
(12) STANDARD PATENT (11) Application No. AU 2016220252 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Querying a data source on a network

(51) International Patent Classification(s)
G06F 16/25 (2019.01) G06F 16/2455 (2019.01)
G06F 16/2452 (2019.01)

(21) Application No: 2016220252 (22) Date of Filing: 2016.02.16

(87) WIPO No: WO16/133880

(30) Priority Data

(31) Number (32) Date (33) Country
14/752,094 2015.06.26 US
62/117,588 2015.02.18 us

(43) Publication Date: 2016.08.25
(44) Accepted Journal Date: 2021.02.25

(71) Applicant(s)
Ab Initio Technology LLC

(72) Inventor(s)
Schechter, lan;Allin, Glenn John

(74) Agent / Attorney
RnB IP Pty Ltd, PO Box 9530, Deakin, ACT, 2600, AU

(56) Related Art
US 20090055370 Al
US 20010011371 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/133880 Al
25 August 2016 (25.08.2016) W IPOIPCT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 17/30 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) InternationalApplicationNumber: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2016/018028 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

16 February 2016 (16.02.2016) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:
62/117,588 18 February 2015 (18.02.2015) US (84) Designated States (unless otherwise indicated, for every

14/752,094 26 June 2015 (26.06.2015) US kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

(71) Applicant: AB INITIO TECHNOLOGY LLC [US/US]; TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
201 Spring Street, Lexington, Massachusetts 02421 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(72) Inventors: SCHECHTER, Ian; 94 Brook Road, Sharon, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(72) achsetos:0267ECHTERIN4Brookoa, 1LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Massachusetts 02067(US). ALLIN,Glenn John; 132Mt. SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, VernonStreet,Arlington,Massachusetts02476(US). GW, KM, ML, MR, NE, SN, TD, TG).

(74) Agent: GERRATANA, Frank L.; Fish & Richardson Published:
P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-1022

(US). - with international search report (Art. 21(3))

(54) Title: QUERYING A DATA SOURCE ON A NETWORK

102 100

QUERY 110 114

112

DATA
PROCESSING NETWORK EXT

SYSTEM

104 DATA

RESULTS 106

FIG. 1

(57) Abstract: Among other things, we describe a computer-implemented method, performed by a data processing system, of ex
ecuting a computer program based on a query that is expressed in accordance with a query language applicable to a relational data

base, the computer program executed based at least in part on data stored in a tangible, non-transitory computer-readable medium,
f4 the executing including receiving a SQL query, where the SQL query includes an identifier associated with a resource that is external

to the data processing system, generating a computer program based on the SQL query, and executing the computer program, caus
ing transmitting one or more instructions to the resource, the instructions defining operations other than operations of the SQL
query, and receiving data from the resource in response to the instructions.

WO 2016/133880 PCT/US2016/018028

QUERYING A DATA SOURCE ON A NETWORK

CLAIM OF PRIORITY

This application claims priority to U.S. Patent Application Serial No. This

5 application claims priority to U.S. Patent Application Serial No. 14/752,094, filed on

June 26, 2015 which claims priority to U.S. Patent Application Serial No. 62/117,588,

filed on February 18, 2015, the entire contents of which are hereby incorporated by

reference.

BACKGROUND

10 This description relates to querying a data source on a network, e.g., using SQL or

another type of query language.

A query to a data source specifies data to be retrieved from the data source. The

query can be provided to the data source (e.g., a database) and a data processing system

associated with the data source (e.g., a database management system) can return the data

15 specified by the query. Various techniques can be used to parse the query to identify the

data in the data source specified by the query.

SUMMARY

Aspect 1 is a computer-implemented method, performed by a data processing

system, of executing a computer program based on a query that is expressed in

20 accordance with a query language applicable to a relational database, the computer

program executed based at least in part on data stored in a tangible, non-transitory

computer-readable medium, the executing including receiving a SQL query, where the

SQL query includes an identifier associated with a resource that is external to the data

processing system; generating a computer program based on the SQL query, including

25 identifying configuration data associated with the resource, the configuration data

specifying at least one value used in communicating with the resource; and executing the

computer program, based on the configuration data, the execution of the computer

program causing transmitting one or more instructions to the resource, the instructions

- 1-

WO 2016/133880 PCT/US2016/018028

defining operations other than operations of the SQL query, and receiving data from the

resource in response to the instructions.

Aspect 2 is the method of aspect 1 in which the portion of the computer program

includes executable instructions that define a manner in which the resource is accessed,

5 where the executable instructions operate based on the configuration data provided to the

portion of the computer program.

Aspect 3 is the method of aspects 1 or 2 in which the configuration data is

specified in a catalog that can be updated based on a change to a data format used by the

resource.

10 Aspect 1 is the method of any of aspects 1, 2, or 3, including generating parameter

values based on the configuration data; and providing the parameter values to a portion of

the computer program, the portion being capable of communicating with the resource; the

execution of the computer program being based on the parameter values.

Aspect 5 is the method of aspect 4 in which generating parameter values based on

15 the configuration data includes executing a parameter generator which generates a

parameter file in a format readable by the portion of the computer program, and in which

providing the parameter values to the portion of the computer program includes making

the parameter file available to the portion of the computer program.

Aspect 6 is the method of any of aspects 1 through 5 in which the SQL query

20 includes a SELECT statement that includes an argument, where at least a portion of the

argument corresponds to the identifier associated with the resource.

Aspect 7 is the method of any of aspects 1 through 6 in which the computer

program includes components representing operations of the SQL query.

Aspect 8 is the method of any of aspects 1 through 6 in which the computer

25 program is a dataflow graph and the portion of the computer program is a subgraph of the

dataflow graph.

Aspect 9 is the method of any of aspects 1 through 8 in which the resource is

accessed using an application programming interface (API) exposed by the resource.

Aspect 10 is the method of aspect 9 including causing functions of the API to be

30 executed in response to receiving the SQL query, the functions of the API being

- 2-

WO 2016/133880 PCT/US2016/018028

executable at the resource, and the instructions transmitted to the resource causing the

functions of the API to be executed.

Aspect 11 is the method of any of aspects 1 through 10 including formatting the

data received from the external resource in the form of a database table.

5 Aspect 12 is the method of any of aspects 1 through 11 in which the resource is

not a relational database management system.

Aspect 13 is the method of any of aspects 1 through 12 in which the instructions

are transmitted to a facility of the resource that does not return results in response to a

SQL query.

10 Aspect 14 is the method of any of aspects 1 through 13 in which the data received

from the resource in response to the instructions includes data specified by the SQL

query.

Aspect 15 is the method of any of aspects 1 through 14 including identifying

records and fields in the data received from the resource in response to the instructions,

15 the records and fields identified based on a record format associated with the resource

that is external to the data processing system.

Other aspects can include corresponding apparatus, systems, and computer

readable storage devices.

Aspects can include one or more of the following advantages. A data processing

20 system can execute a query that references a resource external to the data processing

system (e.g., one available on the Internet) and is not a relational database management

system.

Data distributed across networks (e.g. large networks such as the Internet) can be

efficiently be made accessible by using database programming languages (e.g. SQL),

25 even though the data sources in the network may not be responsive to the database

language or may not be relational databases. This may provide a flexible search scheme

that can be especially adapted to the particular data sources and can thereby be used in

networks with data sources that are changing over time. In turn, this may allow

distributed networks to more rapidly be developed (e.g. by scaling up or down the

30 number of data sources, or by exchanging or modifying data sources) while maintaining

access to the data stored in the current data sources of the developed network.

- 3-

WO 2016/133880 PCT/US2016/018028

Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS

Figure 1 shows a data processing system that can process a query.

5 Figures 2A-2C show elements of the data processing system.

Figure 3 shows a user interface for executing a query.

Figure 4A shows a dataflow graph.

Figure 4B shows a subgraph of a dataflow graph.

Figure 4C shows executable code of a component.

10 Figures 5A-5C show contents of a catalog of external resources.

Figure 6A-6D are flowcharts for processes associated with executing a query.

DESCRIPTION

A data processing system can convert a query (such as a SQL query) into a

computer program such as a dataflow graph. The computer program includes components

15 which, when executed, carry out operations (e.g., data processing operations) equivalent

to operations specified by the query.

Figure 1 shows a data processing system 100 that can process a query 102 to

generate results 104 specified by the query 102. The results 104 are based on data 106

received from an external resource 108 referenced by the original query 102. The data

20 processing system 100 receives the data 106 in response to instructions 110 that the data

processing system 100 generates based on the query 102 and sends to the external

resource 108.

A query 102 is used to retrieve data specified by the query. One type of query 102

is a structured query language (SQL) query. This description will use SQL queries as an

25 example, but the techniques described here could also be used with other types of queries

such as multidimensional expressions (MDX) queries.

A SQL query (also referred to as SQL statements) uses commands and syntax

defined by the structured query language (SQL). In general, a query is a statement that

specifies a subset of data in one or more datasets that are indicated in the query. The

30 specified subset can be returned by a system that processes the query to the system that

- 4-

WO 2016/133880 PCT/US2016/018028

issued the query. The data specified by the query and returned in response to the query is

generally a portion of the total data stored in the dataset indicated by the query. An

example of a SQL query could be "SELECT lastname FROM currentcustomers." This

SQL query includes an operation, SELECT, which instructs a system executing the query

5 to retrieve data according to the arguments of the SELECT operation. In the syntax of

SQL, the arguments are "current_customers," which is a set of data such as a database

table, and "lastname," which is a column of the database table. When a system interprets

the query and executes the operations of the query, the system will return the data of the

lastname column (e.g., each portion of data contained in the lastname column) in

10 response to the query. SQL is described in detail in "SQL Bible, 2nd Edition" by Alex

Kriegel and Boris Trukhnov, published April 7, 2008, ISBN 978-0470229064, hereby

incorporated by reference.

