wo 2012/149434 A2 |11 N0 OO R A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/149434 A2

1 November 2012 (01.11.2012) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 15/16 (2006.01) GO6F 9/44 (2006.01) kind of national protection available). AE, AG, AL, AM,
GO6F 12/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
. . e) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(21) International Application Number: PCTIUSI012/035608 DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
27 April 2012 (27.04.2012) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
. . OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
(25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
61/479,722 27 ApI’il 2011 (27.04.2011) Us kind Of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(71) Applicant (for all designated States except US): SEVEN UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
NETWORKS, INC. [US/US]; 2100 Seaport Boulevard, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Suite 100, Redwood City, CA 64063 (US). EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM
(72) Inventor; and > > > > > > > > > > DL, > >
(75) Inventor/Applicant (for US onby): LUNA, Michael E/E) I\?IQPII\I](EBE,I\IB‘IEDCFI: GCG’ CL, CM, GA, GN, GQ, GW,
[US/US]; 519 Curie Drive, San Jose, CA 94123 (US). > - NE, SN, TD, TG).
(74) Agents: FU, Yenyun et al.; Perkins Coic LLP, P.O. Box [ublished:

1208, Seattle, WA 98111-1208 (US).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: DETECTING AND PRESERVING STATE FOR SATISFYING APPLICATION REQUESTS IN A DISTRIBUTED
PROXY AND CACHE SYSTEM

HTTP request ~”™

107

HTTP request

109

122

110

App Server

Content Provider

Hosl Server

Proxy
Server
125

| —=——

Server || State —
Cache Data LAY
135 135 —

126

FIG. 14

100

(57) Abstract: Systems and methods for cache state management to preserve user experience with a mobile application on a mobile
device while conserving resources in a wireless network are disclosed. In one embodiment, the method can include, for example,
storing content from a content server as cached elements in a local cache on the mobile device and in response to receiving polling
requests to contact the content server, retrieving the cached elements from the local cache to respond to the polling requests made at
the mobile device, and/or using state information associated with the cached elements to provide the cached elements as responses to
the polling requests such that user experience is preserved

WO 2012/149434 PCT/US2012/035608

DETECTING AND PRESERVING STATE FOR SATISFYING APPLICATION
REQUESTS IN A DISTRIBUTED PROXY AND CACHE SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No.
61/479,722 entitled “DETECTING AND PRESERVING STATE FOR SATISFYING
APPLICATION REQUESTS IN A DISTRIBUTED PROXY AND CACHE SYSTEM”,
which was filed on April 27, 2011, the contents of which are all incorporated by reference

herein.

[0002] This application is related to U.S. Patent Application No. 13/176,537 entitled
“DISTRIBUTED CACHING FOR RESOURCE AND MOBILE NETWORK TRAFFIC
MANAGEMENT,” (Attorney docket no. 76443-8107.US01), which was filed on July 5,

2011, the contents of which are all incorporated by reference herein.

BACKGROUND

[0003] Even with the migration to LTE and 4G-based networks, the rapid growth in
subscribers, applications, and devices is still causing a burden on network elements; this has
led to congestion and network failures, all of which have a major impact on the experience of
the end-user. Thus, the need to manage the growth in data, signaling, or data session traffic
more intelligently and efficiently is still critical to ease network congestion in real time and to

ensure uscr experience.

[0004] As such, as mobile devices and mobile applications become heavily relied upon
for information consumption, business, and entertainment uses, as has the need to ensure the
freshness or relevance of content and data delivered via mobile devices, in particular when
traffic managing or optimizing techniques are employed to optimize mobile network traffic

such that user experience can be ensured.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1A depicts an example diagram showing tracking and preservation of state
information for cache management when application requests are made by the host server on

behalf of the mobile device.

WO 2012/149434 PCT/US2012/035608

[0006] FIG. 1B illustrates an example diagram of a system where a host server
facilitates management of traffic, content caching, and/or resource conservation between
mobile devices (e.g., wireless devices), an application server or content provider, or other
servers such as an ad server, promotional content server, or an e-coupon server in a wireless
network (or broadband network) for resource conservation. The host server can further detect
and/or preserve state for satisfying application requests using a distributed proxy and cache

System.

[0007] FIG. 1C illustrates an example diagram of a proxy and cache system distributed
between the host server and device which facilitates network traffic management between a
device, an application server or content provider, or other servers such as an ad server,
promotional content server, or an e-coupon server for resource conservation and content
caching. The proxy system distributed among the host server and the device can further
detect and/or preserve state for satisfying application requests using a distributed proxy and

cache system.

[0008] FIG. 2A depicts a block diagram illustrating an example of client-side
components in a distributed proxy and cache system residing on a mobile device (e.g.,
wireless device) that manages traffic in a wireless network (or broadband network) for
resource conservation, content caching, and/or traffic management. The client-side proxy (or
local proxy) can further categorize mobile traffic and/or implement delivery policies based on

application behavior, content priority, user activity, and/or user expectations.

[0009] FIG. 2B depicts a block diagram illustrating a further example of components in
the cache system shown in the example of FIG. 2A which is capable of caching and adapting
caching strategies for mobile application behavior and/or network conditions. Components
capable of detecting long poll requests and managing caching of long polls are also

illustrated.

[0010] FIG. 2C depicts a block diagram illustrating additional components in the
application behavior detector and the caching policy manager in the cache system shown in
the example of FIG. 2A which is further capable of detecting cache defeat and perform

caching of content addressed by identifiers intended to defeat cache.

[0011] FIG. 2D depicts a block diagram illustrating examples of additional components
in the local cache shown in the example of FIG. 2A which is further capable of performing

2

WO 2012/149434 PCT/US2012/035608

mobile traffic categorization and policy implementation based on application behavior and/or

user activity.

[0012] FIG. 3A depicts a block diagram illustrating an example of server-side
components in a distributed proxy and cache system that manages traffic in a wireless
network (or broadband network) for resource conservation, content caching, and/or traffic
management. The server-side proxy (or proxy server) can further categorize mobile traffic
and/or implement delivery policies based on application behavior, content priority, user

activity, and/or user expectations.

[0013] FIG. 3B depicts a block diagram illustrating a further example of components in
the caching policy manager in the cache system shown in the example of FIG. 3A which is
capable of caching and adapting caching strategies for mobile application behavior and/or
network conditions. Components capable of detecting long poll requests and managing

caching of long polls are also illustrated.

[0014] FIG. 3C depicts a block diagram illustrating another example of components in
the proxy system shown in the example of FIG. 3A which is further capable of managing and

detecting cache defeating mechanisms and monitoring content sources.

[0015] FIG. 3D depicts a block diagram illustrating examples of additional components
in proxy server shown in the example of FIG. 3A which is further capable of performing
mobile traffic categorization and policy implementation based on application behavior and/or

traffic priority.

[0016] FIG. 4A depicts a block diagram illustrating another example of client-side
components in a distributed proxy and cache system, further including a state detection and

preservation engine.

[0017] FIG. 4B depicts a block diagram illustrating additional components in the state

detection and preservation engine shown in the example of FIG. 4A.

[0018] FIG. 5A depicts a block diagram illustrating an example of server-side
components in a distributed proxy and cache system, further including a state detection and

preservation engine.

WO 2012/149434 PCT/US2012/035608

[0019] FIG. 5B depicts a block diagram illustrating additional components in the state

detection and preservation engine shown in the example of FIG. 5A.

[0020] FIG. 6A depicts a flow diagram illustrating an example process for distributed
content caching between a mobile device (e.g., any wireless device) and remote proxy and

the distributed management of content caching.

[0021] FIG. 6B depicts a timing diagram showing how data requests from a mobile
device (e.g., any wireless device) to an application server/content provider in a wireless
network (or broadband network) can be coordinated by a distributed proxy system in a
manner such that network and battery resources are conserved through using content caching

and monitoring performed by the distributed proxy system.

[0022] FIG. 7 depicts a table showing examples of different traffic or application
category types which can be used in implementing network access and content delivery

policies.

[0023] FIG. 8 depicts a table showing examples of different content category types

which can be used in implementing network access and content delivery policies.

[0024] FIG. 9 depicts an interaction diagram showing how polls having data requests
from a mobile device (e.g., any wireless device) to an application server/content provider
over a wireless network (or broadband network) can be can be cached on the local proxy and

managed by the distributed caching system.

[0025] FIG. 10 depicts an interaction diagram showing how polls for content from an
application server/content provider which employs cache-defeating mechanisms in identifiers
(e.g., identifiers intended to defeat caching) over a wireless network (or broadband network)

can be detected and locally cached.

[0026] FIG. 11 depicts a flow chart illustrating an example process for collecting
information about a request and the associated response to identify cacheability and caching

the response.

[0027] FIG. 12 depicts a flow chart illustrating an example process showing decision

flows to determine whether a response to a request can be cached.

WO 2012/149434 PCT/US2012/035608

[0028] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request periodicity and/or response repeatability.

[0029] FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

[0030] FIG. 15 depicts a flow chart illustrating example processes for application and/or
traffic (data) categorization while factoring in user activity and expectations for

implementation of network access and content delivery policies.

[0031] FIG. 16A depicts a flow chart illustrating example processes for handling traffic
which is to be suppressed at least temporarily determined from application/traffic

categorization.

[0032] FIG. 16B depicts a flow chart illustrating an example process for selection of a
network configuration for use in sending traffic based on application and/or traffic (data)

categorization.

[0033] FIG. 16C depicts a flow chart illustrating an example process for implementing
network access and content delivery policies based on application and/or traffic (data)

categorization.

[0034] FIG. 17 depicts a flow chart illustrating an example process for network

selection based on mobile user activity or user expectations.

[0035] FIG. 18 depicts a data timing diagram showing an example of detection of

periodic request which may be suitable for caching.

[0036] FIG. 19 depicts a data timing diagram showing an example of detection of

change in request intervals and updating of server polling rate in response thereto.

[0037] FIG. 20 depicts a data timing diagram showing an example of serving

foreground requests with cached entries.

[0038] FIG. 21 depicts a data timing diagram showing an example of the possible effect
of cache invalidation that occurs after outdated content has been served once again to a

requesting application.

WO 2012/149434 PCT/US2012/035608

[0039] FIG. 22 depicts a data timing diagram showing cache management and response

taking into account the time-to-live (TTL) set for cache entries.

[0040] FIG. 23A depicts a flow chart illustrating an example process for cache state
management to preserve user experience with a mobile application on a mobile device while

conserving resources in a wireless network.

[0041] FIG. 23B depicts a flow chart illustrating an example process for communicating

state information to a mobile device with a cache invalidate.

[0042] FIG. 24 depicts a flow chart illustrating an example process for determining and

maintaining state information.

[0043] FIG. 25 depicts a flow chart illustrating an example process for cache state

management on a mobile device to preserve user experience.

[0044] FIG. 26 shows a diagrammatic representation of a machine in the example form
of a computer system within which a set of instructions, for causing the machine to perform

any one or more of the methodologies discussed herein, may be executed.

DETAILED DESCRIPTION

[0045] The following description and drawings are illustrative and are not to be
construed as limiting. Numerous specific details are described to provide a thorough
understanding of the disclosure. However, in certain instances, well-known or conventional
details are not described in order to avoid obscuring the description. References to “one
embodiment” or “an embodiment” in the present disclosure can be, but not necessarily are,
references to the same embodiment and such references mean at least one of the

embodiments.

[0046] Reference in this specification to “one embodiment” or “an embodiment” means
that a particular feature, structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the disclosure. The appearances of the
phrase “in one embodiment” in various places in the specification are not necessarily all
referring to the same embodiment, nor are separate or alternative embodiments mutually

exclusive of other embodiments. Moreover, various features are described which may be

WO 2012/149434 PCT/US2012/035608

exhibited by some embodiments and not by others. Similarly, various requirements are

described which may be requirements for some embodiments but not other embodiments.

[0047] The terms used in this specification generally have their ordinary meanings in the
art, within the context of the disclosure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the
specification, to provide additional guidance to the practitioner regarding the description of
the disclosure. For convenience, certain terms may be highlighted, for example using italics
and/or quotation marks. The use of highlighting has no influence on the scope and meaning
of a term; the scope and meaning of a term is the same, in the same context, whether or not it

is highlighted. It will be appreciated that same thing can be said in more than one way.

[0048] Consequently, alternative language and synonyms may be used for any one or
more of the terms discussed herein, nor is any special significance to be placed upon whether
or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A
recital of one or more synonyms does not exclude the use of other synonyms. The use of
examples anywhere in this specification, including examples of any terms discussed herein, is
illustrative only, and is not intended to further limit the scope and meaning of the disclosure
or of any exemplified term. Likewise, the disclosure is not limited to various embodiments

given in this specification.

[0049] Without intent to limit the scope of the disclosure, examples of instruments,
apparatus, methods and their related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may be used in the examples for
convenience of a reader, which in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used herein have the same meaning as
commonly understood by one of ordinary skill in the art to which this disclosure pertains. In

the case of conflict, the present document, including definitions, will control.

[0050] Embodiments of the present disclosure include methods for detecting and

preserving state for satisfying application requests in a distributed proxy and cache system.

[0051] There are multiple factors that contribute to the proliferation of data: the end-
user, mobile devices, wireless devices, mobile applications, and the network. As mobile

devices evolve, so do the various elements associated with them-availability, applications,

WO 2012/149434 PCT/US2012/035608

user behavior, location thus changing the way the network interacts with the device and the

application.

[0052] The disclosed technology provides a comprehensive and end-to-end solution that
is able to address each element for operators and devices manufacturers to support both the
shift in mobile or wireless devices and the surge in data by leveraging the premise that mobile
content has a definable or relevant “freshness” value. The “freshness” of mobile content can
be determined, either with certainty, or with some heuristics having a tolerance within which
the user experience is enhanced, or not negatively impacted, or negatively impacted but is

either not perceptible to the user or within a tolerable threshold level.

[0053] The disclosed innovation transparently determines such “freshness” by
monitoring, analyzing, and applying rules (which may be heuristically determined) the
transactions (requests/responses) between applications (e.g., mobile applications) and the
peers (corresponding server or other clients). Moreover, the technology is further able to
effectively cache content which may be marked by its originating/host server as being “non-
cacheable” and identify some “freshness” value which can then be used in implementing
application-specific caching. In general, the “freshness” value has an approximate minimum
value which is typically determined using the update interval (e.g., interval with which

requests are sent) between the application and its corresponding server/host.

[0054] One embodiment of the disclosed technology includes a system that optimizes
multiple aspects of the connection with wired and wireless networks and devices through a
comprehensive view of device and application activity including: loading, current
application needs on a device, controlling the type of access (push vs. pull or hybrid),
location, concentration of users in a single area, time of day, how often the user interacts with
the application, content or device, and using this information to shape traffic to a cooperative
client/server or simultancously mobile devices without a cooperative client. Because the
disclosed server is not tied to any specific network provider it has visibility into the network
performance across all service providers. This enables optimizations to be applied to devices
regardless of the operator or service provider, thereby enhancing the user experience and
managing network utilization while roaming. Bandwidth has been considered a major issue
in wireless networks today. More and more research has been done related to the need for
additional bandwidth to solve access problems. Many of the performance enhancing

solutions and next generation standards, such as those commonly referred to as 3.5G, LTE,

WO 2012/149434 PCT/US2012/035608

4G, and WiMAX, are focused on providing increased bandwidth. Although partially
addressed by the standards, a key problem that remains is lack of bandwidth on the signaling
channel more so than the data channel and the standard does not address battery life very

well.

[0055] Embodiments of the disclosed technology includes, for example, alignment of
requests from multiple applications to minimize the need for several polling requests;
leverage specific content types to determine how to proxy/manage a connection/content; and
applying specific heuristics associated with device, user behavioral patterns (how often they

interact with the device/application) and/or network parameters.

[0056] Embodiments of the present technology can further include, moving recurring
HTTP polls performed by various widgets, RSS readers, etc., to remote network node (e.g.,
Network Operation Center (NOC)), thus considerably lowering device battery/power
consumption, radio channel signaling and bandwidth usage. Additionally, the offloading can

be performed transparently so that existing applications do not need to be changed.

[0057] In some embodiments, this can be implemented using a local proxy on the mobile
device (e.g., any wireless device) which automatically detects recurring requests for the same
content (RSS feed, Widget data set) that matches a specific rule (e.g., happens every 15
minutes). The local proxy can automatically cache the content on the mobile device while
delegating the polling to the server (e.g., a proxy server operated as an element of a
communications network). The server can then notify the mobile/client proxy if the content
changes, and if content has not changed (or not changed sufficiently, or in an identified
manner or amount) the mobile proxy provides the latest version in its cache to the user
(without need to utilize the radio at all). This way the mobile or wireless device (e.g., a
mobile phone, smart phone, M2M module/MODEM, or any other wireless devices, etc.) does
not need to open (e.g., thus powering on the radio) or use a data connection if the request is

for content that is monitored and that has been not flagged as new/changed.

[0058] The logic for automatically adding content sources/application servers (e.g.,
including URLs/content) to be monitored can also check for various factors like how often
the content is the same, how often the same request is made (is there a fixed

interval/pattern?), which application is requesting the data, etc. Similar rules to decide

WO 2012/149434 PCT/US2012/035608

between using the cache and request the data from the original source may also be

implemented and executed by the local proxy and/or server.

[0059] For example, when the request comes at an unscheduled/unexpected time (user
initiated check), or after every (n) consecutive times the response has been provided from the
cache, etc., or if the application is running in the background vs. in a more interactive mode
of the foreground. As more and more mobile applications or wireless enabled applications
base their features on resources available in the network, this becomes increasingly
important. In addition, the disclosed technology allows elimination of unnecessary chatter

from the network, benefiting the operators trying to optimize the wireless spectrum usage.

Traffic Categorization and Policy

[0060] In some embodiments, the disclosed proxy system is able to establish policies for
choosing traffic (data, content, messages, updates, etc.) to cache and/or shape. Additionally,
by combining information from observing the application making the network requests,
getting explicit information from the application, or knowing the network destination the
application is reaching, the disclosed technology can determine or infer what category the

transmitted traffic belongs to.

[0061] For example, in one embodiment, mobile or wireless traffic can be categorized
as: (al) interactive traffic or (a2) background traffic. The difference is that in (al) a user is
actively waiting for a response, while in (2) a user is not expecting a response. This
categorization can be used in conjunction with or in lieu of a second type of categorization of
traffic: (b1) immediate, (b2) low priority, (b3) immediate if the requesting application is in

the foreground and active.

[0062] For example, a new update, message or email may be in the (b1) category to be
delivered immediately, but it still is (a2) background traffic — a user is not actively waiting
for it. A similar categorization applies to instant messages when they come outside of an
active chat session. During an active chat session a user is expecting a response faster. Such
user expectations are determined or inferred and factored into when optimizing network use

and device resources in performing traffic categorization and policy implementation.

[0063] Some examples of the applications of the described categorization scheme,

include the following: (al) interactive traffic can be categorized as (bl) immediate — but

10

WO 2012/149434 PCT/US2012/035608

(a2) background traffic may also be (b2) or (b3). An example of a low priority transfer is
email or message maintenance transaction such as deleting email or other messages or
marking email as read at the mail or application server. Such a transfer can typically occur at
the earlier of (a) timer exceeding a timeout value (for example, 2 minutes), and (b) data being

sent for other purposes.

[0064] An example of (b3) is IM presence updates, stock ticker updates, weather
updates, status updates, news feeds. When the Ul of the application is in the foreground
and/or active (for example, as indicated by the backlight of the device/phone being lit or as
determined or inferred from the status of other sensors), updates can be considered immediate
whenever server has something to push to the device. When the application is not in the
foreground or not active, such updates can be suppressed until the application comes to

foreground and is active.

[0065] With some embodiments, networks can be selected or optimized simultaneously

for (al) interactive traffic and (a2) background traffic.

[0066] In some embodiments, as the wireless device or mobile device proxy (separately
or in conjunction with the server proxy) is able to categorize the traffic as (for example) (al)
interactive traffic or (a2) background traffic, it can apply different policies to different types
of traffic. This means that it can internally operate differently for (al) and (a2) traffic (for
example, by allowing interactive traffic to go through to the network in whole or in part, and
apply stricter traffic control to background traffic; or the device side only allows a request to
activate the radio if it has received information from the server that the content at the host has

been updated, etc.).

[0067] When the request does require access over the wireless network, the disclosed
technology can request the radio layer to apply different network configurations to different
traffic. Depending on the type of traffic and network this may be achieved by different

means:
[0068] (1) Using 3G/4G for (al) and 2G/2.5G for (a2);

[0069] (2) Explicitly specifying network configuration for different data sets (e.g. in
terms of use of FACH (forward access channel) vs. DCH (dedicated channel), or otherwise

requesting lower/more network efficient data rates for background traffic); or

11

WO 2012/149434 PCT/US2012/035608

[0070] (3) Utilizing different network access points for different data sets (access points

which would be configured to use network resources differently similar to (1) and (2) above).

[0071] Additionally, 3GPP Fast Dormancy calls for improvements so that applications,
operating systems or the mobile device would have awareness of the traffic type to be more
efficient in the future. Embodiments of the disclosed system, having the knowledge of the
traffic category and being able to utilize Fast Dormancy appropriately may solve the problem
identified in Fast Dormancy. This way the mobile or broadband network does not need to be
configured with a compromised configuration that adversely impacts both battery

consumption and network signaling resources.

Polling schedule

[0072] Detecting (or determining) a polling schedule allows the proxy server (server-
side of the distributed cache system) to be as close as possible with its polls to the application
polls. Many applications employ scheduled interval polling (e.g., every 4 hours or every 30
seconds, at another time interval). The client side proxy can detect automatic polls based on
time measurements and create a automatic polling profile for an application. As an example,
the local proxy attempts to detect the time interval between requests and after 2, 3, 4, or more
polls, determines an automatic rate if the time intervals are all within 1 second (or another
measure of relative closeness) of each other. If not, the client may collect data from a greater
number of polling events (e.g., 10-12 polls) and apply a statistical analysis to determine,
compute, or estimate a value for the average interval that is used. The polling profile is
delivered to the server where it is used. If it is a frequent manual request, the locally proxy
can substitute it with a default interval for this application taken from a profile for non-

critical applications.

[0073] In some embodiments, the local proxy (e.g., device side proxy) may keep
monitoring the application/client polls and update the polling interval. If it changes by more
than 30% (or another predetermined/dynamic/conditional value) from the current value, it is
communicated to the proxy server (e.g., server-side proxy). This approach can be referred to
as the scenario of “lost interest.” In some instances, the local proxy can recognize requests

made outside of this schedule, consider them “manual,” and treat them accordingly.

12

WO 2012/149434 PCT/US2012/035608

Application classes/Modes of caching

[0074] In some embodiments, applications can be organized into three groups or modes
of caching. Each mobile client/application can be categorized to be treated as one of these

modes, or treated using multiple modes, depending on one or more conditions.

[0075] A) Fully cached — local proxy updates (e.g., sends application requests directly
over the network to be serviced by the application server/content host) only when the proxy
server tells the local proxy to update. In this mode, the local proxy can ignore manual
requests and the proxy server uses the detected automatic profile (e.g., sports score applets,

Facebook, every 10, 15, 30, or more polls) to poll the application server/content provider.

[0076] B) Partially cached — the local proxy uses the local or internal cache for
automatic requests (e.g., application automatic refreshes), other scheduled requests but passes

through some manual requests (e.g., email download, Ebay or some Facebook requests); and

[0077] C) Never cached (e.g., real-time stock ticker, sports scores/statuses; however, in
some instances, 15 minutes delayed quotes can be safely placed on 30 seconds schedules —

B or even A).

[0078] The actual application or caching mode classification can be determined based on
the rate of content change and critical character of data. Unclassified applications by default

can be set as class C.

Backlight and active applications

[0079] In some embodiments, the local proxy starts by detecting the device backlight
status. Requests made with the screen light ‘off” can be allowed to use the local cache if a
request with identical signature is registered with the proxy server, which is polling the
original host server/content server(s) to which the requests are directed. If the screen light is
‘on’, further detection can be made to determine whether it is a background application or for
other indicators that local cache entries can or cannot be used to satisfy the request. When
identified, the requests for which local entries can be used may be processed identically to the
screen light off situation. Foreground requests can use the aforementioned application

classification to assess when cached data is safe to use to process requests.

13

WO 2012/149434 PCT/US2012/035608

[0080] FIG. 1A depicts an example diagram showing tracking and preservation of state
information for cache management when application requests are made by the host server

100 on behalf of the mobile device 150.

[0081] In some instances, responses to application requests (e.g., HTTP requests 107 and
109) made by device 150 are locally cached (e.g., such as using the processes described in
FIG. 2-FIG. 3 and FIGS. 6-10) such that future requests can be satisfied locally without
needing to go over the cellular network to contact the application server/content provider 110.
Such requests are setup to be monitored by the host server 100 for changes to requests to
notify the device 150 that the stored responses have been changed, or otherwise updated to

enable the device 150 to update the cache entry or invalidate the cache entry.

[0082] For example, the device 150 (e.g., the cache policy manager in a local proxy such
as the proxy 175 or 275 of FIG. 2) can determine that responses to the Request A 107 and
Request B 109 meet certain requirements (e.g., satisfy a certain criteria) and are now stored in
a local cache on the device 150. A cache policy manager (e.g., the policy manager 245
shown in the examples of FIG. 2) now hands off the monitoring of Requests A and B for
content/responses from app server/provider 110 to the host server 100 for monitoring and
tracking. When the host 100 detects updated information from the app server/provider 110,
the host 100 notifies device 150 that responses to Requests A and B have now been updated

or changed (e.g., via an invalidate 124).

[0083] The device 150 (e.g., the cache invalidator 702 in proxy 775) can now invalidate
cache entries stored for Request A 102 and Request B 104 and make a subsequent request
over the cellular network to application server 110. Since the device 150 has been using local
entries to satisfy content requests, the device 150, when now starting to directly request
content (or directly polling) application server 110 again, may not know which response is
the one that should be polled, specifically if the invalidate 124 sent from the host server 100

does not include the changed content itself.

[0084] For example, if the invalidate 124 includes the newest/changed content, the
mobile device 150 can satisfy the latest request with the newest/changed content detected and
sent from the host 100. However, in some instances, the host 100 only sends an invalidate
signal 124 indicating that new/updated data has been detected but does not provide the
updated response to the device 150. By the time device 150 sends a direct request 122 to the

14

WO 2012/149434 PCT/US2012/035608

application server 110, the mobile device 150 may not know whether the response received

from the app server/provider 110 is the correct response.

[0085] In one embodiment, the host server 100 can track poll states and also store state
data (e.g., in memory or repository 185 as cache state parameters) related to the Request A
and Request B made by the device 150. State information can be tracked and retained to
ensure that user experience is preserved at the mobile device 150 when application requests
normally made from the device 150 are now offloaded to the host server 100. To preserve
user experience, not only the same data request need to be made by the host server 100 on
behalf of the application on the device 150, but also the time interval between multiple
requests, and the order with which the requests are generated, such that responses are
provided to the device 150 in a manner that was originally intended. For example, the state
data that is stored can include the ordering with which the Request A 107 and Request B 109
is initiated from device 150, and further include an ordering with which the request which

caused the invalidate 124 to be sent to the device 150.

[0086] The host server 100 (e.g., or proxy 125) can, for example, send the stored poll
states or state information 126 to the mobile device 150. The state data can further include
indications or request/response sets for a few iterations prior to and/or after the request that
caused invalidation. This state information 126 can be sent to the device 150 for use in
determining which response received from the application server/content provider 110 is
actually the new/changed response that needs to be provided to a requesting application or

process; for example, the state information can be processed by the proxy 175 of device 150.

[0087] Using the state information 126, the mobile device 150 (or a cache state resolver
engine shown in the example of FIG. 4A) can determine which responses have already been
provided through local cache entries, and which responses are new or changed and need be
provided to a requesting application or service, and provide the new/changed response to the
application/server in a manner that preserves the state, or ordering of responses to match the
order in which the requests were made and also for the provided response to match the

request that was made.

[0088] In general, the state information 126 can periodically be sent to the device 150
and/or with an invalidate 124, or immediately after an invalidate 124. The schedule for

sending state information 126 can be on a per-application and/or per device basis and can be

15

WO 2012/149434 PCT/US2012/035608

system or user adjusted (e.g., dynamically based on operating conditions or based on user's
explicit or inferred preferences). In general, the server 100 tracks poll states on a per
application basis (e.g., using the per application state manager 521 of FIG. 5B) and per
device basis (e.g., using the per device state manager 511 of FIG. 5B).

[0089] FIG. 1B illustrates an example diagram of a system where a host server 100
facilitates management of traffic, content caching, and/or resource conservation between
mobile devices (e.g., wireless devices 150), and an application server or content provider 110,
or other servers such as an ad server 120A, promotional content server 120B, or an e-coupon
server 120C in a wireless network (or broadband network) for resource conservation. The
host server can further detect and/or preserve state for satisfying application requests using a

distributed proxy and cache system.

