
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0002301A1

US 2006OOO2301A1

Liu et al. (43) Pub. Date: Jan. 5, 2006

(54) TRANSFERRING TRANSMISSION Publication Classification
CONTROL PROTOCOL PACKETS

(51) Int. Cl.
(76) Inventors: Changwen Liu, Portland, OR (US); H04L 12/26 (2006.01)

Prakash N. Iyer, Beaverton, OR (US); (52) U.S. Cl. .. 370/236; 370/392
Ylian Saint-Hilaire, Hillsboro, OR
(US)

(57) ABSTRACT
Correspondence Address:

ESE.RDSON, PC Eting E. Control Protocol E. pits
includes transmitting packets over a network path from a

MINNEAPOLIS, MN 55440-1022 (US) Source to a destination using TCP in which receipt of at least
Some of the packets from the Source at a destination is

(21) Appl. No.: 11/209.253 acknowledged by the destination to the Source, the trans
(22) Filed: Aug. 22, 2005 mitting including a retransmission of the packets within a

Subpath of the network path, and managing acknowledg
Related U.S. Application Data ments of the retransmission of the packets within the Sub

path by a mechanism that is independent of the acknowl
(63) Continuation of application No. 09/826.558, filed on edging by the Source to the destination with respect to the

Apr. 4, 2001, now Pat. No. 6,934,257.

TCP Client

124 irolin acket Cesursr

26 to Pack
courte:

--...-----------............... -----

Network. A

TCP-based
tunnel

O2 ill 4 Acknowledgment

ove Pl Discarded p1 302b 302a 302c

transmitting of the packets over the network path.

300

Oc

TCP Server

6

302d 302

34
inkoud Pecket counter

36
Oxx ska

Counter

Network B

--- - -

US 2006/0002301 A1 Patent Application Publication Jan. 5, 2006 Sheet 1 of 9

eMe q e?)

I ?AI ?IS & OL

que ?TO JOJ,

O I

00 T

Patent Application Publication Jan. 5, 2006 Sheet 2 of 9 US 2006/0002301 A1

- 12?
108

liOd/ll Oe
O4

ll.0a/ll Ob

11 Oc

/- 11

O6

TCP/UDP &
Other
Traffic

O2

TCP/UDP &
Other
Traffic

FIG. 2

Patent Application Publication Jan. 5, 2006 Sheet 3 of 9 US 2006/0002301 A1

2OO

-

Sequence Number

Acknowledgment Number 2O2
-n-

Options 2O4 208 2O6

210

FIG. 3

US 2006/0002301 A1

Sh

O

CD
H
t

00€

Patent Application Publication

Patent Application Publication Jan. 5, 2006 Sheet 5 of 9 US 2006/0002301 A1

400 determine
type of

information
received

402

Determine
packet type Acknowledgment

TCP Other
--packet

packet type

Put packet
in outbound

packet
dueue

TCP packet
include complete

segment and not in
outbound packet

queue?

4.08
410

Remove
acknowledged
packets from

outbound packet

4.04

-Yes No

Put TCP
packet in
outbound
packet
cueue

46
44

TCP packet
include TCP

acknowledgment with
zero data size?

TCP packet
include fragment

of a TCP
segment?

NO

42

Yes

FIG 5 Assemble TCP segment by
waiting for other TCP
packets for the TCP

segment

42O 418

Pt
422 424 mbled Another set assemble

Discard TCP
of TCP packets for the assertabled packets

TCP Yes same TCP segment already No in
packets in outbound packet outbound

packet
queue

Patent Application Publication Jan.5, 2006 Sheet 7 of 9

600

N

Yes

Exit

FIG.

Gateway receives
SYN segments from

client

SACK options
permitted from

Sever to
client?

602

Create
queues for
client/

server pair
and mark
pair as
Supported

608

7

US 2006/0002301 A1

Patent Application Publication Jan. 5, 2006 Sheet 8 of 9

700

N

TCP ACK

71.2
duplicate

Yes

TCP
packets for
missing TCP
Segment in

inbound packe
queue?

71.4

Send TCP
packets to

server
No

FIG.

hat did base
TCP receive?

TCP packets for
a TCP segment

702 TCP

Seguent data
size
zero?

Put TCP packets
in inbound packet

packet queue
over allocated

memory
limit?

Yes

Remove oldest TCP No
packet cache
entry/entries

Send TCP packets
to serve

8A

US 2006/0002301 A1

Patent Application Publication Jan. 5, 2006 Sheet 9 of 9

Entry
for ACK in

ACK
queue?

78

queue with 722
duplicity marked

bw zero

4 724
Yes Queue exceed

allocated memory

No

Put ACK in ACK

e

irrit?

Yes

Remove oldest TCP
ACK entry/entries

in queue

Increase ACK
duplicity by one

CP packet have
zero bytes of segment

data, ACK duplicity equal
four or more, and RST

flag not set?

Discard TCP
packet

FIG.