A typical example of a resource that returns data in response to a query is a

relational database. A relational database is a collection of one or more database tables

15 and a system that manages data processing operations such as interpreting SQL queries,

reading data from the tables, writing data to the tables, and performing other kinds of data

processing functions. A database table is a collection of data arranged in a) rows each

representing a record and b) columns each representing a category of data stored in the

rows. For example, a database table called "currentcustomers" may have rows each

20 representing a current customer of a business and may have columns representing

categories of data such as name of the customer, address of the customer, last product

purchased by the customer, and so on.

A relational database table a kind of database table that stores data in the form of

tuples, each of which is made up of elements of data corresponding to attributes. A tuple

25 can take the form of a row in the relational database, and an attribute can take the form of

a column in the relational database. Thus, each tuple contains elements of data

(sometimes called attribute values) each corresponding to one of the attributes of the

database table. Further, a grouping of multiple tuples is sometimes called a relation.

A relational database management system (RDBMS) is a system that processes

30 instructions directed to creating and modifying data stored in the relational database. An

RDBMS includes functionality for interpreting a query and returning data specified by

- 5-

WO 2016/133880 PCT/US2016/018028

the query. The combination of interpreting a query and returning data specified by the

query is sometimes referred to as executing the query. For example, some RDBMS

implementations include an engine which a) parses a SQL query, b) identifies operations

that are defined by the structured query language, c) identifies arguments of the

5 commands, and d) carries out (e.g., executes) the operations according to the arguments.

As described above, the SQL query "SELECT lastname FROM

currentcustomers, includes an operation, SELECT, which instructs an RDBMS to

retrieve data according to the arguments of the SELECT operation. The arguments are

"currentcustomers," which is a database table managed by the RDBMS, and

10 "lastname," which is a column of the database table. When the RDBMS interprets the

query and executes the operations of the query, the RDBMS will return the data of the

lastname column (e.g., each portion of data contained in the lastname column) in

response to the query. In some implementations of an RDBMS, a module called a query

planner will identify the operations to be carried out. In this way, SQL is a query

15 language applicable to a relational database, e.g., applicable to data maintained by an

RDBMS.

The external resource 108 is external to the data processing system 100. (Some

components of the data processing system 100 are shown in detail in figures 2A-2C). For

example, the external resource 108 could be a facility that communicates using a network

20 (e.g., the Internet). The data processing system 100 communicates with the external

resource 108 by sending data to, and receiving data from, a network. The external

resource 108 may include sets of data such as database tables, data files, or other data

structures stored on storage media, e.g., tangible, non-transitory computer-readable

media.

25 The data processing system 100 is capable of generating results 104 specified by

the query 102 even if the external resource 108 specified by the query 102 does not

include an RBDMS. Put another way, the external resource 108 need not be an RDBMS

or include an RDBMS among its components. Some examples of the external resource

108 will include an RDBMS while other examples of the external resource 108 will not

30 include an RDBMS.

- 6-

WO 2016/133880 PCT/US2016/018028

In use, the data processing system 100 generates a computer program 108

(sometimes referred to as a data processing program) based on the query 102. For

example, the computer program 108 can be generated using an engine (e.g., an engine

that forms a subsystem of the data processing system 100) that takes a query as input and

5 produces a dataflow graph as output. Although a dataflow graph is used as an example

here, the computer program can be any kind of program that includes program code that

can be executed to carry out instructions represented by the program code.

In this way, a computer program such as the computer program 108 shown in

figure 1 can, when executed, produce the same output as the execution of the

10 corresponding query 102, e.g., by a database management system such as an RDBMS.

Thus, a query 102 can be written using a query language such as SQL. However, the

systems, e.g., subsystems of the data processing system 100, carrying out the

corresponding data processing operations can execute the computer program 108 in order

to perform operations that are equivalent to operations that would be performed by a

15 system (e.g., an RDBMS) that executed the query 102. (Generally, an RDBMS does not

have functionality capable of executing the computer program 108). When we say that

two operations are equivalent, we mean that the two operations produce substantially the

same output data when provided with the same input data. As an example, two operations

may produce exactly the same output data when provided with the same input data. As an

20 example, two operations provided with the same input data may produce output data that

only differs in data formatting, e.g., one operation may produce comma-delimited output

data, and an equivalent operation may produce tab-delimited output data that is otherwise

identical to the comma-delimited output data.

The data processing system 100 can generate results 104 specified by a query 102

25 even if the query 102 includes a reference 112 to a data source other than an RDBMS.

For example, the query 102 may reference an external resource 108 that is not an

RDBMS. Because the external resource 108 is not an RDBMS, the external resource 108

is not associated with functionality for interpreting queries, e.g., SQL queries. In some

implementations, the data processing system 100 can apply the query to data received

30 from the external resource 108 if the data processing system 100 has access to a record

- 7-

WO 2016/133880 PCT/US2016/018028

format of data of the external resource 108. A record format (sometimes called a schema)

is a description of the organization of a body of data.

The external resource 108 could be any source of data that is external to the data

processing system 100. By external to the data processing system 100, we mean that the

5 resource is not one of the components of the data processing system 100. (Some

examples of components of the data processing system 100 are shown in detail in figures

2A-2C). For example, the external resource 108 could be a facility that communicates

using a network 114 (e.g., the Internet, represented here by a "cloud"). The data

processing system 100 communicates with the external resource 108 by sending data to,

10 and receiving data from, the network 114. In some examples, the external resource 108

could be a web site or another facility that communicates using Internet-based protocols

such as TCP/IP or UDP/IP.

In some implementations, the external resource 108 may include an RDBMS that

is not visible to the network 114. By this we mean that the external resource 108 may

15 include a relational database management system that stores data of the external resource

108, but the relational database management system does not accept queries such as SQL

queries that arrive by way of the network 114 except in limited cases (e.g., in cases such

as by way of a system administrator interface that allows a system administrator to

submit queries). For example, if the external resource 108 is a web site available on the

20 Internet, then the external resource 108 may have a "back-end" relational database that

stores data. In this example, the relational database does not accept SQL queries from a

web browser interface, a mobile application, or other access techniques in use by many or

most users of the external resource 108. Instead, the data of the external resource 108 is

primarily accessed by way of a technique that does not include a SQL query, such as a

25 hypertext transfer protocol (HTTP) request, or an instruction submitted by way of an

application programming interface (API, described below), or another technique.

Because the external resource 108 does not interpret the query 102, the data

processing system 100 determines instructions 110 to transmit to the external resource

108 that can be interpreted by the external resource 108. The instructions 110 are in a

30 form other than in the form of the original query 102. For example, if the original query

102 is a SQL query, the instructions 110 are not a SQL query (e.g., the instructions 110

- 8-

WO 2016/133880 PCT/US2016/018028

do not contain SQL commands or arguments). The data processing system 100 can

determine what instructions 110 to send to the external resource 108 based on the query

102 and based on other information describing the external resource 108. In some

implementations, the data processing system 100 has modules used to interpret the query

5 102 and generate results 104 specified by the query 102. In some implementations, the

data processing system 100 generates a computer program that includes operations

corresponding to operations that perform the query 102 and, when executed, sends the

instructions 110 to the external resource 108.

Figures 2A-2C show elements of the data processing system 100 that can be used

10 to execute a query 102 that references an external resource 108. Referring to figure 2A,

hen the query 102 is received by the data processing system 100, the query 102 is

provided to a computer program generation engine 120. The computer program

generation engine 120 generates a computer program 132 that, when executed, carries out

operations corresponding to the query 102. For example, the query 102 may be a SQL

15 query, e.g., a query that contains one or more commands defined by the structured query

language and arguments associated with the operations. In this example, the computer

program 132 contains executable functionality that is equivalent to operations that

perform the SQL query. When the computer program 132 is executed (e.g., by an

execution engine 140), the computer program 132 executes based on the same arguments

20 defined in the SQL query.

The data processing system 100 can carry out operations that perform the query

102 (a process sometimes referred to as executing the query 102) using techniques that do

not rely on functionality of an RDBMS, e.g., query interpretation functionality of an

RDBMS, to carry out the operations. Instead, the query can be carried out by executing

25 the computer program 132. Once the computer program 132 is generated and configured,

no query interpretation functionality of a relational database is used to generate output

based on the query 102. Further, the data processing system 100 can execute the query

102 even if data sources identified in the query 102 are not databases that operate using

queries in the form of the query 102. For example, the external resource 108 may not be

30 configured to accept instructions specified in the form of SQL. If the query 102 is a SQL

query and references the external resource 108 then the data processing system 100 can

- 9-

WO 2016/133880 PCT/US2016/018028

receive the query 102 and determine what operations should be performed, in response,

when the computer program 132 is configured and executed, so that the output of the

computer program 132 is equivalent to output of an execution of the query 102.

In this way, a SQL query can be used to retrieve data from systems other than

5 relational database systems. Because SQL is a common language used to specify queries,

many users know how to write SQL queries and many legacy systems are configured to

automatically generate SQL queries. The techniques described here allows users and

legacy systems to write or generate SQL queries, and the SQL queries can be carried out

to retrieve data from external resources that do not have functionality for interpreting

10 SQL queries. Further, data can be retrieved from an external resource by the data

processing system 100, rather than copying data from the external resource to a relational

database that executes SQL queries.

In some implementations, the computer program 132 includes a dataflow graph.