[0090] The client devices 150 can be any system and/or device, and/or any combination
of devices/systems that is able to establish a connection, including wired, wireless, cellular
connections with another device, a server and/or other systems such as host server 100 and/or
application server/content provider 110. Client devices 150 will typically include a display
and/or other output functionalities to present information and data exchanged between among
the devices 150 and/or the host server 100 and/or application server/content provider 110.
The application server/content provider 110 can by any server including third party servers or
service/content providers further including advertisement, promotional content, publication,
or electronic coupon servers or services. Similarly, separate advertisement servers 120A,
promotional content servers 120B, and/or e-Coupon servers 120C as application servers or

content providers are illustrated by way of example.

[0091] For example, the client devices 150 can include mobile, hand held or portable
devices, wireless devices, or non-portable devices and can be any of, but not limited to, a
server desktop, a desktop computer, a computer cluster, or portable devices, including a
notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a
cell phone, a smart phone, a PDA, a Blackberry device, a Palm device, a handheld tablet
(e.g., an iPad or any other tablet), a hand held console, a hand held gaming device or console,
any SuperPhone such as the iPhone, and/or any other portable, mobile, hand held devices, or
fixed wireless interface such as a M2M device, etc. In one embodiment, the client devices

150, host server 100, and application server 110 are coupled via a network 106 and/or a

16

WO 2012/149434 PCT/US2012/035608

network 108. In some embodiments, the devices 150 and host server 100 may be directly

connected to one another.

[0092] The input mechanism on client devices 150 can include touch screen keypad
(including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a
mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis
accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor,
proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass,

tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.

[0093] Signals received or detected indicating user activity at client devices 150 through
one or more of the above input mechanism, or others, can be used in the disclosed technology
in acquiring context awareness at the client device 150. Context awareness at client devices
150 generally includes, by way of example but not limitation, client device 150 operation or
state acknowledgement, management, user activity/behavior/interaction awareness, detection,
sensing, tracking, trending, and/or application (e.g., mobile applications) type, behavior,

activity, operating state, etc.

[0094] Context awareness in the present disclosure also includes knowledge and
detection of network side contextual data and can include network information such as
network capacity, bandwidth, traffic, type of network/connectivity, and/or any other
operational state data. Network side contextual data can be received from and/or queried
from network service providers (e.g., cell provider 112 and/or Internet service providers) of
the network 106 and/or network 108 (e.g., by the host server and/or devices 150). In addition
to application context awareness as determined from the client 150 side, the application
context awareness may also be received from or obtained/queried from the respective

application/service providers 110 (by the host 100 and/or client devices 150).

[0095] The host server 100 can use, for example, contextual information obtained for
client devices 150, networks 106/108, applications (e.g., mobile applications), application
server/provider 110, or any combination of the above, to manage the traffic in the system to
satisfy data needs of the client devices 150 (e.g., to satisfy application or any other request
including HTTP request). In one embodiment, the traffic is managed by the host server 100
to satisfy data requests made in response to explicit or non-explicit user 103 requests and/or

device/application maintenance tasks. The traffic can be managed such that network

17

WO 2012/149434 PCT/US2012/035608

consumption, for example, use of the cellular network is conserved for effective and efficient
bandwidth utilization. In addition, the host server 100 can manage and coordinate such

traffic in the system such that use of device 150 side resources (e.g., including but not limited
to battery power consumption, radio use, processor/memory use) are optimized with a general

philosophy for resource conservation while still optimizing performance and user experience.

[0096] For example, in context of battery conservation, the device 150 can observe user
activity (for example, by observing user keystrokes, backlight status, or other signals via one
or more input mechanisms, etc.) and alters device 150 behaviors. The device 150 can also
request the host server 100 to alter the behavior for network resource consumption based on

user activity or behavior.

[0097] In one embodiment, the traffic management for resource conservation is
performed using a distributed system between the host server 100 and client device 150. The
distributed system can include proxy server and cache components on the server side 100 and
on the device/client side , for example, as shown by the server cache 135 on the server 100

side and the local cache 185 on the client 150 side.

[0098] Functions and techniques disclosed for context aware traffic management for
resource conservation in networks (e.g., network 106 and/or 108) and devices 150, reside in a
distributed proxy and cache system. The proxy and cache system can be distributed between,
and reside on, a given client device 150 in part or in whole and/or host server 100 in part or in
whole. The distributed proxy and cache system are illustrated with further reference to the
example diagram shown in FIG. 1C. Functions and techniques performed by the proxy and
cache components in the client device 150, the host server 100, and the related components
therein are described, respectively, in detail with further reference to the examples of FIGS.

2-3.

[0099] In one embodiment, client devices 150 communicate with the host server 100
and/or the application server 110 over network 106, which can be a cellular network and/or a
broadband network. To facilitate overall traffic management between devices 150 and
various application servers/content providers 110 to implement network (bandwidth
utilization) and device resource (e.g., battery consumption), the host server 100 can
communicate with the application server/providers 110 over the network 108, which can

include the Internet (e.g., a broadband network).

18

WO 2012/149434 PCT/US2012/035608

[00100] In general, the networks 106 and/or 108, over which the client devices 150, the
host server 100, and/or application server 110 communicate, may be a cellular network, a
broadband network, a telephonic network, an open network, such as the Internet, or a private
network, such as an intranet and/or the extranet, or any combination thercof. For example,
the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services,
instant messaging, visual voicemail, push mail, VolIP, and other services through any known
or convenient protocol, such as, but is not limited to the TCP/IP protocol, UDP, HTTP, DNS,
FTP, UPnP, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.

[00101] The networks 106 and/or 108 can be any collection of distinct networks operating
wholly or partially in conjunction to provide connectivity to the client devices 150 and the
host server 100 and may appear as one or more networks to the serviced systems and devices.
In one embodiment, communications to and from the client devices 150 can be achieved by,
an open network, such as the Internet, or a private network, broadband network, such as an
intranet and/or the extranet. In one embodiment, communications can be achieved by a
secure communications protocol, such as secure sockets layer (SSL), or transport layer

security (TLS).

[00102] In addition, communications can be achieved via one or more networks, such as,
but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local
Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a
Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area
network (WWAN), or any broadband network, and further enabled with technologies such as,
by way of example, Global System for Mobile Communications (GSM), Personal
Communications Service (PCS), Bluetooth, WiFi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G,
IMT-Advanced, pre-4G, LTE Advanced, mobile WiMax, WiMax 2, Wireless M AN-
Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio
service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD,
IxRTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging
and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and
presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data

networks, broadband networks, or messaging protocols.

[00103] FIG. 1C illustrates an example diagram of a proxy and cache system distributed

between the host server 100 and device 150 which facilitates network traffic management

19

WO 2012/149434 PCT/US2012/035608

between the device 150 and an application server or content provider 110, or other servers
such as an ad server 120A, promotional content server 120B, or an e-coupon server 120C for
resource conservation and content caching. The proxy system distributed among the host
server 100 and the device 150 can further detect and/or preserve state for satisfying

application requests using a distributed proxy and cache system.

[00104] The distributed proxy and cache system can include, for example, the proxy
server 125 (e.g., remote proxy) and the server cache, 135 components on the server side. The
server-side proxy 125 and cache 135 can, as illustrated, reside internal to the host server 100.
In addition, the proxy server 125 and cache 135 on the server-side can be partially or wholly
external to the host server 100 and in communication via one or more of the networks 106
and 108. For example, the proxy server 125 may be external to the host server and the server
cache 135 may be maintained at the host server 100. Alternatively, the proxy server 125 may
be within the host server 100 while the server cache is external to the host server 100. In
addition, each of the proxy server 125 and the cache 135 may be partially internal to the host
server 100 and partially external to the host server 100. The application server/content
provider 110 can by any server including third party servers or service/content providers
further including advertisement, promotional content, publication, or electronic coupon
servers or services. Similarly, separate advertisement servers 120A, promotional content
servers 120B, and/or e-Coupon servers 120C as application servers or content providers are

illustrated by way of example.

[00105] The distributed system can also, include, in one embodiment, client-side
components, including by way of example but not limitation, a local proxy 175 (e.g., a
mobile client on a mobile device) and/or a local cache 185, which can, as illustrated, reside

internal to the device 150 (e.g., a mobile device).

[00106] In addition, the client-side proxy 175 and local cache 185 can be partially or
wholly external to the device 150 and in communication via one or more of the networks 106
and 108. For example, the local proxy 175 may be external to the device 150 and the local
cache 185 may be maintained at the device 150. Alternatively, the local proxy 175 may be
within the device 150 while the local cache 185 is external to the device 150. In addition,
cach of the proxy 175 and the cache 185 may be partially internal to the host server 100 and
partially external to the host server 100.

20

WO 2012/149434 PCT/US2012/035608

[00107] In one embodiment, the distributed system can include an optional caching proxy
server 199. The caching proxy server 199 can be a component which is operated by the
application server/content provider 110, the host server 100, or a network service provider
112, and or any combination of the above to facilitate network traffic management for
network and device resource conservation. Proxy server 199 can be used, for example, for
caching content to be provided to the device 150, for example, from one or more of, the
application server/provider 110, host server 100, and/or a network service provider 112.
Content caching can also be entirely or partially performed by the remote proxy 125 to satisfy

application requests or other data requests at the device 150.

[00108] In context aware traffic management and optimization for resource conservation
in a network (e.g., cellular or other wireless networks), characteristics of user
activity/behavior and/or application behavior at a mobile device (e.g., any wireless device)
150 can be tracked by the local proxy 175 and communicated, over the network 106 to the
proxy server 125 component in the host server 100, for example, as connection metadata.
The proxy server 125 which in turn is coupled to the application server/provider 110 provides

content and data to satisfy requests made at the device 150.

[00109] In addition, the local proxy 175 can identify and retrieve mobile device
properties, including one or more of, battery level, network that the device is registered on,
radio state, or whether the mobile device is being used (e.g., interacted with by a user). In
some instances, the local proxy 175 can delay, expedite (prefetch), and/or modify data prior
to transmission to the proxy server 125, when appropriate, as will be further detailed with

references to the description associated with the examples of FIGS. 2-3.

[00110] The local database 185 can be included in the local proxy 175 or coupled to the
local proxy 175 and can be queried for a locally stored response to the data request prior to
the data request being forwarded on to the proxy server 125. Locally cached responses can
be used by the local proxy 175 to satisfy certain application requests of the mobile device
150, by retrieving cached content stored in the cache storage 185, when the cached content is

still valid.

[00111] Similarly, the proxy server 125 of the host server 100 can also delay, expedite, or
modify data from the local proxy prior to transmission to the content sources (e.g., the

application server/content provider 110). In addition, the proxy server 125 uses device

21

WO 2012/149434 PCT/US2012/035608

properties and connection metadata to generate rules for satisfying request of applications on
the mobile device 150. The proxy server 125 can gather real time traffic information about
requests of applications for later use in optimizing similar connections with the mobile device

150 or other mobile devices.

[00112] In general, the local proxy 175 and the proxy server 125 are transparent to the
multiple applications executing on the mobile device. The local proxy 175 is generally
transparent to the operating system or platform of the mobile device and may or may not be
specific to device manufacturers. In some instances, the local proxy 175 is optionally
customizable in part or in whole to be device specific. In some embodiments, the local proxy

175 may be bundled into a wireless model, a firewall, and/or a router.

[00113] In one embodiment, the host server 100 can in some instances, utilize the store
and forward functions of a short message service center (SMSC) 112, such as that provided
by the network service provider, in communicating with the device 150 in achieving network
traffic management. Note that 112 can also utilize any other type of alternative channel
including USSD or other network control mechanisms. As will be further described with
reference to the example of FIG. 3, the host server 100 can forward content or HTTP
responses to the SMSC 112 such that it is automatically forwarded to the device 150 if

available, and for subsequent forwarding if the device 150 is not currently available.

[00114] In general, the disclosed distributed proxy and cache system allows optimization
of network usage, for example, by serving requests from the local cache 185, the local proxy
175 reduces the number of requests that need to be satisfied over the network 106. Further,
the local proxy 175 and the proxy server 125 may filter irrelevant data from the
communicated data. In addition, the local proxy 175 and the proxy server 125 can also
accumulate low priority data and send it in batches to avoid the protocol overhead of sending
individual data fragments. The local proxy 175 and the proxy server 125 can also compress
or transcode the traffic, reducing the amount of data sent over the network 106 and/or 108.
The signaling traffic in the network 106 and/or 108 can be reduced, as the networks are now

used less often and the network traffic can be synchronized among individual applications.

[00115] With respect to the battery life of the mobile device 150, by serving application
or content requests from the local cache 185, the local proxy 175 can reduce the number of

times the radio module is powered up. The local proxy 175 and the proxy server 125 can

22

WO 2012/149434 PCT/US2012/035608

work in conjunction to accumulate low priority data and send it in batches to reduce the
number of times and/or amount of time when the radio is powered up. The local proxy 175
can synchronize the network use by performing the batched data transfer for all connections

simultaneously.

[00116] FIG. 2A depicts a block diagram illustrating an example of client-side
components in a distributed proxy and cache system residing on a mobile device (e.g.,
wireless device) 250 that manages traffic in a wireless network (or broadband network) for
resource conservation, content caching, and/or traffic management. The client-side proxy (or
local proxy 275) can further categorize mobile traffic and/or implement delivery policies

based on application behavior, content priority, user activity, and/or user expectations.

[00117] The device 250, which can be a portable or mobile device (e.g., any wireless
device), such as a portable phone, generally includes, for example, a network interface 208 an
operating system 204, a context API 206, and mobile applications which may be proxy-
unaware 210 or proxy-aware 220. Note that the device 250 is specifically illustrated in the
example of FIG. 2 as a mobile device, such is not a limitation and that device 250 may be
any wireless, broadband, portable/mobile or non-portable device able to receive, transmit
signals to satisfy data requests over a network including wired or wireless networks (e.g.,

WiFi, cellular, Bluetooth, LAN, WAN, etc.).

[00118] The network interface 208 can be a networking module that enables the device
250 to mediate data in a network with an entity that is external to the host server 250, through
any known and/or convenient communications protocol supported by the host and the
external entity. The network interface 208 can include one or more of a network adaptor
card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for
various generations of mobile communication standards including but not limited to 2G, 3G,
3.5G, 4G, LTE, etc.,), Bluetooth, or whether or not the connection is via a router, an access
point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a

bridge, a bridge router, a hub, a digital media receiver, and/or a repeater.

[00119] Device 250 can further include, client-side components of the distributed proxy
and cache system which can include, a local proxy 275 (e.g., a mobile client of a mobile
device) and a cache 285. In one embodiment, the local proxy 275 includes a user activity

module 215, a proxy API 225, a request/transaction manager 235, a caching policy manager

23

WO 2012/149434 PCT/US2012/035608

245 having an application protocol module 248, a traffic shaping engine 255, and/or a
connection manager 265. The traffic shaping engine 255 may further include an alignment
module 256 and/or a batching module 257, the connection manager 265 may further include a
radio controller 266. The request/transaction manager 235 can further include an application
behavior detector 236 and/or a prioritization engine 241, the application behavior detector
236 may further include a pattern detector 237 and/or and application profile generator 239.
Additional or less components/modules/engines can be included in the local proxy 275 and

cach illustrated component.

[00120] As used herein, a “module,” “a manager,” a “handler,” a “detector,” an
“interface,” a “controller,” a “normalizer,” a “generator,” an “invalidator,” or an “engine”
includes a general purpose, dedicated or shared processor and, typically, firmware or
software modules that are executed by the processor. Depending upon implementation-
specific or other considerations, the module, manager, handler, detector, interface, controller,
normalizer, generator, invalidator, or engine can be centralized or its functionality distributed.
The module, manager, handler, detector, interface, controller, normalizer, generator,
invalidator, or engine can include general or special purpose hardware, firmware, or software

embodied in a computer-readable (storage) medium for execution by the processor.

[00121] As used herein, a computer-readable medium or computer-readable storage
medium is intended to include all mediums that are statutory (e.g., in the United States, under
35 U.S.C. § 101), and to specifically exclude all mediums that are non-statutory in nature to
the extent that the exclusion is necessary for a claim that includes the computer-readable
(storage) medium to be valid. Known statutory computer-readable mediums include
hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name

a few), but may or may not be limited to hardware.

[00122] In one embodiment, a portion of the distributed proxy and cache system for
network traffic management resides in or is in communication with device 250, including
local proxy 275 (mobile client) and/or cache 285. The local proxy 275 can provide an
interface on the device 250 for users to access device applications and services including
email, IM, voice mail, visual voicemail, feeds, Internet, games, productivity tools, or other

applications, etc.

24

WO 2012/149434 PCT/US2012/035608

[00123] The proxy 275 is generally application independent and can be used by
applications (e.g., both proxy-aware and proxy-unaware applications 210 and 220 and other
mobile applications) to open TCP connections to a remote server (e.g., the server 100 in the
examples of FIGS. 1B-1C and/or server proxy 125/325 shown in the examples of FIG. 1B
and FIG. 3A). In some instances, the local proxy 275 includes a proxy API 225 which can
be optionally used to interface with proxy-aware applications 220 (or applications (e.g.,

mobile applications) on a mobile device (e.g., any wireless device)).

[00124] The applications 210 and 220 can generally include any user application,
widgets, software, HTTP-based application, web browsers, video or other multimedia
streaming or downloading application, video games, social network applications, email
clients, RSS management applications, application stores, document management
applications, productivity enhancement applications, etc. The applications can be provided
with the device OS, by the device manufacturer, by the network service provider,

downloaded by the user, or provided by others.

[00125] One embodiment of the local proxy 275 includes or is coupled to a context API
206, as shown. The context API 206 may be a part of the operating system 204 or device
platform or independent of the operating system 204, as illustrated. The operating system
204 can include any operating system including but not limited to, any previous, current,
and/or future versions/releases of, Windows Mobile, i0S, Android, Symbian, Palm OS, Brew

MP, Java 2 Micro Edition (J2ME), Blackberry, etc.

[00126] The context API 206 may be a plug-in to the operating system 204 or a particular
client/application on the device 250. The context API 206 can detect signals indicative of
user or device activity, for example, sensing motion, gesture, device location, changes in
device location, device backlight, keystrokes, clicks,, activated touch screen, mouse click or
detection of other pointer devices. The context API 206 can be coupled to input devices or
sensors on the device 250 to identify these signals. Such signals can generally include input
received in response to explicit user input at an input device/mechanism at the device 250
and/or collected from ambient signals/contextual cues detected at or in the vicinity of the

device 250 (e.g., light, motion, piezoelectric, etc.).

[00127] In one embodiment, the user activity module 215 interacts with the context API

206 to identify, determine, infer, detect, compute, predict, and/or anticipate, characteristics of

25

WO 2012/149434 PCT/US2012/035608

user activity on the device 250. Various inputs collected by the context API 206 can be
aggregated by the user activity module 215 to generate a profile for characteristics of user
activity. Such a profile can be generated by the user activity module 215 with various
temporal characteristics. For instance, user activity profile can be generated in real-time for a
given instant to provide a view of what the user is doing or not doing at a given time (e.g.,
defined by a time window, in the last minute, in the last 30 seconds, etc.), a user activity
profile can also be generated for a ‘session’ defined by an application or web page that
describes the characteristics of user behavior with respect to a specific task they are engaged
in on the device 250, or for a specific time period (e.g., for the last 2 hours, for the last 5

hours).

[00128] Additionally, characteristic profiles can be generated by the user activity module
215 to depict a historical trend for user activity and behavior (e.g., 1 week, 1 mo., 2 mo.,
etc.). Such historical profiles can also be used to deduce trends of user behavior, for
example, access frequency at different times of day, trends for certain days of the week
(weekends or week days), user activity trends based on location data (e.g., IP address, GPS,
or cell tower coordinate data) or changes in location data (e.g., user activity based on user
location, or user activity based on whether the user is on the go, or traveling outside a home

region, etc.) to obtain user activity characteristics.

[00129] In one embodiment, user activity module 215 can detect and track user activity
with respect to applications, documents, files, windows, icons, and folders on the device 250.
For example, the user activity module 215 can detect when an application or window (e.g., a
web browser or any other type of application) has been exited, closed, minimized,
maximized, opened, moved into the foreground, or into the background, multimedia content

playback, etc.

[00130] In one embodiment, characteristics of the user activity on the device 250 can be
used to locally adjust behavior of the device (e.g., mobile device or any wireless device) to
optimize its resource consumption such as battery/power consumption and more generally,
consumption of other device resources including memory, storage, and processing power. In
one embodiment, the use of a radio on a device can be adjusted based on characteristics of
user behavior (e.g., by the radio controller 266 of the connection manager 265) coupled to the
user activity module 215. For example, the radio controller 266 can turn the radio on or off,

based on characteristics of the user activity on the device 250. In addition, the radio

26

WO 2012/149434 PCT/US2012/035608

controller 266 can adjust the power mode of the radio (e.g., to be in a higher power mode or

lower power mode) depending on characteristics of user activity.

[00131] In one embodiment, characteristics of the user activity on device 250 can also be
used to cause another device (e.g., other computers, a mobile device, a wireless device, or a
non-portable device) or server (e.g., host server 100 and 300 in the examples of FIGS. 1B-C
and FIG. 3A) which can communicate (e.g., via a cellular or other network) with the device
250 to modify its communication frequency with the device 250. The local proxy 275 can
use the characteristics information of user behavior determined by the user activity module
215 to instruct the remote device as to how to modulate its communication frequency (e.g.,
decreasing communication frequency, such as data push frequency if the user is idle,
requesting that the remote device notify the device 250 if new data, changed, data, or data of

a certain level of importance becomes available, etc.).

[00132] In one embodiment, the user activity module 215 can, in response to determining
that user activity characteristics indicate that a user is active after a period of inactivity,
request that a remote device (e.g., server host server 100 and 300 in the examples of FIGS.
1B-C and FIG. 3A) send the data that was buffered as a result of the previously decreased

communication frequency.

[00133] In addition, or in alternative, the local proxy 275 can communicate the
characteristics of user activity at the device 250 to the remote device (e.g., host server 100
and 300 in the examples of FIGS. 1B-C and FIG. 3A) and the remote device determines how
to alter its own communication frequency with the device 250 for network resource

conservation and conservation of device 250 resources..

[00134] One embodiment of the local proxy 275 further includes a request/transaction
manager 235, which can detect, identify, intercept, process, manage, data requests initiated on
the device 250, for example, by applications 210 and/or 220, and/or directly/indirectly by a
user request. The request/transaction manager 235 can determine how and when to process a
given request or transaction, or a set of requests/transactions, based on transaction

characteristics.

[00135] The request/transaction manager 235 can prioritize requests or transactions made
by applications and/or users at the device 250, for example by the prioritization engine 241.

Importance or priority of requests/transactions can be determined by the request/transaction

27

WO 2012/149434 PCT/US2012/035608

manager 235 by applying a rule set, for example, according to time sensitivity of the
transaction, time sensitivity of the content in the transaction, time criticality of the
transaction, time criticality of the data transmitted in the transaction, and/or time criticality or

importance of an application making the request.

[00136] In addition, transaction characteristics can also depend on whether the transaction
was a result of user-interaction or other user-initiated action on the device (e.g., user
interaction with a application (e.g., a mobile application)). In general, a time critical
transaction can include a transaction resulting from a user-initiated data transfer, and can be
prioritized as such. Transaction characteristics can also depend on the amount of data that
will be transferred or is anticipated to be transferred as a result of the requested transaction.
For example, the connection manager 265, can adjust the radio mode (e.g., high power or low
power mode via the radio controller 266) based on the amount of data that will need to be

transferred.

[00137] In addition, the radio controller 266/connection manager 265 can adjust the radio
power mode (high or low) based on time criticality/sensitivity of the transaction. The radio
controller 266 can trigger the use of high power radio mode when a time-critical transaction
(c.g., a transaction resulting from a user-initiated data transfer, an application running in the

foreground, any other event meeting a certain criteria) is initiated or detected.

[00138] In general, the priorities can be set by default, for example, based on device
platform, device manufacturer, operating system, etc. Priorities can alternatively or in
additionally be set by the particular application; for example, the Facebook application (e.g.,
a mobile application) can set its own priorities for various transactions (e.g., a status update
can be of higher priority than an add friend request or a poke request, a message send request
can be of higher priority than a message delete request, for example), an email client or IM
chat client may have its own configurations for priority. The prioritization engine 241 may

include set of rules for assigning priority.

[00139] The prioritization engine 241 can also track network provider limitations or
specifications on application or transaction priority in determining an overall priority status
for a request/transaction. Furthermore, priority can in part or in whole be determined by user
preferences, either explicit or implicit. A user, can in general, set priorities at different tiers,

such as, specific priorities for sessions, or types, or applications (e.g., a browsing session, a

28

WO 2012/149434 PCT/US2012/035608

gaming session, versus an IM chat session, the user may set a gaming session to always have
higher priority than an IM chat session, which may have higher priority than web-browsing
session). A user can set application-specific priorities, (€.g., a user may set Facebook-related
transactions to have a higher priority than LinkedIn-related transactions), for specific
transaction types (e.g., for all send message requests across all applications to have higher
priority than message delete requests, for all calendar-related events to have a high priority,

etc.), and/or for specific folders.

[00140] The prioritization engine 241 can track and resolve conflicts in priorities set by
different entities. For example, manual settings specified by the user may take precedence
over device OS settings, network provider parameters/limitations (e.g., set in default for a
network service area, geographic locale, set for a specific time of day, or set based on
service/fee type) may limit any user-specified settings and/or application-set priorities. In
some instances, a manual synchronization request received from a user can override some,
most, or all priority settings in that the requested synchronization is performed when
requested, regardless of the individually assigned priority or an overall priority ranking for

the requested action.

[00141] Priority can be specified and tracked internally in any known and/or convenient
manner, including but not limited to, a binary representation, a multi-valued representation, a

graded representation and all are considered to be within the scope of the disclosed

technology.
Change Priority Change Priority
(initiated on device) (initiated on server)
Send email High Receive email High
Delete email Low Edit email Often not possible to sync
(Un)read email Low (Low if possible)
Move message Low New email in deleted items Low
Read more High
Download High Delete an email Low
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change Calendar event High Any calendar change High
Any contact change High
Add a contact High Wipe/lock device High

29

WO 2012/149434

Edit a contact

Search contacts
Change a setting

Manual send/receive
IM status change

Auction outbid or change
notification

Weather Updates

High Settings change
High Any folder change

High Connector restart
High
Medium Social Network Status Updates

High Sever Weather Alerts

Low News Updates

PCT/US2012/035608

High
High

High (if no changes nothing is
sent)

Medium
High

Low

Table 1

[00142] Table I above shows, for illustration purposes, some examples of transactions
with examples of assigned priorities in a binary representation scheme. Additional
assignments are possible for additional types of events, requests, transactions, and as
previously described, priority assignments can be made at more or less granular levels, e.g.,

at the session level or at the application level, etc.

[00143] As shown by way of example in the above table, in general, lower priority
requests/transactions can include, updating message status as being read, unread, deleting of
messages, deletion of contacts; higher priority requests/transactions, can in some instances
include, status updates, new IM chat message, new email, calendar event
update/cancellation/deletion, an event in a mobile gaming session, or other entertainment
related events, a purchase confirmation through a web purchase or online, request to load
additional or download content, contact book related events, a transaction to change a device
setting, location-aware or location-based events/transactions, or any other
events/request/transactions initiated by a user or where the user is known to be, expected to

be, or suspected to be waiting for a response, etc.

[00144] Inbox pruning events (e.g., email, or any other types of messages), are generally
considered low priority and absent other impending events, generally will not trigger use of
the radio on the device 250. Specifically, pruning events to remove old email or other
content can be ‘piggy backed’ with other communications if the radio is not otherwise on, at
the time of a scheduled pruning event. For example, if the user has preferences set to ‘keep

messages for 7 days old,” then instead of powering on the device radio to initiate a message

30

WO 2012/149434 PCT/US2012/035608

delete from the device 250 the moment that the message has exceeded 7 days old, the
message is deleted when the radio is powered on next. If the radio is already on, then pruning

may occur as regularly scheduled.

[00145] The request/transaction manager 235, can use the priorities for requests (e.g., by
the prioritization engine 241) to manage outgoing traffic from the device 250 for resource
optimization (e.g., to utilize the device radio more efficiently for battery conservation). For
example, transactions/requests below a certain priority ranking may not trigger use of the
radio on the device 250 if the radio is not already switched on, as controlled by the
connection manager 265. In contrast, the radio controller 266 can turn on the radio such a
request can be sent when a request for a transaction is detected to be over a certain priority

level.

[00146] In one embodiment, priority assignments (such as that determined by the local
proxy 275 or another device/entity) can be used cause a remote device to modify its
communication with the frequency with the mobile device or wireless device. For example,
the remote device can be configured to send notifications to the device 250 when data of

higher importance is available to be sent to the mobile device or wireless device.

[00147] In one embodiment, transaction priority can be used in conjunction with
characteristics of user activity in shaping or managing traffic, for example, by the traffic
shaping engine 255. For example, the traffic shaping engine 255 can, in response to detecting
that a user is dormant or inactive, wait to send low priority transactions from the device 250,
for a period of time. In addition, the traffic shaping engine 255 can allow multiple low
priority transactions to accumulate for batch transferring from the device 250 (e.g., via the
batching module 257).In one embodiment, the priorities can be set, configured, or readjusted
by a user. For example, content depicted in Table I in the same or similar form can be
accessible in a user interface on the device 250 and for example, used by the user to adjust or

view the priorities.