Yes

736

728

inbound queue and

US 2006/0002301 A1

Put packet in
outbound packet
queue according
to rules for the
queue and send
packet to other

gateway

duplicity

No

Retrieve missing
packet (s) from

send to its
destination

packet have
zero bytes of
segment data
Rnd RST flag

US 2006/OOO2301 A1

TRANSFERRING TRANSMISSION CONTROL
PROTOCOL PACKETS

BACKGROUND

0001. This invention relates to transferring Transmission
Control Protocol packets.
0002 Transmission Control Protocol (TCP) enables two
nodes to establish a reliable connection and exchange
Streams of information over a network. Each Stream of
information may be split into TCP segments (“segments”) at
a transport layer that are each Sent acroSS the network as
separate Internet Protocol (IP) packets (“packets” or “data
grams”) at a network layer. When sent from a Source to a
destination, a Segment includes a Sequence number and an
acknowledgment number. The Sequence number indicates a
byte number for the first byte of information in the segment.
The acknowledgment number indicates a byte number for
the first byte of the next segment that the destination expects
to receive from the Source. The destination can use the
Sequence number associated with each Segment to assemble
the Segments in the proper order.
0003) When the destination receives a segment, it sends
an acknowledgment to the Source indicating the byte of the
last Segment that it has received and contiguously assembled
in the Stream. This acknowledgment indicates to the Source
that the destination has received all bytes up to and including
the acknowledgment number minus one. The destination
may also (or instead) send an acknowledgment of a non
contiguous Segment through a mechanism Such as Selective
Acknowledgment (SACK).
0004. If the source does not receive an acknowledgment
for a Sent Segment within a certain amount of time or
receives multiple duplicate acknowledgements, the Source
may assume that the Segment has been lost in transmission
to the destination and resend the Segment. This certain
amount of time can dynamically change, increasing (via an
exponential backoff algorithm) with each lost segment to
effectively allow more time for a Subsequently Sent Segment
to reach the destination and for the destination to acknowl
edge receipt of the Subsequently Sent Segment.

DESCRIPTION OF DRAWINGS

0005 FIG. 1 shows a simplified network configuration.
0006)
ration.

0007 FIG. 3 is a block diagram of a TCP segment.
0008 FIG. 4 shows an example of packet transmission
between two networks.

0009 FIG. 5 is a flowchart showing a sender-side pro
ceSS of transmitting a packet.
0.010 FIG. 6 shows an example of packet transmission
between two networks.

0011)
0012 FIGS. 8A-8B are flowcharts showing a process of
packet caching.

FIG. 2 shows another simplified network configu

FIG. 7 is a flowchart of a cache setup process.

DESCRIPTION

0013 Referring to a simplified network configuration
100 shown in FIG. 1, a client 102 included in a first network

Jan. 5, 2006

104 and a server 106 included in a second network 108 can
communicate with each other acroSS communication links
110a-110e. The communication link 110C includes a TCP
tunnel, which is a TCP based connection, also referred to as
a base TCP connection. TCP tunnels are typically used when
a packet traverses through two gateway devices, e.g., a first
gateway device 114 and a Second gateway device 116,
between its original Source and ultimate destination.
0014 When a packet is in a TCP tunnel, both the packet's
header and payload are usually encrypted and compressed
for bandwidth efficiency, although tunneling does not nec
essarily imply encryption. ATCP packet's traversal through
the TCP tunnel is referred to as TCP-in-TCP tunneling. The
TCP connection whose packets traverse through the TCP
tunnel is referred to as the upper layer TCP, and the TCP
layer that functions as the tunnel is referred to as base TCP
in this draft.

0015. In this example network configuration 100, upper
layer TCP packets on the client side traverse through client
side communication links 110a and 110b and on the server
side through server-side communication links 110d and
110e. The upper layer TCP packets also go through the
communication link 110c, the base TCP connection between
the first gateway 114 and the second gateway 116. The
communication link 110c runs through a network 112 and
connects the first and Second gateways 114 and 116, the
gateways associated with the first and second networks 104
and 108, respectively. The base layer TCP carries upper level
TCP packets over the base TCP connection 110c.
0016. Having two layers of retransmission can negatively
impact the performance of TCP-in-TCP tunneling, i.e., in
transmitting upper layer TCP packets over the base TCP
connection 110c. The upper layer TCP depends on the base
TCP connection 110c to transfer packets between the first
and second gateways 114 and 116. Packet transfer delays in
the base TCP connection 110c due to factors such as packet
loSS and network congestion can in turn delay the upper
layer TCP packet transfer from end to end. When this delay
exceeds both the base TCP layer timeout value and the upper
layer TCP timeout value, both the base TCP layer and the
upper layer TCP would independently retransmit the TCP
packets over the base TCP connection 110c. Thus, the upper
layer TCP throughput may be greatly reduced or completely
halted. Retransmissions may also cause inefficient use of
low bandwidth, expensive links, as are common in wireleSS
packet data networkS.
0017. The end-to-end retransmission of upper layer TCP
packets due to loSS in the client-Side communication linkS
110a and 110b and the server-side communication links
110d and 110e also can negatively impact upper layer TCP
performance, i.e., if an upper layer TCP data packet is lost
in the client-side communication links 110a and 110b or the
server-side communication links 110d and 110e, the upper
layer TCP will retransmit the segment from the client 102 to
the server 106 or from the server 106 to the client 102.