A dataflow graph is a computer program that contains components representing

15 operations to be performed on input data and links between the components (sometimes

called nodes) representing flows of data. The operations represented by the components

generate output data based on the input data by processing the input data. A component

can provide input data to and receive output data from other components if the

component is linked to the other components, in which each link between two

20 components represents a flow of data from one of the components to the other

component. A subset of components of a graph (e.g., one or more components of the

graph) is sometimes referred to as a subgraph of the graph.

When the dataflow graph is executed by a graph-based processing system, each of

the components is executed, e.g., a computer program or portion of a computer program

25 is executed and carries out the operation represented by the component. During execution

the dataflow graph receives input data which is processed (e.g., operated on by the

operations of the dataflow graph's components) to generate output data.

Some or all of the components of a dataflow graph are each associated with

information for invoking executable program code to perform the operation associated

30 with the component. In some implementations, a data structure representing the dataflow

graph can include data referencing executable code. The data structure can be used to

- 10-

WO 2016/133880 PCT/US2016/018028

instantiate the dataflow graph, by which we mean the data structure can be used to

execute code that carries out operations associated with the dataflow graph. For example,

a component may be associated with a reference to a computer program stored in

computer-readable storage containing computer-executable instructions for carrying out

5 the operation associated with the component, e.g., processing and outputting data.

In some examples, some or all components of a dataflow graph are each

associated with information for making data available to the program code. For example,

a component may be associated with function calls that can be invoked to deliver data to

the executable program associated with the component, or the component may be

10 associated with network ports that can receive data that is delivered to the executable

program associated with the component, or the component may be associated with

another technique for delivering data to the executable program associated with the

component. In this way, each component can receive, process, and output data.

In some examples, a dataflow graph is parameterizable, by which we mean a

15 dataflow graph can be configured using values of parameters when the dataflow graph is

prepared for execution. An instance of a dataflow graph that is provided parameter values

is sometimes called a parameterized instance of the dataflow graph. A parameter is a type

of data that can be changed to change the behavior of the program to which the parameter

belongs. For example, a value of a parameter can be provided to the program in order to

20 change the way the program processes input data to produce output data. In the case of a

dataflow graph, each component of a dataflow graph may be associated with one or more

parameters. Similarly, one or more of the parameters may be associated with a single

component or with multiple components.

One example of a graph-based system is described in detail in U.S. Publication

25 No. 2007/0011668, titled "Managing Parameters for Graph-Based Applications,"

incorporated herein by reference. A system for executing graph-based computations is

described in U.S. Patent 5,966,072, titled "Executing Computations Expressed as

Graphs," incorporated herein by reference. Further, components of a dataflow graph can

be substituted for operations of a query 102. Techniques in accordance with this

30 substitution are further described in U.S. Publication No. 2011/0179014A1, titled

"Managing Data Queries," and U.S. Publication No. 2012/0284255A1, also titled

- 11-

WO 2016/133880 PCT/US2016/018028

"Managing Data Queries," incorporated herein by reference. In some implementations, a

dataflow graph can be produced from a query 102.

Referring to figure 2B, n some examples, the computer program 132 includes a

portion 134 that, when executed, communicates with the external resource 108. For

5 example, the portion 134 may include executable functionality (e.g., executable program

code) that is configured to transmit data to, and/or receive data from, the external

resource 108. When the 134 is executed (e.g., program code of the portion 134 is

interpreted and carried out by an execution engine), the computer program 134 transmits

data to and/or receives data from the external resource 108. In some implementations, the

10 portion 134 (as well as other portions of the computer program 132) may include

program code that was provided to the data processing system 100 and is retrieved based

on the identity of the external resource 108. For example, an application developer (not

shown) may have written the program code of the portion 134 to comply with technical

requirements of the external resource. In some implementations, the technical

15 requirements include an application programming interface (API), described below. In

some implementations, the portion 134 is a component of a dataflow graph, or a subgraph

of a dataflow graph.

In some implementations, the computer program generation engine 120 generates

the computer program 132 by accessing one or more pre-existing portions of a computer

20 program and assembling the portions to form the computer program 132. For example,

the computer program generation engine 120 may have access to a component library

126 that stores pre-existing components, e.g., pre-existing portions of executable program

code. For example, a pre-existing component may be a component suitable for inclusion

in a dataflow graph, or may be another graph (e.g., a subgraph) suitable for inclusion in a

25 dataflow graph.

In some implementations, the component library 126 may include pre-existing

components each of which corresponds to a particular kind of external resource 108. For

example, the component library 126 may include a component 124 that corresponds to an

external resource 108 indicated by the reference 112 in the query 102. In some examples,

30 the component 124 may have been developed by a developer for the purpose of enabling

the data processing system 100 to access the external resource 108 corresponding to the

- 12-

WO 2016/133880 PCT/US2016/018028

reference 112. A component 124 can be chosen from the component library 126 based on

the identity of the external resource 108.

When the computer program generation engine 120 receives one or more

components 124 (e.g., from the component library 126), the computer program

5 generation engine 120 also configures the component 124 or components. In doing so,

the computer program generation engine 120 generates a computer program 132 with

configured portions. For example, the configured computer program 132 includes a

configured portion 134 corresponding to the component 124 or components that include

executable functionality for communicating with the external resource 108.

10 In some implementations, the configured portion 134 can be configured based on

properties 136 received by the computer program generation engine 120. The properties

136 include data describing characteristics of the external resource 108. The data is used

by the computer program 132 to determine how to send and receive data from the

external resource 108. In some examples, the external resource 108 may send and receive

15 data in a particular format. In these examples, the properties 136 can include a

specification of the format of data to be sent and received from the external resource 108.

In some examples, the external resource 108 may require the use of a credential such as a

username and/or password. In these examples, the properties 136 can include a

specification of the identifier. In some examples, the external resource 108 may be

20 accessible at a particular address or other location. For example, the external resource

108 may be accessible at a particular IP (Internet Protocol) address, or a particular server

name, or another type of address. In these examples, the properties 136 can include the

address information.

The properties 136 can be received from a source that can be updated, e.g., in

25 response to changes in operation of the external resource 108. For example, the properties

136 may be stored in a catalog 122 containing data representing properties corresponding

to external resources 108 with which the data processing system 100 is capable of

communicating. The catalog 122 could be a database, a flat file, or any other type of data

storage mechanism. In some implementations, the catalog 122 is can be read from and

30 written to by multiple entities at the same time. For example, the catalog 122 could be

implemented as a database or other data storage technique that has functionality for

- 13-

WO 2016/133880 PCT/US2016/018028

managing concurrent data read and write operations. One example of functionality for

managing concurrent data read and write operations is the use of locks or semaphores that

indicate when a portion of data is being written to. One type of locking functionality that

could be used is two-phase locking, in which one or more locks are acquired, a read or

5 write operation is carried out, and then the locks are released. By managing concurrent

data read and write operations, a single catalog 122 can be used by many instances of the

generation engine 120. Further, a single catalog 122 can store properties 136 for many

types of external resources 108. The properties 136 associated with any of the external

resources 108 can be updated at any time, even if the number of external resources 108

10 supported by the catalog 122 is large enough such that the properties 136 are frequently

accessed (e.g., such that at least some properties stored in the catalog 136 are read from

or written to several times or more every second).

In some examples, if the external resource 108 changes in operation, any

executable code for communicating with the external resource 108 (e.g., executable code

15 that makes up part of an executable component 124) need not be changed; only the

properties are updated. For example, the external resource 108 may change the way in

which it provides output data to other systems. The properties 136 enable the computer

program generation engine 120 to configure the portion 134 of the configured computer

program 132 in a way that the configured portion 134 will be configured to accept data in

20 the format that will be received from the external resource 108. Further, the configured

computer program 132 can generate instructions 110 to be sent to the external resource

and, when interpreted by the external resource 108, will cause the external resource 108

to send back data 106 responsive to the instructions 110. The instructions 110 can be

formatted by the configured portion 134 based on a format of instructions specified by

25 the properties 136. In some implementations, the format of instructions is derived from

data stored in the catalog 122.

In some implementations, the catalog 122 includes information about record

formats of data 106 of external resources 108 with which the data processing system 100

is capable of communicating. For example, the computer program 132 can use a record

30 format 128 stored in the catalog 122 to interpret data 106 received from a corresponding

external resource 108. In some examples, a record format 128 stored in the catalog 122

- 14-

WO 2016/133880 PCT/US2016/018028

specifies a structure of data 106 that is received from the external resource 108. The

record format may specify a structure of data in which the data is organized into records,

such that each record has multiple fields. The computer program 132 can use the record

format 128 to identify records and fields in data 106 received from the external resource

5 108. In some examples, the computer program 132 can use the record format 128 to

interpret the data 106, for example, to translate the records and fields of the data to a

different format (e.g., a format to be used in output of the computer program 132).

In some implementations, the computer program 132 can use the record format

128 of the catalog 122 to output data in a form that corresponds to the form expected of

10 results of a SQL query. In some examples, a relational database management system

returns data in the form of records and fields, e.g., in response to a SQL query. Thus, if

the computer program 132 can also identify records and fields in data 106 from an

external resource 108, the computer program 132 can provide output in the form of

records and fields in response to a SQL query. This can be performed even if the data 106

15 received from the external resource 108 does not take the form of data typically received

from a relational database, e.g., a database table.

In some implementations, the computer program 132 can be configured with

parameters. For example, the parameters may be values that can be changed to change the

behavior of the program. As a specific example, a parameter may be "filename" and the

20 value of the parameter could be the location of a file in a file system. The value of the

parameter can be changed to a location of a different file to configure the program to

access the different file. Two instances of the same program (e.g, instances of the same

executable program code) can be configured with different parameter values, which will

change the behavior of the two instances of the same program.