[00148] The batching module 257 can initiate batch transfer based on certain criteria. For
example, batch transfer (e.g., of multiple occurrences of events, some of which occurred at
different instances in time) may occur after a certain number of low priority events have been
detected, or after an amount of time elapsed after the first of the low priority event was

initiated. In addition, the batching module 257 can initiate batch transfer of the cumulated

31

WO 2012/149434 PCT/US2012/035608

low priority events when a higher priority event is initiated or detected at the device 250.
Batch transfer can otherwise be initiated when radio use is triggered for another reason (e.g.,
to receive data from a remote device such as host server 100 or 300). In one embodiment, an
impending pruning event (pruning of an inbox), or any other low priority events, can be

executed when a batch transfer occurs.

[00149] In general, the batching capability can be disabled or enabled at the
event/transaction level, application level, or session level, based on any one or combination
of the following: user configuration, device limitations/settings, manufacturer specification,
network provider parameters/limitations, platform-specific limitations/settings, device OS
settings, etc. In one embodiment, batch transfer can be initiated when an
application/window/file is closed out, exited, or moved into the background; users can
optionally be prompted before initiating a batch transfer; users can also manually trigger

batch transfers.

[00150] In one embodiment, the local proxy 275 locally adjusts radio use on the device
250 by caching data in the cache 285. When requests or transactions from the device 250 can
be satisfied by content stored in the cache 285, the radio controller 266 need not activate the
radio to send the request to a remote entity (e.g., the host server 100, 300, as shown in FIG.
1B and FIG. 3A or a content provider/application server such as the server/provider 110
shown in the examples of FIG. 1B and FIG. 1C). As such, the local proxy 275 can use the
local cache 285 and the cache policy manager 245 to locally store data for satisfying data
requests to eliminate or reduce the use of the device radio for conservation of network

resources and device battery consumption.

[00151] In leveraging the local cache, once the request/transaction manager 225 intercepts
a data request by an application on the device 250, the local repository 285 can be queried to
determine if there is any locally stored response, and also determine whether the response is
valid. When a valid response is available in the local cache 285, the response can be
provided to the application on the device 250 without the device 250 needing to access the

cellular network or wireless broadband network.

[00152] If a valid response is not available, the local proxy 275 can query a remote proxy
(e.g., the server proxy 325 of FIG. 3A) to determine whether a remotely stored response is

valid. If so, the remotely stored response (e.g., which may be stored on the server cache 135

32

WO 2012/149434 PCT/US2012/035608

or optional caching server 199 shown in the example of FIG. 1C) can be provided to the
mobile device, possibly without the mobile device 250 needing to access the cellular

network, thus relieving consumption of network resources.

[00153] If a valid cache response is not available, or if cache responses are unavailable
for the intercepted data request, the local proxy 275, for example, the caching policy manager
245, can send the data request to a remote proxy (e.g., server proxy 325 of FIG. 3A) which
forwards the data request to a content source (e.g., application server/content provider 110 of
FIG. 1B) and a response from the content source can be provided through the remote proxy,
as will be further described in the description associated with the example host server 300 of
FIG. 3A. The cache policy manager 245 can manage or process requests that use a variety of
protocols, including but not limited to HTTP, HTTPS, IMAP, POP, SMTP, XMPP, and/or
ActiveSync. The caching policy manager 245 can locally store responses for data requests in
the local database 285 as cache entries, for subsequent use in satisfying same or similar data

requests.

[00154] The caching policy manager 245 can request that the remote proxy monitor
responses for the data request and the remote proxy can notify the device 250 when an
unexpected response to the data request is detected. In such an event, the cache policy
manager 245 can erase or replace the locally stored response(s) on the device 250 when
notified of the unexpected response (e.g., new data, changed data, additional data, etc.) to the
data request. In one embodiment, the caching policy manager 245 is able to detect or identify
the protocol used for a specific request, including but not limited to HTTP, HTTPS, IMAP,
POP, SMTP, XMPP, and/or ActiveSync. In one embodiment, application specific handlers
(e.g., via the application protocol module 246 of the caching policy manager 245) on the local
proxy 275 allows for optimization of any protocol that can be port mapped to a handler in the

distributed proxy (e.g., port mapped on the proxy server 325 in the example of FIG. 3A).

[00155] In one embodiment, the local proxy 275 notifies the remote proxy such that the
remote proxy can monitor responses received for the data request from the content source for
changed results prior to returning the result to the device 250, for example, when the data
request to the content source has yielded same results to be returned to the mobile device. In
general, the local proxy 275 can simulate application server responses for applications on the

device 250, using locally cached content. This can prevent utilization of the cellular network

33

WO 2012/149434 PCT/US2012/035608

for transactions where new/changed data is not available, thus freeing up network resources

and preventing network congestion.

[00156] In one embodiment, the local proxy 275 includes an application behavior detector
236 to track, detect, observe, monitor, applications (e.g., proxy-aware and/or unaware
applications 210 and 220) accessed or installed on the device 250. Application behaviors, or
patterns in detected behaviors (e.g., via the pattern detector 237) of one or more applications
accessed on the device 250 can be used by the local proxy 275 to optimize traffic in a

wireless network needed to satisfy the data needs of these applications.

[00157] For example, based on detected behavior of multiple applications, the traffic
shaping engine 255 can align content requests made by at least some of the applications over
the network (wireless network) (e.g., via the alignment module 256). The alignment module
256 can delay or expedite some earlier received requests to achieve alignment. When
requests are aligned, the traffic shaping engine 255 can utilize the connection manager to poll
over the network to satisfy application data requests. Content requests for multiple
applications can be aligned based on behavior patterns or rules/settings including, for
example, content types requested by the multiple applications (audio, video, text, etc.), device
(e.g., mobile or wireless device) parameters, and/or network parameters/traffic conditions,

network service provider constraints/specifications, etc.

[00158] In one embodiment, the pattern detector 237 can detect recurrences in application
requests made by the multiple applications, for example, by tracking patterns in application
behavior. A tracked pattern can include, detecting that certain applications, as a background
process, poll an application server regularly, at certain times of day, on certain days of the
week, periodically in a predictable fashion, with a certain frequency, with a certain frequency
in response to a certain type of event, in response to a certain type user query, frequency that
requested content is the same, frequency with which a same request is made, interval between

requests, applications making a request, or any combination of the above, for example.

[00159] Such recurrences can be used by traffic shaping engine 255 to offload polling of
content from a content source (e.g., from an application server/content provider 110 of FIG.
1A) that would result from the application requests that would be performed at the mobile
device or wireless device 250 to be performed instead, by a proxy server (e.g., proxy server

125 of FIG. 1C or proxy server 325 of FIG. 3A) remote from the device 250. Traffic

34

WO 2012/149434 PCT/US2012/035608

shaping engine 255 can decide to offload the polling when the recurrences match a rule. For
example, there are multiple occurrences or requests for the same resource that have exactly
the same content, or returned value, or based on detection of repeatable time periods between
requests and responses such as a resource that is requested at specific times during the day.
The offloading of the polling can decrease the amount of bandwidth consumption needed by
the mobile device 250 to establish a wireless (cellular or other wireless broadband)

connection with the content source for repetitive content polls.

[00160] As aresult of the offloading of the polling, locally cached content stored in the
local cache 285 can be provided to satisfy data requests at the device 250, when content
change is not detected in the polling of the content sources. As such, when data has not
changed, application data needs can be satisfied without needing to enable radio use or
occupying cellular bandwidth in a wireless network. When data has changed and/or new data
has been received, the remote entity to which polling is offloaded, can notify the device 250.

The remote entity may be the host server 300 as shown in the example of FIG. 3A.

[00161] In one embodiment, the local proxy 275 can mitigate the need/use of periodic
keep-alive messages (heartbeat messages) to maintain TCP/IP connections, which can
consume significant amounts of power thus having detrimental impacts on mobile device
battery life. The connection manager 265 in the local proxy (e.g., the heartbeat manager 267)
can detect, identify, and intercept any or all heartbeat (keep-alive) messages being sent from

applications.

[00162] The heartbeat manager 267 can prevent any or all of these heartbeat messages
from being sent over the cellular, or other network, and instead rely on the server component
of the distributed proxy system (e.g., shown in FIG. 1C) to generate and send the heartbeat
messages to maintain a connection with the backend (e.g., application server/provider 110 in

the example of FIG. 1A).

[00163] The local proxy 275 generally represents any one or a portion of the functions
described for the individual managers, modules, and/or engines. The local proxy 275 and
device 250 can include additional or less components; more or less functions can be included,

in whole or in part, without deviating from the novel art of the disclosure.

35

WO 2012/149434 PCT/US2012/035608

[00164] FIG. 2B depicts a block diagram illustrating a further example of components in
the cache system shown in the example of FIG. 2A which is capable of caching and adapting

caching strategies for mobile application behavior and/or network conditions.

[00165] In one embodiment, the caching policy manager 245 includes a metadata
generator 203, a cache look-up engine 205, a cache appropriateness decision engine 246, a
poll schedule generator 247, an application protocol module 248, a cache or connect selection
engine 249 and/or a local cache invalidator 244. The cache appropriateness decision engine
246 can further include a timing predictor 246a,a content predictor 246b, a request analyzer
246¢, and/or a response analyzer 246d, and the cache or connect selection engine 249
includes a response scheduler 249a. The metadata generator 203 and/or the cache look-up
engine 205 are coupled to the cache 285 (or local cache) for modification or addition to cache

entries or querying thereof.

[00166] The cache look-up engine 205 may further include an ID or URI filter 205a, the
local cache invalidator 244 may further include a TTL manager 244a, and the poll schedule
generator 247 may further include a schedule update engine 247a and/or a time adjustment
engine 247b. One embodiment of caching policy manager 245 includes an application cache
policy repository 243. In one embodiment, the application behavior detector 236 includes a
pattern detector 237, a poll interval detector 238, an application profile generator 239, and/or
a priority engine 241. The poll interval detector 238 may further include a long poll detector
238a having a response/request tracking engine 238b. The poll interval detector 238 may
further include a long poll hunting detector 238c. The application profile generator 239 can

further include a response delay interval tracker 239a.

[00167] The pattern detector 237, application profile generator 239, and the priority
engine 241 were also described in association with the description of the pattern detector
shown in the example of FIG. 2A. One embodiment further includes an application profile
repository 242 which can be used by the local proxy 275 to store information or metadata

regarding application profiles (e.g., behavior, patterns, type of HTTP requests, etc.)

[00168] The cache appropriateness decision engine 246 can detect, assess, or determine
whether content from a content source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250 interacts and has content that may be

suitable for caching. For example, the decision engine 246 can use information about a

36

WO 2012/149434 PCT/US2012/035608

request and/or a response received for the request initiated at the mobile device 250 to
determine cacheability, potential cacheability, or non-cacheability. In some instances, the
decision engine 246 can initially verify whether a request is directed to a blacklisted
destination or whether the request itself originates from a blacklisted client or application. If
s0, additional processing and analysis may not be performed by the decision engine 246 and
the request may be allowed to be sent over the air to the server to satisfy the request. The
black listed destinations or applications/clients (e.g., mobile applications) can be maintained
locally in the local proxy (e.g., in the application profile repository 242) or remotely (e.g., in

the proxy server 325 or another entity).

[00169] In one embodiment, the decision engine 246, for example, via the request
analyzer 246c¢, collects information about an application or client request generated at the
mobile device 250. The request information can include request characteristics information
including, for example, request method. For example, the request method can indicate the
type of HTTP request generated by the mobile application or client. In one embodiment,
response to a request can be identified as cacheable or potentially cacheable if the request
method is a GET request or POST request. Other types of requests (e.g., OPTIONS, HEAD,
PUT, DELETE, TRACE, or CONNECT) may or may not be cached. In general, HTTP

requests with uncacheable request methods will not be cached.

[00170] Request characteristics information can further include information regarding
request size, for example. Responses to requests (e.g., HTTP requests) with body size
exceeding a certain size will not be cached. For example, cacheability can be determined if
the information about the request indicates that a request body size of the request does not
exceed a certain size. In some instances, the maximum cacheable request body size can be
set to 8092 bytes. In other instances, different values may be used, dependent on network

capacity or network operator specific settings, for example.

[00171] In some instances, content from a given application server/content provider (e.g.,
the server/content provider 110 of FIG. 1C) is determined to be suitable for caching based on
a set of criteria, for example, criteria specifying time criticality of the content that is being
requested from the content source. In one embodiment, the local proxy (e.g., the local proxy
175 or 275 of FIG. 1C and FIG. 2A) applies a selection criteria to store the content from the
host server which is requested by an application as cached elements in a local cache on the

mobile device to satisfy subsequent requests made by the application.

37

WO 2012/149434 PCT/US2012/035608

[00172] The cache appropriateness decision engine 246, further based on detected
patterns of requests sent from the mobile device 250 (e.g., by a mobile application or other
types of clients on the device 250) and/or patterns of received responses, can detect
predictability in requests and/or responses. For example, the request characteristics
information collected by the decision engine 246, (¢.g., the request analyzer 246¢) can further
include periodicity information between a request and other requests generated by a same
client on the mobile device or other requests directed to the same host (e.g., with similar or

same identifier parameters).

[00173] Periodicity can be detected, by the decision engine 246 or the request analyzer
246c¢, when the request and the other requests generated by the same client occur at a fixed
rate or nearly fixed rate, or at a dynamic rate with some identifiable or partially or wholly
reproducible changing pattern. If the requests are made with some identifiable pattern (e.g.,
regular intervals, intervals having a detectable pattern, or trend (e.g., increasing, decreasing,
constant, etc.) the timing predictor 246a can determine that the requests made by a given
application on a device is predictable and identify it to be potentially appropriate for caching,

at least from a timing standpoint.

[00174] Anidentifiable pattern or trend can generally include any application or client
behavior which may be simulated either locally, for example, on the local proxy 275 on the
mobile device 250 or simulated remotely, for example, by the proxy server 325 on the host

300, or a combination of local and remote simulation to emulate application behavior.

[00175] In one embodiment, the decision engine 246, for example, via the response
analyzer 246d, can collect information about a response to an application or client request
generated at the mobile device 250. The response is typically received from a server or the
host of the application (e.g., mobile application) or client which sent the request at the mobile
device 250. In some instances, the mobile client or application can be the mobile version of
an application (e.g., social networking, search, travel management, voicemail, contact

manager, email) or a web site accessed via a web browser or via a desktop client.

[00176] For example, response characteristics information can include an indication of
whether transfer encoding or chunked transfer encoding is used in sending the response. In
some instances, responses to HTTP requests with transfer encoding or chunked transfer

encoding are not cached, and therefore are also removed from further analysis. The rationale

38

WO 2012/149434 PCT/US2012/035608

here is that chunked responses are usually large and non-optimal for caching, since the
processing of these transactions may likely slow down the overall performance. Therefore, in
one embodiment, cacheability or potential for cacheability can be determined when transfer

encoding is not used in sending the response.

[00177] In addition, the response characteristics information can include an associated
status code of the response which can be identified by the response analyzer 246d. In some
instances, HTTP responses with uncacheable status codes are typically not cached. The
response analyzer 246d can extract the status code from the response and determine whether
it matches a status code which is cacheable or uncacheable. Some cacheable status codes
include by way of example: 200-OK, 301-Redirect, 302-Found, 303-See other, 304 - Not
Modified, 307Temporary Redirect, or 500 — Internal server error. Some uncacheable status

codes can include, for example, 403 — Forbidden or 404 — Not found.

[00178] In one embodiment, cacheability or potential for cacheability can be determined
if the information about the response does not indicate an uncacheable status code or
indicates a cacheable status code. If the response analyzer 246d detects an uncacheable status
code associated with a given response, the specific transaction (request/response pair) may be
eliminated from further processing and determined to be uncacheable on a temporary basis, a
semi-permanent, or a permanent basis. If the status code indicates cacheability, the
transaction (e.g., request and/or response pair) may be subject to further processing and

analysis to confirm cacheability, as shown in the example flow charts of FIGS. 9-10.

[00179] Response characteristics information can also include response size information.
In general, responses can be cached locally at the mobile device 250 if the responses do not
exceed a certain size. In some instances, the default maximum cached response size is set to
115 KB. In other instances, the max cacheable response size may be different and/or
dynamically adjusted based on operating conditions, network conditions, network capacity,
user preferences, network operator requirements, or other application-specific, user specific,
and/or device-specific reasons. In one embodiment, the response analyzer 246d can identify
the size of the response, and cacheability or potential for cacheability can be determined if a

given threshold or max value is not exceeded by the response size.

[00180] Furthermore, response characteristics information can include response body

information for the response to the request and other response to other requests generated by

39

WO 2012/149434 PCT/US2012/035608

a same client on the mobile device, or directed to a same content host or application server.
The response body information for the response and the other responses can be compared, for
example, by the response analyzer 246d, to prevent the caching of dynamic content (or
responses with content that changes frequently and cannot be efficiently served with cache
entries, such as financial data, stock quotes, news feeds, real-time sporting event activities,
etc.), such as content that would no longer be relevant or up-to-date if served from cached

entries.

[00181] The cache appropriateness decision engine 246 (e.g., the content predictor 246b)
can definitively identify repeatability or identify indications of repeatability, potential
repeatability, or predictability in responses received from a content source (e.g., the content
host/application server 110 shown in the example of FIG. 1C). Repeatability can be detected
by, for example, tracking at least two responses received from the content source and
determines if the two responses are the same. For example, cacheability can be determined,
by the response analyzer 2464, if the response body information for the response and the
other responses sent by the same mobile client or directed to the same host/server are same or
substantially the same. The two responses may or may not be responses sent in response to
consecutive requests. In one embodiment, hash values of the responses received for requests
from a given application are used to determine repeatability of content (with or without
heuristics) for the application in general and/or for the specific request. Additional same

responses may be required for some applications or under certain circumstances.

[00182] Repeatability in received content need not be 100% ascertained. For example,
responses can be determined to be repeatable if a certain number or a certain percentage of
responses are the same, or similar. The certain number or certain percentage of same/similar
responses can be tracked over a select period of time, set by default or set based on the
application generating the requests (e.g., whether the application is highly dynamic with
constant updates or less dynamic with infrequent updates). Any indicated predictability or
repeatability, or possible repeatability, can be utilized by the distributed system in caching

content to be provided to a requesting application or client on the mobile device 250.

[00183] In one embodiment, for a long poll type request, the local proxy 175 can begin to
cache responses on a third request when the response delay times for the first two responses
are the same, substantially the same, or detected to be increasing in intervals. In general, the

received responses for the first two responses should be the same, and upon verifying that the

40

WO 2012/149434 PCT/US2012/035608

third response received for the third request is the same (e.g., if RO = R1 = R2), the third
response can be locally cached on the mobile device. Less or more same responses may be
required to begin caching, depending on the type of application, type of data, type of content,

user preferences, or carrier/network operator specifications.

[00184] Increasing response delays with same responses for long polls can indicate a
hunting period (e.g., a period in which the application/client on the mobile device is secking
the longest time between a request and response that a given network will allow), as detected

by the long poll hunting detector 238¢ of the application behavior detector 236.

[00185] An example can be described below using TO, T1, T2, where T indicates the
delay time between when a request is sent and when a response (e.g., the response header) is

detected/received for consecutive requests:

T0 = Response0(t) — RequestO(t) = 180 s. (+/- tolerance)
T1 = Responsel(t) — Request1(t) = 240 s. (+/- tolerance)
T2 = Response2(t) — Request2(t) = 500 s. (+/- tolerance)

[00186] In the example timing sequence shown above, TO < T1 < T2, this may indicate a
hunting pattern for a long poll when network timeout has not yet been reached or exceeded.
Furthermore, if the responses RO, R1, and R2 received for the three requests are the same, R2
can be cached. In this example, R2 is cached during the long poll hunting period without
waiting for the long poll to settle, thus expediting response caching (e.g., this is optional

accelerated caching behavior which can be implemented for all or select applications).

[00187] As such, the local proxy 275 can specify information that can be extracted from
the timing sequence shown above (e.g., polling schedule, polling interval, polling type) to the
proxy server and begin caching and to request the proxy server to begin polling and
monitoring the source (e.g., using any of TO, T1, T2 as polling intervals but typically T2, or
the largest detected interval without timing out, and for which responses from the source is
received will be sent to the proxy server 325 of FIG. 3A for use in polling the content source

(e.g., application server/service provider 310)).

[00188] However, if the time intervals are detected to be getting shorter, the application
(e.g., mobile application)/client may still be hunting for a time interval for which a response

can be reliably received from the content source (e.g., application/server server/provider 110

41

WO 2012/149434 PCT/US2012/035608

or 310), and as such caching typically should not begin until the request/response intervals
indicate the same time interval or an increasing time interval, for example, for a long poll

type request.

[00189] An example of handling a detected decreasing delay can be described below
using TO, T1, T2, T3, and T4 where T indicates the delay time between when a request is sent

and when a response (e.g., the response header) is detected/received for consecutive requests:

T0 = Response0(t) — RequestO(t) = 160 s. (+/- tolerance)
T1 = Responsel(t) — Request1(t) =240 s. (+/- tolerance)
T2 = Response2(t) — Request2(t) = 500 s. (+/- tolerance)
T3 = Time out at 700 s. (+/- tolerance)

T4 = Response4(t) — Requestd(t) = 600 (+/- tolerance)

[00190] If a pattern for response delays T1 < T2 < T3 > T4 is detected, as shown in the
above timing sequence (e.g., detected by the long poll hunting detector 238¢ of the
application behavior detector 236), it can be determined that T3 likely exceeded the network
time out during a long poll hunting period. In Request 3, a response likely was not received
since the connection was terminated by the network, application, server, or other reason
before a response was sent or available. On Request 4 (after T4), if a response (e.g.,
Response 4) is detected or received, the local proxy 275 can then use the response for caching
(if the content repeatability condition is met). The local proxy can also use T4 as the poll

interval in the polling schedule set for the proxy server to monitor/poll the content source.

[00191] Note that the above description shows that caching can begin while long polls are
in hunting mode in the event of detecting increasing response delays, as long as responses are
received and not timed out for a given request. This can be referred to as the optional
accelerated caching during long poll hunting. Caching can also begin after the hunting mode
(e.g., after the poll requests have settled to a constant or near constant delay value) has
completed. Note that hunting may or may not occur for long polls and when hunting occurs;
the proxy 275 can generally detect this and determine whether to begin to cache during the
hunting period (increasing intervals with same responses) or wait until the hunt settles to a

stable value.

42

WO 2012/149434 PCT/US2012/035608

[00192] In one embodiment, the timing predictor 246a of the cache appropriateness
decision engine 246 can track timing of responses received from outgoing requests from an
application (e.g., mobile application) or client to detect any identifiable patterns which can be
partially wholly reproducible, such that locally cached responses can be provided to the
requesting client on the mobile device 250 in a manner that simulates content source (e.g.,
application server/content provider 110 or 310) behavior. For example, the manner in which
(e.g., from a timing standpoint) responses or content would be delivered to the requesting
application/client on the device 250. This ensures preservation of user experience when
responses to application or mobile client requests are served from a local and/or remote cache
instead of being retrieved/received directly from the content source (e.g., application, content

provider 110 or 310).

[00193] In one embodiment, the decision engine 246 or the timing predictor 246a
determines the timing characteristics a given application (e.g., mobile application) or client
from, for example, the request/response tracking engine 238b and/or the application profile
generator 239 (e.g., the response delay interval tracker 239a). Using the timing
characteristics, the timing predictor 246a determines whether the content received in response
to the requests are suitable or are potentially suitable for caching. For example, poll request
intervals between two consecutive requests from a given application can be used to determine
whether request intervals are repeatable (e.g., constant, near constant, increasing with a
pattern, decreasing with a pattern, etc.) and can be predicted and thus reproduced at least

some of the times either exactly or approximated within a tolerance level.

[00194] In some instances, the timing characteristics of a given request type for a specific
application, for multiple requests of an application, or for multiple applications can be stored

in the application profile repository 242. The application profile repository 242 can generally
store any type of information or metadata regarding application request/response

characteristics including timing patterns, timing repeatability, content repeatability, etc.

[00195] The application profile repository 242 can also store metadata indicating the type
of request used by a given application (e.g., long polls, long-held HTTP requests, HTTP
streaming, push, COMET push, etc.) Application profiles indicating request type by
applications can be used when subsequent same/similar requests are detected, or when

requests are detected from an application which has already been categorized. In this

43

WO 2012/149434 PCT/US2012/035608

manner, timing characteristics for the given request type or for requests of a specific

application which has been tracked and/or analyzed, need not be reanalyzed.

[00196] Application profiles can be associated with a time-to-live (e.g., or a default
expiration time). The use of an expiration time for application profiles, or for various aspects
of an application or request’s profile can be used on a case by case basis. The time-to-live or
actual expiration time of application profile entries can be set to a default value or determined
individually, or a combination therecof. Application profiles can also be specific to wireless

networks, physical networks, network operators, or specific carriers.

[00197] One embodiment includes an application blacklist manager 201. The application
blacklist manager 201 can be coupled to the application cache policy repository 243 and can
be partially or wholly internal to local proxy or the caching policy manager 245. Similarly,
the blacklist manager 201 can be partially or wholly internal to local proxy or the application
behavior detector 236. The blacklist manager 201 can aggregate, track, update, manage,
adjust, or dynamically monitor a list of destinations of servers/host that are ‘blacklisted,” or
identified as not cached, on a permanent or temporary basis. The blacklist of destinations,
when identified in a request, can potentially be used to allow the request to be sent over the
(cellular) network for servicing. Additional processing on the request may not be performed

since it 1s detected to be directed to a blacklisted destination.

[00198] Blacklisted destinations can be identified in the application cache policy
repository 243 by address identifiers including specific URIs or patterns of identifiers
including URI patterns. In general, blacklisted destinations can be set by or modified for any
reason by any party including the user (owner/user of mobile device 250), operating
system/mobile platform of device 250, the destination itself, network operator (of cellular
network), Internet service provider, other third parties, or according to a list of destinations
for applications known to be uncacheable/not suited for caching. Some entries in the
blacklisted destinations may include destinations aggregated based on the analysis or

processing performed by the local proxy (e.g., cache appropriateness decision engine 246).

[00199] For example, applications or mobile clients on the mobile device for which
responses have been identified as non-suitable for caching can be added to the blacklist.
Their corresponding hosts/servers may be added in addition to or in lieu of an identification

of the requesting application/client on the mobile device 250. Some or all of such clients

44

WO 2012/149434 PCT/US2012/035608

identified by the proxy system can be added to the blacklist. For example, for all application
clients or applications that are temporarily identified as not being suitable for caching, only
those with certain detected characteristics (based on timing, periodicity, frequency of

response content change, content predictability, size, etc.) can be blacklisted.

[00200] The blacklisted entries may include a list of requesting applications or requesting
clients on the mobile device (rather than destinations) such that, when a request is detected
from a given application or given client, it may be sent through the network for a response,

since responses for blacklisted clients/applications are in most circumstances not cached.

[00201] A given application profile may also be treated or processed differently (e.g.,
different behavior of the local proxy 275 and the remote proxy 325) depending on the mobile
account associated with a mobile device from which the application is being accessed. For
example, a higher paying account, or a premier account may allow more frequent access of
the wireless network or higher bandwidth allowance thus affecting the caching policies
implemented between the local proxy 275 and proxy server 325 with an emphasis on better
performance compared to conservation of resources. A given application profile may also be
treated or processed differently under different wireless network conditions (e.g., based on

congestion or network outage, etc.).

[00202] Note that cache appropriateness can be determined, tracked, and managed for
multiple clients or applications on the mobile device 250. Cache appropriateness can also be
determined for different requests or request types initiated by a given client or application on
the mobile device 250. The caching policy manager 245, along with the timing predictor
246a and/or the content predictor 246b which heuristically determines or estimates
predictability or potential predictability, can track, manage and store cacheability information
for various application or various requests for a given application. Cacheability information
may also include conditions (e.g., an application can be cached at certain times of the day, or
certain days of the week, or certain requests of a given application can be cached, or all
requests with a given destination address can be cached) under which caching is appropriate
which can be determined and/or tracked by the cache appropriateness decision engine 246
and stored and/or updated when appropriate in the application cache policy repository 243

coupled to the cache appropriateness decision engine 246.

45

WO 2012/149434 PCT/US2012/035608

[00203] The information in the application cache policy repository 243 regarding
cacheability of requests, applications, and/or associated conditions can be used later on when
same requests are detected. In this manner, the decision engine 246 and/or the timing and
content predictors 246a/b need not track and reanalyze request/response timing and content
characteristics to make an assessment regarding cacheability. In addition, the cacheability
information can in some instances be shared with local proxies of other mobile devices by
way of direct communication or via the host server (e.g., proxy server 325 of host server

300).

