker Siddeley aircraft company. [14]

SaL

In the late 1970s, Relational Software, Inc. {now Oracle Corporation) saw the
potential of the concepts described by Codd, Chambertin, and Boyce and developed
their own SQL-based RQBMS with aspirations of selling it to the U.S. Navy, Central
Intelligence Agency, and other U.S. govemment agencies. In June 1979, Relational
Software, Inc. introduced the first commercially available implementation of SQL,
Oracle V2 {Version2) for VAX computers.

F S

314

After testing SQL at customer test sites to determine the usefulness and practicality
of the system, IBM began developing commercial products based on their System
R prototype including System/38, SQL/DS, and DB2, which were commercially
available in 1979, 1981, and 1983, respectively. [13]

SAL

The SQL language is subdivided into several language elements, including:

SQL

SQL has a case/when/then/else/end expression, which was infroducted in SQL-92. In
its most general form, which is called a "searched case” in the SQL standard, it works
like else if in other programming languages:

SQL

The WHEN conditions are tested in the order in which they appear in the source. If
no ELSE expression is specified, it defaults to ELSE NULL. An abbreviated syntax
exists mirroring switch statements; it is called "simple case” in the SQL standard:

SQL

This syntax uses implicit equality comparisons, with the usual caveats for comparing
with NULL,

SQL

For the Oracle-SQL dialect, the latter can be shortened to an equivalent DECODE
construct;

SQL

The last value is the default, if none is specified, it also defaults to NULL. However,
unlke the standard's "simple case", Orcacle's DECODE considers two NULLs to be
equal with each

[<]

Status: [56 rows] - Query: 'SELECT * from web.wikipedia where subject = "SQL"
completed Query-time: 3.360 mSec Render-time: SmSec A

S
FIG. 3 (Cont.) 312

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/018028

WO 2016/133880

7/15

|

HSENd
doL

Vv 9l4

ALY
0z 7
f A A
(109, = doaigns sxsym eTpsdiyTa’dsm WOIT LOWTIS
o
| VIG3DIM N> YIva
X AHAND VIR0
\ YiHdDiM
i1

N
0oy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/018028

WO 2016/133880

8/15

dy Ol

\&E

ST

-
=
7

uoissaldxa

TNQ [eAd
:uoissaudx

no MBIy

+)

A

v

0" ewwojey o
+
ogly ~
%m.ﬂméemm_ o
+]
AN

90IMBS

{oino

RLTIEN

ajeolday

VId3dIMIM

- ————

+

u

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/018028

WO 2016/133880

9/15

‘pus

!qo09fgns ut :: j3ooLgns- 3n

. !y*OsuodssSax :: x°3no
¥ 9Ol 8vy utbeq
= (®suodsax ‘ut) 3ndano L3e2ID :: 3NO
. !pus

!qo09Lgns-"utT + ,/TYTM/DIo erTpadrTyTMm-usd//:d33y, :: Tan 3sonbsx-jssnbaa
utbsqg
Ity < = (ut) 23sonbex saedead :: 3senbax
/xI0309n Ssuodsaygy/ ! [3UuT] odXk3 esuodseoa=odAj-azojooa osuodssax odk]

.

(/*xUOT3euIoguT Ssuodssa PUTUTE]lUOD SPICODI IOT elepelispny/ pus

!N = Apoq osuodsex ((y) Iobojutr ueTpusbIq) pTOoa

{IIAN = saspeey osuodsex ((y) Iobejur ueTtpus HTg) HButizs TIOSE

i < ‘opoo osuodssa (p) axobosiutr ueTtpus BIqg
‘o2dA] sSsuodssSa JO UOT]ITUTISP 9BY3l Sbueyd jouued Nox //
*ATuo sssodand TRUOTIPWIOIJUT JIO0F DIDY UMOUS SIB SUOTITUIISP SYL //
*MOT®g UMOUS ©JB SUOT3TUTIISopP pToTI odAk3 osuodsax oyg //