25 Referring to figure 2C, the computer program generation engine 120 can use the

properties to generate parameter values 138 which are used to configure the portion 134

of the configured computer program 132. In some examples, the computer program 132

may have a parameter corresponding to each of the properties 136. For example, the

computer program 132 may have a parameter called "recordformat" which is used to

30 determine what format in which the computer program 132 will receive data 106. The

computer program generation engine 120 can generate a parameter value 138 for the

- 15-

WO 2016/133880 PCT/US2016/018028

"recordformat" parameter based on the record format received as part of the properties

136 for the external resource 108. As another example, the computer program 132 may

have a parameter called "username" which is used to supply a username when connecting

to the external resource 108. The computer program generation engine 120 can generate a

5 parameter value 138 for the "username" parameter based on username data received as

part of the properties 136 for the external resource 108.

In some implementations, the parameter values 138 are provided to the computer

program 132 in the form of a parameter file in a format readable by the computer

program 132. For example, the parameter file may be formatted in a data manipulation

10 language (DML).

In some implementations, the computer program 132 is generated based on

executable code associated with the external resource 108. For example, the catalog 122

may specify a location of executable code that, when the executable code is configured

(e.g., using configuration data such as the properties 136), then the executable code can

15 be used to communicate with the external resource 108. In this way, if the executable

code is updated, e.g., by a system administrator or other entity who is authorized to

change executable code, the catalog 122 stores the location of the updated executable

code. When the computer program generation engine 120 generates the computer

program 132, the computer program generation engine 120 can access the catalog to

20 determine a location of the most up-to-date version of the executable code.

Once the computer program 132 is generated, an execution engine 140 receives

the computer program 132. The execution engine 140 then executes the computer

program 132, e.g., carries out instructions specified by program code associated with the

computer program 132. When executed, the computer program 132 (e.g., the configured

25 portion 134 of the computer program) generates instructions 110 and transmits the

instructions 110 to the external resource 108. In some implementations, the external

resource 108 exposes an API 142 (application programming interface) which is used to

send instructions to and receive data from the external resource 108. In general, the API

142 can be any facility which enables the computer program 132 to interact with the

30 external resource 108. For example, the API 142 may specify types of instructions that

the external resource 108 is configured to receive and carry out. An example of an

- 16-

WO 2016/133880 PCT/US2016/018028

instruction typically specified by an API is a function call. A function is a portion of

executable program code. When using a function call, the computer program 132

transmits, as part of the instructions 110, the name of a function and arguments to be

passed to the function (e.g., used by the executable program code of the function). The

5 instructions 110 may include many function calls, or other types of instructions, or both.

In some implementations, if the computer program 132 is a dataflow graph, the

execution engine 140 includes a specialized operating system, sometimes called a graph

operating system. A graph operating system is a computer program capable of executing

the operations underlying individual components of a dataflow graph. For example, if a

10 component of a dataflow graph represents an operation to be carried out by a data

processing system, the graph operating system is tasked with instructing a data

processing system to carry out the operation.

After sending the instructions 110 to the external resource 108, the computer

program 132 receives data 106 from the external resource responsive to the instructions

15 110. The execution engine 140 then formats the received data 106 into results 104 of the

query 102. In this way, the data processing system 100 can execute the query 102 to

generate results 104 specified by the query.

In some implementations, the external resource 108 provides the data 106 in a

format such as JSON (JavaScript Object Notation), which specifies data in the form of

20 attribute-value pairs, or XML (Extensible Markup Language) which specifies data

demarcated by tags indicating a category for the data. In some implementations, the

record format 128 for the data 106 is stored in the catalog 122 in association with other

data associated with the external resource 108 and can be used to interpret the JSON or

XML data.

25 When the computer program 132 is executed by the execution engine 140, the

computer program 132 (e.g., the results 104) is equivalent to output of a system (other

than the execution engine 140) that executes the query 102 but does not execute the

configured computer program 132. In this way, the computer program 132 is an example

of a computer program that corresponds to the query 102. In some implementations, the

30 computer program 132 formats the results 104 in the form of a database table 144. In this

way, the data processing system 100 can execute a query 102, e.g., database query such

- 17-

WO 2016/133880 PCT/US2016/018028

as a SQL query) and provide the same kind of output that would be provided if a system

such as an RDBMS executed the query 102 and provided results specified by the query.

Further, while a SQL query is typically used to retrieve data stored in a database

table, the query 102 shown here can be used to retrieve data stored in any of several

5 possible forms. The data 106 received from the external resource 108 may be in a form

other than a database table (e.g., a relational database table), for example, a flat file. A

flat file is a data file that does not contain structural relationships between elements of

data. The data of the flat file may be capable of being represented in the form of records

and fields. In some examples, the data 106 received from the external resource 108 may

10 be in a format native to the external resource 108, by which we mean the data 106 may be

in a format used by the external resource 108 to store and process data.

Figure 3 shows a user interface 300 for executing a query. This user interface 300

is associated with data processing system 100 shown in figures 1 and 2. This user

interface 300 enables a user (not shown) to enter a SQL query 302 in a text box 304 of

15 the user interface 300. The SQL query 302 includes a 'SELECT' command 306 and an

argument 308 that is an identifier for a data source. Here, the argument 308 is

"web.wikipedia." The argument "web.wikipedia" is associated with an external resource

(e.g., the external resource 108 shown in figure 1).

In some examples, the data processing system 100 may store a list of identifiers

20 and a list of external resources associated with each identifier. A number of techniques

could be used to associate identifiers with external resources. In some examples, referring

to figures 2B-2C, the catalog 122 may store a list of identifiers, each corresponding to an

external resource. For example, each identifier may correspond to references 112

included in queries 102 submitted to the data processing system 100. For example, the

25 reference 112 may be the argument 308 "web.wikipedia" shown in the query 300 in

figure 3. In this way, a reference 112 can be extracted from a query 102 and used to look

up a corresponding external resource in the catalog 122. Further, the catalog may

associate each identifier with a respective set of properties 136. The catalog 122 may

associate each identifier with a reference to one or more components in the component

30 library 126. In this way, a reference to an external resource can be used to identify, in the

catalog 122, a corresponding set of properties and a reference to a corresponding

- 18-

WO 2016/133880 PCT/US2016/018028

component (e.g., a component 124 as shown in figures 2B-2C). As another example, the

component library 126 may store identifiers, e.g., may store an identifier for each

component 124, so that an identifier (such as the name of an external resource) can be

used to identify one or more corresponding components (e.g., a component 124 as shown

5 in figures 2B-2C).

As shown in figure 3, "web.wikipedia" is an identifier that references a web site

called WIKIPEDIA available on the Internet via hypertext transfer protocol (HTTP).

When a user clicks a Run Query button 310, the user interface 300 causes the data

processing system 100 (figure 1) to execute the SQL query 302.

10 Once the SQL query 302 is executed, the results 312 of the execution are shown

in the user interface 300. In this example, the results 312 are displayed in the form of a

database table. The results 312 include rows 314 and columns 316 containing elements of

data. Although the external resource associated with the argument 308 is not a relational

database, the data processing system 100 enables the query 302 to be executed using the

15 external resource (here, WIKIPEDIA) as a data source, and enables the results 312 to be

formatted as a database table. For example, the results 312 can be formatted as a database

table by identifying records and fields in the data returned by WIKIPEDIA. The

identification can be performed by using a record format 128 (figures 2B-2C) associated

with WIKIPEDIA. Here, the query 302 included a 'where' command 318 indicating a

20 criteria that must be satisfied by the results 312. The command 318 has an argument 320

of "subject = 'SQL"' (this type of argument is sometimes referred to as a predicate)

which indicates that the results must include the term "SQL" in the text. Thus, the results

312 all include the term "SQL".

Figure 4A shows a dataflow graph 400 generated in response to the execution of

25 the query 302. The dataflow graph 400 is an example of the configured computer

program 132 shown in figures 2A-2C. In some implementations, the dataflow graph 400

may be a subgraph of another dataflow graph containing other components. When the

query 302 is executed, the data processing system (figures 1 and 2) generates and

configures the dataflow graph 400. Further, the execution engine 140 (figures 2A-2C)

30 executes the dataflow graph 400 to generate the results 312 shown in figure 3. The

dataflow graph 400 includes a component 402 representing an external resource 108

- 19-

WO 2016/133880 PCT/US2016/018028

(figure 1) and a component 404 representing an input to the external resource 108. Here,

the component 402 represents WIKIPEDIA. For example, the components 402, 404 may

together be an example of the configured portion 134 shown in figures 2B-2C. When the

dataflow graph 400 is executed (e.g., by a graph operating system), the component 402

5 transmits instructions (e.g. the instructions 110 shown in figures 1 and 2) to the external

resource 108. The instructions are based on input data received from the input component

404. For example, WIKIPEDIA may expose a search query function which executes

plain text queries submitted via hyptertext transfer protocol (HTTP). In this example, the

component 402 is configured to transmit a plain text search query to WIKIPEDIA. For

10 example, the SQL query 302 included an argument 320 of "subject = 'SQL'." Here, the

input component 404 can be configured to provide the term "SQL" to the component 402

that communicates with WIKIPEDIA. In turn, the component 402 is configured to

transmit the term "SQL" (e.g., received from the input component 404) as part of the

plain text search query. In response to the plain text search query, the component 402

15 receives results via HTTP, which may be formatted according to hypertext markup

language (HTML). The component 402 is also configured to parse the received HTML

data and format the parsed data into a form such as a database table, e.g., the results 312

shown in figure 3.