[00204] For example, cacheability information detected by the local proxy 275 on various
mobile devices can be sent to a remote host server or a proxy server 325 on the host server
(e.g., host server 300 or proxy server 325 shown in the example of FIG. 3A, host 100 and
proxy server 125 in the example of FIGS. 1B-C). The remote host or proxy server can then
distribute the information regarding application-specific, request-specific cacheability
information and/or any associated conditions to various mobile devices or their local proxies
in a wireless network or across multiple wireless networks (same service provider or multiple

wireless service providers) for their use.

[00205] In general, the selection criteria for caching can further include, by way of
example but not limitation, the state of the mobile device indicating whether the mobile
device is active or inactive, network conditions, and/or radio coverage statistics. The cache
appropriateness decision engine 246 can in any one or any combination of the criteria, and in

any order, identifying sources for which caching may be suitable.

[00206] Once application servers/content providers having identified or detected content
that is potentially suitable for local caching on the mobile device 250, the cache policy
manager 245 can proceed to cache the associated content received from the identified sources
by storing content received from the content source as cache elements in a local cache (e.g.,
local cache 185 or 285 shown in the examples of FIGS. 1B-1C and FIG. 2A, respectively)

on the mobile device 250.

[00207] The response can be stored in the cache 285 (e.g., also referred as the local
cache) as a cache entry. In addition to the response to a request, the cached entry can include
response metadata having additional information regarding caching of the response. The

metadata may be generated by the metadata generator 203 and can include, for example,

46

WO 2012/149434 PCT/US2012/035608

timing data such as the access time of the cache entry or creation time of the cache entry.
Metadata can include additional information, such as any information suited for use in
determining whether the response stored as the cached entry is used to satisfy the subsequent
response. For example, metadata information can further include, request timing history
(e.g., including request time, request start time, request end time), hash of the request and/or

response, time intervals or changes in time intervals, etc.

[00208] The cache entry is typically stored in the cache 285 in association with a time-to-
live (TTL), which for example may be assigned or determined by the TTL manager 244a of
the cache invalidator 244. The time-to-live of a cache entry is the amount of time the entry is
persisted in the cache 285 regardless of whether the response is still valid or relevant for a
given request or client/application on the mobile device 250. For example, if the time-to-live
of a given cache entry is set to 12 hours, the cache entry is purged, removed, or otherwise
indicated as having exceeded the time-to-live, even if the response body contained in the

cache entry is still current and applicable for the associated request.

[00209] A default time-to-live can be automatically used for all entries unless otherwise
specified (e.g., by the TTL manager 244a), or each cache entry can be created with its
individual TTL (e.g., determined by the TTL manager 244a based on various dynamic or
static criteria). Note that each entry can have a single time-to-live associated with both the
response data and any associated metadata. In some instances, the associated metadata may

have a different time-to-live (e.g., a longer time-to-live) than the response data.

[00210] The content source having content for caching can, in addition or in alternate, be
identified to a proxy server (e.g., proxy server 125 or 325 shown in the examples of FIGS.
1B-1C and FIG. 3A, respectively) remote from and in wireless communication with the
mobile device 250 such that the proxy server can monitor the content source (e.g., application
server/content provider 110) for new or changed data. Similarly, the local proxy (e.g., the
local proxy 175 or 275 of FIGS. 1B-1C and FIG. 2A, respectively) can identify to the proxy
server that content received from a specific application server/content provider is being stored

as cached elements in the local cache 285.

[00211] Once content has been locally cached, the cache policy manager 245, upon
receiving future polling requests to contact the application server/content host (e.g., 110 or

310), can retrieve the cached elements from the local cache to respond to the polling request

47

WO 2012/149434 PCT/US2012/035608

made at the mobile device 250 such that a radio of the mobile device is not activated to
service the polling request. For example, the cache look-up engine 205 can query the cache
285 to identify the response to be served to a response. The response can be served from the
cache in response to identifying a matching cache entry and also using any metadata stored
with the response in the cache entry. The cache entries can be queried by the cache look-up
engine using a URI of the request or another type of identifier (e.g., via the ID or URI filter
205a). The cache-lookup engine 205 can further use the metadata (e.g., extract any timing
information or other relevant information) stored with the matching cache entry to determine

whether response is still suited for use in being served to a current request.

[00212] Note that the cache-look-up can be performed by the engine 205 using one or
more of various multiple strategies. In one embodiment, multiple cook-up strategies can be
executed sequentially on each entry store din the cache 285, until at least one strategy
identifies a matching cache entry. The strategy employed to performing cache look-up can
include a strict matching criteria or a matching criteria which allows for non-matching

parameters.

[00213] For example, the look-up engine 205 can perform a strict matching strategy
which searches for an exact match between an identifier (e.g., a URI for a host or resource)
referenced in a present request for which the proxy is attempting to identify a cache entry and
an identifier stored with the cache entries. In the case where identifiers include URIs or
URLSs, the matching algorithm for strict matching will search for a cache entry where all the

parameters in the URLs match. For example:

Example 1.

1. Cache contains entry for http://test.com/products/
2. Request is being made to URI http://test.com/products/

Strict strategy will find a match, since both URIs are same.
Example 2.

1. Cache contains entry for http://test.com/products/?query=all
2. Request is being made to URI http://test.com/products/?query=sub

[00214] Under the strict strategy outlined above, a match will not be found since the URIs

differ in the query parameter.

48

WO 2012/149434 PCT/US2012/035608

[00215] In another example strategy, the look-up engine 205 looks for a cache entry with
an identifier that partially matches the identifier references in a present request for which the
proxy is attempting to identify a matching cache entry. For example, the look-up engine 205
may look for a cache entry with an identifier which differs from the request identifier by a
query parameter value. In utilizing this strategy, the look-up engine 205 can collect
information collected for multiple previous requests (e.g., a list of arbitrary parameters in an
identifier) to be later checked with the detected arbitrary parameter in the current request.
For example, in the case where cache entries are stored with URI or URL identifiers, the
look-up engine searches for a cache entry with a URI differing by a query parameter. If
found, the engine 205 can examine the cache entry for information collected during previous
requests (e.g. a list of arbitrary parameters) and checked whether the arbitrary parameter

detected in or extracted from the current URI/URL belongs to the arbitrary parameters list.

Example 1.

1. Cache contains entry for http://test.com/products/?query=all, where query is
marked as arbitrary.
2. Request is being made to URI http://text.com/products/?query=sub

Match will be found, since query parameter is marked as arbitrary.
Example 2.

1. Cache contains entry for http://test.com/products/?query=all, where query is
marked as arbitrary.
2. Request is being made to URI http://test.com/products/?query=sub&sort=asc

Match will not be found, since current request contains sort parameter which is not marked as
arbitrary in the cache entry.

[00216] Additional strategies for detecting cache hit may be employed. These strategies
can be implemented singly or in any combination thereof. A cache-hit can be determined
when any one of these strategies determines a match. A cache miss may be indicated when
the look-up engine 205 determines that the requested data cannot be served from the cache
285, for any reason. For example, a cache miss may be determined when no cache entries are

identified for any or all utilized look-up strategies.

[00217] Cache miss may also be determined when a matching cache entry exists but

determined to be invalid or irrelevant for the current request. For example, the look-up

49

WO 2012/149434 PCT/US2012/035608

engine 205 may further analyze metadata (e.g., which may include timing data of the cache
entry) associated with the matching cache entry to determine whether it is still suitable for

use in responding to the present request.

[00218] When the look-up engine 205 has identified a cache hit (e.g., an event indicating
that the requested data can be served from the cache), the stored response in the matching

cache entry can be served from the cache to satisfy the request of an application/client.

[00219] By servicing requests using cache entries stored in cache 285, network bandwidth
and other resources need not be used to request/receive poll responses which may have not
changed from a response that has already been received at the mobile device 250. Such
servicing and fulfilling application (e.g., mobile application) requests locally via cache entries
in the local cache 285 allows for more efficient resource and mobile network traffic
utilization and management since the request need not be sent over the wireless network
further consuming bandwidth. In general, the cache 285 can be persisted between power

on/off of the mobile device 250, and persisted across application/client refreshes and restarts.

[00220] For example, the local proxy 275, upon receipt of an outgoing request from its
mobile device 250 or from an application or other type of client on the mobile device 250,
can intercept the request and determine whether a cached response is available in the local
cache 285 of the mobile device 250. If so, the outgoing request is responded to by the local
proxy 275 using the cached response on the cache of the mobile device. As such, the
outgoing request can be filled or satisfied without a need to send the outgoing request over

the wireless network, thus conserving network resources and battery consumption.

[00221] In one embodiment, the responding to the requesting application/client on the
device 250 is timed to correspond to a manner in which the content server would have
responded to the outgoing request over a persistent connection (e.g., over the persistent
connection, or long-held HTTP connection, long poll type connection, that would have been
established absent interception by the local proxy). The timing of the response can be
emulated or simulated by the local proxy 275 to preserve application behavior such that end
user experience is not affected, or minimally affected by serving stored content from the local
cache 285 rather than fresh content received from the intended content source (e.g., content

host/application server 110 of FIGS. 1B-FIG. 1C). The timing can be replicated exactly or

50

WO 2012/149434 PCT/US2012/035608

estimated within a tolerance parameter, which may go unnoticed by the user or treated

similarly by the application so as to not cause operation issues.

[00222] For example, the outgoing request can be a request for a persistent connection
intended for the content server (e.g., application server/content provider of examples of
FIGS. 1B-1C). In a persistent connection (e.g., long poll, COMET-style push or any other
push simulation in asynchronous HTTP requests, long-held HTTP request, HTTP streaming,
or others) with a content source (server), the connection is held for some time after a request
is sent. The connection can typically be persisted between the mobile device and the server
until content is available at the server to be sent to the mobile device. Thus, there typically
can be some delay in time between when a long poll request is sent and when a response is
received from the content source. If a response is not provided by the content source for a
certain amount of time, the connection may also terminate due to network reasons (e.g.,

socket closure) if a response is not sent.

[00223] Thus, to emulate a response from a content server sent over a persistent
connection (e.g., a long poll style connection), the manner of response of the content server
can be simulated by allowing a time interval to elapse before responding to the outgoing
request with the cached response. The length of the time interval can be determined on a
request by request basis or on an application by application (client by client basis), for

example.

[00224] In one embodiment, the time interval is determined based on request
characteristics (e.g., timing characteristics) of an application on the mobile device from
which the outgoing request originates. For example, poll request intervals (e.g., which can be
tracked, detected, and determined by the long poll detector 238a of the poll interval detector
238) can be used to determine the time interval to wait before responding to a request with a

local cache entry and managed by the response scheduler 249a.

[00225] One embodiment of the cache policy manager 245 includes a poll schedule
generator 247 which can generate a polling schedule for one or more applications on the
mobile device 250. The polling schedule can specify a polling interval that can be employed
by an entity which is physically distinct and/or separate from the mobile device 250 in
monitoring the content source for one or more applications (such that cached responses can

be verified periodically by polling a host server (host server 110 or 310) to which the request

51

WO 2012/149434 PCT/US2012/035608

is directed) on behalf of the mobile device. One example of such an external entity which
can monitor the content at the source for the mobile device 250 is a proxy server (e.g., proxy

server 125 or 325 shown in the examples of FIGS. 1B-1C and FIGS. 3A-C).

[00226] The polling schedule (e.g., including a rate/frequency of polling) can be
determined, for example, based on the interval between the polling requests directed to the
content source from the mobile device. The polling schedule or rate of polling may be
determined at the mobile device 250 (by the local proxy). In one embodiment, the poll
interval detector 238 of the application behavior detector 236 can monitor polling requests
directed to a content source from the mobile device 250 in order to determine an interval

between the polling requests made from any or all application (e.g., mobile application).

[00227] For example, the poll interval detector 238 can track requests and responses for
applications or clients on the device 250. In one embodiment, consecutive requests are
tracked prior to detection of an outgoing request initiated from the application (e.g., mobile
application) on the mobile device 250 by the same mobile client or application (e.g., mobile
application). The polling rate can be determined using request information collected for the
request for which the response is cached. In one embodiment, the rate is determined from
averages of time intervals between previous requests generated by the same client which
generated the request. For example, a first interval may be computed between the current
request and a previous request, and a second interval can be computed between the two
previous requests. The polling rate can be set from the average of the first interval and the

second interval and sent to the proxy server in setting up the caching strategy.

[00228] Alternate intervals may be computed in generating an average; for example,
multiple previous requests in addition to two previous requests may be used, and more than
two intervals may be used in computing an average. In general, in computing intervals, a
given request need not have resulted in a response to be received from the host server/content
source in order to use it for interval computation. In other words, the timing characteristics of
a given request may be used in interval computation, as long as the request has been detected,

even if the request failed in sending, or if the response retrieval failed.

[00229] One embodiment of the poll schedule generator 247 includes a schedule update
engine 247a and/or a time adjustment engine 247b. The schedule update engine 247a can

determine a need to update a rate or polling interval with which a given application

52

WO 2012/149434 PCT/US2012/035608

server/content host from a previously set value, based on a detected interval change in the
actual requests generated from a client or application (e.g., mobile application) on the mobile

device 250.

[00230] For example, a request for which a monitoring rate was determined may now be
sent from the application (e.g., mobile application) or client at a different request interval.
The scheduled update engine 247a can determine the updated polling interval of the actual
requests and generate a new rate, different from the previously set rate to poll the host at on
behalf of the mobile device 250. The updated polling rate can be communicated to the
remote proxy (proxy server 325) over the cellular network for the remote proxy to monitor
the given host. In some instances, the updated polling rate may be determined at the remote

proxy or remote entity which monitors the host.

[00231] In one embodiment, the time adjustment engine 247b can further optimize the
poll schedule generated to monitor the application server/content source (110 or 310). For
example, the time adjustment engine 247b can optionally specify a time to start polling to the
proxy server. For example, in addition to setting the polling interval at which the proxy
server is to monitor the application, server/content host can also specify the time at which an

actual request was generated at the mobile client/application.

[00232] However, in some cases, due to inherent transmission delay or added network
delays or other types of latencies, the remote proxy server receives the poll setup from the
local proxy with some delay (e.g., a few minutes, or a few seconds). This has the effect of
detecting response change at the source after a request is generated by the mobile
client/application causing the invalidate of the cached response to occur after it has once

again been served to the application after the response is no longer current or valid.

[00233] To resolve this non-optimal result of serving the out-dated content once again
before invalidating it, the time adjustment engine 247b can specify the time (t0) at which
polling should begin in addition to the rate, where the specified initial time t0 can be
specified to the proxy server 325 as a time that is less than the actual time when the request
was generated by the mobile app/client. This way, the server polls the resource slightly
before the generation of an actual request by the mobile client such that any content change
can be detected prior to an actual application request. This prevents invalid or irrelevant out-

dated content/response from being served once again before fresh content is served.

53

WO 2012/149434 PCT/US2012/035608

[00234] In one embodiment, an outgoing request from a mobile device 250 is detected to
be for a persistent connection (e.g., a long poll, COMET style push, and long-held (HTTP)
request) based on timing characteristics of prior requests from the same application or client
on the mobile device 250. For example, requests and/or corresponding responses can be
tracked by the request/response tracking engine 238b of the long poll detector 238a of the
poll interval detector 238.

[00235] The timing characteristics of the consecutive requests can be determined to set up
a polling schedule for the application or client. The polling schedule can be used to monitor
the content source (content source/application server) for content changes such that cached
content stored on the local cache in the mobile device 250 can be appropriately managed
(e.g., updated or discarded). In one embodiment, the timing characteristics can include, for

example, a response delay time (‘D’) and/or an idle time (‘IT”).

[00236] In one embodiment, the response/request tracking engine 238b can track requests
and responses to determine, compute, and/or estimate, the timing diagrams for applicant or

client requests.

[00237] For example, the response/request tracking engine 238b detects a first request
(Request 0) initiated by a client on the mobile device and a second request (Request 1)
initiated by the client on the mobile device after a response is received at the mobile device
responsive to the first request. The second request is one that is subsequent to the first

request.

[00238] In one embodiment, the response/request tracking engine 238b can track requests
and responses to determine, compute, and/or estimate the timing diagrams for applicant or
client requests. The response/request tracking engine 238b can detect a first request initiated
by a client on the mobile device and a second request initiated by the client on the mobile
device after a response is received at the mobile device responsive to the first request. The

second request is one that is subsequent to the first request.

[00239] The response/request tracking engine 238b further determines relative timings
between the first, second requests, and the response received in response to the first request.
In general, the relative timings can be used by the long poll detector 238a to determine

whether requests generated by the application are long poll requests.

54

WO 2012/149434 PCT/US2012/035608

[00240] Note that in general, the first and second requests that are used by the
response/request tracking engine 238b in computing the relative timings are selected for use
after a long poll hunting period has settled or in the event when long poll hunting does not
occur. Timing characteristics that are typical of a long poll hunting period can be, for
example, detected by the long poll hunting detector 238c. In other words, the requests
tracked by the response/request tracking engine 238b and used for determining whether a

given request is a long poll occurs after the long poll has settled .

[00241] In one embodiment, the long poll hunting detector 238¢ can identify or detect
hunting mode, by identifying increasing request intervals (e.g., increasing delays). The long
poll hunting detector 238a can also detect hunting mode by detecting increasing request
intervals, followed by a request with no response (e.g., connection timed out), or by detecting
increasing request intervals followed by a decrease in the interval. In addition, the long poll
hunting detector 238c can apply a filter value or a threshold value to request-response time
delay value (e.g., an absolute value) above which the detected delay can be considered to be a
long poll request-response delay. The filter value can be any suitable value characteristic of
long polls and/or network conditions (e.g., 2 s, 5s, 10s, 15 s, 20s., etc.) and can be used as a

filter or threshold value.

[00242] The response delay time ('D') refers to the start time to receive a response after a
request has been sent and the idle refers to time to send a subsequent request after the
response has been received. In one embodiment, the outgoing request is detected to be for a
persistent connection based on a comparison (e.g., performed by the tracking engine 238b) of
the response delay time relative ('D') or average of ('D') (e.g., any average over any period of
time) to the idle time ('I'T'), for example, by the long poll detector 238a. The number of
averages used can be fixed, dynamically adjusted, or changed over a longer period of time.
For example, the requests initiated by the client are determined to be long poll requests if the
response delay time interval is greater than the idle time interval (D >IT or D>>IT). In one
embodiment, the tracking engine 238b of the long poll detector computes, determines, or
estimates the response delay time interval as the amount of time elapsed between time of the

first request and initial detection or full receipt of the response.

[00243] In one embodiment, a request is detected to be for a persistent connection when
the idle time (‘IT’) is short since persistent connections, established in response to long poll

requests or long poll HTTP requests for example, can also be characterized in detecting

55

WO 2012/149434 PCT/US2012/035608

immediate or near-immediate issuance of a subsequent request after receipt of a response to a
previous request (e.g., IT ~0). As such, the idle time (‘IT’) can also be used to detect such
immediate or near-immediate re-request to identify long poll requests. The absolute or
relative timings determined by the tracking engine 238b are used to determine whether the
second request is immediately or near-immediately re-requested after the response to the first
request is received. For example, a request may be categorized as a long poll request if D +
RT + 1T ~ D + RT since IT is small for this to hold true. IT may be determined to be small if
it is less than a threshold value. Note that the threshold value could be fixed or calculated
over a limited time period (a session, a day, a month, etc.), or calculated over a longer time
period (e.g., several months or the life of the analysis). For example, for every request, the
average IT can be determined, and the threshold can be determined using this average IT
(e.g., the average IT less a certain percentage may be used as the threshold). This can allow
the threshold to automatically adapt over time to network conditions and changes in server
capability, resource availability or server response. A fixed threshold can take upon any

value including by way of example but not limitation (e.g., 1 5. 2s. 3 s. etc.).

[00244] In one embodiment, the long poll detector 238a can compare the relative timings
(e.g., determined by the tracker engine 238b) to request-response timing characteristics for
other applications to determine whether the requests of the application are long poll requests.
For example, the requests initiated by a client or application can be determined to be long
poll requests if the response delay interval time (‘D) or the average response delay interval
time (e.g., averaged over x number of requests or any number of delay interval times

averaged over x amount of time) is greater than a threshold value.

[00245] The threshold value can be determined using response delay interval times for
requests generated by other clients, for example by the request/response tracking engine 238b
and/or by the application profile generator 239 (e.g., the response delay interval tracker
239a). The other clients may reside on the same mobile device and the threshold value is
determined locally by components on the mobile device. The threshold value can be
determined for all requests over all resources server over all networks, for example. The
threshold value can be set to a specific constant value (e.g., 30 seconds, for example) to be
used for all requests, or any request which does not have an applicable threshold value (e.g.,

long poll is detected if D > 30 seconds).

56

WO 2012/149434 PCT/US2012/035608

[00246] In some instances, the other clients reside on different mobile devices and the
threshold can be determined by a proxy server (e.g., proxy server 325 of the host 300 shown
in the example of FIGS. 3A-B) which is external to the mobile device and able to
communicate over a wireless network with the multiple different mobile devices, as will be

further described with reference to FIG. 3B.

[00247] In one embodiment, the cache policy manager 245 sends the polling schedule to
the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIGS. 1B-1C and
FIG. 3A) and can be used by the proxy server in monitoring the content source, for example,
for changed or new content (updated response different from the cached response associated
with a request or application). A polling schedule sent to the proxy can include multiple
timing parameters including but not limited to interval (time from request 1 to request 2) or a
time out interval (time to wait for response, used in long polls, for example). Referring to the
timing diagram of a request/response timing sequence timing intervals ‘RI’, ‘D’, ‘RT’, and/or
‘IT’, or some statistical manipulation of the above values (e.g., average, standard deviation,

etc.) may all or in part be sent to the proxy server.

[00248] For example, in the case when the local proxy 275 detects a long poll, the various
timing intervals in a request/response timing sequence (e.g., ‘D’, ‘RT’, and/or ‘IT’) can be
sent to the proxy server 325 for use in polling the content source (e.g., application
server/content host 110). The local proxy 275 can also identify to the proxy server 325 that a
given application or request to be monitored is a long poll request (e.g., instructing the proxy
server to set a ‘long poll flag’, for example). In addition, the proxy server uses the various
timing intervals to determine when to send keep-alive indications on behalf of mobile

devices.

[00249] The local cache invalidator 244 of the caching policy manager 245 can invalidate
cache elements in the local cache (e.g., cache 185 or 285) when new or changed data (e.g.,
updated response) is detected from the application server/content source for a given request.
The cached response can be determined to be invalid for the outgoing request based on a
notification received from the proxy server (e.g., proxy 325 or the host server 300). The
source which provides responses to requests of the mobile client can be monitored to
determine relevancy of the cached response stored in the cache of the mobile device 250 for

the request. For example, the cache invalidator 244 can further remove/delete the cached

57

WO 2012/149434 PCT/US2012/035608

response from the cache of the mobile device when the cached response is no longer valid for

a given request or a given application.

[00250] In one embodiment, the cached response is removed from the cache after it is
provided once again to an application which generated the outgoing request after determining
that the cached response is no longer valid. The cached response can be provided again
without waiting for the time interval or provided again after waiting for a time interval (e.g.,
the time interval determined to be specific to emulate the response delay in a long poll). In
one embodiment, the time interval is the response delay ‘D’ or an average value of the

response delay ‘D’ over two or more values.

[00251] The new or changed data can be, for example, detected by the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIGS. 1B-1C and FIG. 3A). When a
cache entry for a given request/poll has been invalidated, the use of the radio on the mobile
device 250 can be enabled (e.g., by the local proxy 2750r the cache policy manager 245) to
satisfy the subsequent polling requests, as further described with reference to the interaction

diagram of FIGS. 9-10.

[00252] One embodiment of the cache policy manager 245 includes a cache or connect
selection engine 249 which can decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by an application or widget. For
example, the local proxy 275 or the cache policy manger 245 can intercept a polling request,
made by an application (e.g., mobile application) on the mobile device, to contact the
application server/content provider. The selection engine 249 can determine whether the
content received for the intercepted request has been locally stored as cache elements for
deciding whether the radio of the mobile device needs to be activated to satisfy the request
made by the application (e.g., mobile application) and also determine whether the cached
response is still valid for the outgoing request prior to responding to the outgoing request

using the cached response.

[00253] In one embodiment, the local proxy 275, in response to determining that relevant
cached content exists and is still valid, can retrieve the cached elements from the local cache
to provide a response to the application (e.g., mobile application) which made the polling
request such that a radio of the mobile device is not activated to provide the response to the

application (e.g., mobile application). In general, the local proxy 275 continues to provide

58

WO 2012/149434 PCT/US2012/035608

the cached response each time the outgoing request is received until the updated response

different from the cached response is detected.

[00254] When it is determined that the cached response is no longer valid, a new request
for a given request is transmitted over the wireless network for an updated response. The
request can be transmitted to the application server/content provider (e.g., server/host 110) or
the proxy server on the host server (e.g., proxy 325 on the host 300) for a new and updated
response. In one embodiment the cached response can be provided again as a response to the
outgoing request if a new response is not received within the time interval, prior to removal

of the cached response from the cache on the mobile device.

[00255] FIG. 2C depicts a block diagram illustrating another example of components in
the application behavior detector 236 and the caching policy manager 245 in the local proxy
275 on the client-side of the distributed proxy system shown in the example of FIG. 2A. The
illustrated application behavior detector 236 and the caching policy manager 245 can, for
example, enable the local proxy 275 to detect cache defeat and perform caching of content

addressed by identifiers intended to defeat cache.

[00256] In one embodiment, the caching policy manager 245 includes a cache defeat
resolution engine 221, an identifier formalizer 211, a cache appropriateness decision engine
246, a poll schedule generator 247, an application protocol module 248, a cache or connect
selection engine 249 having a cache query module 229, and/or a local cache invalidator 244.
The cache defeat resolution engine 221 can further include a pattern extraction module 222
and/or a cache defeat parameter detector 223. The cache defeat parameter detector 223 can
further include a random parameter detector 224 and/or a time/date parameter detector 226.
One embodiment further includes an application cache policy repository 243 coupled to the

decision engine 246.

[00257] In one embodiment, the application behavior detector 236 includes a pattern
detector 237, a poll interval detector 238, an application profile generator 239, and/or a
priority engine 241. The pattern detector 237 can further include a cache defeat parameter
detector 223 having also, for example, a random parameter detector 233 and/or a time/date
parameter detector 234. One embodiment further includes an application profile repository

242 coupled to the application profile generator 239. The application profile generator 239,

59

WO 2012/149434 PCT/US2012/035608

and the priority engine 241 have been described in association with the description of the

application behavior detector 236 in the example of FIG. 2A.

[00258] The cache defeat resolution engine 221 can detect, identify, track, manage, and/or
monitor content or content sources (e.g., servers or hosts) which employ identifiers and/or are
addressed by identifiers (e.g., resource identifiers such as URLs and/or URIs) with one or
more mechanisms that defeat cache or are intended to defeat cache. The cache defeat
resolution engine 221 can, for example, detect from a given data request generated by an
application or client that the identifier defeats or potentially defeats cache, where the data
request otherwise addresses content or responses from a host or server (e.g., application

server/content host 110 or 310) that is cacheable.

[00259] In one embodiment, the cache defeat resolution engine 221 detects or identifies
cache defeat mechanisms used by content sources (e.g., application server/content host 110 or
310) using the identifier of a data request detected at the mobile device 250. The cache
defeat resolution engine 221 can detect or identify a parameter in the identifier which can
indicate that cache defeat mechanism is used. For example, a format, syntax, or pattern of the
parameter can be used to identify cache defeat (e.g., a pattern, format, or syntax as

determined or extracted by the pattern extraction module 222).

[00260] The pattern extraction module 222 can parse an identifier into multiple
parameters or components and perform a matching algorithm on each parameter to identify
any of which match one or more predetermined formats (e.g., a date and/or time format). For
example, the results of the matching or the parsed out parameters from an identifier can be
used (e.g., by the cache defeat parameter detector 223) to identify cache defeating parameters

which can include one or more changing parameters.

[00261] The cache defeat parameter detector 223, in one embodiment can detect random
parameters (e.g., by the random parameter detector 224) and/or time and/or date parameters
which are typically used for cache defeat. The cache defeat parameter detector 223 can
detect random parameters and/or time/dates using commonly employed formats for these

parameters and performing pattern matching algorithms and tests.

[00262] In addition to detecting patterns, formats, and/or syntaxes, the cache defeat
parameter detector 223 further determines or confirms whether a given parameter is defeating

cache and whether the addressed content can be cached by the distributed caching system.

60

WO 2012/149434 PCT/US2012/035608

The cache defeat parameter detector 223 can detect this by analyzing responses received for
the identifiers utilized by a given data request. In general, a changing parameter in the
identifier is identified to indicate cache defeat when responses corresponding to multiple data
requests are the same even when the multiple data requests uses identifiers with the changing
parameter being different for each of the multiple data requests. For example, the
request/response pairs illustrate that the responses received are the same, even though the

resource identifier includes a parameter that changes with each request.

[00263] For example, at least two same responses may be required to identify the
changing parameter as indicating cache defeat. In some instances, at least three same
responses may be required. The requirement for the number of same responses needed to
determine that a given parameter with a varying value between requests is cache defeating
may be application specific, context dependent, and/or user dependent/user specified, or a
combination of the above. Such a requirement may also be static or dynamically adjusted by
the distributed cache system to meet certain performance thresholds and/or either
explicit/implicit feedback regarding user experience (e.g., whether the user or application is
receiving relevant/fresh content responsive to requests). More of the same responses may be
required to confirm cache defeat, or for the system to treat a given parameter as intended for
cache defeat if an application begins to malfunction due to response caching and/or if the user
expresses dissatisfaction (explicit user feedback) or the system detects user frustration

(implicit user cues).