0018. However, by caching the packets at the first and the
Second gateways 114 and 116 and eXchanging acknowledg
ments for received packets with each other at the base TCP
layer (e.g., the "Session layer” in the Open System Inter
connection (OSI) model), the first and second gateways 114
and 116 can reduce the two layers of retransmissions to just
one layer and reduce end-to-end packet retransmission

US 2006/OOO2301 A1

acroSS the entire upper layer TCP path to just packet retrans
mission acroSS part of the path, either the client-Side com
munication links 110a and 110b or the server-side commu
nication links 110d and 110e.

0019. The first and second gateways 114 and 116 may
each maintain (or otherwise have access to) a cache at the
Session layer. ASSume that in this example network configu
ration 100, the first gateway 114 maintains a first cache 118
and the Second gateway 116 maintains a Second cache 120.
The first and second caches 118 and 120 may each include
counters and/or queues for tracking the transmission of
packets and acknowledgements (ACKS) to and receipt of
packets and acknowledgements from the gateway 114 or 116
at the opposite end of the base TCP connection 110c.
0020 FIG. 2 illustrates an example setup 122 of the first
and second caches 118 and 120. In the example setup 122,
the first cache 118 includes an inbound packet counter 124,
an outbound packet counter 126, an outbound packet queue
128, an inbound packet queue 130, and an ACK queue 132
for inbound packets. Each of these elements is described in
turn.

0021. The inbound packet counter 124 can keep track of
an amount of packets Sent by the Second gateway 116 and
received by the first gateway 114.
0022. The first gateway 114 can use the outbound packet
counter 126 to keep track of an amount of packets trans
mitted by the first gateway 114 to the second gateway 116.
0023 The outbound packet queue 128 can maintain cop
ies of (or pointers to) packets transmitted by the first
gateway 114 to the second gateway 116 that have not been
acknowledged by the Second gateway 116. Once a particular
packet included in the outbound packet queue 128 is
acknowledged, the packet can be removed from the out
bound packet queue 128. A new upper layer TCP packet
from the client 102 that arrives at the first gateway 114 can
be stored in the outbound packet queue 128 and be sent from
the first gateway 114 to the second gateway 116 only when
all packets currently in the outbound packet queue 128
contain different Segments from the Segment contained in
this TCP packet. In other words, the outbound packet queue
128 includes no duplicate Segments.
0024. The inbound packet queue 130 is where the first
gateway 114 Stores copies of received packets (or pointers to
the packets) from the Second gateway 116 that are transmit
ted to the client 102 but have not been acknowledged by the
client 102. When (or if) the client 102 acknowledges receipt
of a packet (e.g., by Sending an ACK at the upper layer
TCP), the first gateway 114 removes the acknowledged
packets from the inbound packet queue 130.
0025. The ACK queue 132 stores ACKs sent by the client
102 to acknowledge receipt of packets Sent from the Server
106 at the upper layer TCP.

0026. The second cache 120 also includes an inbound
packet counter 134, an outbound packet counter 136, an
outbound packet queue 138, an inbound packet queue 140,
and an ACK queue 142 that function Similar to like-named
elements included in the first cache 118.

0027. With the two caches 118 and 120, packet retrans
missions can be reduced from two layers of retransmission
(the upper layer TCP and the base TCP layer) to one layer

Jan. 5, 2006

of retransmission (the base TCP layer), and no changes are
needed for the upper layer TCP. Furthermore, if a packet gets
lost in transit from the first gateway 114 to the client 102 (or
from the second gateway 116 to the server 106), the first
gateway 114 (or the Second gateway 116), upon proper
detection, can retransmit the packet to the client 102 (or the
server 106) from the inbound packet queue 130 (or the
inbound packet queue 140). Therefore, the recovery of lost
TCP packets can be hidden from the sender (the server 106
or the client 102, depending on traffic flow) and recovery
time can be reduced, thereby improving the performance of
upper layer TCP applications.

0028. The elements in FIGS. 1 and 2 can be imple
mented in a variety of ways. The first gateway 114 and the
Second gateway 116 are not limited to communicating with
each other acroSS the base communication link 110C using
the TCP protocol. Any reliable protocol such as TCP, modi
fied forms of TCP, reliable User Datagram Protocol (UDP),
reliable layer two links, and other Similar protocols can be
used in the network configuration 100 and adapted to the
described examples. Reliability in this context generally
refers to error detection, flow control, and packet recovery.

0029. The packets communicated between the client 102
and the Server 106 can include data, instructions, or a
combination of the two. Each Sent packet may be part of a
packet Stream, where each of the packets in the packet
Stream fits together to form a contiguous Stream of data.

0030 FIG.3 shows an example of a packet 200 that may
be sent between the client 102 and the server 106. The
packet 200 includes a group 202 of bits that indicates various
states that may be present in the TCP protocol. Three of the
bits, an ACK bit 204, a SYN bit 206, and an RST bit 208 are
discussed further below. Generally, the ACK bit 204 indi
cates whether an acknowledgment number 210 is valid, the
SYN bit 206 establishes initial agreement on sequence
numbers, and the RST bit 208 indicates whether the con
nection between the client/server pair should be reset.