In order to communicate with the WIKIPEDIA, the components 402, 404 are

20 configured using properties (e.g., the properties 136 shown in figures 2B-2C) specific to

WIKIPEDIA. For example, the properties 136 may include information describing the

format in which WIKIPEDIA provides search results, e.g., the particular HTML

formatting used in the search results. In this way, if WIKIPEDIA changes the format of

its output, the properties 136 (e.g., stored in the catalog 122 shown in figures 2B-2C) can

25 be updated (e.g., updated by an administrator user of the catalog 122) to reflect the

updated format. When the component 402 that communicates with WIKIPEDIA is

configured, the most recent version of the properties 136 can be accessed and used.

The components 402, 404 are configured with parameter values based on the

properties. As an example, the component 404 may have a parameter called "inputtext,"

30 and so the component 404 can be configured to use the text string "SQL" as the value for

- 20-

WO 2016/133880 PCT/US2016/018028

the "input text" parameter. In this way, the criteria defined by the argument 320 defined

in the SQL query is used when querying WIKIPEDIA.

In some implementations, the component 402 that communicates with an external

resource such as WIKIPEDIA is made up of multiple executable components. In some

5 examples, the component 402 may include one or more components that include

executable instructions for establishing a network connection with one or more network

resources. For example, the network resources may be servers that can provide data

originating from WIKIPEDIA.

In some examples, the component 402 may include one or more components that

10 include executable instructions for parsing data received from the external resource. For

example, data received from WIKIPEDIA may include both data responsive to the SQL

query 302 and other kinds of data, such as markup data (e.g., tags such as XML tags),

metadata such as data describing a size or character set of the received data, or other data

not responsive to the query. The components that include executable instructions for

15 parsing data received from the external resource can process the data received from the

external resource to separate the data responsive to the query from the data not responsive

to the query. The data not responsive to the query may be discarded or used for another

purpose. For example, data describing a size of the received data can be used to

determine that an expected quantity of data has been received from the external resource.

20 In some examples, the component 402 may include one or more components that

include executable instructions for formatting data received from the external resource.

For example, the component 402 may provide output data (e.g., to other portions of the

dataflow graph 400) that is formatted in a particular manner. The output data could be,

for example, formatted as multiple lines of text, or multiple elements of an array, or

25 another type of format. In some implementations, the components that include executable

instructions for formatting data received from the external resource can receive parsed

data (e.g., the data parsed by those components which include executable instructions for

parsing data received from the external resource) and format the parsed data in a format

specified for the output data of the dataflow graph 400. For example, the format specified

30 for the output data of the dataflow graph 400 may be a format of a database table.

-21-

WO 2016/133880 PCT/US2016/018028

One type of component made up of multiple components is called a subgraph.

Figure 4B shows an example of a subgraph 410 containing components 412a-g that make

up the component 402 that communicates with WIKIPEDIA. The components 412a-g

each include executable functionality that carries out a portion of the computational

5 operations needed to communicate with WIKIPEDIA. For example, one component 412a

is a "Call Web Service" component that includes executable code for communicating

with a server on a network, e.g., a server that uses hypertext transfer protocol (HTTP).

The "Call Web Service" component 412a transmits requests to the server and receives

data in response to the request. In some implementations, the "Call Web Service"

10 component 412a transmits a Simple Object Access Protocol (SOAP) request to the

external resource. In some implementations, "Call Web Service" component 412a

accesses an application programming interface (API) of the external resource.

The "Call Web Service" component 412a receives input specifying data to be

transmitted in a request.

15 A replicate component 412b and a reformat component 412c prepare the data to

be transmitted by the "Call Web Service" component 412a. For example, the replicate

component 412b may receive data from the input component 404 shown in Figure 4A. In

some implementations, the reformat component 412c can then remove data that is

inappropriate to transmit to the external resource. For example, some of the data may be

20 inappropriate to transmit to the external resource, e.g., some of the data could be a search

term that can be transmitted to search functionality of the external resource. In some

examples, some of the data could be data that is not appropriate to transmit to the external

resource. For example, the external resource may lack functionality for processing the

data in a manner that is responsive to the original query (e.g., the query 102 shown in

25 figure 1). As an example, some of the data may be a regular expression, and the external

resource may lack functionality for evaluating regular expressions received by the search

functionality of the external resource.

A second reformat component 412d changes a format of the data received from

the external resource, e.g., parses and formats the data provided as output by the "Call

30 Web Service" component 412a. For example, the data received from the "Call Web

Service" component 412a may be tagged data such as XML data. The reformat

- 22-

WO 2016/133880 PCT/US2016/018028

component 412d can extract the data demarcated by the tags and output he extracted data

in a format that does not use XML tags. The reformat component 412d may also remove

data not needed in the output data. For example, the data discarded may be XML tags, or

data demarcated by XML tags but that is not responsive to the query. In some

5 implementations, the reformat component 412d uses a record format 128 (figures 2B-2C)

to interpret the structure of the data received from the "Call Web Service" component

412a, e.g., identify records and fields in the data received from the "Call Web Service"

component 412a, before reformatting the data.

The replicate component 412b can also provide data to a third reformat

10 component 412e. In some implementations, this reformat component 412e identifies the

data that is inappropriate to transmit to the external resource that was remove by the first

reformat component 412c. Here, the data that is inappropriate to transmit to the external

resource can be provided by the reformat component 412e to a join component 412f

which combines data received from two components.

15 The second reformat component 412d also provides its output to the join

component 412f. Thus, the join component 412f provides output representing input from

the second reformat component 412d and the third reformat component 412e.

A filter component 412g receives the output of the join component 412f. The

filter component 412g removes data not responsive to the query (e.g., the query 102

20 shown in figure 1). As an example, the "Call Web Service" component 412a may output

data not responsive to the original query because the "Call Web Service" component

412a was not provided one or more elements (e.g., portions) of the query. The one or

more elements of the query may be a regular expression, which may not be appropriate to

provide to the external resource represented by the "Call Web Service" component 412a.

25 Here, the filter component 412g could receive the regular expression (e.g., as output by

the third reformat component 412e to the join component 412f, and as removed by the

first reformat component 412c from the output provided to the "Call Web Service"

component 412a). The filter component 412g can filter the data first received from the

"Call Web Service" component 412a based on the regular expression. Although the

30 example of a regular expression is used here, the filter component 412g could filter the

- 23-

WO 2016/133880 PCT/US2016/018028

data based on other types of elements of the query or other types of criteria, e.g., criteria

not specified in the query.

Each of the components of the subgraph 410 shown in figure 4B has its own

executable code that is carried out when the subgraph 410 is executed. For example,

5 Figure 4C shows an example of the executable code 440 that makes up the Call Web

Service component 412 shown in figure 4B. The executable code 440 includes code 442

for formatting requests to the external resource, code 444 for parsing output from the

external resource, code 446 for transmitting a request to the external resource, and code

448 for providing output from the external resource to other components.

10 As described above with respect to figures 2B-2C, a catalog 122 contains data

corresponding to external resources 108 that the data processing system 100 is capable of

communicating with. The data stored in the catalog 108, e.g, the properties 136, is used to

configure a computer program 132.

As shown in figure 5A, in some implementations, a user interface 500 can be used

15 to view and edit data stored in the catalog 122. The user interface 500 enables a user

(e.g., an administrator of the catalog 122) to view and edit the data for an entry 502 in the

catalog. An entry 502 of the catalog stores data relevant to a particular external resource,

e.g., WIKIPEDIA. Although one example of a user interface 500 and an entry 502 is

showed here, other types of catalogs may have other types of entries, and the other types

20 of entries may contain different kinds of data.

This entry 502 includes data such as general information 504a about the entry.

The entry 502 can also include a record format 504b of the external resource associated

with the entry 502, which specifies the format of data received from the external

resource, as described below. The entry 502 can also include indices 504c for the entry

25 which specifies names for data that can be used to query the external resource associated

with this entry 502, as described below. For example, the entry 502 can also include keys

504d for the entry. A key is used for data sources, such as relational databases, that store

data in the form of records. A key an attribute for which record's stored value for the

attribute is unique. The entry 502 can also include parameters 504e for the entry. In some

30 implementations, referring to figure 2C, parameters. e.g., the parameters 138, are used to

configure a computer program 132. In some implementations, the parameters 504e

- 24-

WO 2016/133880 PCT/US2016/018028

include data values for the properties 136 shown in figures 2B-2C, which include data

describing characteristics of the external resource associated with this entry 502. For

example, the parameters 504e may include configuration data such as credentials (e.g., a

username and password) used to gain authorized access to an external resource 108. The

5 entry can also include permissions 504f for the entry 502, which indicate what entities

(e.g., what users of the user interface 500 such as administrators of the catalog 122) can

access and/or modify the entry 502. The entry can also include statistics 504g for the

entry 502, which specify statistical data about the external resource 108 associated with

this entry 502, e.g., statistical data such as the quantity of data available at the external

10 resource 108.

As shown in figure 5A, the general information 504a of the entry includes a

reference 506 to a path of stored executable code. In some implementations, referring to

figure 1, the stored executable code is the portion 134 of the computer program 132 that

communicates with the external resource 108. The reference 506 can be used by the

15 generation engine 120 to access the stored executable code and use the stored executable

code to generate the computer program 132.