[00264] The cache appropriateness decision engine 246 can detect, assess, or determine
whether content from a content source (e.g., application server/content provider 110 in the
example of FIG. 1C) with which a mobile device 250 interacts, has content that may be
suitable for caching. In some instances, content from a given application server/content
provider (e.g., the server/provider 110 of FIG. 1C) is determined to be suitable for caching
based on a set of criteria (for example, criteria specifying time criticality of the content that is
being requested from the content source). In one embodiment, the local proxy (e.g., the local
proxy 175 or 275 of FIGS. 1B-1C and FIG. 2A) applies a selection criteria to store the
content from the host server which is requested by an application as cached elements in a

local cache on the mobile device to satisfy subsequent requests made by the application.

[00265] The selection criteria can also include, by way of example, but not limitation,

state of the mobile device indicating whether the mobile device is active or inactive, network

61

WO 2012/149434 PCT/US2012/035608

conditions, and/or radio coverage statistics. The cache appropriateness decision engine 246
can any one or any combination of the criteria, and in any order, in identifying sources for

which caching may be suitable.

[00266] Once application servers/content providers having identified or detected content
that is potentially suitable for local caching on the mobile device 250, the cache policy
manager 245 can proceed to cache the associated content received from the identified sources
by storing content received from the content source as cache elements in a local cache (e.g.,
local cache 185 or 285 shown in the examples of FIGS. 1B-1C and FIG. 2A, respectively)
on the mobile device 250. The content source can also be identified to a proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIGS. 1B-1C and FIG. 3A, respectively)
remote from and in wireless communication with the mobile device 250 such that the proxy
server can monitor the content source (e.g., application server/content provider 110) for new
or changed data. Similarly, the local proxy (e.g., the local proxy 175 or 275 of FIGS. 1B-1C
and FIG. 2A, respectively) can identify to the proxy server that content received from a
specific application server/content provider is being stored as cached elements in the local

cache.

[00267] In one embodiment, cache elements are stored in the local cache 285 as being
associated with a normalized version of an identifier for an identifier employing one or more
parameters intended to defeat cache. The identifier can be normalized by the identifier
normalizer module 211 and the normalization process can include, by way of example, one or
more of: converting the URI scheme and host to lower-case, capitalizing letters in percent-

encoded escape sequences, removing a default port, and removing duplicate slashes.

[00268] In another embodiment, the identifier is normalized by removing the parameter
for cache defeat and/or replacing the parameter with a static value which can be used to
address or be associated with the cached response received responsive to a request utilizing
the identifier by the normalizer 211 or the cache defeat parameter handler 212. For example,
the cached elements stored in the local cache 285 (shown in FIG. 2A) can be identified using
the normalized version of the identifier or a hash value of the normalized version of the
identifier. The hash value of an identifier or of the normalized identifier may be generated by

the hash engine 213.

62

WO 2012/149434 PCT/US2012/035608

[00269] Once content has been locally cached, the cache policy manager 245 can, upon
receiving future polling requests to contact the content server, retrieve the cached elements
from the local cache to respond to the polling request made at the mobile device 250 such
that a radio of the mobile device is not activated to service the polling request. Such
servicing and fulfilling application (e.g., mobile application) requests locally via local cache
entries allow for more efficient resource and mobile network traffic utilization and
management since network bandwidth and other resources need not be used to
request/receive poll responses which may have not changed from a response that has already

been received at the mobile device 250.

[00270] One embodiment of the cache policy manager 245 includes a poll schedule
generator 247 which can generate a polling schedule for one or more applications on the
mobile device 250. The polling schedule can specify a polling interval that can be employed
by the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIGS. 1B-1C
and FIG. 3A) in monitoring the content source for one or more applications. The polling
schedule can be determined, for example, based on the interval between the polling requests
directed to the content source from the mobile device. In one embodiment, the poll interval
detector 238 of the application behavior detector can monitor polling requests directed to a
content source from the mobile device 250 in order to determine an interval between the

polling requests made from any or all application (e.g., mobile application).

[00271] In one embodiment, the cache policy manager 245 sends the polling schedule is
sent to the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIGS. 1B-
1C and FIG. 3A) and can be used by the proxy server in monitoring the content source, for
example, for changed or new content. The local cache invalidator 244 of the caching policy
manager 245 can invalidate cache elements in the local cache (e.g., cache 185 or 285) when
new or changed data is detected from the application server/content source for a given
request. The new or changed data can be, for example, detected by the proxy server. When a
cache entry for a given request/poll has been invalidated and/or removed (e.g., deleted from
cache) after invalidation, the use of the radio on the mobile device 250 can be enabled (e.g.,
by the local proxy or the cache policy manager 245) to satisfy the subsequent polling

requests, as further described with reference to the interaction diagram of FIG. 4B.

[00272] In another embodiment, the proxy server (e.g., proxy server 125 or 325 shown in

the examples of FIGS. 1B-1C and FIG. 3A) uses a modified version of a resource identifier

63

WO 2012/149434 PCT/US2012/035608

used in a data request to monitor a given content source (the application server/content host
110 of FIGS. 1B-1C to which the data request is addressed) for new or changed data. For
example, in the instance where the content source or identifier is detected to employ cache
defeat mechanisms, a modified (e.g., normalized) identifier can be used instead to poll the
content source. The modified or normalized version of the identifier can be communicated to
the proxy server by the caching policy manager 245, or more specifically the cache defeat

parameter handler 212 of the identifier normalizer 211.

[00273] The modified identifier used by the proxy server to poll the content source on
behalf of the mobile device/application (e.g., mobile application) may or may not be the same
as the normalized identifier. For example, the normalized identifier may be the original
identifier with the changing cache defeating parameter removed whereas the modified
identifier uses a substitute parameter in place of the parameter that is used to defeat cache
(e.g., the changing parameter replaced with a static value or other predetermined value known
to the local proxy and/or proxy server). The modified parameter can be determined by the
local proxy 275 and communicated to the proxy server. The modified parameter may also be
generated by the proxy server (e.g., by the identifier modifier module 353 shown in the

example of FIG. 3C).

[00274] One embodiment of the cache policy manager 245 includes a cache or connect
selection engine 249 which can decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by an application or widget. For
example, the local proxy 275 or the cache policy manger 245 can intercept a polling request
made by an application (e.g., mobile application) on the mobile device, to contact the
application server/content provider. The selection engine 249 can determine whether the
content received for the intercepted request has been locally stored as cache elements for
deciding whether the a radio of the mobile device needs to be activated to satisfy the request
made by the application (e.g., mobile application). In one embodiment, the local proxy 275,
in response to determining that relevant cached content exists and is still valid, can retrieve
the cached elements from the local cache to provide a response to the application (e.g.,
mobile application) which made the polling request such that a radio of the mobile device is

not activated to provide the response to the application (e.g., mobile application).

[00275] In one embodiment, the cached elements stored in the local cache 285 (shown in

FIG. 2A) can be identified using a normalized version of the identifier or a hash value of the

64

WO 2012/149434 PCT/US2012/035608

normalized version of the identifier, for example, using the cache query module 229. Cached
elements can be stored with normalized identifiers which have cache defeating parameters
removed or otherwise replaced such that the relevant cached elements can be identified and
retrieved in the future to satisfy other requests employing the same type of cache defeat. For
example, when an identifier utilized in a subsequent request is determined to be utilizing the
same cache defeating parameter, the normalized version of this identifier can be generated
and used to identify a cached response stored in the mobile device cache to satisfy the data
request. The hash value of an identifier or of the normalized identifier may be generated by

the hash engine 213 of the identifier normalizer 211.

[00276] FIG. 2D depicts a block diagram illustrating examples of additional components
in the local proxy 275 shown in the example of FIG. 2A which is further capable of
performing mobile traffic categorization and policy implementation based on application

behavior and/or user activity.

[00277] In this embodiment of the local proxy 275, the user activity module 215 further
includes one or more of, a user activity tracker 215a, a user activity prediction engine 215D,
and/or a user expectation manager 215¢. The application behavior detect 236 can further
include a prioritization engine 241a, a time criticality detection engine 241b, an application
state categorizer 241c¢, and/or an application traffic categorizer 241d. The local proxy 275
can further include a backlight detector 219 and/or a network configuration selection engine
251. The network configuration selection engine 251 can further include, one or more of, a
wireless generation standard selector 251a, a data rate specifier 251b, an access channel

selection engine 251c¢, and/or an access point selector.

[00278] In one embodiment, the application behavior detector 236 is able to detect,
determined, identify, or infer, the activity state of an application on the mobile device 250 to
which traffic has originated from or is directed to, for example, via the application state
categorizer 241c¢ and/or the traffic categorizer 241d. The activity state can be determined by
whether the application is in a foreground or background state on the mobile device (via the
application state categorizer 241c¢) since the traffic for a foreground application vs. a

background application may be handled differently.

[00279] In one embodiment, the activity state can be determined, detected, identified, or

inferred with a level of certainty of heuristics, based on the backlight status of the mobile

65

WO 2012/149434 PCT/US2012/035608

device 250 (e.g., by the backlight detector 219) or other software agents or hardware sensors
on the mobile device, including but not limited to, resistive sensors, capacitive sensors,
ambient light sensors, motion sensors, touch sensors, etc. In general, if the backlight is on,
the traffic can be treated as being or determined to be generated from an application that is
active or in the foreground, or the traffic is interactive. In addition, if the backlight is on, the
traffic can be treated as being or determined to be traffic from user interaction or user

activity, or traffic containing data that the user is expecting within some time frame.

[00280] In one embodiment, the activity state is determined based on whether the traffic
18 interactive traffic or maintenance traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/interaction with an application
and can include content or data that a user is waiting or expecting to receive. Maintenance
traffic may be used to support the functionality of an application which is not directly
detected by a user. Maintenance traffic can also include actions or transactions that may take
place in response to a user action, but the user is not actively waiting for or expecting a

reésponsc.

[00281] For example, a mail or message delete action at a mobile device 250 generates a
request to delete the corresponding mail or message at the server, but the user typically is not
waiting for a response. Thus, such a request may be categorized as maintenance traffic, or
traffic having a lower priority (e.g., by the prioritization engine 241a) and/or is not time-

critical (e.g., by the time criticality detection engine 214b).

[00282] Contrastingly, a mail ‘read’ or message ‘read’ request initiated by a user a the
mobile device 250, can be categorized as ‘interactive traffic’ since the user generally is
waiting to access content or data when they request to read a message or mail. Similarly,
such a request can be categorized as having higher priority (e.g., by the prioritization engine
241a) and/or as being time critical/time sensitive (e.g., by the time criticality detection engine

241b).

[00283] The time criticality detection engine 241b can generally determine, identify, infer
the time sensitivity of data contained in traffic sent from the mobile device 250 or to the
mobile device from a host server (e.g., host 300) or application server (e.g., app
server/content source 110). For example, time sensitive data can include, status updates,

stock information updates, IM presence information, email messages or other messages,

66

WO 2012/149434 PCT/US2012/035608

actions generated from mobile gaming applications, webpage requests, location updates, etc.
Data that is not time sensitive or time critical, by nature of the content or request, can include
requests to delete messages, mark-as-read or edited actions, application-specific actions such
as a add-friend or delete-friend request, certain types of messages, or other information which
does not frequently changing by nature, etc. In some instances when the data is not time
critical, the timing with which to allow the traffic to pass through is set based on when
additional data needs to be sent from the mobile device 250. For example, traffic shaping
engine 255 can align the traffic with one or more subsequent transactions to be sent together
in a single power-on event of the mobile device radio (e.g., using the alignment module 256
and/or the batching module 257). The alignment module 256 can also align polling requests
occurring close in time directed to the same host server, since these request are likely to be

responded to with the same data.

[00284] In the alternate or in combination, the activity state can be determined from
assessing, determining, evaluating, inferring, identifying user activity at the mobile device
250 (e.g., via the user activity module 215). For example, user activity can be directly
detected and tracked using the user activity tracker 215a. The traffic resulting therefrom can
then be categorized appropriately for subsequent processing to determine the policy for
handling. Furthermore, user activity can be predicted or anticipated by the user activity
prediction engine 215b. By predicting user activity or anticipating user activity, the traffic
thus occurring after the prediction can be treated as resulting from user activity and

categorized appropriately to determine the transmission policy.

[00285] In addition, the user activity module 215 can also manage user expectations (e.g.,
via the user expectation manager 215¢ and/or in conjunction with the activity tracker 215
and/or the prediction engine 215b) to ensure that traffic is categorized appropriately such that
user expectations are generally met. For example, a user-initiated action should be analyzed
(e.g., by the expectation manager 215) to determine or infer whether the user would be
waiting for a response. If so, such traffic should be handled under a policy such that the user

does not experience an unpleasant delay in receiving such a response or action.

[00286] In one embodiment, an advanced generation wireless standard network is
selected for use in sending traffic between a mobile device and a host server in the wireless
network based on the activity state of the application on the mobile device for which traffic is

originated from or directed to. An advanced technology standards such as the 3G, 3.5G,

67

WO 2012/149434 PCT/US2012/035608

3G+, 4G, or LTE network can be selected for handling traffic generated as a result of user
interaction, user activity, or traffic containing data that the user is expecting or waiting for.
Advanced generation wireless standard network can also be selected for to transmit data

contained in traffic directed to the mobile device which responds to foreground activities.

[00287] In categorizing traffic and defining a transmission policy for mobile traffic, a
network configuration can be selected for use (e.g., by the network configuration selection
engine 251) on the mobile device 250 in sending traffic between the mobile device and a
proxy server (325) and/or an application server (e.g., app server/host 110). The network
configuration that is selected can be determined based on information gathered by the
application behavior module 236 regarding application activity state (e.g., background or
foreground traffic), application traffic category (e.g., interactive or maintenance traffic), any

priorities of the data/content, time sensitivity/criticality.

[00288] The network configuration selection engine 2510 can select or specify one or
more of, a generation standard (e.g., via wireless generation standard selector 251a), a data
rate (e.g., via data rate specifier 251b), an access channel (e.g., access channel selection
engine 251c¢), and/or an access point (e.g., via the access point selector 251d), in any

combination.

[00289] For example, a more advanced generation (e.g., 3G, LTE, or 4G or later) can be
selected or specified for traffic when the activity state is in interaction with a user or in a
foreground on the mobile device. Contrastingly, an older generation standard (e.g., 2G, 2.5G,
or 3G or older) can be specified for traffic when one or more of the following is detected, the
application is not interacting with the user, the application is running in the background on
the mobile device, or the data contained in the traffic is not time critical, or is otherwise

determined to have lower priority.

[00290] Similarly, a network configuration with a slower data rate can be specified for
traffic when one or more of the following is detected, the application is not interacting with
the user, the application is running in the background on the mobile device, or the data
contained in the traffic is not time critical. The access channel (e.g., Forward access channel

or dedicated channel) can be specified.

[00291] FIG. 3A depicts a block diagram illustrating an example of server-side

components in a distributed proxy and cache system residing on a host server 300 that

68

WO 2012/149434 PCT/US2012/035608

manages traffic in a wireless network for resource conservation. The server-side proxy (or
proxy server 325) can further categorize mobile traffic and/or implement delivery policies

based on application behavior, content priority, user activity, and/or user expectations.

[00292] The host server 300 generally includes, for example, a network interface 308
and/or one or more repositories 312, 314, and 316. Note that server 300 may be any
portable/mobile or non-portable device, server, cluster of computers and/or other types of
processing units (e.g., any number of a machine shown in the example of FIG. 16) able to
receive or transmit signals to satisfy data requests over a network including any wired or

wireless networks (e.g., WiFi, cellular, Bluetooth, etc.).

[00293] The network interface 308 can include networking module(s) or devices(s) that
enable the server 300 to mediate data in a network with an entity that is external to the host
server 300, through any known and/or convenient communications protocol supported by the
host and the external entity. Specifically, the network interface 308 allows the server 300 to
communicate with multiple devices including mobile phone devices 350 and/or one or more

application servers/content providers 310.

[00294] The host server 300 can store information about connections (e.g., network
characteristics, conditions, types of connections, etc.) with devices in the connection
metadata repository 312. Additionally, any information about third party application or
content providers can also be stored in the repository 312. The host server 300 can store
information about devices (e.g., hardware capability, properties, device settings, device
language, network capability, manufacturer, device model, OS, OS version, etc.) in the
device information repository 314. Additionally, the host server 300 can store information
about network providers and the various network service areas in the network service

provider repository 316.

[00295] The communication enabled by network interface 308 allows for simultaneous
connections (e.g., including cellular connections) with devices 350 and/or connections (e.g.,
including wired/wireless, HTTP, Internet connections, LAN, WiFi, etc.) with content
servers/providers 310 to manage the traffic between devices 350 and content providers 310,
for optimizing network resource utilization and/or to conserver power (battery) consumption
on the serviced devices 350. The host server 300 can communicate with mobile devices 350

serviced by different network service providers and/or in the same/different network service

69

WO 2012/149434 PCT/US2012/035608

arcas. The host server 300 can operate and is compatible with devices 350 with varying types
or levels of mobile capabilities, including by way of example but not limitation, 1G, 2G, 2G
transitional (2.5G, 2.75G), 3G (IMT-2000), 3G transitional (3.5G, 3.75G, 3.9G), 4G (IMT-

advanced), etc.

[00296] In general, the network interface 308 can include one or more of a network
adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface,
interfaces for various generations of mobile communication standards including but not
limited to 1G, 2G, 3G, 3.5G, 4G type networks such as LTE, WiMAX, etc.), Bluetooth,
WiFi, or any other network whether or not connected via a router, an access point, a wireless
router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, a bridge

router, a hub, a digital media receiver, and/or a repeater.

[00297] The host server 300 can further include server-side components of the distributed
proxy and cache system which can include a proxy server 325 and a server cache 335. In one
embodiment, the proxy server 325 can include an HTTP access engine 345, a caching policy
manager 355, a proxy controller 365, a traffic shaping engine 375, a new data detector 347

and/or a connection manager 395.

[00298] The HTTP access engine 345 may further include a heartbeat manager 398; the
proxy controller 365 may further include a data invalidator module 368; the traffic shaping
engine 375 may further include a control protocol 376 and a batching module 377.
Additional or less components/modules/engines can be included in the proxy server 325 and

cach illustrated component.

[00299] As used herein, a “module,” a “manager,” a “handler,” a “detector,” an
“interface,” a “controller,” a “normalizer,” a “generator,” an “invalidator,” or an “engine”
includes a general purpose, dedicated or shared processor and, typically, firmware or
software modules that are executed by the processor. Depending upon implementation-
specific or other considerations, the module, manager, handler, detector, interface, controller,
normalizer, generator, invalidator, or engine can be centralized or its functionality distributed.
The module, manager, handler, detector, interface, controller, normalizer, generator,
invalidator, or engine can include general or special purpose hardware, firmware, or software
embodied in a computer-readable (storage) medium for execution by the processor. As used

herein, a computer-readable medium or computer-readable storage medium is intended to

70

WO 2012/149434 PCT/US2012/035608

include all mediums that are statutory (e.g., in the United States, under 35 U.S.C. § 101), and
to specifically exclude all mediums that are non-statutory in nature to the extent that the
exclusion is necessary for a claim that includes the computer-readable (storage) medium to be
valid. Known statutory computer-readable mediums include hardware (e.g., registers,
random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may

not be limited to hardware.

[00300] In the example of a device (e.g., mobile device 350) making an application or
content request to an application server or content provider 310, the request may be
intercepted and routed to the proxy server 325 which is coupled to the device 350 and the
application server/content provider 310. Specifically, the proxy server is able to
communicate with the local proxy (e.g., proxy 175 and 275 of the examples of FIG. 1 and
FIG. 2 respectively) of the mobile device 350, the local proxy forwards the data request to
the proxy server 325 in some instances for further processing and, if needed, for transmission

to the application server/content server 310 for a response to the data request.

[00301] In such a configuration, the host 300, or the proxy server 325 in the host server
300 can utilize intelligent information provided by the local proxy in adjusting its
communication with the device in such a manner that optimizes use of network and device
resources. For example, the proxy server 325 can identify characteristics of user activity on
the device 350 to modify its communication frequency. The characteristics of user activity
can be determined by, for example, the activity/behavior awareness module 366 in the proxy

controller 365 via information collected by the local proxy on the device 350.

[00302] In one embodiment, communication frequency can be controlled by the
connection manager 395 of the proxy server 325, for example, to adjust push frequency of
content or updates to the device 350. For instance, push frequency can be decreased by the
connection manager 395 when characteristics of the user activity indicate that the user is
inactive. In one embodiment, when the characteristics of the user activity indicate that the
user is subsequently active after a period of inactivity, the connection manager 395 can adjust
the communication frequency with the device 350 to send data that was buffered as a result of

decreased communication frequency to the device 350.

[00303] In addition, the proxy server 325 includes priority awareness of various requests,

transactions, sessions, applications, and/or specific events. Such awareness can be

71

WO 2012/149434 PCT/US2012/035608

determined by the local proxy on the device 350 and provided to the proxy server 325. The
priority awareness module 367 of the proxy server 325 can generally assess the priority (e.g.,
including time-criticality, time-sensitivity, etc.) of various events or applications;
additionally, the priority awareness module 367 can track priorities determined by local

proxies of devices 350.

[00304] In one embodiment, through priority awareness, the connection manager 395 can
further modify communication frequency (e.g., use or radio as controlled by the radio
controller 396) of the server 300 with the devices 350. For example, the server 300 can
notify the device 350, thus requesting use of the radio if it is not already in use when data or

updates of an importance/priority level which meets a criteria becomes available to be sent.

[00305] In one embodiment, the proxy server 325 can detect multiple occurrences of
events (e.g., transactions, content, data received from server/provider 310) and allow the
events to accumulate for batch transfer to device 350. Batch transfer can be cumulated and
transfer of events can be delayed based on priority awareness and/or user activity/application
behavior awareness as tracked by modules 367 and/or 366. For example, batch transfer of
multiple events (of a lower priority) to the device 350 can be initiated by the batching module
377 when an event of a higher priority (meeting a threshold or criteria) is detected at the
server 300. In addition, batch transfer from the server 300 can be triggered when the server
receives data from the device 350, indicating that the device radio is already in use and is thus
on. In one embodiment, the proxy server 325 can order the cach messages/packets in a batch
for transmission based on event/transaction priority such that higher priority content can be

sent first in case connection is lost or the battery dies, etc.

[00306] In one embodiment, the server 300 caches data (e.g., as managed by the caching
policy manager 355) such that communication frequency over a network (e.g., cellular
network) with the device 350 can be modified (e.g., decreased). The data can be cached, for
example, in the server cache 335 for subsequent retrieval or batch sending to the device 350
to potentially decrease the need to turn on the device 350 radio. The server cache 335 can be
partially or wholly internal to the host server 300, although in the example of FIG. 3A it is
shown as being external to the host 300. In some instances, the server cache 335 may be the
same as and/or integrated in part or in whole with another cache managed by another entity

(e.g., the optional caching proxy server 199 shown in the example of FIG. 1C), such as being

72

WO 2012/149434 PCT/US2012/035608

managed by an application server/content provider 310, a network service provider, or

another third party.

[00307] In one embodiment, content caching is performed locally on the device 350 with
the assistance of host server 300. For example, proxy server 325 in the host server 300 can
query the application server/provider 310 with requests and monitor changes in responses.
When changed or new responses are detected (e.g., by the new data detector 347), the proxy
server 325 can notify the mobile device 350 such that the local proxy on the device 350 can
make the decision to invalidate (e.g., indicated as out-dated) the relevant cache entries stored
as any responses in its local cache. Alternatively, the data invalidator module 368 can
automatically instruct the local proxy of the device 350 to invalidate certain cached data,
based on received responses from the application server/provider 310. The cached data is
marked as invalid, and can get replaced or deleted when new content is received from the

content server 310.

[00308] Note that data change can be detected by the detector 347 in one or more ways.
For example, the server/provider 310 can notify the host server 300 upon a change. The
change can also be detected at the host server 300 in response to a direct poll of the source
server/provider 310. In some instances, the proxy server 325 can in addition, pre-load the
local cache on the device 350 with the new/updated data. This can be performed when the
host server 300 detects that the radio on the mobile device is already in use, or when the

server 300 has additional content/data to be sent to the device 350.

[00309] One or more the above mechanisms can be implemented simultaneously or
adjusted/configured based on application (e.g., different policies for different
servers/providers 310). In some instances, the source provider/server 310 may notify the host
300 for certain types of events (e.g., events meeting a priority threshold level). In addition,
the provider/server 310 may be configured to notify the host 300 at specific time intervals,

regardless of event priority.

[00310] In one embodiment, the proxy server 325 of the host 300 can monitor/track
responses received for the data request from the content source for changed results prior to
returning the result to the mobile device, such monitoring may be suitable when data request
to the content source has yielded same results to be returned to the mobile device, thus

preventing network/power consumption from being used when no new changes are made to a

73

WO 2012/149434 PCT/US2012/035608

particular requested. The local proxy of the device 350 can instruct the proxy server 325 to
perform such monitoring or the proxy server 325 can automatically initiate such a process
upon receiving a certain number of the same responses (e.g., or a number of the same

responses in a period of time) for a particular request.

[00311] In one embodiment, the server 300, through the activity/behavior awareness
module 366, is able to identify or detect user activity at a device that is separate from the
mobile device 350. For example, the module 366 may detect that a user’s message inbox
(e.g., email or types of inbox) is being accessed. This can indicate that the user is interacting
with his/her application using a device other than the mobile device 350 and may not need

frequent updates, if at all.

[00312] The server 300, in this instance, can thus decrease the frequency with which new
or updated content is sent to the mobile device 350, or eliminate all communication for as
long as the user is detected to be using another device for access. Such frequency decrease
may be application specific (e.g., for the application with which the user is interacting with
on another device), or it may be a general frequency decrease (E.g., since the user is detected
to be interacting with one server or one application via another device, he/she could also use

it to access other services.) to the mobile device 350.

[00313] In one embodiment, the host server 300 is able to poll content sources 310 on
behalf of devices 350 to conserve power or battery consumption on devices 350. For
example, certain applications on the mobile device 350 can poll its respective server 310 in a
predictable recurring fashion. Such recurrence or other types of application behaviors can be
tracked by the activity/behavior module 366 in the proxy controller 365. The host server 300
can thus poll content sources 310 for applications on the mobile device 350 that would
otherwise be performed by the device 350 through a wireless (e.g., including cellular
connectivity). The host server can poll the sources 310 for new or changed data by way of
the HTTP access engine 345 to establish HTTP connection or by way of radio controller 396
to connect to the source 310 over the cellular network. When new or changed data is
detected, the new data detector 347 can notify the device 350 that such data is available

and/or provide the new/changed data to the device 350.

[00314] In one embodiment, the connection manager 395 determines that the mobile

device 350 is unavailable (e.g., the radio is turned off) and utilizes SMS to transmit content to

74

WO 2012/149434 PCT/US2012/035608

the device 350, for instance, via the SMSC shown in the example of FIG. 1C. SMS is used
to transmit invalidation messages, batches of invalidation messages, or even content in the
case where the content is small enough to fit into just a few (usually one or two) SMS
messages. This avoids the need to access the radio channel to send overhead information.
The host server 300 can use SMS for certain transactions or responses having a priority level
above a threshold or otherwise meeting a criteria. The server 300 can also utilize SMS as an
out-of-band trigger to maintain or wake-up an IP connection as an alternative to maintaining

an always-on IP connection.

[00315] In one embodiment, the connection manager 395 in the proxy server 325 (e.g.,
the heartbeat manager 398) can generate and/or transmit heartbeat messages on behalf of
connected devices 350 to maintain a backend connection with a provider 310 for applications

running on devices 350.

[00316] For example, in the distributed proxy system, local cache on the device 350 can
prevent any or all heartbeat messages needed to maintain TCP/IP connections required for
applications from being sent over the cellular, or other, network and instead rely on the proxy
server 325 on the host server 300 to generate and/or send the heartbeat messages to maintain
a connection with the backend (e.g., application server/provider 110 in the example of FIG.
1A). The proxy server can generate the keep-alive (heartbeat) messages independent of the

operations of the local proxy on the mobile device.

[00317] The repositories 312, 314, and/or 316 can additionally store software, descriptive
data, images, system information, drivers, and/or any other data item utilized by other
components of the host server 300 and/or any other servers for operation. The repositories
may be managed by a database management system (DBMS), for example, which may be but
is not limited to Oracle, DB2, Microsoft Access, Microsoft SQL Server, PostgreSQL,
MySQL, FileMaker, etc.

[00318] The repositories can be implemented via object-oriented technology and/or via
text files and can be managed by a distributed database management system, an object-
oriented database management system (OODBMS) (e.g., ConceptBase, FastDB Main
Memory Database Management System, JDOInstruments, ObjectDB, etc.), an object-
relational database management system (ORDBMS) (e.g., Informix, OpenLink Virtuoso,

75

WO 2012/149434 PCT/US2012/035608

VMDS, etc.), a file system, and/or any other convenient or known database management

package.