0031. The network 112 can include any kind and any
combination of networkS Such as an Internet, a local net
work, a private network, a public network, or other similar
network. Communications through the network 112 may be
Secured with a mechanism Such as Transport Layer Security/
Secure Socket Layer (TLS/SSL), wireless TLS (WTLS), or
secure Hypertext Transfer Protocol (S-HTTP). The first and
second networks 104 and 108 can include any portion of a
network that shares an independent, interconnected Segment
or domain Such as a local area network (LAN) having a
common address prefix or other Similar network.

0032) The client 102 and the server 106 can each include
any device capable of communicating with each other
through the network 112 and the first and Second gateways
114 and 116 Such as a Server, a mobile computer, a Stationary
computer, a telephone, a pager, a personal digital assistant,
or other Similar device.

0033. The caches 118 and 120 can each include a storage
mechanism Such as a data queue, a buffer, a local or remote
memory device, or other Similar mechanism.

0034. The communication links 110a–110e can include
any kind and any combination of communication linkS Such
as modem links, Ethernet links, cables, point-to-point links,

US 2006/OOO2301 A1

infrared connections, fiber optic links, cellular links, Blue
tooth, Satellite links, and other Similar linkS.

0035. The first and second gateways 114 and 116 can
each include any device or mechanism capable of commu
nicating with the network 112 and its associated client 102
or Server 106 Such as a computer, proxy Server, a virtual
private network gateway, a Realm Specific Internet Protocol
(RSIP) gateway, or other similar device. In another network
configuration, the client 102 may act as the gateway by, for
example, running gateway Software. In Such a case, the
client 102 may be a wireless or mobile device running
gateway Software So that rather than going through the first
gateway 114 in the first network 104 en route to the network
112 and eventually to the second gateway 116 in the second
network 108 (perhaps the client's home network) and the
server 106, the client 102 may go through a Network
Address Translation/firewall.

0.036 Furthermore, the network configuration 100 and
the example Setup 122 are simplified for ease of explanation.
The network configurations 100 and 122 may include more
or fewer elements Such as networks, communication links,
proxy servers, firewalls, or other Security mechanisms, Inter
net Service Providers (ISPs), and other elements.
0037 Referring to FIG. 4, a second simplified network
configuration 300 shows the base TCP connection 110c as a
TCP tunnel. As mentioned above, the base TCP connection
110c maintains two caches 118 and 120, one at each of the
gateways 114 and 116. The base TCP connection 110c tries
to transfer upper layer TCP packets (e.g., packets 302a
302e) from the cache of one gateway to the other gateway
and to Send Session layer acknowledgments or ACKS from
the receiving gateway to the Sending gateway. In this
example, assume that the first gateway 114 is the Sending
gateway and that the Second gateway 116 is the receiving
gateWay.

0.038. The session layer acknowledgments may be sent
periodically, Sent for each received packet, or Sent in
another, Similar way. Each Session layer acknowledgment
identifies packets that have been Successfully transferred
over the base TCP connection 110c from the first gateway
114 to the Second gateway 116, e.g., by including informa
tion such as a total amount of IP or TCP packet bytes
received thus far by the Second gateway 116 at, for example,
the inbound packet counter 134. The first gateway 114 can
then update its Session layer cache by removing acknowl
edged packets from the first cache 118.
0039) Referring to FIG. 5, a base TCP process 400
illustrates from the Sending gateway's perspective how the
base TCP connection 110c may handle a received piece of
information, using the second network configuration 300 of
FIG. 4 as an example. When a piece of information travels
arrives at the Sending gateway, the first gateway 114 in this
example, the first gateway 114 determines 402 its type.

0040. If the piece of information is a session layer
acknowledgment from the receiving gateway, the Second
gateway 116 in this example, the first gateway 114 removes
404 the acknowledged packets from its Session layer cache
118 (from the outbound packet queue 128). Transport layer
acknowledgments may be sent in both directions, but the
Session layer acknowledgments can piggyback the transport
layer acknowledgments So the overhead of Session layer