As shown in figure 5B, the entry 502 can also include a record format 504b of the

external resource associated with the entry 502. The record format 504b may be an

example of the record format 128 shown in figures 2B-2C. The record format 504b

20 specifies the format of data received from the external resource. For examine, the record

format 504b can include an embedded record format 508 and fields 510. The fields 510

specify names for data transmitted to and received from the external resource. For

example, here the fields 510 are "subject," which is a name for data transmitted to

WIKIPEDIA (e.g., a subject used in a query to the encyclopedia), and "line" which is a

25 name for data received from WIKIPEDIA (e.g., lines of an encyclopedia entry

corresponding to a subject). The embedded record format 508 specifies format

information about the data provided to and received from the external resource. For

example, this embedded record format 508 indicates that the "subject" and "line" fields

are formatted using UTF-8, which is a particular kind of Unicode character encoding.

30 As shown in figure 5C, the entry 502 can also include indices 504c for the entry

which specifies names for data that can be used to query the external resource associated

- 25-

WO 2016/133880 PCT/US2016/018028

with this entry 502. For example, this entry 502 has an index 514 called "subject." Thus,

the external resource is configured to receive a data value for "subject" and return data

responsive to the data value. For example, WIKIPEDIA may be configured to return

encyclopedia entries where the data value appears in a "subject" field associated with

5 each entry.

Figure 6A shows a flowchart representing a procedure 600 for executing a query.

The procedure 600 can be carried out, for example, by components of the data processing

system 100 shown in figure 1.

The procedure receives 602 a SQL query. For example, the SQL query can be an

10 example of the query 102 shown in figure 1. The SQL query includes an identifier

associated with a resource that is external to the data processing system. Further, this

resource is not a relational database management system. The resource could be the

external resource 108 shown in figure 1. An example of an identifier is the argument 308

shown in figure 3.

15 The procedure generates 604 a computer program based on the SQL query. The

computer program could be the computer program 132 shown in figures 2A-2C. In some

examples, the computer program includes components representing operations of the

SQL query. In some examples, the computer program is a dataflow graph and the portion

of the computer program that communicates with the external resource is a component or

20 a subgraph of the dataflow graph. An example of a dataflow graph 400 is shown in figure

4A. In some implementations, the procedure 610 shown in figure 6B can be carried out

during the generation of the computer program, e.g., to configure one or more portions of

the computer program during generation of the computer program. In some

implementations, the procedure 630 shown in figure 6D can be carried out to generate a

25 data structure that can be used to instantiate the computer program, e.g., a dataflow

graph.

The procedure executes 606 the computer program, e.g., based on parameter

values used to configure the computer program. For example, the computer program may

be executed by the execution engine 140 shown in figures 2A-2C. In some

30 implementations, the execution of the computer program corresponds to the procedure

620 shown in figure 5C.

- 26-

WO 2016/133880 PCT/US2016/018028

Figure 6B shows a flowchart representing a procedure 610 used to configure a

portion of a computer program when generating a computer program. In some

implementations, the procedure 610 represents steps for generating 604 a computer

program as shown in figure 6A. The procedure 610 can be carried out, for example, by

5 components of the data processing system 100 shown in figure 1, such as the computer

program generation engine 120. In some implementations, a computer program is

generated by assembling multiple portions. Each portion may be configured while the

computer program is being assembled. This procedure 610 can be used to configure a

portion of the computer program being assembled.

10 The procedure identifies 614 configuration data associated with an external

resource. For example, the external resource could be the external resource 108 shown in

figures 1 and 2. The configuration data specifies information used by a computer program

to access the external resource and receive data from the external resource. In some

implementations, the configuration data specifies a format of data to be received from the

15 resource, e.g., the record format 128 shown in figures 2B-2C. In some implementations,

the configuration data specifies data used to access the resource on a network. For

example, the configuration data can contain credentials, such as a username and

password, used to obtain authorized access to data of the external resource, and/or the

configuration data can contain a network address such as a host name or uniform resource

20 locator (URL), and/or the configuration data can contain other kinds of data. For

example, the configuration data could be an example of the properties 136 shown in

figures 2B-2C. In some examples, the configuration data is specified in a catalog that can

be updated based on a change to a data format used by the resource.

The procedure generates 616 parameter values based on the configuration data.

25 For example, the parameter values may be the parameter values 138 shown in figures 2C.

In some implementations, a parameter generator receives data and generates a parameter

file in a format readable by the computer program. The parameter file is then provided to

the computer program. For example, the parameter generator could be a portion of the

computer program generation engine 120 shown in figure 1. The data received by the

30 parameter generator could be data of the properties 136 shown in figures 2B-2C. For

- 27-

WO 2016/133880 PCT/US2016/018028

example, the parameter generator may parse the properties 136 to determine the

parameter values 138.

The procedure provides 516 parameter values to a portion of the computer

program. The portion is capable of communicating with the resource. For example, the

5 portion of the computer program may be the configured portion 134 shown in figures 2B

2C. The portion of the computer program includes executable instructions that define a

manner in which the resource is accessed. Further, the executable instructions operate

based on the parameters provided to the portion of the computer program.

The procedure 610 can be carried out for any portion of a computer program

10 being generated. Once all portions of the computer program have been configured, the

computer program is ready for execution.

Figure 6C shows a flowchart representing a procedure 620 for executing a

computer program that corresponds to a query. In some implementations, the procedure

represents steps for executing 606 a computer program as shown in figure 6A. The

15 procedure 620 can be carried out, for example, by components of the data processing

system 100 shown in figure 1, such as the computer program execution engine 140. The

computer program could be the computer program 132 shown in figures 2A-2C. For

example, the procedure 620 can be initiated when the computer program execution

engine 140 receives the computer program 132 and carries out operations corresponding

20 to executable code of the computer program 132.

The execution of the computer program causes one or more instructions to be

transmitted 622 to an external resource. For example, the external resource can be the

external resource 108 shown in figures 1 and 2. The instructions define operations other

than operations of a SQL query corresponding to the computer program. For example, the

25 instructions may be the instructions 110 shown in figure 1. In some examples, the

instructions are transmitted to a facility of the external resource that does not return

results in response to a SQL query, e.g., the instructions are not transmitted to a facility of

the external resource that receives a SQL query as input, evaluates the SQL query, and

responds with data specified by the SQL query. In this way, in some examples, the

30 instructions do not include SQL instructions such as SQL commands or arguments. In

some implementations, the resource is accessed using an application programming

- 28-

WO 2016/133880 PCT/US2016/018028

interface (API) exposed by the resource. An example of the API 142 is shown in figure

2C.

The execution of the computer program causes data to be received 624 from the

resource in response to the instructions. For example, the data could be the results 104

5 shown in figure 1. The results may be formatted in the form of a database table, e.g., the

database table 144 shown in figure 1. The data received from the resource in response to

the instructions includes data specified by the SQL query. In this way, the received data

is the same as data that would have been received from the external resource if the

resource were provided a SQL query and, in response, the external resource returned data

10 specified by the SQL query.

Figure 6D shows a flowchart representing a procedure 630 for generating a data

structure in a computer instantiating a dataflow graph that corresponds to a query. For

example, the dataflow graph could be the computer program 132 shown in figures 2A

2C. An example of dataflow graph 400 that corresponds to a query is shown in figure 4A.

15 A request to a query planner based on the query is generated 632. A query planner

is a system that generates data that represents steps that can be carried out to execute a

query. A query planner often generates the data in the form of steps that can be carried

out by an RDBMS.

A query plan generated by the query planner based on the request is received 634.

20 A query plan is data that represents a description of one or more steps to be performed by

a system managing a relational database, e.g., an RDBMS.

A data source is identified 636, e.g, based on the query. The data source can be an

external resource, e.g., the external resource 108 shown in figures 1 and 2. The

identification could be made based on a reference represented in the query, e.g., the

25 reference 112 shown in figure 1. In some examples, the data source is identified based on

an argument in the query.

An executing system other than a system managing a relational database is

identified 638. The executing system could be a system that executes dataflow graphs.

For example, the executing system could be the execution engine 140 shown in figures

30 2A-2C. In contrast, an example of a system managing a relational database is an

RDBMS.

- 29-

WO 2016/133880 PCT/US2016/018028

A data structure instantiating a dataflow graph is generated 640. As described

above with respect to figures 2A-2C, a dataflow graph is a computer program that

contains components representing operations to be performed on input data and links

between the components (sometimes called nodes) representing flows of data.

5 The data structure includes a node that represents at least one operation to be

executed. The node is associated with information usable by an executing system to

invoke executable program code to perform the operation. The node is also associated

with information usable by an executing system to make data available to the program

code. At least one link of the dataflow graph represents output data of an operation of the

10 node being provided as input data to an operation of another node of the dataflow graph.

The operation is chosen based on a step described by the query plan. In some

implementations, the operation includes accessing data available at the data source. For

example, the component 402 of the graph 400 shown in figure 4A is an example of a

node that accesses data available at a data source external to the system executing the

15 dataflow graph.

When the generated 640 dataflow graph is executed, program code based on the

dataflow graph can be executed on the identified executing system. Further, data can be

received from the data source. For example, the data can be received 624 as shown in

figure 6C.

20 In some implementations of the procedures 600, 610, 620, 630 an API is used.

When an API is used, the procedure 600 includes causing functions of the API to be

executed in response to receiving the SQL query. The functions of the API are executable

at the external resource. Further, the instructions transmitted to the resource (e.g., in the

procedure 620 shown in figure 5C) cause the functions of the API to be executed. In this

25 way, a SQL query can be used to query a resource that is not a relational database

management system and does not interpret SQL queries.