[00319] FIG. 3B depicts a block diagram illustrating a further example of components in
the caching policy manager 355 in the cache system shown in the example of FIG. 3A which
is capable of caching and adapting caching strategies for application (e.g., mobile

application) behavior and/or network conditions.

[00320] The caching policy manager 355, in one embodiment, can further include a
metadata generator 303, a cache look-up engine 305, an application protocol module 356, a
content source monitoring engine 357 having a poll schedule manager 358, a response
analyzer 361, and/or an updated or new content detector 359. In one embodiment, the poll
schedule manager 358 further includes a host timing simulator 358a, a long poll request
detector/manager 358D, a schedule update engine 358¢, and/or a time adjustment engine
358d. The metadata generator 303 and/or the cache look-up engine 305 can be coupled to the

cache 335 (or, server cache) for modification or addition to cache entries or querying thereof.

[00321] In one embodiment, the proxy server (e.g., the proxy server 125 or 325 of the
examples of FIGS. 1B-1C and FIG. 3A) can monitor a content source for new or changed
data via the monitoring engine 357. The proxy server, as shown, is an entity external to the
mobile device 250 of FIGS 2A-B. The content source (e.g., application server/content
provider 110 of FIGS 1B-1C) can be one that has been identified to the proxy server (e.g., by
the local proxy) as having content that is being locally cached on a mobile device (e.g.,
mobile device 150 or 250). The content source can be monitored, for example, by the
monitoring engine 357 at a frequency that is based on polling frequency of the content source
at the mobile device. The poll schedule can be generated, for example, by the local proxy
and sent to the proxy server. The poll frequency can be tracked and/or managed by the poll

schedule manager 358.

[00322] For example, the proxy server can poll the host (e.g., content provider/application
server) on behalf of the mobile device and simulate the polling behavior of the client to the
host via the host timing simulator 358a. The polling behavior can be simulated to include
characteristics of a long poll request-response sequences experienced in a persistent
connection with the host (e.g., by the long poll request detector/manager 358b). Note that

once a polling interval/behavior is set, the local proxy 275 on the device-side and/or the

76

WO 2012/149434 PCT/US2012/035608

proxy server 325 on the server-side can verify whether application and application
server/content host behavior match or can be represented by this predicted pattern. In
general, the local proxy and/or the proxy server can detect deviations and, when appropriate,

re-evaluate and compute, determine, or estimate another polling interval.

[00323] In one embodiment, the caching policy manager 355 on the server-side of the
distribute proxy can, in conjunction with or independent of the proxy server 275 on the
mobile device, identify or detect long poll requests. For example, the caching policy
manager 355 can determine a threshold value to be used in comparison with a response delay
interval time in a request-response sequence for an application request to identify or detect
long poll requests, possible long poll requests (e.g., requests for a persistent connection with a
host with which the client communicates including, but not limited to, a long-held HTTP
request, a persistent connection enabling COMET style push, request for HTTP streaming,

etc.), or other requests which can otherwise be treated as a long poll request.

[00324] For example, the threshold value can be determined by the proxy 325 using
response delay interval times for requests generated by clients/applications across mobile
devices which may be serviced by multiple different cellular or wireless networks. Since the
proxy 325 resides on host 300 is able to communicate with multiple mobile devices via
multiple networks, the caching policy manager 355 has access to application/client
information at a global level which can be used in setting threshold values to categorize and

detect long polls.

[00325] By tracking response delay interval times across applications across devices over
different or same networks, the caching policy manager 355 can set one or more threshold
values to be used in comparison with response delay interval times for long poll detection.
Threshold values set by the proxy server 325 can be static or dynamic, and can be associated

with conditions and/or a time-to-live (an expiration time/date in relative or absolute terms).

[00326] In addition, the caching policy manager 355 of the proxy 325 can further
determine the threshold value, in whole or in part, based on network delays of a given
wireless network, networks serviced by a given carrier (service provider), or multiple
wireless networks. The proxy 325 can also determine the threshold value for identification of
long poll requests based on delays of one or more application server/content provider (e.g.,

110) to which application (e.g., mobile application) or mobile client requests are directed.

77

WO 2012/149434 PCT/US2012/035608

[00327] The proxy server can detect new or changed data at a monitored content source
and transmits a message to the mobile device notifying it of such a change such that the
mobile device (or the local proxy on the mobile device) can take appropriate action (e.g., to
invalidate the cache elements in the local cache). In some instances, the proxy server (e.g.,
the caching policy manager 355) upon detecting new or changed data can also store the new
or changed data in its cache (e.g., the server cache 135 or 335 of the examples of FIG. 1C
and FIG. 3A, respectively). The new/updated data stored in the server cache 335 can be used
in some instances to satisfy content requests at the mobile device; for example, it can be used
after the proxy server has notified the mobile device of the new/changed content and that the

locally cached content has been invalidated.

[00328] The metadata generator 303, similar to the metadata generator 203 shown in the
example of FIG. 2B, can generate metadata for responses cached for requests at the mobile
device 250. The metadata generator 303 can generate metadata for cache entries stored in the
server cache 335. Similarly, the cache look-up engine 305 can include the same or similar
functions are those described for the cache look-up engine 205 shown in the example of FIG.

2B.

[00329] The response analyzer 361 can perform any or all of the functionalities related to
analyzing responses received for requests generated at the mobile device 250 in the same or
similar fashion to the response analyzer 246d of the local proxy shown in the example of
FIG. 2B. Since the proxy server 325 is able to receive responses from the application
server/content source 310 directed to the mobile device 250, the proxy server 325 (e.g., the
response analyzer 361) can perform similar response analysis steps to determine cacheability,
as described for the response analyzer of the local proxy. The responses can be analyzed in
addition to or in licu of the analysis that can be performed at the local proxy 275 on the

mobile device 250.

[00330] Furthermore, the schedule update engine 358c can update the polling interval of a
given application server/content host based on application request interval changes of the
application at the mobile device 250 as described for the schedule update engine in the local
proxy 275. The time adjustment engine 358d can set an initial time at which polls of the
application server/content host is to begin to prevent the serving of out of date content once
again before serving fresh content as described for the schedule update engine in the local

proxy 275. Both the schedule updating and the time adjustment algorithms can be performed

78

WO 2012/149434 PCT/US2012/035608

in conjunction with or in licu of the similar processes performed at the local proxy 275 on the

mobile device 250.

[00331] FIG. 3C depicts a block diagram illustrating another example of components in
the caching policy manager 355 in the proxy server 375 on the server-side of the distributed
proxy system shown in the example of FIG. 3A which is capable of managing and detecting

cache defeating mechanisms and monitoring content sources.

[00332] The caching policy manager 355, in one embodiment, can further include a cache
defeating source manager 352, a content source monitoring engine 357 having a poll schedule
manager 358, and/or an updated or new content detector 359. The cache defeating source
manager 352 can further include an identifier modifier module 353 and/or an identifier

pattern tracking module 354.

[00333] In one embodiment, the proxy server (e.g., the proxy server 125 or 325 of the
examples of FIGS 1B-1C and FIG. 3A) can monitor a content source for new or changed
data via the monitoring engine 357. The content source (e.g., application server/content
provider 110 of FIGS 1B-1C or 310 of FIG. 3A) can be one that has been identified to the
proxy server (e.g., by the local proxy) as having content that is being locally cached on a
mobile device (e.g., mobile device 150 or 250). The content source 310 can be monitored,
for example, by the monitoring engine 357 at a frequency that is based on polling frequency
of the content source at the mobile device. The poll schedule can be generated, for example,
by the local proxy and sent to the proxy server 325. The poll frequency can be tracked and/or
managed by the poll schedule manager 358.

[00334] In one embodiment, the proxy server 325 uses a normalized identifier or
modified identifier in polling the content source 310 to detect new or changed data
(responses). The normalized identifier or modified identifier can also be used by the proxy
server 325 in storing responses on the server cache 335. In general, the normalized or
modified identifiers can be used when cache defeat mechanisms are employed for cacheable
content. Cache defeat mechanisms can be in the form of a changing parameter in an
identifier such as a URI or URL and can include a changing time/data parameter, a randomly

varying parameter, or other types parameters.

[00335] The normalized identifier or modified identifier removes or otherwise replaces

the changing parameter for association with subsequent requests and identification of

79

WO 2012/149434 PCT/US2012/035608

associated responses and can also be used to poll the content source. In one embodiment, the
modified identifier is generated by the cache defeating source manager 352 (e.g., the
identifier modifier module 353) of the caching policy manager 355 on the proxy server 325
(server-side component of the distributed proxy system). The modified identifier can utilize a
substitute parameter (which is generally static over a period of time) in place of the changing

parameter that is used to defeat cache.

[00336] The cache defeating source manager 352 optionally includes the identifier pattern
tracking module 354 to track, store, and monitor the various modifications of an identifier or
identifiers that address content for one or more content sources (e.g., application
server/content host 110 or 310) to continuously verify that the modified identifiers and/or
normalized identifiers used by the proxy server 325 to poll the content sources work as
predicted or intended (e.g., receive the same responses or responses that are otherwise still

relevant compared to the original, unmodified identifier).

[00337] In the event that the pattern tracking module 354 detects a modification or
normalization of an identifier that causes erratic or unpredictable behavior (e.g., unexpected
responses to be sent) on the content source, the tracking module 354 can log the modification
and instruct the cache defeating source manager 352 to generate another
modification/normalization, or notify the local proxy (e.g., local proxy 275) to generate
another modification/normalization for use in polling the content source. In the alternative or
in parallel, the requests from the given mobile application/client on the mobile device (e.g.,
mobile device 250) can temporarily be sent across the network to the content source for direct
responses to be provided to the mobile device and/or until a modification of an identifier

which works can be generated.

[00338] In one embodiment, responses are stored as server cache elements in the server
cache when new or changed data is detected for a response that is already stored on a local
cache (e.g., cache 285) of the mobile device (e.g., mobile device 250). Therefore, the mobile
device or local proxy 275 can connect to the proxy server 325 to retrieve the new or changed
data for a response to a request which was previously cached locally in the local cache 285

(now invalid, out-dated, or otherwise determined to be irrelevant).

[00339] The proxy server 325 can detect new or changed data at a monitored application

server/content host 310 and transmits a message to the mobile device notifying it of such a

80

WO 2012/149434 PCT/US2012/035608

change such that the mobile device (or the local proxy on the mobile device) can take
appropriate action (e.g., to invalidate the cache elements in the local cache). In some
instances, the proxy server (e.g., the caching policy manager 355), upon detecting new or
changed data, can also store the new or changed data in its cache (e.g., the server cache 135
or 335 of the examples of FIG. 1C and FIG. 3A, respectively). The updated/new data stored
in the server cache can be used, in some instances, to satisfy content requests at the mobile
device; for example, it can be used after the proxy server has notified the mobile device of the

new/changed content and that the locally cached content has been invalidated.

[00340] FIG. 3D depicts a block diagram illustrating examples of additional components
in proxy server 325 shown in the example of FIG. 3A which is further capable of performing
mobile traffic categorization and policy implementation based on application behavior and/or

traffic priority.

[00341] In one embodiment of the proxy server 325, the traffic shaping engine 375 is
further coupled to a traffic analyzer 336 for categorizing mobile traffic for policy definition
and implementation for mobile traffic and transactions directed to one or more mobile
devices (e.g., mobile device 250 of FIGS 2A-2D) or to an application server/content host
(e.g., 110 of FIGS 1B-1C). In general, the proxy server 325 is remote from the mobile
devices and remote from the host server, as shown in the examples of FIGS 1B-1C. The
proxy server 325 or the host server 300 can monitor the traffic for multiple mobile devices
and is capable of categorizing traffic and devising traffic policies for different mobile

devices.

[00342] In addition, the proxy server 325 or host server 300 can operate with multiple
carriers or network operators and can implement carrier-specific policies relating to
categorization of traffic and implementation of traffic policies for the various categories. For
example, the traffic analyzer 336 of the proxy server 325 or host server 300 can include one
or more of, a prioritization engine 341a, a time criticality detection engine 341b, an

application state categorizer 341c, and/or an application traffic categorizer 341d.

[00343] Each of these engines or modules can track different criterion for what is
considered priority, time critical, background/foreground, or interactive/maintenance based
on different wireless carriers. Different criterion may also exist for different mobile device

types (e.g., device model, manufacturer, operating system, etc.). In some instances, the user

81

WO 2012/149434 PCT/US2012/035608

of the mobile devices can adjust the settings or criterion regarding traffic category and the

proxy server 325 is able to track and implement these user adjusted/configured settings.

[00344] In one embodiment, the traffic analyzer 336 is able to detect, determined,
identify, or infer, the activity state of an application on one or more mobile devices (e.g.,
mobile device 150 or 250) which traffic has originated from or is directed to, for example, via
the application state categorizer 341c and/or the traffic categorizer 341d. The activity state
can be determined based on whether the application is in a foreground or background state on
one or more of the mobile devices (via the application state categorizer 341c¢) since the traffic
for a foreground application vs. a background application may be handled differently to

optimize network use.

[00345] In the alternate or in combination, the activity state of an application can be
determined by the wirelessly connected mobile devices (e.g., via the application behavior
detectors in the local proxies) and communicated to the proxy server 325. For example, the
activity state can be determined, detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status at mobile devices (e.g., by a backlight detector) or
other software agents or hardware sensors on the mobile device, including but not limited to,
resistive sensors, capacitive sensors, ambient light sensors, motion sensors, touch sensors,
etc. In general, if the backlight is on, the traffic can be treated as being or determined to be
generated from an application that is active or in the foreground, or the traffic is interactive.
In addition, if the backlight is on, the traffic can be treated as being or determined to be traffic
from user interaction or user activity, or traffic containing data that the user is expecting

within some time frame.

[00346] The activity state can be determined from assessing, determining, evaluating,
inferring, identifying user activity at the mobile device 250 (e.g., via the user activity module
215) and communicated to the proxy server 325. In one embodiment, the activity state is
determined based on whether the traffic is interactive traffic or maintenance traffic.
Interactive traffic can include transactions from responses and requests generated directly
from user activity/interaction with an application and can include content or data that a user is
waiting or expecting to receive. Maintenance traffic may be used to support the functionality
of an application which is not directly detected by a user. Maintenance traffic can also
include actions or transactions that may take place in response to a user action, but the user is

not actively waiting for or expecting a response.

82

WO 2012/149434 PCT/US2012/035608

[00347] The time criticality detection engine 341b can generally determine, identify, infer
the time sensitivity of data contained in traffic sent from the mobile device 250 or to the
mobile device from the host server 300 or proxy server 325, or the application server (e.g.,
app server/content source 110). For example, time sensitive data can include, status updates,
stock information updates, IM presence information, email messages or other messages,

actions generated from mobile gaming applications, webpage requests, location updates, etc.

[00348] Data that is not time sensitive or time critical, by nature of the content or request,
can include requests to delete messages, mark-as-read or edited actions, application-specific
actions such as a add-friend or delete-friend request, certain types of messages, or other
information which does not frequently changing by nature, etc. In some instances when the
data is not time critical, the timing with which to allow the traffic to be sent to a mobile
device is based on when there is additional data that needs to the sent to the same mobile
device. For example, traffic shaping engine 375 can align the traffic with one or more
subsequent transactions to be sent together in a single power-on event of the mobile device
radio (e.g., using the alignment module 378 and/or the batching module 377). The alignment
module 378 can also align polling requests occurring close in time directed to the same host

server, since these request are likely to be responded to with the same data.

[00349] In general, whether new or changed data is sent from a host server to a mobile
device can be determined based on whether an application on the mobile device to which the
new or changed data is relevant, is running in a foreground (e.g., by the application state
categorizer 341c¢), or the priority or time criticality of the new or changed data. The proxy
server 325 can send the new or changed data to the mobile device if the application is in the
foreground on the mobile device, or if the application is in the foreground and in an active
state interacting with a user on the mobile device, and/or whether a user is waiting for a
response that would be provided in the new or changed data. The proxy server 325 (or traffic
shaping engine 375) can send the new or changed data that is of a high priority or is time

critical.

[00350] Similarly, the proxy server 325 (or the traffic shaping engine 375) can
suppressing the sending of the new or changed data if the application is in the background on
the mobile device. The proxy server 325 can also suppress the sending of the new or changed

data if the user is not waiting for the response provided in the new or changed data; wherein

83

WO 2012/149434 PCT/US2012/035608

the suppressing is performed by a proxy server coupled to the host server and able to

wirelessly connect to the mobile device.

[00351] In general, if data, including new or change data is of a low priority or is not time
critical, the proxy server can waiting to transfer the data until after a time period, or until
there is additional data to be sent (e.g. via the alignment module 378 and/or the batching

module 377).

[00352] FIG. 4A depicts a block diagram illustrating another example of client-side
components in a distributed proxy and cache system, further including a state detection and
preservation engine 401. FIG. 4B depicts a block diagram illustrating additional components

in the state detection and preservation engine 401 shown in the example of FIG. 4A.

[00353] In one embodiment, the local proxy 775 includes a cache policy manager 701
having a cache invalidator 702 and a cache state detector 711 having a cache state resolver
engine 712. The cache state detector 711, for example, can determine the state (e.g.,
including request ordering, request timing, interval between requests, response status,
response ordering, response timing, valid or invalid, etc.) information of various requests
made by a mobile application and subsequently offloaded to the host server. The cache state
detector 711 can receive the state information (e.g., the state information 626 of FIG. 6) from
the host server 600. State information can then be used by the cache revolver engine 712 to
identify an appropriate manner in which to satisfy an impending request for which an

application is expecting a response.

[00354] For example, the cache resolver engine 712 can select between a response
stored in a local cache or a response stored on the host server. The cache resolve engine 712,
upon receiving an invalidate of a cached entry (e.g., invalidate 614 received from the host
600 as shown in the example of FIG. 6), can use the state information to identify the request
for which the invalidated response corresponds to and either send the request over the air
directly to the app/server (e.g. server 610 of FIG. 6) or request the host server 600 for the
valid (e.g., changed or new) response, if appropriate. In general, the cache resolver engine
712 communicates with the host server to identify, detect, and/or track the status of requests
handled by the host for an application/service on the device to ensure that responses are
received in an order and timing that corresponds to the order and timing with which the

requests are made.

84

WO 2012/149434 PCT/US2012/035608

[00355] The local proxy 775 can be coupled to a local cache 785 as shown or
internally include the local cache 785 in part or in whole. The local proxy 775 may be the
same or similar proxy as the local proxy 125 or 225 in the examples of FIG. 1B and FIG. 2.
For example, the cache policy manager 701 may be the same as the cache policy manger 245
shown in the example of FIG. 2 and the local proxy 275 may further include an invalidator,

cache state detector, and/or cache state revolver engine.

[00356] In some instances, some or all of the components in the proxy 775 may be
separate from the local proxy 275 residing on the mobile device 250 of FIG. 2. For example,
the mobile device 250 may include both proxy 275 and the proxy 775. The components
including the cache policy manager 701, cache invalidator 702, the cache state detector 711,
the cache state resolver engine 712 or the associated functionalities can reside in the proxy
775 as shown or partially reside the proxy 275 (e.g., as for use with the cache policy manager
245) in addition to the components in 775 or in lieu of. In other words, in the event that
proxies 275 and 775 are distinct proxies on a given device, they can include some or all of the
same components/features. Additional or less components/modules/engines can be included

in the local proxy 775 and each illustrated component.

[00357] FIG. 5A depicts a block diagram illustrating an example of server-side
components in a distributed proxy and cache system, further including a state detection and
preservation engine 501. FIG. 5B depicts a block diagram illustrating additional components

in the state detection and preservation engine 501 shown in the example of FIG. SA.

[00358] In one embodiment, the proxy server 825 includes a cache policy manager 855
and a poll state tracker 831 having a per-device state manager 811 and/or a per-application
state manager 821. As described in association with FIG. 6 and FIG. 7, the poll state tracker
830 can track states of requests made by the host for multiple mobile devices. The states can
be tracked on a per-device basis (e.g., by the per-device state manager 811). In addition, the
poll state tracker 831 also tracks states on a per-application basis on each device (e.g., by the
per-application state manager 821) such that user experience with respect to individual
mobile applications on the mobile device is preserved or replicated as if the requests were
made directly from the mobile device to the app server/content provider (e.g., server/provider

610).

85

WO 2012/149434 PCT/US2012/035608

[00359] The proxy server 825 can be coupled to a cache 886 as shown or internally
include the cache 886 in part or in whole. The proxy server 825 may be the same or similar
proxy as the proxy server 125 or 325 in the examples of FIG. 1B and FIG. 3. For example,
the cache policy manager 855 may be the same as the cache policy manger 355 shown in the
example of FIG. 3 and the proxy 325 may further include a poll state tracker having a per-

device state manager and/or a per-application state manager.

[00360] In some instances, some or all of the components in the proxy server 825 may
be separate from the proxy 325 residing on the host server 300 of FIG. 3. For example, the
host server 300 may include both proxy 325 and the proxy 825. The components including
the cache policy manager 855 and the poll state tracker 831 having the per-device state
manager 811 and/or the per-application state manager 821 or the associated functionalities
can reside in the proxy 825 as shown or partially reside the 325 (e.g., as for use with the
cache policy manager 355) in addition to the components in 825 or in licu of. In other words,
in the event that proxies 325 and 825 are distinct proxies on a host server, they can include
some or all of the same components/features. Additional or less
components/modules/engines can be included in the proxy 825 and each illustrated

component.

[00361] FIG. 6A depicts another flow diagram illustrating an example process for
distributed content caching between a mobile device and a proxy server and the distributed

management of content caching.

[00362] As shown in the distributed system interaction diagram in the example of FIG. 4,
the disclosed technology is a distributed caching model with various aspects of caching tasks
split between the client-side/mobile device side (e.g., mobile device 450 in the example of
FIG. 4) and the server side (e.g., server side 470 including the host server 485 and/or the
optional caching proxy 475).

[00363] In general the device-side responsibilities can include deciding whether a
response to a particular request can be and/or should be cached. The device-side of the proxy
can make this decision based on information (e.g., timing characteristics, detected pattern,
detected pattern with heuristics, indication of predictability or repeatability) collected

from/during both request and response and cache it (e.g., storing it in a local cache on the

86

WO 2012/149434 PCT/US2012/035608

mobile device). The device side can also notify the server-side in the distributed cache
system of the local cache event and notify it monitor the content source (e.g., application

server/content provider 110 of FIGS 1B-C).

[00364] The device side can further instruct the server side of the distributed proxy to
periodically validate the cache response (e.g., by way of polling, or sending polling requests
to the content source). The device side can further decide whether a response to a particular
cache request should be returned from the local cache (e.g., whether a cache hit is detected).
The decision can be made by the device side (e.g., the local proxy on the device) using

information collected from/during request and/or responses received from the content source.

[00365] In general, the server-side responsibilities can include validating cached
responses for relevancy (e.g., determine whether a cached response is still valid or relevant to
its associated request). The server-side can send the mobile device an invalidation request to
notify the device side when a cached response is detected to be no longer valid or no longer
relevant (e.g., the server invalidates a given content source). The device side then can

remove the response from the local cache.

[00366] The diagram of FIG. 6A illustrates caching logic processes performed for each
detected or intercepted request (e.g., HTTP request) detected at a mobile device (e.g., client-
side of the distributed proxy). In step 602, the client-side of the proxy (e.g., local proxy 275
shown in FIG. 2A-B or mobile device 450 of FIG. 4) receives a request (from an application
(e.g., mobile application) or mobile client). In step 604, URL is normalized and in step 606
the client-side checks to determine if the request is cacheable. If the request is determined to
be not cacheable in step 612, the request is sent to the source (application server/content
provider) in step 608 and the response is received 610 and delivered to the requesting

application 622, similar to a request-response sequence without interception by the client side

proxy.

[00367] If the request is determined to be cacheable, in step 612, the client-side looks up
the cache to determine whether a cache entry exists for the current request. If so, in step 624,
the client-side can determine whether the entry is valid and if so, the client side can check the
request to see if includes a validator (e.g., a modified header or an entity tag) in step 615. For
example, the concept of validation is eluded to in section 13.3 of RFC 2616 which describes

in possible types of headers (e.g., € TAG, Modified Since, must revlaidate, pragma

&7

WO 2012/149434 PCT/US2012/035608

no_cache) and forms a validating response 632 if so to be delivered to the requesting
application in step 622. If the request does not include a validator as determined by step 615,
a response is formed from the local cache in step 630 and delivered to the requesting
application in step 622. This validation step can be used for content that would otherwise

normally be considered un-cacheable.

[00368] If, instead, in step 624, the cache entry is found but determined to be no longer
valid or invalid, the client side of the proxy sends the request 616 to the content source
(application server/content host) and receives a response directly fro the source in step 618.
Similarly, if in step 612, a cache entry was not found during the look up, the request is also
sent in step 616. Once the response is received, the client side checks the response to
determine if it is cacheable in step 626. If so, the response is cached in step 620. The client
then sends another poll in step 614 and then delivers the response to the requesting

application in step 622.

[00369] FIG. 6B depicts a diagram showing how data requests from a mobile device 450
to an application server/content provider 495 in a wireless network can be coordinated by a
distributed proxy system 460 in a manner such that network and battery resources are
conserved through using content caching and monitoring performed by the distributed proxy

system 460.

[00370] In satisfying application or client requests on a mobile device 450 without the
distributed proxy system 460, the mobile device 450, or the software widget executing on the
device 450, performs a data request 452 (e.g., an HTTP GET, POST, or other request)
directly to the application server 495 and receives a response 404 directly from the
server/provider 495. If the data has been updated, the widget 455 on the mobile device 450
can refreshes itself to reflect the update and waits for small period of time and initiates

another data request to the server/provider 495.

[00371] In one embodiment, the requesting client or software widget 455 on the device
450 can utilize the distributed proxy system 460 in handling the data request made to
server/provider 495. In general, the distributed proxy system 460 can include a local proxy
465 (which is typically considered a client-side component of the system 460 and can reside
on the mobile device 450), a caching proxy 475 (considered a server-side component 470 of

the system 460 and can reside on the host server 485 or be wholly or partially external to the

88

WO 2012/149434 PCT/US2012/035608

host server 485), and a host server 485. The local proxy 465 can be connected to the caching

proxy 475 and host server 485 via any network or combination of networks.

[00372] When the distributed proxy system 460 is used for data/application requests, the
widget 455 can perform the data request 456 via the local proxy 465. The local proxy 465,
can intercept the requests made by device applications, and can identify the connection type
of the request (e.g., an HTTP get request or other types of requests). The local proxy 465 can
then query the local cache for any previous information about the request (e.g., to determine
whether a locally stored response is available and/or still valid). If a locally stored response
is not available or if there is an invalid response stored, the local proxy 465 can update or
store information about the request, the time it was made, and any additional data, in the local

cache. The information can be updated for use in potentially satisfying subsequent requests.

[00373] The local proxy 465 can then send the request to the host server 485 and the host
server 485 can perform the request 456 and returns the results in response 458. The local
proxy 465 can store the result and, in addition, information about the result and returns the

result to the requesting widget 455.

[00374] In one embodiment, if the same request has occurred multiple times (within a
certain time period) and it has often yielded same results, the local proxy 465 can notify 460
the server 485 that the request should be monitored (e.g., steps 462 and 464) for result

changes prior to returning a result to the local proxy 465 or requesting widget 455.

[00375] In one embodiment, if a request is marked for monitoring, the local proxy 465
can now store the results into the local cache. Now, when the data request 466, for which a
locally response is available, is made by the widget 455 and intercepted at the local proxy
465, the local proxy 465 can return the response 468 from the local cache without needing to

establish a connection communication over the wireless network.

[00376] In addition, the server proxy performs the requests marked for monitoring 470 to
determine whether the response 472 for the given request has changed. In general, the host
server 485 can perform this monitoring independently of the widget 455 or local proxy 465
operations. Whenever an unexpected response 472 is received for a request, the server 485
can notify the local proxy 465 that the response has changed (e.g., the invalidate notification
in step 474) and that the locally stored response on the client should be erased or replaced

with a new response.

&9

WO 2012/149434 PCT/US2012/035608

[00377] In this case, a subsequent data request 476 by the widget 455 from the device 450
results in the data being returned from host server 485 (e.g., via the caching proxy 475), and
in step 478, the request is satisfied from the caching proxy 475. Thus, through utilizing the
distributed proxy system 460, the wireless (cellular) network is intelligently used when the
content/data for the widget or software application 455 on the mobile device 450 has actually
changed. As such, the traffic needed to check for the changes to application data is not
performed over the wireless (cellular) network. This reduces the amount of generated
network traffic and shortens the total time and the number of times the radio module is
powered up on the mobile device 450, thus reducing battery consumption and, in addition,

frees up network bandwidth.

[00378] FIG. 7 depicts a table 700 showing examples of different traffic or application
category types which can be used in implementing network access and content delivery
policies. For example, traffic/application categories can include interactive or background,
whether a user is waiting for the response, foreground/background application, and whether

the backlight is on or off.