Jan. 5, 2006

acknowledgements can be minimized, and the rate of Ses
Sion layer acknowledgments can be configurable.
0041) If, instead of a session layer acknowledgment, the
piece of information received by the first gateway 114 is an
upper layer TCP packet from the client 102, then the first
gateway 114 checks 406 the packet's type. If the packet is
an IP packet (excluding a TCP packet), then the first gateway
114 stores 408 the packet directly in the first cache 118 (in
the outbound packet queue 128). This queues the packet for
transmission from the first gateway 114 to the Second
gateway 116.
0042. If the packet is a TCP packet from the client 102,
then the first gateway 114 determines 410 whether the TCP
packet includes a complete TCP Segment and is not in the
outbound packet queue 128 in the first cache 118. If the TCP
packet includes a complete TCP Segment that is not included
in any TCP packets included in the outbound packet queue
128, then the first gateway 114 stores 412 the TCP packet in
the outbound packet queue 128, queuing the TCP packet for
transmission to the Second gateway 116.
0043. If the TCP packet does not include a complete TCP
Segment or other packets in the outbound packet queue 128
already include the Same Segment, then the first gateway 114
determines 414 whether the TCP packet includes a TCP
acknowledgment with zero data size. If the TCP packet
includes a TCP acknowledgment with Zero data size, then
the first gateway 114 stores 412 the TCP packet in the first
cache 118, queuing the TCP packet for transmission to the
Second gateway 116.
0044) If the TCP packet does not include a TCP acknowl
edgment with Zero data size, then the first gateway 114
determines 416 if the TCP packet includes a fragment of a
TCP segment. If not, then the first gateway 114 discards 418
the TCP packet. This discarding reflects the fact that the TCP
packet is already included in the outbound packet queue 128.
0045. If the TCP packet does include a fragment of a TCP
segment, then the first gateway 114 assembles 420 the TCP
segment by waiting for other TCP packets included in the
same TCP segment from the client 102. Assembling the TCP
Segment requires calculations by the first gateway 114 (as
does checking the TCP packet type), but these calculations
should have little impact on performance because multiplex
ing/demultiplexing operations for IP packets already exist in
TCP-in-TCP tunneling, because communication delay is
mostly due to network bandwidth and not router calculation,
and because fragmented TCP packets should rarely occur.
0046) If one or more assembled TCP packets for the same
TCP segment are already in the outbound packet queue 128,
then the first gateway 114 discards 422 the assembled TCP
packets. The first gateway 114 may drop the assembled TCP
packets because they are redundant of packets already in the
outbound packet queue 128.
0047. If one or more assembled TCP packets for the same
TCP Segment are not already in the outbound packet queue
128, then the first gateway 114 stores 424 the assembled
TCP packets in the first cache 118 (in the outbound packet
queue 128). This segment assembly may introduce Some
delays for TCP segments. However, this assembly may
discover dropped packets relatively early, thereby prevent
ing transmission of incomplete TCP Segments over the base
TCP connection 110c, which can save bandwidth.

US 2006/OOO2301 A1

0048. The base TCP connection 110c is a relatively
reliable transport link. Upper layer TCP packets are less
likely to get lost in the base TCP connection 110c than in the
upper layer TCP connections between the first gateway 114
and the client 102 in the first network 104 and between the
second gateway 116 and the server 106 in the second
network 108. If an upper layer TCP packet gets lost in one
of these two upper layer TCP connections, a recovery
process tries to recover the lost packet. Examples of the
recovery proceSS include congestion control algorithms. Such
as a slow start algorithm, a congestion avoidance algorithm,
a fast transmit algorithm, and a fast recovery algorithm and
other, Similar algorithms. Such recovery processes typically
need to retransmit lost TCP packets acroSS the entire upper
layer TCP from sender to receiver (i.e., between the client
102 and the server 106). However, by caching packets at the
first and the Second gateways 114 and 116, packets only need
to be retransmitted on part of the upper layer TCP.
0049. Therefore, in the base TCP process 400, the first
and second caches 118 and 120 can queue two types of TCP
packets: packets received from the other gateway and Stored
in the appropriate inbound packet queue 130 or 140, and
acknowledgements from upper TCP layer Sender, received
and stored in the appropriate ACK queue 132 or 142.
0050 Referring to FIG. 6, a third simplified network
configuration 500 shows the inbound packet queue 140 and
the ACK queue 142 at the second gateway 116 in the second
cache 120 for each upper layer TCP client and server pair
that does not Support or enable a SACK option (or similar
acknowledgment mechanism) from Server to client.
Examples of upper layer TCP connections that may not use
a SACK option (or a similar mechanism) include legacy
client applications or applications in platforms that do not
support or enable SACK (or other similar mechanism). The
two queues 140 and 142 can vary in size from each other and
from other similar queues included at the Second gateway
116. Depending on total memory available in the Second
gateway 116, the inbound packet queue 140 holds a certain
number or amount of tunneled TCP packets received from
the first gateway 114 and sent to the server 106. For
example, the inbound packet queue 140 may be capable of
holding an amount of packets equal to a receiving buffer size
advertised by the server 106. The ACK queue 142 holds a
certain number or amount of ACKs recently received from
the server 106. Furthermore, the sizes of both of the two
queues 140 and 142 are configurable.
0051. The first gateway 114 maintains two queues 130
and 132 similar to the inbound-packet queue 140 and the
ACK queue 142 for inbound packets. It is assumed for
Simplicity in this example that the only Such client/server
pair involving the first and second networks 104 and 108 is
the pair including the client 102 and the server 106.
0.052 Referring to FIG. 7, a queue setup process 600
illustrates an example of how in the third network configu
ration 500 (see FIG. 6) the two queues 140 and 142 can be
added to the second cache 120 in the second network 108.
The queue setup process 600 is described with relation to the
second network 108, but a similar process can be used to set
up similar queues in the first network 104.
0053 Generally, the base TCP connection 110c deter
mines in the queue setup process 600 if the client 102 can
permit the server 106 to acknowledge receipt of non