The generation engine 120 and/or execution engine 140 shown in figure 1 may be

hosted, for example, on one or more general-purpose computers under the control of a

suitable operating system, such as a version of the UNIX operating system. For example,

30 this can include a multiple-node parallel computing environment including a

configuration of computer systems using multiple central processing units (CPUs) or

- 30-

WO 2016/133880 PCT/US2016/018028

processor cores, either local (e.g., multiprocessor systems such as symmetric multi

processing (SMP) computers), or locally distributed (e.g., multiple processors coupled as

clusters or massively parallel processing (MPP) systems, or remote, or remotely

distributed (e.g., multiple processors coupled via a local area network (LAN) and/or

5 wide-area network (WAN)), or any combination thereof

The user interface 300 shown in figure 3 may be part of a development

environment. The development environment is, in some implementations, a system for

developing applications as dataflow graphs. Dataflow graphs made in accordance with

this system provide methods for getting information into and out of individual processes

10 represented by graph components, for moving information between the processes, and for

defining a running order for the processes. This system includes algorithms that choose

interprocess communication methods from any available methods (for example,

communication paths according to the links of the graph can use TCP/IP or UNIX

domain sockets, or use shared memory to pass data between the processes).

15 The techniques described above can be implemented using a computing system

executing suitable software. For example, the software may include procedures in one or

more computer programs that execute on one or more programmed or programmable

computing system (which may be of various architectures such as distributed,

client/server, or grid) each including at least one processor, at least one data storage

20 system (including volatile and/or non-volatile memory and/or storage elements), at least

one user interface (for receiving input using at least one input device or port, and for

providing output using at least one output device or port). The software may include one

or more modules of a larger program, for example, that provides services related to the

design, configuration, and execution of dataflow graphs. The modules of the program

25 (e.g., elements of a dataflow graph) can be implemented as data structures or other

organized data conforming to a data model stored in a data repository.

The software may be provided on a tangible, non-transitory medium, such as a

CD-ROM or other computer-readable medium (e.g., readable by a general or special

purpose computing system or device), or delivered (e.g., encoded in a propagated signal)

30 over a communication medium of a network to a tangible, non-transitory medium of a

computing system where it is executed. Some or all of the processing may be performed

- 31-

WO 2016/133880 PCT/US2016/018028

on a special purpose computer, or using special-purpose hardware, such as coprocessors

or field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated

circuits (ASICs). The processing may be implemented in a distributed manner in which

different parts of the computation specified by the software are performed by different

5 computing elements. Each such computer program is preferably stored on or

downloaded to a computer-readable storage medium (e.g., solid state memory or media,

or magnetic or optical media) of a storage device accessible by a general or special

purpose programmable computer, for configuring and operating the computer when the

storage device medium is read by the computer to perform the processing described

10 herein. The inventive system may also be considered to be implemented as a tangible,

non-transitory medium, configured with a computer program, where the medium so

configured causes a computer to operate in a specific and predefined manner to perform

one or more of the processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, is

15 to be understood that the foregoing description is intended to illustrate and not to limit the

scope of the invention, which is defined by the scope of the following claims.

Accordingly, other embodiments are also within the scope of the following claims. For

example, various modifications may be made without departing from the scope of the

invention. Additionally, some of the steps described above may be order independent,

20 and thus can be performed in an order different from that described.

- 32-

What is claimed is:

1. A computer-implemented method, performed by a data processing system, of

executing a computer program based on a query that is expressed in accordance with a query

language applicable to a relational database, the computer program executed based at least in

part on data stored in a tangible, non-transitory computer-readable medium, the executing

including:

receiving a SQL query, where the SQL query includes an identifier associated with a

resource that is external to the data processing system;

generating a computer program based on the SQL query, including:

identifying a data source based on the SQL query;

identifying an executing system other than a system managing a relational

database;

generating a request to a query planner based on the query; providing the request

to the query planner;

receiving a query plan generated by the query planner based on the request, the

query plan including a description of one or more steps to be performed by a system

managing a relational database;

generating a data structure instantiating a dataflow graph that includes:

a first node that represents at least one operation to be executed,

the first node associated with information usable by an executing system

to invoke executable program code to perform the operation,

the first node associated with information usable by an executing system

to make data available to the program code, and

the operation chosen based on an step described by the query plan, and

at least one link that represents output data of an operation of the first node

being provided as input data to an operation of a second node of the dataflow

graph;

identifying configuration data associated with the resource, the configuration data

specifying at least one value used in communicating with the resource; and

executing the computer program, based on the configuration data, the execution of the

computer program causing:

- 33 -

transmitting one or more instructions to the resource, the instructions defining

operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

2. The method of claim 1 in which:

(a) the portion of the computer program includes executable instructions that define a

manner in which the resource is accessed, where the executable instructions operate based on the

configuration data provided to the portion of the computer program; and/or

(b) the configuration data is specified in a catalog that can be updated based on a change

to a data format used by the resource; and/or

(c) the SQL query includes a SELECT statement that includes an argument, where at

least a portion of the argument corresponds to the identifier associated with the resource; and/or

(d) the computer program includes components representing operations of the SQL

query; and/or

(e) the computer program is a dataflow graph and the portion of the computer program

is a subgraph of the dataflow graph; and/or

(f) the resource is accessed using an application programming interface (API) exposed

by the resource; and/or

(g) the resource is not a relational database management system; and/or

(h) the instructions are transmitted to a facility of the resource that does not return

results in response to a SQL query; and/or

(i) the data received from the resource in response to the instructions includes data

specified by the SQL query.

3. The method of claim 1 including:

(a) generating parameter values based on the configuration data; and providing the

parameter values to a portion of the computer program, the portion being capable of

communicating with the resource; the execution of the computer program being based on the

parameter values; and/or

(b) formatting the data received from the external resource in the form of a database

table; and/or

- 34-

(c) identifying records and fields in the data received from the resource in response to

the instructions, the records and fields identified based on a record format associated with the

resource that is external to the data processing system.

4. The method of claim 3 in which generating parameter values based on the

configuration data includes executing a parameter generator which generates a parameter file in

a format readable by the portion of the computer program, and

in which providing the parameter values to the portion of the computer program

includes making the parameter file available to the portion of the computer program.

5. The method of claim 2 including:

causing functions of the API to be executed in response to receiving the SQL query,

the functions of the API being executable at the resource, and the instructions transmitted

to the resource causing the functions of the API to be executed.

6. A data processing system capable of executing a computer program based on a

query that is expressed in accordance with a query language applicable to a relational database,

the computer program executed based at least in part on data stored in a tangible, non-transitory

computer-readable medium, the data processing system configured to perform operations

including:

receiving a SQL query, where the SQL query includes an identifier associated with a

resource that is external to the data processing system;

generating a computer program based on the SQL query, including:

identifying a data source based on the SQL query;

identifying an executing system other than a system managing a relational

database;

generating a request to a query planner based on the query; providing the request

to the query planner;

receiving a query plan generated by the query planner based on the request, the

query plan including a description of one or more steps to be performed by a system

managing a relational database;

- 35 -

generating a data structure instantiating a dataflow graph that includes:

a first node that represents at least one operation to be executed,

the first node associated with information usable by an executing system

to invoke executable program code to perform the operation,

the first node associated with information usable by an executing system

to make data available to the program code, and

the operation chosen based on an step described by the query plan, and

at least one link that represents output data of an operation of the first node

being provided as input data to an operation of a second node of the dataflow

graph;

identifying configuration data associated with the resource, the configuration data

specifying at least one value used in communicating with the resource; and

executing the computer program, based on the configuration data, the execution of the

computer program causing:

transmitting one or more instructions to the resource, the instructions defining

operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

7. A non-transitory computer readable storage device storing instructions that enable

a data processing system to execute a computer program based on a query that is expressed in

accordance with a query language applicable to a relational database, the computer program

executed based at least in part on data stored in a tangible, non- transitory computer-readable

medium, the instructions causing the data processing system to perform operations including:

receiving a SQL query, where the SQL query includes an identifier associated with a

resource that is external to the data processing system;

generating a computer program based on the SQL query, including:

identifying a data source based on the SQL query;

identifying an executing system other than a system managing a relational

database;

generating a request to a query planner based on the query; providing the request

to the query planner;

- 36-

receiving a query plan generated by the query planner based on the request, the

query plan including a description of one or more steps to be performed by a system

managing a relational database;

generating a data structure instantiating a dataflow graph that includes:

a first node that represents at least one operation to be executed,

the first node associated with information usable by an executing system

to invoke executable program code to perform the operation,

the first node associated with information usable by an executing system

to make data available to the program code, and

the operation chosen based on an step described by the query plan, and

at least one link that represents output data of an operation of the first node

being provided as input data to an operation of a second node of the dataflow

graph;

identifying configuration data associated with the resource, the configuration data

specifying at least one value used in communicating with the resource; and

executing the computer program, based on the configuration data, the execution of the

computer program causing:

transmitting one or more instructions to the resource, the instructions defining

operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

8. A data processing system capable of executing a computer program based on a

query that is expressed in accordance with a query language applicable to a relational database,

the computer program executed based at least in part on data stored in a tangible, non-transitory

computer-readable medium, the data processing system including:

means for receiving a SQL query, where the SQL query includes an identifier associated

with a resource that is external to the data processing system;

means for generating a computer program based on the SQL query, including:

identifying a data source based on the SQL query;

identifying an executing system other than a system managing a relational

database;