[00379] FIG. 8 depicts a table 800 showing examples of different content category types
which can be used in implementing network access and content delivery policies. For
example, content category types can include content of high or low priority, and time critical

or non-time critical content/data.

[00380] FIG. 9 depicts an interaction diagram showing how application (e.g., mobile
application) 955 polls having data requests from a mobile device to an application
server/content provider 995 over a wireless network can be can be cached on the local proxy
965 and managed by the distributed caching system (including local proxy 965 and the host

server 985 (having server cache 935 or caching proxy server 975)).

[00381] In one example, when the mobile application/widget 955 polls an application
server/provider 932, the poll can locally be intercepted 934 on the mobile device by local
proxy 965. The local proxy 965 can detect that the cached content is available for the polled
content in the request and can thus retrieve a response from the local cache to satisfy the
intercepted poll 936 without requiring use of wireless network bandwidth or other wireless
network resources. The mobile application/widget 955 can subsequently receive a response

to the poll from a cache entry 938.

90

WO 2012/149434 PCT/US2012/035608

[00382] In another example, the mobile application widget 955 polls the application
server/provider 940. The poll is intercepted 942 by the local proxy 965 and detects that cache
content is unavailable in the local cache and decides to set up the polled source for caching
944. To satisfy the request, the poll is forwarded to the content source 946. The application
server/provider 995 receives the poll request from the application and provides a response to
satisfy the current request 948. In 950, the application (e.g., mobile application)/widget 955

receives the response from the application server/provider to satisfy the request.

[00383] In conjunction, in order to set up content caching, the local proxy 965 tracks the
polling frequency of the application and can set up a polling schedule to be sent to the host
server 952. The local proxy sends the cache set up to the host server 954. The host server
985 can use the cache set up which includes, for example, an identification of the application
server/provider to be polled and optionally a polling schedule 956. The host server 985 can
now poll the application server/provider 995 to monitor responses to the request 958 on
behalf of the mobile device. The application server receives the poll from the host server and
responds 960. The host server 985 determines that the same response has been received and
polls the application server 995 according to the specified polling schedule 962. The

application server/content provider 995 receives the poll and responds accordingly 964.

[00384] The host server 985 detects changed or new responses and notifies the local
proxy 965. The host server 985 can additional store the changed or new response in the
server cache or caching proxy 968. The local proxy 965 receives notification from the host
server 985 that new or changed data is now available and can invalidate the affected cache
entries 970. The next time the application (e.g., mobile application)/widget 955 generates the
same request for the same server/content provider 972, the local proxy determines that no
valid cache entry is available and instead retrieves a response from the server cache 974, for
example, through an HTTP connection. The host server 985 receives the request for the new
response and sends the response back 976 to the local proxy 965. The request is thus
satisfied from the server cache or caching proxy 978 without the need for the mobile device
to utilize its radio or to consume mobile network bandwidth thus conserving network

reésources.

[00385] Alternatively, when the application (e.g., mobile application) generates the same
request in step 980, the local proxy 965, in response to determining that no valid cache entry

is available, forwards the poll to the application server/provider in step 982 over the mobile

91

WO 2012/149434 PCT/US2012/035608

network. The application server/provider 995 receives the poll and sends the response back
to the mobile device in step 984 over the mobile network. The request is thus satisfied from

the server/provider using the mobile network in step 986.

[00386] FIG. 10 depicts an interaction diagram showing how application 1055 polls for
content from an application server/content provider 1095 which employs cache-defeating
mechanisms in content identifiers (e.g., identifiers intended to defeat caching) over a wireless

network can still be detected and locally cached.

[00387] In one example, when the application (e.g., mobile application)/widget 1055
polls an application server/provider in step 1032, the poll can locally be intercepted in step
1034 on the mobile device by local proxy 1065. In step 1034, the local proxy 1065 on the
mobile device may also determine (with some level of certainty and heuristics) that a cache

defeating mechanism is employed or may be employed by the server provider.

[00388] The local proxy 1065 can detect that the cached content is available for the polled
content in the request and can thus retrieve a response from the local cache to satisfy the
intercepted poll 1036 without requiring use of wireless network bandwidth or other wireless
network resources. The application (e.g., mobile application)/widget 1055 can subsequently
receive a response to the poll from a cache entry in step 1038 (e.g., a locally stored cache

entry on the mobile device).

[00389] In another example, the application (e.g., mobile application) widget 1055 polls
the application server/provider 1095 in step 1040. The poll is intercepted in step 1042 by the
local proxy 1065 which determines that a cache defeat mechanism is employed by the
server/provider 1095. The local proxy 1065 also detects that cached content is unavailable in
the local cache for this request and decides to setup the polled content source for caching in
step 1044. The local proxy 1065 can then extract a pattern (e.g., a format or syntax) of an
identifier of the request and track the polling frequency of the application to setup a polling
schedule of the host server 1085 in step 1046.

[00390] To satisfy the request, the poll request is forwarded to the content provider 1095
in step 1048. The application server/provider 1095 receives the poll request from the
application and provides a response to satisfy the current request in step 1050. In step 1052,
the application (e.g., mobile application)/widget 1055 receives the response from the

application server/provider 1095 to satisfy the request.

92

WO 2012/149434 PCT/US2012/035608

[00391] In conjunction, in order to setup content caching, the local proxy 1065 caches the
response and stores a normalized version of the identifier (or a hash value of the normalized
identifier) in association with the received response for future identification and retrieval in
step 1054. The local proxy sends the cache setup to the host server 1085 in step 1056. The
cache setup includes, for example, the identifier and/or a normalized version of the identifier.
In some instances, a modified identifier, different from the normalized identifier, is sent to

the host server 1085.

[00392] The host server 1085 can use the cache setup, which includes, for example, an
identification of the application server/provider to be polled and optionally a polling schedule
in step 1058. The host server 1085 can now poll the application server/provider 1095 to
monitor responses to the request in step 1060 on behalf of the mobile device. The application
server 1095 receives the poll from the host server 1085 responds in step 1062. The host
server 1085 determines that the same response has been received and polls the application
server 1095, for example, according to the specified polling schedule and using the
normalized or modified identifier in step 1064. The application server/content provider 1095

receives the poll and responds accordingly in step 1066.

[00393] This time, the host server 1085 detects changed or new responses and notifies the
local proxy 1065 in step 1068. The host server 1085 can additionally store the changed or
new response in the server cache 1035 or caching proxy 1075 in step 1070. The local proxy
1065 receives notification from the host server 1085 that new or changed data is now
available and can invalidate the affected cache entries in step 1072. The next time the
application (e.g., mobile application)/widget generates the same request for the same
server/content provider 1095 in step 1074, the local proxy 1065 determines that no valid
cache entry is available and instead retrieves a response from the server cache in step 1076,
for example, through an HTTP connection. The host server 1085 receives the request for the
new response and sends the response back to the local proxy 1065 in step 1078. The request
is thus satisfied from the server cache or caching proxy in step 1080 without the need for the
mobile device to utilize its radio or to consume mobile network bandwidth thus conserving

network resources.

[00394] Alternatively, when the application (e.g., mobile application) 1055 generates the
same request, the local proxy 1065, in response to determining that no valid cache entry is

available in step 1084, forwards the poll to the application server provider 1095 in step 1082

93

WO 2012/149434 PCT/US2012/035608

over the mobile network. The application server/provider 1095 receives the poll and sends
the response back to the mobile device in step 1086 over the mobile network. The request is

thus satisfied from the server/provider using the mobile network 1086 in step 1088.

[00395] FIG. 11 depicts a flow chart illustrating an example process for collecting
information about a request and the associated response to identify cacheability and caching

the response.

[00396] In process 1102, information about a request and information about the response
received for the request is collected. In processes 1104 and 1106, information about the
request initiated at the mobile device and information about the response received for the
request are used in aggregate or independently to determine cacheability at step 1108. The
details of the steps for using request and response information for assessing cacheability are

illustrated at flow A as further described in the example of FIG. 12.

[00397] In step 1108, if based on flow A it is determined that the response is not
cacheable, then the response is not cached in step 1110, and the flow can optionally restart at

1102 to collect information about a request or response to again assess cacheability.

[00398] In step 1108, if it is determined from flow A that the response is cacheable, then
in 1112 the response can be stored in the cache as a cache entry including metadata having
additional information regarding caching of the response. The cached entry, in addition to
the response, includes metadata having additional information regarding caching of the
response. The metadata can include timing data including, for example, access time of the

cache entry or creation time of the cache entry.

[00399] After the response is stored in the cache, a parallel process can occur to
determine whether the response stored in the cache needs to be updated in process 1120. If
s0, the response stored in the cache of the mobile device is invalided or removed from the
cache of the mobile device, in process 1122. For example, relevance or validity of the
response can be verified periodically by polling a host server to which the request is directed
on behalf of the mobile device. The host server can be polled at a rate determined at the
mobile device using request information collected for the request for which the response is
cached. The rate is determined from averages of time intervals between previous requests

generated by the same client which generated the request.

94

WO 2012/149434 PCT/US2012/035608

[00400] The verifying can be performed by an entity that is physically distinct from the
mobile device. In one embodiment, the entity is a proxy server coupled to the mobile device
and able to communicate wirelessly with the mobile device and the proxy server polls a host
server to which the request is directed at the rate determined at the mobile device based on
timing intervals between previous requests generated by the same client which generated the

request.

[00401] In process 1114, a subsequent request for the same client or application is
detected. In process 1116, cache look-up in the local cache is performed to identify the cache
entry to be used in responding to the subsequent request. In one embodiment, the metadata is
used to determine whether the response stored as the cached entry is used to satisfy the
subsequent response. In process 1118, the response can be served from the cache to satisfy a
subsequent request. The response can be served in response to identifying a matching cache

entry for the subsequent request determined at least in part using the metadata.

[00402] FIG. 12 depicts a flow chart illustrating an example process for a decision flow

to determine whether a response to a request can be cached.

[00403] Process 1202 determines if the request is directed to a blacklisted destination. If
s0, the response is not cached, in step 1285. If a blacklisted destination is detected, or if the
request itself is associated with a blacklisted application, the remainder of the analysis shown
in the figure may not be performed. The process can continue to steps 1204 and 1206 if the

request and its destination are not blacklisted.

[00404] In process 1204, request characteristics information associated with the request is
analyzed. In analyzing the request, in process 1208, the request method is identified and in
step 1214, it is determined whether the response can be cached based on the request method.
If an uncacheable request is detected, the request is not cached and the process may terminate
at process 1285. If the request method is determined to be cacheable, or not uncacheable,
then the response can be identified as cacheable or potentially cacheable (e.g., cacheable but

subject to the other tests and analysis shown in the figure) at step 1295.

[00405] In process 1210, the size of the request is determined. In process 1216, it is
determined whether the request size exceeds a cacheable size. If so, the response is not
cached and the analysis may terminate here at process 1285. If the request size does not

exceed a cacheable size in step 1216, then the response can be identified as cacheable or

95

WO 2012/149434 PCT/US2012/035608

potentially cacheable (e.g., cacheable but subject to the other tests and analysis shown in the

figure) at step 1295.

[00406] In step 1212, the periodicity information between the request and other requests
generated by the same client is determined. In step 1218, it is determined whether periodicity
has been identified. If not, the response is not cached and the analysis may terminate here at
process 1285. If so, then the response can be identified as cacheable or potentially cacheable

(e.g., cacheable but subject to the other tests and analysis shown in the figure) at step 1295.

[00407] In process 1206, the request characteristics information associated with the

response received for the request is analyzed.

[00408] In process 1220, the status code is identified and determined whether the status
code indicates a cacheable response status code in process 1228. If an uncacheable status
code is detected, the request is not cached and the process may terminate at process 1285. If
the response status code indicates cacheability, or not uncacheable, then the response can be
identified as cacheable or potentially cacheable (e.g., cacheable but subject to the other tests

and analysis shown in the figure) at step 1295.

[00409] In process 1222, the size of the response is determined. In process 1230, it is
determined whether the response size exceeds a cacheable size. If so, the response is not
cached and the analysis may terminate here at process 1285. If the response size does not
exceed a cacheable size in step 1230, then the response can be identified as cacheable or
potentially cacheable (e.g., cacheable but subject to the other tests and analysis shown in the

figure) at step 1295.

[00410] In process 1224, the response body is analyzed. In process 1232, it is determined
whether the response contains dynamic content or highly dynamic content. Dynamic content
includes data that changes with a high frequency and/or has a short time to live or short time
of relevance due to the inherence nature of the data (e.g., stock quotes, sports scores of fast
pace sporting events, etc.). If so, the response is not cached and the analysis may terminate
here at process 1285. If not, then the response can be identified as cacheable or potentially
cacheable (e.g., cacheable but subject to the other tests and analysis shown in the figure) at

step 1295.

96

WO 2012/149434 PCT/US2012/035608

[00411] Process 1226 determines whether transfer encoding or chunked transfer encoding
is used in the response. If so, the response is not cached and the analysis may terminate here
at process 1285. If not, then the response can be identified as cacheable or potentially
cacheable (e.g., cacheable but subject to the other tests and analysis shown in the figure) at

step 1295.

[00412] Not all of the tests described above need to be performed to determined whether
a response is cached. Additional tests not shown may also be performed. Note that any of
the tests 1208, 1210, 1212, 1220, 1222, 1224, and 1226 can be performed, singly or in any
combination to determine cacheability. In some instances, all of the above tests are
performed. In some instances, all tests performed (any number of the above tests that are
actually performed) need to confirm cacheability for the response to be determined to be
cacheable. In other words, in some cases, if any one of the above tests indicate non-
cacheability, the response is not cached, regardless of the results of the other tests. In other
cases, different criteria can be used to determine which tests or how many tests need to pass
for the system to decide to cache a given response, based on the combination of request

characteristics and response characteristics.

[00413] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request periodicity and/or response repeatability.

[00414] In process 1302, requests generated by the client are tracked to detect periodicity
of the requests. In process 1306, it is determined whether there are predictable patterns in the
timing of the requests. If so, the response content may be cached in process 1395. If not, in
process 1308 it is determined whether the request intervals fall within a tolerance level. If so,
the response content may be cached in process 1395. If not, the response is not cached in

process 1385.

[00415] In process 1304, responses received for requests generated by the client are
tracked to detect repeatability in content of the responses. In process 1310, hash values of
response bodies of the responses received for the client are examined and in process 1312 the
status codes associated with the responses are examined. In process 1314, it is determined
whether there is similarity in the content of at least two of the responses using hash values
and/or the status codes. If so, the response may be cached in process 1395. If not, the

response is not cached in 1385.

97

WO 2012/149434 PCT/US2012/035608

[00416] FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

[00417] In process 1402, requests generated by a client or directed to a host are tracked at
the mobile device to detect periodicity of the requests. Process 1404 determines if the request
intervals between the two or more requests are the same or approximately the same. In
process 1406, it is determined that the request intervals between the two or more requests fall

within the tolerance level.

[00418] Based on the results of steps 1404 and 1406, the response for the requests for

which periodicity is detected is received in process 1408.

[00419] In process 1412, a response is cached as a cache entry in a cache of the mobile
device. In process 1414, the host is monitored at a rate to verify relevance or validity of the
cache entry, and simultaneously, in process 1416, the response can be served from the cache

to satisfy a subsequent request.

[00420] In process 1410, a rate to monitor a host is determined from the request interval,
using, for example, the results of processes 1404 and/or 1406. In process 1420, the rate at
which the given host is monitored is set to verify relevance or validity of the cache entry for
the requests. In process 1422, a change in request intervals for requests generated by the
client is detected. In process 1424, a different rate is computed based on the change in
request intervals. The rate at which the given host is monitored to verify relevance or validity

of the cache entry for the requests is updated in step 1420.

[00421] FIG. 15 depicts a flow chart illustrating example processes for application and/or
traffic (data) categorization while factoring in user activity and expectations for

implementation of network access and content delivery policies.

[00422] In process 1502, a system or server detects that new or changed data is available
to be sent to a mobile device. The data, new, changed, or updated, can include one or more
of, IM presence updates, stock ticker updates, weather updates, mail, text messages, news
feeds, friend feeds, blog entries, articles, documents, any multimedia content (e.g., images,
audio, photographs, video, etc.), or any others that can be sent over HTTP or wireless
broadband networks, either to be consumed by a user or for use in maintaining operation of

an end device or application.

98

WO 2012/149434 PCT/US2012/035608

[00423] In process 1504, the application to which the new or changed data is directed is
identified. In process 1506, the application is categorized based on the application. In
process 1508, the priority or time criticality of the new or changed data is determined. In
process 1510, the data is categorized. Based on the information determined from the
application and/or priority/time-sensitivity of the relevant data, any or all of a series of
evaluations can be performed to categorize the traffic and/or to formulate a policy for

delivery and/or powering on the mobile device radio.

[00424] For example, using the identified application information, in process 1512, it is
determined whether the application is in an active state interacting with a user on a mobile
device. In process 1514, it is determined if the application is running in the foreground on

the mobile device.

[00425] If the answer is ‘Yes’ to any number of the test of processes 1512 or 1514, the
system or server can then determine that the new or changed data is to be sent to the mobile
device in step 1526, and sent without delay. Alternatively, the process can continue at flow
‘C’ where the timing, along with other transmission parameters such as network
configuration, can be selected, as further illustrated in the example of FIG. 31. If the answer
is ‘No’ to the tests of 1512 or 1514, the other test can be performed in any order. As long as
one of the tests 1512 or 1514 is “Yes,’ then the system or server having the data can proceed

to step 1526 and/or flow ‘C.’

[00426] If the answer is ‘No’ to the tests 1512 and 1514 based on the application or
application characteristics, then the process can proceed to step 1524, where the sending of
the new or changed data is suppressed, at least on a temporary basis. The process can
continue in flow ‘A’ for example steps for further determining the timing of when to send the
data to optimize network use and/or device power consumption, as further described in the

example of flow chart in FIG. 29.

[00427] Similarly, in process 1516, it is determined whether the application is running in
the background. If so, the process can proceed to step 1524 where the sending of the new or
changed data is suppressed. However, even if the application is in the background state, any
of the remaining tests can be performed. For example, even if an application is in the

background state, new or changed data may still be sent if of a high priority or is time critical.

99

WO 2012/149434 PCT/US2012/035608

[00428] Using the priority or time sensitivity information, in process 1518, it is
determined whether the data is of high priority 1518. In process 1520, it is determined
whether the data is time critical. In process 1522, it is determined whether a user is waiting

for a response that would be provided in the available data.

[00429] If the answer is “Yes’ to any number of the test of processes 1518, 1520, or 1522,
the system or server can then determine that the new or changed data is to be sent to the
mobile device in step 1526, and sent without delay. Alternatively, the process can continue at
flow ‘C’ where the timing, along with other transmission parameters such as a network
configuration, can be selected, as further illustrated in the example of FIG. 31. If the answer
is ‘No’ to any of these tests, the other test can be performed in any order. As long as one of
the tests 1518, 1520, or 1522 is “Yes,’ then the system or server having the data can proceed
to step 1526 and/or flow ‘C.’

[00430] If the answer is ‘No’ to on¢ or more of the tests 1518, 1520, or 1522, then the
process can proceed to step 1524, where the sending of the new or changed data is
suppressed, at least on a temporary basis. The process can continue in flow ‘A’ for example
steps for further determining the timing of when to send the data to optimize network use
and/or device power consumption. The process can continue to step 1524 with or without the

other tests being performed if one of the tests yields a “No’ response.

[00431] The determined application category in step 1504 can be used in lieu of or in
conjunction with the determined data categories in step 1510. For example, the new or
changed data that is of a high priority or is time critical can be sent at step 1526 even if the
application in the foreground state but not actively interacting with the user on the mobile

device or if the application is not in the foreground, or in the background.

[00432] Similarly, even if the user is not waiting for a response which would be provided
in the new or change data (in step 1522), the data can be sent to the mobile device 1526 if the
application is in the foreground, or if the data is of high priority or contains time critical

content.

[00433] In general, the suppression can be performed at the content source (e.g.,
originating server/content host of the new or changed data), or at a proxy server. For
example, the proxy server may be remote from the recipient mobile device (e.g., able to

wirelessly connect to the receiving mobile device). The proxy server may also be remote

100

WO 2012/149434 PCT/US2012/035608

from the originating server/content host. Specifically, the logic and intelligence in
determining whether the data is to be sent or suppressed can exist on the same server or be
the same entity as the originator of the data to be sent or partially or wholly remote from it

(e.g., the proxy is able to communicate with the content originating server).

[00434] In one embodiment, the waiting to transfer the data is managed by a local proxy
on the mobile device which is able to wirelessly communicate with a recipient server (e.g.,
the host server for the mobile application or client). The local proxy on the mobile device
can control the radio use on the mobile device for transfer of the data when the time period

has elapsed, or when additional data to be sent is detected.

[00435] FIG. 16A depicts a flow chart illustrating example processes for handling traffic
which is to be suppressed at least temporarily determined from application/traffic

categorization.

[00436] For example, in process 1602, a time period is elapsed before the new or change
data is transmitted in step 1606. This can be performed if the data is of low priority or is not
time critical, or otherwise determined to be suppressed for sending (e.g., as determined in the
flow chart of FIG. 15). The time period can be set by the application, the user, a third party,
and/or take upon a default value. The time period may also be adapted over time for specific
types of applications or real-time network operating conditions. If the new or changed data to
be sent is originating from a mobile device, the waiting to transfer of the data until a time
period has elapsed can be managed by a local proxy on the mobile device, which can
communicate with the host server. The local proxy can also enable or allow the use radio use

on the mobile device for transfer of the data when the time period has elapsed.

[00437] In some instances, the new or changed data is transmitted in 1606 when there is
additional data to be sent, in process 1604. If the new or changed data to be sent is
originating from a mobile device, the waiting to transfer of the data until there is additional
data to be sent, can be managed by a local proxy on the mobile device, which can
communicate with the host server. The local proxy can also enable or allow the use radio use
on the mobile device for transfer of the data when there is additional data to be sent, such that
device resources can be conserved. Note that the additional data may originate from the same
mobile application/client or a different application/client. The additional data may include

content of higher priority or is time critical. The additional data may also be of same or

101

WO 2012/149434 PCT/US2012/035608

lower priority. In some instances, a certain number of non priority, or non time-sensitive

events may trigger a send event.

[00438] If the new or changed data to be sent is originating from a server (proxy server or
host server of the content), the waiting to transfer of the data until a time period has elapsed
or waiting for additional data to be sent, can be managed by the proxy server which can
wirelessly communicate with the mobile device. In general, the proxy server waits until
additional data is available for the same mobile device before sending the data together in a
single transaction to minimize the number of power-ons of device battery and to optimize

network use.

[00439] FIG. 16B depicts a flow chart illustrating an example process for selection of a
network configuration for use in sending traffic based on application and/or traffic (data)

categorization.

[00440] In process 1608, an activity state of an application on the mobile device is
detected for which traffic is directed to or originated from is detected. In parallel or in licu of
activity state, a time criticality of data contained in the traffic to be sent between the mobile
device and the host server can be determined, in process 1610. The activity state can be
determined in part or in while, by whether the application is in a foreground or background
state on the mobile device. The activity state can also be determined by whether a user is

interacting with the application.

[00441] Using activity state and/or data characteristics, when it has determined from that
the data is to be sent to the mobile device in step 1612 of FIG. 15, the process can continue to

step 3006 for network configuration selection.

[00442] For example, in process 1614, a generation of wireless standard is selected. The
generation of wireless standard which can be selected includes 2G or 2.5G, 3G, 3.5G, 3G+,
3GPP, LTE, or 4G, or any other future generations. For example, slower or older generation
of wireless standards can be specified for less critical transactions or traffic containing less
critical data. For example, older standards such as 2G, 2.5G, or 3G can be selected for
routing traffic when one or more of the following is detected, the application is not
interacting with the user, the application is running in the background on the mobile device,
or the data contained in the traffic is not time critical. Newer generations such as can be

specified for higher priority traffic or transactions. For example, newer generations such as

102

WO 2012/149434 PCT/US2012/035608

3G, LTE, or 4G can be specified for traffic when the activity state is in interaction with a user

or in a foreground on the mobile device.

[00443] In process 1616, the access channel type can be selected. For example, forward
access channel (FACH) or the dedicated channel (DCH) can be specified. In process 1618, a
network configuration is selected based on data rate or data rate capabilities. For example, a
network configuration with a slower data rate can be specified for traffic when one or more of
the following is detected, the application is not interacting with the user, the application is
running in the background on the mobile device, or the data contained in the traffic is not

time critical

[00444] In process 1620, a network configuration is selected by specifying access points.
Any or all of the steps 1614, 1616, 1618, and 1620 can be performed or in any combination

in specifying network configurations.

[00445] FIG. 16C depicts a flow chart illustrating an example process for implementing
network access and content delivery policies based on application and/or traffic (data)

categorization.

[00446] In process 1634, an activity state of an application on a mobile device to which
traffic is originated from or directed to is detected. For example, the activity state can be
determined by whether the application is in a foreground or background state on the mobile
device. The activity state can also be determined by whether a user is expecting data

contained in the traffic directed to the mobile device.

[00447] In process 1636, a time criticality of data contained in the traffic to be sent
between the mobile device and the host server is detected. For example, when the data is not
time critical, the timing with which to allow the traffic to pass through can be set based on
when additional data needs to be sent. Therefore, the traffic can be batched with the other

data so as to conserve network and/or device resources.

[00448] The application state and/or data characteristics can be used for application
categorization and/or data categorization to determine whether the traffic resulting therefrom
is to be sent to the mobile device or suppressed at least on a temporary basis before sending,

as illustrated in the flow chart shown in the example of FIG. 15.

103

WO 2012/149434 PCT/US2012/035608

[00449] Continuing at flow C after a determination has been made to send the traffic, the
parameters relating to how and when the traffic is to be sent can be determined. For example,
in process 1638, a timing with which to allow the traffic to pass through, is determined based

on the activity state or the time criticality.

[00450] In process 1640, radio use on the mobile device is controlled based on the timing
with which the traffic is allowed to pass through. For example, for traffic initiated from the
mobile device, a local proxy can residing on the mobile device can control whether the radio
is to be turned on for a transaction, and if so, when it is to be turned on, based on transaction

characteristics determined from application state, or data priority/time-sensitivity.

[00451] In process 1642, a network configuration in the wireless network is selected for
use in passing traffic to and/or from the mobile device. For example, a higher capacity or
data rate network (e.g., 3G, 3G+, 3.5G, LTE, or 4G networks) can be selected for passing
through traffic when the application is active or when the data contained in the traffic is time

critical or is otherwise of a higher priority/importance.

[00452] FIG. 17 depicts a flow chart illustrating an example process for network

selection based on mobile user activity or user expectations.

[00453] In process 1702, the backlight status of a mobile device is detected. The
backlight status can be used to determine or infer information regarding user activity and/or
user expectations. For example, in process 1704, user interaction with an application on a
mobile device is detected and/or in process 1706, it is determined that a user is expecting data

contained in traffic directed to the mobile device, if the backlight is on.

[00454] The user interaction 1704 and/or user expectation 1706 can be determined or
inferred via other direct or indirect cues. For example, device motion sensor, ambient light,
data activity, detection of radio activity and patterns, call processing, etc. can be used alone

or in combination to make an assessment regarding user activity, interaction, or expectations.

[00455] In process 1708, an activity state of an application on the mobile device for
which traffic is originated from or directed to, is determined. In one embodiment, the activity
state of the application is determined by user interaction with the application on the mobile
device and/or by whether a user is expecting data contained in the traffic directed to the

mobile device.

104

WO 2012/149434 PCT/US2012/035608

[00456] In process 1710, 3G, 4G, or LTE network is selected for use in sending traffic
between a mobile device and a host server in the wireless network. Other network
configurations or technologies can be selected as well, including but not limited to 2.5G
GSM/GPRS networks, EDGE/EGPRS, 3.5G, 3G+, turbo 3G, HSDPA, etc. For example, a
higher bandwidth or higher capacity network can be selected when user interaction is
detected with an application requesting to access the network. Similarly, if it can be
determined or inferred with some certainty that the user may be expecting data contained in
traffic requesting network access, a higher capacity or higher data rate network may be

selected as well.

[00457] The activity state can also be determined by whether data contained in the traffic
directed to the mobile device responds to foreground activities in the application. For
applications which are in the foreground, a higher capacity (e.g., 3.5G, 4G, or LTE) network

may be selected for use in carrying out the transaction.

[00458] The activity state can be determined via device parameters such as the backlight
status of the mobile device or any other software or hardware based device sensors including
but not limited to, resistive sensors, capacitive sensors, light detectors, motion sensors,
proximity sensors, touch screen sensors, etc. The network configuration which is selected for
use can be further based on a time criticality and/or priority of data contained in the traffic to

be sent between the mobile device and the host server.

[00459] FIG. 18 depicts a data timing diagram 1800 showing an example of detection of

periodic request which may be suitable for caching.