Jan. 5, 2006

contiguous packets using SACK or other Similar mecha
nism. If the client 102 does so permit the server 106, then the
second gateway 116 need not setup the queues 140 and 142.
If, however, the client 102 does not permit the server 106 to
acknowledge all Successfully received packets but can only
acknowledge Successfully received contiguous packets by
the server 106, the base TCP connection 110c sets up the
queues 140 and 142. In this way, the queues 140 and 142 can
be used in retransmitting lost TCP packets from the second
gateway 116 to the server 106 for the upper layer TCP.
0054 More specifically, in the queue setup process 600,
the second gateway 116 receives 602 a TCP packet from the
client 102 and determines 604 if TCP SACK option is
permitted from the server 106 to the client 102. The second
gateway 116 may make this determination upon receiving
the SYN TCP packet from the client 102. The second
gateway 116 may detect if the client/server pair permits
mechanisms other than or in addition to SACK that may be
used in acknowledging Successful receipt of packets.
ASSume in this example that the Second gateway 116 checks
only for SACK enablement.
0055 Typically, the second gateway 116 may determine
if SACK is permissible by determining whether a SACK
permitted option was sent from the client 102 to the server
106 during upper layer TCP setup. The availability of SACK
is indicated with a SACK-permitted option. The SACK
permitted option may be included in a SYN segment sent by
the client 102 to the server 106. In the case of a SYN
segment, the SYN segment includes a SACK-permitted
option that indicates that the SACK option is permissible
from receiver to Sender once a connection is opened between
the Sender and the receiver, which here are the client 102 and
the server 106, respectively. Calculations checking the SYN
Segments should have little impact on performance because
multiplexing/demultiplexing operations for IP packets
already exists in TCP-in-TCP tunneling and because com
munication delay is mostly due to network bandwidth and
not router calculation.

0056. If TCPSACK is permitted from the server 106 to
the client 102, then the second gateway 116 exits 606 the
cache setup process 600 without setting up the queues 140
and 142.

0057) If, on the other hand, SACK is not permitted from
the server 106 to the client 102, then the second gateway 116
creates 608 the queues 140 and 142 for the client/server pair
including the client 102 and the server 106 and marks the
client/server pair as Supported. Creating the queues 140 and
142 includes initializing the Storage mechanism being used
for the queues 140 and 142, Such as allocating or reserving
memory Space at the Second gateway 116. Because the
amount of memory Space can vary as described above, the
Second gateway 116 may also determine the appropriate size
of each of the queues 140 and 142.
0058 Marking the client/server pair as Supported
includes recording for future reference that communications
between the client 102 and the server 106 are subject to the
processing described below with reference to FIGS. 8A-8B.
The marking can also signal the Second gateway 116 to not
check Subsequently received Segments from the client 102
for SACK permissibility.
0059 Referring to FIGS. 8A-8B, another process 700
illustrates an example of how packets may be transmitted to

US 2006/OOO2301 A1

and from the queues 140 and 142. The second gateway 116
processes different kinds of TCP information that it receives
in different ways.
0060 Referring first to FIG. 8A, if the second gateway
116 receives upper layer TCP packets for a TCP segment
from the first gateway 114, then the second gateway 116
determines 702 whether the TCP segment data sizes in the
TCP packets are zero. If the TCP data segment sizes are zero,
then the gateway 116 sends 704 the TCP packets to the
server 106, their destination.
0061. If the TCP data segment sizes are not zero, then the
second gateway 116 puts 706 the TCP packets in the inbound
packet queue 140. The Second gateway 116 also determines
708 if the inbound packet queue 140 is over its allocated
size, e.g., is over its preallocated memory limit. This deter
mination may be made before or after putting the TCP
packets in the inbound packet queue 140. If the inbound
packet queue 140 is not over its allocated size, then the
second gateway 116 sends 704 the TCP packets to the server
106. If the inbound packet queue 140 is over its allocated
size, then the second gateway 116 removes 710 the oldest
queue entry or entries from the inbound packet queue 140.
The number of entries removed from the inbound packet
queue 140 may be a fixed number or the number may vary.
If the number varies, the number of entries removed from
the inbound packet queue 140 may be the minimum number
of entries that can be removed so as to just fit the instant TCP
packets in the inbound packet queue 140. After putting the
TCP packets in, the TCP packets are sent 704 to the server
106.

0062) The second gateway 116 may receive a TCPACK
from the server 106 included in the Supported client/server
pairs. The second gateway 116 determines 712 if the TCP
ACK is the third duplicate TCP ACK received from the
server 106. The second gateway 116 can check for any
number duplicate, the third duplicate is only an example.
0.063. The second gateway 116 may receive duplicate
TCPACKS as an indication of packet loss, i.e., if the server
106 has received packets out of Sequence and a mechanism
Such as SACK that can acknowledge out of Sequence
Segments is not enabled for the client/server pair. For
example, the server 106 may send a first TCPACK to the
Second gateway 116 after receiving a first Segment in a
stream. The server 106 may send the same first TCPACK
twice if the next segment received by the server 106 is a third
Segment in the Stream because a Second Segment of the
stream that fits between the first segment and the third
Segment has not yet been Successfully received by the Server
106. Until the server 106 receives the second segment, the
duplicated first TCPACK will be sent to the second gateway
116 each time a packet is received by server 106.
0064. If the TCPACK received by second gateway 116
from the server 106 is not a third duplicate, then the second
gateway 116 continues the process 700 as described below
with reference to FIG. 8B. If the TCP ACK is a third
duplicate, then the second gateway 116 determines 714 if
TCP packets for the missing TCP segment are in the inbound
packet queue 140. (As explained above, the missing TCP
Segment includes a Sent but unreceived segment that falls
Sequentially between Segments that have been Successfully
received by the server 106.) If not, then the second gateway
116 continues the process 700 as described below with

Jan. 5, 2006

reference to FIG. 8B. If TCP packets for the missing
Segment are in the inbound packet queue 140, then the
second gateway 116 sends 716 the TCP packets for the
missing Segment to the Server 106 and continues the process
700 as described below with reference to FIG. 8B.