- 37-

generating a request to a query planner based on the query; providing the request

to the query planner;

receiving a query plan generated by the query planner based on the request, the

query plan including a description of one or more steps to be performed by a system

managing a relational database;

generating a data structure instantiating a dataflow graph that includes:

a first node that represents at least one operation to be executed,

the first node associated with information usable by an executing system

to invoke executable program code to perform the operation,

the first node associated with information usable by an executing system

to make data available to the program code, and

the operation chosen based on an step described by the query plan, and

at least one link that represents output data of an operation of the first node

being provided as input data to an operation of a second node of the dataflow

graph;

identifying configuration data associated with the resource, the configuration data

specifying at least one value used in communicating with the resource; and

means for executing the computer program, based on the configuration data, the

execution of the computer program causing:

transmitting one or more instructions to the resource, the instructions defining

operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

9. The system of claim 6, or the computer readable storage device of claim 7 in

which:

(a) the computer program includes executable instructions that define a manner in which

the resource is accessed, where the executable instructions operate based on the configuration

data provided to the portion of the computer program; and/or

(b) the configuration data is specified in a catalog that can be updated based on a change

to a data format used by the resource; and/or

(c) the SQL query includes a SELECT statement that includes an argument, where at

- 38 -

least a portion of the argument corresponds to the identifier associated with the resource; and/or

(d) the computer program includes components representing operations of the SQL

query; and/or

(e) the computer program is a dataflow graph and a subgraph of the dataflow graph

performs the transmitting of the one or more instructions to the resource; and/or

(f) the resource is accessed using an application programming interface (API) exposed

by the resource; and/or

(g) the resource is not a relational database management system; and/or

(h) the instructions are transmitted to a facility of the resource that does not return

results in response to a SQL query; and/or

(i) the data received from the resource in response to the instructions includes data

specified by the SQL query.

10. The system of claim 6, or the computer readable storage device of claim 7, the

operations including generating parameter values based on the configuration data; and

providing the parameter values to a portion of the computer program, the portion being

capable of communicating with the resource;

the execution of the computer program being based on the parameter values.

11. The system or the computer readable storage device of claim 10 in which

generating parameter values based on the configuration data includes executing a parameter

generator which generates a parameter file in a format readable by the portion of the computer

program, and

in which providing the parameter values to the portion of the computer program

includes making the parameter file available to the portion of the computer program.

12. The system or the computer readable storage device of claim 9, the operations

including

causing functions of the API to be executed in response to receiving the SQL

query,

the functions of the API being executable at the resource, and the instructions

- 39-

transmitted to the resource causing the functions of the API to be executed.

13. The system of claim 6, or the computer readable storage device of claim

7,including:

(a) formatting the data received from the external resource in the form of a database

table; sand/or

(b) identifying records and fields in the data received from the resource in response to the

instructions, the records and fields identified based on a record format associated with the

resource that is external to the data processing system.

14. A computer-implemented method, performed by a data processing system, of

executing a computer program based on a query that is expressed in accordance with a query

language applicable to a relational database, the computer program executed based at least in

part on data stored in a tangible, non-transitory computer-readable medium, the executing

including:

receiving a SQL query, where the SQL query includes an identifier associated with a

resource that is external to the data processing system;

generating the computer program based on the SQL query, including:

identifying a catalog including at least one entry associated with the resource,

the at least one entry representing configuration data usable to configure a computer

program to transmit instructions to the resource for the purpose of receiving data,

generating a request to a query planner based on the SQL query,

providing the request to the query planner,

receiving a query plan generated by the query planner based on the request, the

query plan including a description of one or more steps to be performed by a system

managing a relational database, and

generating the computer program based on the query plan, wherein at least a

portion of the generated computer program is configured to communicate with the

resource based on the at least one entry of the catalog;

receiving, from the identified catalog, the configuration data; and

executing the computer program on an executing system, based on the configuration data,

- 40-

the execution of the computer program causing:

transmitting one or more instructions to the resource, the instructions defining

operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

15. The method of claim 14 in which generating the computer program based on the

SQL query includes:

generating a data structure instantiating a dataflow graph that includes: a first node that

represents at least one operation to be executed,

the first node associated with information usable by an executing system to invoke

executable program code to perform the operation,

the first node associated with information usable by an executing system to make data

available to the program code,

the operation chosen based on a step described by the query plan, and

at least one link that represents output data of an operation of the first node being

provided as input data to an operation of a second node of the dataflow graph.

16. A data processing system including a hardware processor and memory, the data

processing system capable of executing a computer program based on a query that is expressed

in accordance with a query language applicable to a relational database, the computer program

executed based at least in part on data stored in a tangible, non- transitory computer-readable

medium, the data processing system configured to perform operations including:

receiving a SQL query, where the SQL query includes an identifier associated with a

resource that is external to the data processing system;

generating the computer program based on the SQL query, including:

identifying a catalog including at least one entry associated with the resource, the at

least one entry representing configuration data usable to configure a computer program

to transmit instructions to the resource for the purpose of receiving data,

generating a request to a query planner based on the SQL query, providing the

request to the query planner,

- 41 -

receiving a query plan generated by the query planner based on the request, the

query plan including a description of one or more steps to be performed by a system

managing a relational database, and

generating the computer program based on the query plan, wherein at least a

portion of the generated computer program is configured to communicate with the

resource based on the at least one entry of the catalog;

receiving, from the identified catalog, the configuration data; and

executing the computer program on the identified executing system, based on the

configuration data, the execution of the computer program causing:

transmitting one or more instructions to the resource, the instructions defining

operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

17. A non-transitory computer readable storage device storing instructions that enable

a data processing system to execute a computer program based on a query that is expressed in

accordance with a query language applicable to a relational database, the computer program

executed based at least in part on data stored in a tangible, non- transitory computer-readable

medium, the instructions causing the data processing system to perform operations including:

receiving a SQL query, where the SQL query includes an identifier associated with a

resource that is external to the data processing system;

generating the computer program based on the SQL query, including: identifying a

catalog including at least one entry associated with the

resource, the at least one entry representing configuration data usable to configure a

computer program to transmit instructions to the resource for the purpose of receiving

data,

generating a request to a query planner based on the SQL query, providing the

request to the query planner,

receiving a query plan generated by the query planner based on the request, the

query plan including a description of one or more steps to be performed by a system

managing a relational database, and

generating the computer program based on the query plan, wherein at least a

- 42-

portion of the generated computer program is configured to communicate with the

resource based on the at least one entry of the catalog;

receiving, from the identified catalog, the configuration data; and executing the

computer program on an executing system, based on the

configuration data, the execution of the computer program causing:

transmitting one or more instructions to the resource, the instructions defining

operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

18. A data processing system capable of executing a computer program based on a

query that is expressed in accordance with a query language applicable to a relational database,

the computer program executed based at least in part on data stored in a tangible, non-transitory

computer-readable medium, the data processing system including:

means for receiving a SQL query, where the SQL query includes an identifier associated

with a resource that is external to the data processing system;

means for generating the computer program based on the SQL query, including:

identifying a catalog including at least one entry associated with the

resource, the at least one entry representing configuration data usable to configure a

computer program to transmit instructions to the resource for the purpose of receiving

data,

generating a request to a query planner based on the SQL query, providing the

request to the query planner,

receiving a query plan generated by the query planner based on the request, the

query plan including a description of one or more steps to be performed by a

system managing a relational database, and

generating the computer program based on the query plan, wherein at least a

portion of the generated computer program is configured to communicate with the

resource based on the at least one entry of the catalog;

receiving, from the identified catalog, the configuration data; and

means for executing the computer program on an executing system, based on the

- 43 -

configuration data, the execution of the computer program causing:

transmitting one or more instructions to the resource, the instructions defining

operations other than operations of the SQL query, and

receiving data from the resource in response to the instructions.

19. The method of claim 14, or the system of claim 16, or the computer readable

storage device of claim 17, in which:

(a) the computer program includes executable instructions that define a manner in which

the resource is accessed, where the executable instructions operate based on the configuration

data provided to the portion of the computer program; and/or

(b) the configuration data is specified in a catalog that can be updated based on a change

to a data format used by the resource; and/or

(c) the SQL query includes a SELECT statement that includes an argument, where at

least a portion of the argument corresponds to the identifier associated with the resource; and/or

(d) the computer program includes components representing operations of the SQL

query; and/or

(e) the computer program is a dataflow graph and a subgraph of the dataflow graph

performs the transmitting of the one or more instructions to the resource; and/or

(f) the resource is accessed using an application programming interface (API) exposed

by the resource; and/or

(g) the resource is not a relational database management system; and/or

(h) the instructions are transmitted to a facility of the resource that does not return

results in response to a SQL query; and/or

(i) the data received from the resource in response to the instructions includes data

specified by the SQL query.

20. The method of claim 14, or the system of claim 16, or the computer readable

storage device of claim 17, the method or operations including

generating parameter values based on the configuration data; and

providing the parameter values to a portion of the computer program, the portion being

capable of communicating with the resource;

- 44-

the execution of the computer program being based on the parameter values.

21. The method, or system, or computer readable storage device of claim 20 in which

generating parameter values based on the configuration data includes executing a parameter

generator which generates a parameter file in a format readable by the portion of the computer

program, and

in which providing the parameter values to the portion of the computer program

includes making the parameter file available to the portion of the computer program.

22. The method, or system, or computer readable storage device of claim 19, the

method or operations including

causing functions of the API to be executed in response to receiving the SQL query,

the functions of the API being executable at the resource, and the instructions transmitted

to the resource causing the functions of the API to be executed.

23. The method of claim 14, or the system of claim 16, or the computer readable

storage device of claim 17, including:

(a) formatting the data received from the external resource in the form of a database

table; and/or

(b) identifying records and fields in the data received from the resource in response to

the instructions, the records and fields identified based on a record format associated with the

resource that is external to the data processing system.

- 45-

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