pxoooax=odAa osuodsax odka
-
/¥UOT3ewIoFUuT 3sonbsa HUTUTER3lUOD SPIOODI I0F BIEPRISNy,/ pPud
! TINN = Apoq asenbea ((y) asboautr uetpus bIqg) proa
! TIAN = swexed Tan 3seonbeox [() I9b6ojut ueTtpu® HBTg] pusS

vy < ‘entea (,0\u) Putaas g3z3an
!sureu (,0\.) Putazs gyan
paooox

!Tan 3ssnbsx ,0\.) bButiys TTIOS®E
paioosa=odiy 3sonbsax odXk3y

(1]
L

[

OHNMIPNOPTOVONOHNMNMILINONSWOODOO
A A A A A AT AT A A NN NNNNNNNNM
SUBSTITUTE SHEET (RULE 26)

AN N O™ 0O0

PCT/US2016/018028

WO 2016/133880

10/15

8@/ VG Ol

uoisIaA 3adepuajul ydeibgng

|
0 T Al spjoj ydeabgns xapuj
] spjo} ydeabgns ueosg
Al ueoss erjuanbas mojy
90§ ./ yied ydeibgns Jasuj
dw-Bans~eb elpadiM{S ININOdNOD Ivl$ (ueds [enuanbas) yyed ydeibgng
. 14N eleqg
auibus™ Alenb pury
9oeds ejeq
SM BWIAYIS
eipadiyim dweN
solsnels SuoISSIWIdg sidjoweled shoy| S921pY| Jewio4 pJoday | oju| _|

J)))) x)

\ \ \ \ \ elpadpfim'sm {I[] :994m0g ejeq
! [[[q

[[
by05 0S o039 PY0S i0G ar0s By0S

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/018028

WO 2016/133880

11/15

d9 Ol

009

205 e

—~
pajWIRP-TINN buwg aul [i7)
PajWIRP-TINN buus j08lqns [7]
01S Speid

wNcf eal) X

Q |

914 Jeuuiog paoday

Q
LO

pua ‘au| (,,) Bus gpn oslgns () Bugs gan piooes

Jeutio p103ay pappaquia (%)

| sopsnelg | suoissjuiag | sijeweieq | sha) | sedpul | Jeutio] ploday [oy __

aros —

X &

SUBSTITUTE SHEET (RULE 26)

eipadpim sm @..._ :92In0S ejeq

PCT/US2016/018028

WO 2016/133880

12/15

0§ 9Ol4

¢0S

009

718

A

dwBons™ab epadymASLNINOINOD IV}

Joexa

v
poelans

ayqesn

onbiun s|

yyed ydesbgng

pury

Tain Xapu| Spleld

X & + (1)seopy|

| sonseys | suoissiuuag | sicjoweseq | skay | seatpuy |jeuoq puosay | oy |

X &

eipadjim sm ﬂ_.u._ :921n0S ejeq

SUBSTITUTE SHEET (RULE 26)

WO 2016/133880 PCT/US2016/018028
13/15

RECEIVE SOL QUERY -

¥

Fig. 88 | | GENERATE COMPUTER PROGRAM BASED | -604
Fig. 8D ON THE QUERY

¥

Fig.60- | EXEcUTECOMPUTERPROGRAM 9%

FIG. BA

SUBSTITUTE SHEET (RULE 26)

WO 2016/133880 PCT/US2016/018028
14/15

510
DENTFY CONFIGURATION DATA |
¥
CENERNEPRMETERS [O°
¥
PROVIDE PARAETERS TO COMPONENT | 51
620

TRANSMIT INSTRUCTIONS TO 622
EXTERNAL RESOURCE

¥

RECEVEDATAFROMEXTERNAL |64
RESQURCE

FIG. 6C

SUBSTITUTE SHEET (RULE 26)

WO 2016/133880 PCT/US2016/018028
15/15

GENERATE REQUEST TO QUERY | _-632
PLANNER

\1

RECEIVE QUERY PLAN 034

¥

IDENTIFY DATA SOURCE 036

'

IDENTIFY EXECUTING SYSTEM |03

4

GENERATE DATA STRUCTURE

FIG. 6D

SUBSTITUTE SHEET (RULE 26)

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