0065 Referring to FIG.8B, once the second gateway 116
receives the TCPACK, the second gateway 116 determines
718 if an entry for the TCPACK exists in the ACK queue
142. If so, then the second gateway 116 increases 720 the
ACK duplicity by one for the TCPACK already in the ACK
queue 142.
0066. If no entry for the TCP ACK exists in the ACK
queue 142, then the TCPACK is the first acknowledgment
for a particular TCP packet. The second gateway 116 puts
722 the TCPACK in the ACK queue 142. The duplicity for
the TCPACK is marked as Zero to indicate that it is the first
received acknowledgment for this particular TCP packet.
0067. The second gateway 116 also determines 724 if the
ACK queue 142 is over its allocated size, e.g., is over its
preallocated memory limit. This determination may be made
before or after putting the TCPACK in the ACK queue 142.
If the ACK queue 142 is not over its allocated size, then the
second gateway 116 increases 720 the ACK duplicity by one
for the TCP ACK in the ACK queue 142. The second
gateway 116 may put the TCPACK in the ACK queue 142
marked with a duplicity of one instead of Zero, in which case
the duplicity for the TCPACK need not be increased by one
at this point. If the ACK queue 142 is over its allocated size,
then the second gateway 116 removes 726 the oldest cache
entry or entries from the ACK queue 142. The number of
entries removed from the ACK queue 142 may be a fixed or
a variable number as described above with reference to
removing entries from the ACK queue 142. The second
gateway 116 also increases 720 the ACK duplicity by one for
the TCPACK in the ACK queue 142.
0068. Whether an entry for the TCPACK existed in the
ACK queue 142 or not, the Second gateway 116 determines
whether to drop or to send the TCP packet including the TCP
ACK. The second gateway 116 checks 728 if the TCP packet
has zero bytes of segment data, if the TCPACK duplicity
equals four or more, and if a reset (RST) flag included with
the TCP packet is not set.
0069. If all three factors are true (Zero bytes of segment
data, duplicity over four, and RST flag not set), then the
second gateway 116 discards 730 the TCP packet. The TCP
packet can be safely dropped because the TCP packet has
Zero bytes of Segment data. Furthermore, the ACK has
already been Sent at least twice for the proper connection
(because the RST flag was not set).
0070 If any one of the three factors is false but the TCP
ACK duplicity equals three, then the Second gateway 116
determines 732 whether the missing packets are in the
inbound packet queue 140. If So, then the Second gateway
116 retrieves 734 the packets from the inbound packet queue
140 and sends 732 the packets to the server 106. If the data
Size of the packet is Zero and reset flag is not Set, then the
second gateway 116 still discards 730 the TCP packet.
Otherwise, the second gateway 116 relays the TCP packet to
first gateway 114 and puts 736 it in the outbound packet
queue 138 according to rules described above.
0071 Note that although when third and later duplicate
TCP ACKs for a missing TCP segment have nonzero data

US 2006/OOO2301 A1

size they are still sent back to the client 102 and hence the
client 102 may retransmit the TCP segment across the entire
link, this scenario rarely occurs. The server 106 usually does
not send new packets acroSS the upper layer TCP until it
receives all currently expected packets from the client 102,
and vice versa. On the other hand, if third and later duplicate
ACKS from the server 106 to the client 102 do not include
any data (e.g., are ACKS for uploading in a file transmission
protocol), then the third and later duplicate ACKs for a lost
TCP segment may be hidden from the client 102 and thus
reduce or eliminate transmissions of upper layer TCP Seg
ments from the client 102 to the server 106 due to the
activation of a recovery algorithm in the client 102.
0.072 The techniques described here are not limited to
any particular hardware or Software configuration; they may
find applicability in any computing or processing environ
ment. The techniques may be implemented in hardware,
Software, or a combination of the two. The techniques may
be implemented in programs executing on programmable
machines Such as mobile or Stationary computers, personal
digital assistants, and Similar devices that each include a
processor, a Storage medium readable by the processor
(including volatile and non-volatile memory and/or storage
elements), at least one input device, and one or more output
devices. Program code is applied to data entered using the
input device to perform the functions described and to
generate output information. The output information is
applied to one or more output devices.
0.073 Each program may be implemented in a high level
procedural or object oriented programming language to
communicate with a machine System. However, the pro
grams can be implemented in assembly or machine lan
guage, if desired. In any case, the language may be a
compiled or interpreted language.
0.074 Each such program may be stored on a storage
medium or device, e.g., compact disc read only memory
(CD-ROM), hard disk, magnetic diskette, or similar medium
or device, that is readable by a general or Special purpose
programmable machine for configuring and operating the
machine when the Storage medium or device is read by the
computer to perform the procedures described in this docu
ment. The System may also be considered to be implemented
as a machine-readable Storage medium, configured with a
program, where the Storage medium So configured causes a
machine to operate in a Specific and predefined manner.
0075) Other embodiments are within the scope of the
following claims.

1. An article comprising a machine-readable medium
which contains machine-executable instructions, the instruc
tions causing a machine to:

transmit interrelated units of information over a network
path from a Source to a destination using a protocol in
which receipt of at least some of the units from the
Source at a destination is acknowledged by the desti
nation to the Source by retransmitting the units within
a Subpath of the network path; and

manage acknowledgments of the retransmission of the
units within the Subpath by a mechanism that is inde
pendent of the acknowledging by the destination to the
Source with respect to the transmitting of the units over
the network path.

Jan. 5, 2006

2. An article as in claim 1, wherein the network path
includes an upper layer of a Transmission Control Protocol.

3. An article as in claim 1, wherein the Subpath includes
a base layer of a Transmission Control Protocol.

4. An article as in claim 1, wherein the protocol includes
a Transmission Control Protocol.

5. An article as in claim 1, wherein the Subpath extends
between a gateway device and the Source.

6. An article as in claim 5, wherein the gateway device is
chosen from a group comprising: a computer, a proxy server,
a virtual private network gateway, and a Realm Specific
Internet Protocol gateway.

7. An article as in claim 1, wherein the Subpath extends
between a gateway device and the destination.

8. An article as in claim 7, wherein the gateway device is
chosen from a group comprising: a computer, a proxy server,
a virtual private network gateway, and a Realm Specific
Internet Protocol gateway.

9. An article as in claim 1, wherein manage acknowledg
ments comprises Storing at the Subpath a unit Sent by the
Source to the destination for retransmission until the Subpath
receives an acknowledgment that the destination has
received the unit.

10. An article as in claim 1, wherein the Source is a device
Selected from a group comprising: Servers, mobile comput
ers, Stationary computers, telephones, pagers, and personal
digital assistants.

11. An article as in claim 1, wherein the destination is a
device Selected from a group comprising: Servers, mobile
computers, Stationary computers, telephones, pagers, and
personal digital assistants.

12. An article as in claim 1, wherein at least a portion of
the network path is Selected from a group comprising: a
modem link, an Ethernet link, a cable link, a point-to-point
link, an infrared connection, a fiber optic link, a cellular link,
a Bluetooth connection, and a Satellite link.

13. An apparatus comprising:

a Source operable to transmit interrelated units of infor
mation over a network path to a destination using a
protocol in which receipt of at least Some of the units
from the Source at a destination is acknowledged by the
destination to the Source;

a management module operable to retransmit the units
within a subpath of the network path and operable to
manage acknowledgments of the retransmission of the
units within the Subpath by a mechanism that is inde
pendent of the acknowledging by the destination to the
Source with respect to the transmitting of the units over
the network path.

14. An apparatus as in claim 13, wherein the network path
includes an upper layer of a Transmission Control Protocol.

15. An apparatus as in claim 13, wherein the Subpath
includes a base layer of a Transmission Control Protocol.

16. An apparatus as in claim 13, wherein the protocol
includes a Transmission Control Protocol.

17. An apparatus as in claim 13, wherein the Subpath
extends between a gateway device and the Source.

18. An apparatus as in claim 17, wherein the gateway
device is chosen from a group comprising: a computer, a
proxy server, a virtual private network gateway, and a Realm
Specific Internet Protocol gateway.

19. An apparatus as in claim 13, wherein the Subpath
extends between a gateway device and the destination.

US 2006/OOO2301 A1

20. An apparatus as in claim 19, wherein the gateway
device is chosen from a group comprising: a computer, a
proxy server, a virtual private network gateway, and a Realm
Specific Internet Protocol gateway.

21. An apparatus as in claim 13, wherein the management
module is operable to Store at the Subpath a unit Sent by the
Source to the destination for retransmission until the Subpath
receives an acknowledgment that the destination has
received the unit.

22. An apparatus as in claim 13, wherein the Source is a
device Selected from a group comprising: Servers, mobile
computers, Stationary computers, telephones, pagers, and
personal digital assistants.

23. An apparatus as in claim 13, wherein the destination
is a device Selected from a group comprising: Servers,
mobile computers, Stationary computers, telephones, pagers,
and personal digital assistants.

24. An apparatus as in claim 13, wherein at least a portion
of the network path is Selected from a group comprising: a
modem link, an Ethernet link, a cable link, a point-to-point
link, an infrared connection, a fiber optic link, a cellular link,
a Bluetooth connection, and a Satellite link.

Jan. 5, 2006

25. A System comprising:

a first Storage mechanism at a first Side of a network path
configured to Store interrelated units of information
Sent from a Source to a destination at a Second Side of
the network path;

a Second Storage mechanism at the first Side configured to
Store acknowledgments of received units Sent from the
Second Side within a Subpath of the network path; and

a mechanism configured to transmit units of information
Stored in the first Storage mechanism to the Second Side
based on duplicity of acknowledgments included in the
Second Storage mechanism.

26. A System as in claim 25, wherein the network path
includes a base Transmission Control Protocol layer.

27. A System as in claim 25, wherein the Source is
configured to transmit units to the destination on a network
path including a Transmission Control Protocol network
path.