[00460] In the example shown, a first request from a client/application on a mobile device
is detected at time 1:00 (t1). At this time, a cache entry may be created in step 1802. At time
2:00 (2), the second request is detected from the same client/application, and the cache entry

that was created can now be updated with the detected interval of 1 hour between time t2 and

t1 at step 1804. The third request from the same client is now detected at time t3 = 3:00, and

it can now be determined that a periodic request is detected in step 1806. The local proxy can
now cache the response and send a start poll request specifying the interval (e.g., 1 hour in

this case) to the proxy server.

[00461] The timing diagram further illustrates the timing window between 2:54 and 3:06,

which indicates the boundaries of a window within which periodicity would be determined if

105

WO 2012/149434 PCT/US2012/035608

the third request is received within this time frame 1810. The timing window 1808 between
2:54 and 3:06 corresponds to 20% of the previous interval and is the example tolerance
shown. Other tolerances may be used, and can be determined dynamically or on a case by

case (application by application) basis.

[00462] FIG. 19 depicts a data timing diagram 1900 showing an example of detection of

change in request intervals and updating of server polling rate in response thereto.

[00463] At step 1902, the proxy determines that a periodic request is detected, the local
proxy caches the response and sets the polling request to the proxy server, and the interval is
set to 1 hour at the 3rd request, for example. At time t4=3:55, the request is detected 55
minutes later, rather than 1 hour. The interval of 55 minutes still fits in to the window 1904
given a tolerance of 20%. However, at step 1906, the 5th request is received at time t5 =
4:50, which no longer fits within the tolerance window set determined from the interval
between the 1st and second, and second and third requests of 1 hour. The local proxy now
retrieves the resource or response from the proxy server, and refreshes the local cache (e.g.,
cache entry not used to serve the 5th request). The local proxy also resends a start poll
request to the proxy server with an updated interval (e.g., 55 minutes in the example) and the
window defined by the tolerance, set by example to 20%, now becomes 11 minutes, rather

than 12 minutes.

[00464] Note that in general, the local proxy notifies the proxy server with an updated
polling interval when an interval changes is detected and/or when a new rate has been
determined. This is performed, however, typically only for background application requests
or automatic/programmatic refreshes (e.g., requests with no user interaction involved). In
general, if the user is interacting with the application in the foreground and causing out of
period requests to be detected, the rate of polling or polling interval specified to the proxy
server is typically not update, as illustrated in FIG. 20. FIG. 20 depicts a data timing

diagram 2000 showing an example of serving foreground requests with cached entries.

[00465] For example, between the times of t = 3:00 and 3:30, the local proxy detects 1st
and 2nd foreground requests at t = 3:10 and t = 3:20. These foreground requests are outside
of the periodicity detected for background application or automatic application requests. The
response data retrieved for the foreground request can be cached and updated, however, the

request interval for foreground requests are not sent to the server in process 2008.

106

WO 2012/149434 PCT/US2012/035608

[00466] As shown, the next periodic request detected from the application (e.g., a
background request, programmatic/automatic refresh) at t=4:00, the response is served from

the cache, as is the request at t=5:00.

[00467] FIG. 21 depicts a data timing diagram 2100 showing an example of a non-
optimal effect of cache invalidation occurring after outdated content has been served once

again to a requesting application.

[00468] Since the interval of proxy server polls is set to approximately the same interval
at which the application (e.g., mobile application) is sending requests, it is likely the case that
the proxy server typically detects changed content (e.g., at t=5:02) after the cached entry
(now outdated) has already been served for a request (e.g., to the 5th request at t=5:00). In
the example shown, the resource updates or changes at t=4:20 and the previous server poll
which occurs at t = 4:02 was not able to capture this change until the next poll at 5:02 and
sends a cache invalidation to the local proxy at 2110. Therefore, the local cache does not
invalidate the cache at some time after the 5th request at time t=5:00 has already been served
with the old content. The fresh content is now not provided to the requesting application

until the 6th request at t = 6:00, 1 period later at process 2106.

[00469] To optimize caching performance and to resolve this issue, the local proxy can
adjust time setup by specifying an initial time of request, in addition to the polling interval to
the proxy server. The initial time of request here is set to some time before (e.g., a few
minutes) the request actually occurred such that the proxy server polls occur slightly before
actual future application requests. This way, the proxy can pick up any changes in responses

in time to be served to the subsequent application request.

[00470] FIG. 22 depicts a data timing diagram 2200 showing cache management and

response taking into account the time-to-live (TTL) set for cache entries.

[00471] In one embodiment, cached response data in the local cache specifies the amount

of time cache entries can be stored in the local cache until it is deleted or removed.

[00472] The time when a response data in a given cache entry is to be removed can be
determined using the formula: <response data_cache time> + <TTL>, as shown at t = 3:00,
the response data is automatically removed after the TTL has elapsed due to the caching at

step 2212 (e.g., in this example, 24 hours after the caching at step 2212). In general the time

107

WO 2012/149434 PCT/US2012/035608

to live (TTL) applies to the entire cache entry (e.g., including both the response data and any
metadata, which includes information regarding periodicity and information used to compute
periodicity). In one embodiment, the cached response data TTL is set to 24 hours by default
or some other value (e.g., 6 hours, 12 hours, 48 hours, etc.). The TTL may also be
dynamically adjustable or reconfigured by the admin/user and/or different on a case-by-case,
device, application, network provider, network conditions, operator, and/or user-specific

basis.

[00473] FIG. 23A depicts a flow chart illustrating an example process for cache state
management to preserve user experience with a mobile application on a mobile device while

conserving resources in a wireless network.

[00474] In process 2302, a content source, with which the mobile device interacts, is
detected as having content suitable for caching. The caching process and the process for
determining cacheability are described in detail with references to the process flows

illustrated in FIGS 6-FIG. 22.

[00475] In process 2304, content received from the content source is stored as cache
clements in a local cache on the mobile device. In process 2306, the cache elements are
associated with state information. In general, state information can include one or more of,
ordering of the polling requests, a time interval between the polling requests, and/or a

mapping of the polling requests to the cached elements.

[00476] In process 2308, the content source is identified to a proxy server remote from
and in wircless communication with the mobile device. In one embodiment, the state
information is created by the proxy server and the state information is provided to the mobile
device by the proxy server. The state information can be tracked on a per-application basis
such that different applications on the mobile device have a different set of state information.
In one embodiment, the proxy server tracks state information for multiple mobile devices and

the state information can be created on a device-basis.

[00477] In process 2310, the proxy server monitors the content source for new or changed
data. In process 2312, the state information is updated or created. In process 2314, the cache
elements in the local cache are invalidated when the proxy server detects new or changed
data. The proxy server can again track and update the state information when some or all of

the cached elements are to be invalidated, as further illustrated in the flow chart of FIG. 23B.

108

WO 2012/149434 PCT/US2012/035608

In one embodiment, the state information is sent to the mobile device with a message to

invalidate one or more cached elements on the mobile device.

[00478] FIG. 23B depicts a flow chart illustrating an example process for communicating

state information to a mobile device with a cache invalidate.

[00479] In process 2320, the proxy server monitors the content source for new or changed
data. In process 2322, new or changed data is detected. In process 2324, a message is
transmitted to the mobile device notifying it to invalidate the cache elements. In process

2326, state information is included in the message.

[00480] FIG. 24 depicts a flow chart illustrating an example process for determining and

maintaining state information.

[00481] In process 2402, an ordering of the polling requests is determined. In process
2404, a time interval between the polling requests is determined. In process 2406, a mapping
of the polling requests to the cached elements is identified. In process 2408, a polling request
whose corresponding cached elements are to be invalidated is identified. In process 2410,

state information is detected and/or updated, via one or more of the steps.

[00482] In process 2412, state tables across applications and/or across mobile devices are
created. In process 2414, content servers are monitored for changed or new data for the

polling requests. In process 2416, state information is tracked and updated.

[00483] In process 2418, state information is conveyed to mobile devices on a periodic
basis. For example, the state information can be sent to the mobile device on a schedule, or
on a per application basis, or on a per-device basis. The schedule can be dynamically
adjusted based on operating conditions or network conditions. In some instances, the

schedule is adjustable based on a user’s explicit or inferred preferences.

[00484] FIG. 25 depicts a flow chart illustrating an example process for cache state

management on a mobile device to preserve user experience.

[00485] In process 2502, content from a content server is stored as cached elements in a
local cache on the mobile device. In process 2504, polling request to contact the content

server are received by the mobile device.

109

WO 2012/149434 PCT/US2012/035608

[00486] In process 2506, the cached elements are retrieved from the local cache to
respond to the polling request made at the mobile device. When cached elements are used to
respond to polling requests, a radio of the mobile device need not be activated to service the
polling request, if the radio is in the off state or used to service the polling request, thus
conserving device power thus enhancing battery life and also conserving wireless network
resources, by conserving data and/or signaling consumption needs of the device and

application.

[00487] In process 2508, state information associated with the cached elements is used to
provide the cached elements as responses to the polling requests such that user experience is

preserved.

[00488] State information can include, for example, an ordering of the polling requests
and the cached elements can be provided as responses in the ordering that corresponds to the
polling requests. State information can also include, a time interval between the polling
requests and the cached elements can be provided as responses according to the time interval

between the polling requests

[00489] Note that when cached elements are no longer suitable for use, the mobile device
or application can directly satisfy requests by contacting or polling the application
server/host. State information can also be used to determine the state of the responses thus

received relative to prior responses served from the local cache.

[00490] In process 2510, use of the radio on the mobile device can be enabled to satisfy
the polling request when the cache elements have been invalidated. In process 2512,
responses are received from the use of the radio. In process 2514, the state information is
used to determine order or timing with which the responses are provided to an application on

the mobile device.

[00491] FIG. 26 shows a diagrammatic representation of a machine in the example form
of a computer system within which a set of instructions, for causing the machine to perform

any one or more of the methodologies discussed herein, may be executed.

[00492] In alternative embodiments, the machine operates as a standalone device or may

be connected (e.g., networked) to other machines. In a networked deployment, the machine

110

WO 2012/149434 PCT/US2012/035608

may operate in the capacity of a server or a client machine in a client-server network

environment, or as a peer machine in a peer-to-peer (or distributed) network environment.

[00493] The machine may be a server computer, a client computer, a personal computer
(PC), a user device, a tablet PC, a laptop computer, a set-top box (STB), a personal digital
assistant (PDA), a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a
telephone, a web appliance, a network router, switch or bridge, a console, a hand-held
console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held
device, or any machine capable of executing a set of instructions (sequential or otherwise)

that specify actions to be taken by that machine.

[00494] While the machine-readable medium or machine-readable storage medium is
shown in an exemplary embodiment to be a single medium, the term “machine-readable
medium” and “machine-readable storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed database and/or associated
caches and servers) that store the one or more sets of instructions. The term “machine-
readable medium” and “machine-readable storage medium” shall also be taken to include any
medium that is capable of storing, encoding or carrying a set of instructions for execution by
the machine and that cause the machine to perform any one or more of the methodologies of

the presently disclosed technique and innovation.

[00495] In general, the routines executed to implement the embodiments of the disclosure
may be implemented as part of an operating system or a specific application, component,
program, object, module or sequence of instructions referred to as “computer programs.” The
computer programs typically comprise one or more instructions set at various times in
various memory and storage devices in a computer that, when read and executed by one or
more processing units or processors in a computer, cause the computer to perform operations

to execute elements involving the various aspects of the disclosure.

[00496] Moreover, while embodiments have been described in the context of fully
functioning computers and computer systems, those skilled in the art will appreciate that the
various embodiments are capable of being distributed as a program product in a variety of
forms, and that the disclosure applies equally regardless of the particular type of machine or

computer-readable media used to actually effect the distribution.

111

WO 2012/149434 PCT/US2012/035608

[00497] Further examples of machine-readable storage media, machine-readable media,
or computer-readable (storage) media include but are not limited to recordable type media
such as volatile and non-volatile memory devices, floppy and other removable disks, hard
disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital
Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and

analog communication links.

[00498] Unless the context clearly requires otherwise, throughout the description and the

2% ¢

claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive
sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of
“including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any
variant thereof, means any connection or coupling, either direct or indirect, between two or
more elements; the coupling of connection between the elements can be physical, logical, or a

2% ¢

combination thereof. Additionally, the words “herein,” “above,” “below,” and words of
similar import, when used in this application, shall refer to this application as a whole and not
to any particular portions of this application. Where the context permits, words in the above
Detailed Description using the singular or plural number may also include the plural or
singular number respectively. The word “or,” in reference to a list of two or more items,

covers all of the following interpretations of the word: any of the items in the list, all of the

items in the list, and any combination of the items in the list.

[00499] The above detailed description of embodiments of the disclosure is not intended
to be exhaustive or to limit the teachings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are described above for illustrative
purposes, various equivalent modifications are possible within the scope of the disclosure, as
those skilled in the relevant art will recognize. For example, while processes or blocks are
presented in a given order, alternative embodiments may perform routines having steps, or
employ systems having blocks, in a different order, and some processes or blocks may be
deleted, moved, added, subdivided, combined, and/or modified to provide alternative or sub-
combinations. Each of these processes or blocks may be implemented in a variety of
different ways. Also, while processes or blocks are at times shown as being performed in
series, these processes or blocks may instead be performed in parallel, or may be performed
at different times. Further any specific numbers noted herein are only examples: alternative

implementations may employ differing values or ranges.

112

WO 2012/149434 PCT/US2012/035608

[00500] The teachings of the disclosure provided herein can be applied to other systems,
not necessarily the system described above. The elements and acts of the various

embodiments described above can be combined to provide further embodiments.

[00501] Any patents and applications and other references noted above, including any
that may be listed in accompanying filing papers, are incorporated herein by reference.
Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and
concepts of the various references described above to provide yet further embodiments of the

disclosure.

[00502] These and other changes can be made to the disclosure in light of the above
Detailed Description. While the above description describes certain embodiments of the
disclosure, and describes the best mode contemplated, no matter how detailed the above
appears in text, the teachings can be practiced in many ways. Details of the system may vary
considerably in its implementation details, while still being encompassed by the subject
matter disclosed herein. As noted above, particular terminology used when describing certain
features or aspects of the disclosure should not be taken to imply that the terminology is
being redefined herein to be restricted to any specific characteristics, features, or aspects of
the disclosure with which that terminology is associated. In general, the terms used in the
following claims should not be construed to limit the disclosure to the specific embodiments
disclosed in the specification, unless the above Detailed Description section explicitly defines
such terms. Accordingly, the actual scope of the disclosure encompasses not only the
disclosed embodiments, but also all equivalent ways of practicing or implementing the

disclosure under the claims.

[00503] While certain aspects of the disclosure are presented below in certain claim
forms, the inventors contemplate the various aspects of the disclosure in any number of claim
forms. For example, while only one aspect of the disclosure is recited as a means-plus-
function claim under 35 U.S.C. § 112, 9|6, other aspects may likewise be embodied as a
means-plus-function claim, or in other forms, such as being embodied in a computer-readable
medium. (Any claims intended to be treated under 35 U.S.C. § 112, 96 will begin with the
words “means for.”) Accordingly, the applicant reserves the right to add additional claims
after filing the application to pursue such additional claim forms for other aspects of the

disclosure.

113

WO 2012/149434 PCT/US2012/035608

Claims

What is claimed is:

A method of cache state management to preserve user experience with a mobile
application on a mobile device while conserving resources in a wireless network, the
method, comprising:

detecting a content source, with which the mobile device interacts, as having
content suitable for caching;

storing content received from the content source as cache elements in a local
cache on the mobile device;

wherein, the cache elements are associated with state information for use when
responding to requests with the cache elements to preserve user experience;

identifying the content source to a proxy server remote from and in wireless
communication with the mobile device such that the proxy server monitors the

content source for new or changed data.

The method of claim 1, wherein, the state information is created by the proxy server;

wherein, the state information is provided to the mobile device by the proxy server.

The method of claim 1, wherein, the state information is tracked on a per-application
basis such that different applications on the mobile device have a different set of state

information.

The method of claim 1, wherein, the proxy server tracks state information for multiple

mobile devices, wherein, the state information is created on a device-basis.

The method of claim 1, wherein, the state information includes, an ordering of the

polling requests.

The method of claim 5, wherein, the cached elements are provided as responses in the

ordering that corresponds to the polling requests.

114

10.

11.

12.

13.

14.

WO 2012/149434 PCT/US2012/035608

The method of claim 1, wherein, the state information includes, a time interval

between the polling requests.

The method of claim 7, wherein, the cached elements are provided as responses

according to the time interval between the polling requests.

The method of claim 1, wherein, the state information includes a mapping of the

polling requests to the cached elements.

The method of claim 1, further comprising.

retrieving the cached elements from the local cache to respond to the polling
requests made at the mobile device;

using state information associated with the cached elements to provide the
cached elements as responses to the polling requests such that user experience is

preserved.

The method of claim 1, further comprising, invaliding the cache elements in the local

cache when the proxy server detects new or changed data.

The method of claim 1, wherein, the proxy server monitors the content source for new
or changed data; wherein, the proxy server transmits a message to the mobile device
notifying it to invalidate the cache elements in the local cache when new or changed

data is detected; wherein the message further includes the state information.

The method of claim 12, wherein, the proxy server tracks and updates the state

information when some or all of the cached elements are to be invalidated. .

A method of cache state management on a mobile device to preserve user experience,
the method, comprising:
storing content from a content server as cached elements in a local cache on

the mobile device;

115

15.

16.

17.

18.

19.

20.

WO 2012/149434 PCT/US2012/035608

in response to receiving polling requests to contact the content server,
retrieving the cached elements from the local cache to respond to the polling requests
made at the mobile device;

using state information associated with the cached elements to provide the
cached clements as responses to the polling requests such that user experience is
preserved,;

wherein, the polling requests are made by a mobile application installed on the

mobile device.

The method of claim 14, wherein, the state information includes, an ordering of the
polling requests; wherein, the cached elements are provided as responses in the

ordering that corresponds to the polling requests.

The method of claim 14, wherein, the state information includes, a time interval
between the polling requests; wherein, the cached elements are provided as responses

according to the time interval between the polling requests.

The method of claim 14, wherein, the state information includes a mapping of the

polling requests to the cached elements,

The method of claim 14, wherein, a radio of the mobile device is not activated to

service the polling request.

The method of claim 14, further comprising:

invalidating the cache elements in the local cache when new or changed data
is detected at the content server; wherein, the state information further includes an
identification of a polling request whose corresponding cached element is to be

invalidated.

The method of claim 14, further comprising,
enabling use of the radio on the mobile device to satisfy the polling request
when the cache elements have been invalidated;

receiving responses from the use of the radio;

116

21.

22.

23.

24.

25.

26.

27.

28.

WO 2012/149434 PCT/US2012/035608

using the state information to determine order or timing with which the
responses are provided to an application on the mobile device to preserves user

experience with the application.

The method of claim 14,
wherein, storage of the cached elements in the local cache is managed by a
local proxy on the mobile device, the local proxy being able to identify the content
server for which content is cached to a proxy server remote from the mobile device,
wherein, the proxy server is able to establish wireless connectivity to the
mobile device and communicate with the content server;

wherein, the state information is provided by the proxy server.

The method of claim 21,
wherein, the proxy server monitors the content server for new or changed data,

and notifies the local proxy to invalidate some or all of the cached elements.

The method of claim 21, wherein, the proxy server conveys the state information in a
state table to the local proxy when notifying the local proxy to invalidate some or all

of the cached elements.

The method of claim 21, wherein, the proxy server tracks and updates the state

information when some or all of the cached elements are to be invalidated.

The method of claim 14, wherein, the state information is sent to the mobile device on

a schedule, or on a per application basis, or on a per-device basis.

The method of claim 14, wherein, the schedule is dynamically adjusted based on

operating conditions or network conditions.

The method of claim 25, wherein, the schedule is adjustable based on a user’s explicit

or inferred preferences.

The method of claim 25, wherein, the state information is sent to the mobile device

with a message to invalidate one or more cached elements on the mobile device.

117

29.

30.

31.

32.

33.

WO 2012/149434 PCT/US2012/035608

The method of claim 25, wherein, the state information further indicates whether a
cached element is a response made in response to user interaction or programmatic

refresh of an application.

A system for state management of cache in a mobile network, the system, comprising;:

a local proxy on a mobile device, which stores content from a host server as
cached elements in a local cache;

wherein, the local proxy intercepts a polling request, made by a mobile
application on the mobile device, to contact the host server for which received content
is stored as cached elements,

wherein, the local proxy uses state information associated with the cached
elements stored in the local cache to provide a response to the mobile application

which made the polling request.

The system of claim 30, wherein:

the local proxy invalidates the cache elements in the local cache when new or
changed data is detected at the content server;

the local proxy enables use of the radio on the mobile device to satisfy the
polling request made by the mobile application when the cache elements have been

invalidated.

The system of claim 30, further comprising,

a proxy server coupled to the mobile device and the host server with which the
mobile application interacts;

wherein, the state information is created by the proxy server and provided to

the mobile device by the proxy server.

The method of claim 32, wherein, the proxy server tracks state information for

multiple mobile devices.

118

34.

35.

36.

37.

38.

WO 2012/149434 PCT/US2012/035608

The method of claim 32, wherein, the proxy server tracks state information for

multiple mobile applications on the mobile device.

The system of claim 32,

wherein, the proxy server monitors the content server for new or changed data,
and notifies the local proxy to invalidate some or all of the cached elements;

wherein, the proxy server tracks and updates the state information when some

or all of the cached elements are to be invalidated.

A system for managing resources in a wireless network by caching content on a
mobile device, the method, comprising:

means for, detecting a first data request made by a first mobile application on
a mobile device;

means for, retrieving cached elements stored in a local cache on the mobile
device to respond to the first data request in accordance with a first state table
associated with the first mobile application;

means for, detecting a second data request made by a second mobile
application on the mobile device,

means for, retrieving cached elements stored in a local cache on the mobile
device to respond to the second data request in accordance with a second state table

associated with the second mobile application.

The system of claim 36, wherein, the state information to determine order or timing
with which the responses are provided to an application on the mobile device to

preserver user experience with the application.

A machine-readable storage medium having stored thereon instructions which when
executed by a processor causes the processor to perform a method of resource
management in a network by caching content on a mobile device, the method,
comprising:

storing content from a content source as cached elements in a local cache on

the mobile device;

119

WO 2012/149434 PCT/US2012/035608

in response to receiving polling request to contact the content source,
retrieving the cached elements from the local cache to respond to the polling request
made at the mobile device such that a radio of the mobile device is not activated to
service the polling request;

using state information associated with the cached elements to provide the
cached clements as responses to the polling requests such that user experience is
preserved,;

invalidating the cache elements in the local cache when new or changed data

is detected at the content source.

120

PCT/US2012/035608

WO 2012/149434

1/38

VI ‘OId

00l
\ 9cl
Szl
BITNEETS
Axold
18MB8g ISOH ajepljeAu]

18pinold Jusjuod

uoljeuwloju| syeis

Janles ddy
X

oLl

\I\

ccl

601 " 1senbal 41 |H

A 4

201 " 1senbal 41 |H

PCT/US2012/035608

WO 2012/149434

2/38

a1 ‘DIA

(s)ionIog (s)lenleg
< Jusjuon (sMenles py
uodnop-e [EUOIOWOI 4
oONr\ momr\\ <o§\
ayoen
FEYNELS
901 > 801
Gel
cal YIOMION
ayoen
(2207
/
SEVNES
/ JSOH
soeUaU| /
1es8M

124"
43"

ool

Januag uonesiddy
oLl .\.

S8oIAles
18Y]0 ‘SyJom)au |B100S

)euRUl ‘S|elod

Buibessay
Jayio ‘SN ‘SIS

|lewd jeuosiad
|lew3 eesodion

suodnog o1uohoe|g

JU8)U0D |BUONOWO.d
JuBslBSIBAPY

laplaoad jusajuo)n

WO 2012/149434 PCT/US2012/035608

3/38

110
App Server/ I I 1208

Content Provider

Ad Server(s)
I1ZOB
Promotional
Content
Network Server(s)
108
I—ng I1ZOC
:- : e-Coupon
I Optional Caching 1 Server(s)
: Proxy Server :
| I

Host Server

I100

Proxy Server

125 Server Cache
T 135

N

Short Message
Service Center
112

Network
106

zeﬂ/

112

Local
Proxy
175

PCT/US2012/035608

WO 2012/149434

4/38

Ve OIAd

¥0¢
wa)sAg
Bunesedo

90¢
[dV X8ju0D

/1 4enj|e

/1 HHIM

4/ SIS

80¢ 8oel8lu| diomPeN

SIT aInpol\ ANAnoY Jasn

e
suIBbug uoieznuold

BE¢ J0jelauso
8|ljoid uoleol|ddy

yA%4
J0j108)8Q Ulsned

T2 Jojosle(Joireyag uoeolddy

gee

Jabeuey uonoesuel | senbay

192
Jebeuel 1esqueoH

99¢
18|01JU0Y olpey

Go¢ Jabeuejy uonosuuon

IS¢ 95¢
a|npoly Buiyojeg 8INpo\ Juawubiy
GGe oulbug buideys oyes]

TZe |1dV Axoid

(574
8|npoJy |020j01d uonedlddy

Gz Jabeuepy Aoljod Buiyoen

GL¢C
Axold [e207]

\I\

8|IqoJ\ aiemy-Axold

0c¢
uoneolddy

(i]%4
uoneolddy

8|Iqo 8lemeun-Axold

8¢
ayoen

\I\

0G¢ ad1AsQ 3llqon

PCT/US2012/035608

WO 2012/149434

5/38

qac ‘OIA

e
Aojsoday

8|ljoid
uoneolddy

T¥Z euibug uoneznuold

08¢€¢
Jojoe)eq Bunjuny o4 Buo

E6LC

Jayoel] |ensslu| Aejag esuodsay

BEZ Jojeisusn) a|joid uoneolddy

qg8ec
aulbug Bupoel] ssuodseyisenbey

7S¢ 1010819 uiened

BgEC 10109)9(Q |lod BuoT

8€¢ JojosieQ lersll| |0

9¢€C

1010818(] Joiaeyag uoneolddy

09%¢
lazAleuy 1senbay

)74
J0101pald Buiwi |

Pov¢
JazAjeuy asuodsay
5574
J8|npayog esuodsay qove
J0J01pald Jusjuo)n
B¢ suibug

UoI108|8S Jo8UU0Y) IO BYoe)

Of¢ oulbu3 uolsioeq

ssausjeldoiddy syoen

574

574
9|NPON
|000)0.1d

dl¥g suibux || ez suibug
Jusunsn(py ejepdn
swl| 8|npayos

uoneolddy

7¥¢ Jojelsusn) sinpayos ||od

ey Jobeuepy T11

Y Joieplieau| syoe) |eo07

T0¢ 10jel8uan) elepelsy

Gz Jebeuely Adijod Buiyoe)n

Aiojisoday ._ommcmm_\/_
Aaljod syoe)
uoneoyddy Isipoeld
eg0¢
J8)]14 14N 4o qi
S0¢ —
aulbug dn-yo007 8yoe)n g8¢
ayoen

I¢ OIA

PCT/US2012/035608

e 8¢cc
suIBug uoneznLold 1030932 eS| [|od
vee gec F4¥4
1010819(1019819(8|NPo
757 Aoyisodoy Ielaweled Ieloweled uonoexg
o__u_o._n_ BS2 ajeqg/ewllL wopuey uiened

uoneoiddy Jojelauan) 8)1joid uoneolddy TEZ 1012819(] UionEd

€¢ Jojosle(Joineyag uoneolddy

6/38

WO 2012/149434

¢z Aojsoday —
Aoljod ayoen g7z lopeleq e Jopeleq [444
— uoneol|ddy iglslieled sjeq/ewi| Jejeuieled wopuey cw__muﬂww_m_
a|NpPoN — ulened
Alenp syoen T 10109)9(] Jejeweled Jesja(ayoen
T2z euibug uonnjosay jesleq ayoen
574 iz
auIbug uonosles auIBbug uoisioe
Josuuog Jo syoen ssausjeldoiddy syoen
T2 Zlc JopueH
Jejeweled
eulbu3 yseH leale ayoen
5574 Ive e Tz
8|NPOJA |000104d J0jelausn) J0)eplleAu]
uoijeo||ddy a|npayos ||od ayoe) |eo0T] 19Z||EWION JBiijusp|
5574

Jabeuey Aoljod Buiyoen

PCT/US2012/035608

WO 2012/149434

7/38

ac OId

ST oujel)
soueUBUIB aAoRIB|

Pz Jezuobele) el | uoneosiddy

dlyve¢
sulbug
uolpeleq
Ajleonu) swig

6lc

punoibyoeg punoibeio

Jly¢ Jezuobeje) sjeig uoneosiddy

elyc
— suibug
uonjezjjuold

Jojosle(Wbipoeg

TZ Jojoele Jolaeyeg uoneolddy

PLSC
10108|8S
JUI0d $S800Y

916¢
suIBug uoios|es
[suUBYD SS820Y

qLec
Jsl0edg sjey erleq

elgc
10108|8S piepue)s
uonelsusc) Ssa|alIp

oGlL¢ qglce BSlLe
Jebeuepy auibug Jeyoel]
uolejoadx3 uonoipald Annnay Jesn
188N Aoy Jesn o
Sl¢ eInpol ANAnoY Jssn
752 9%¢

s|npo Buiyoleq

9INPOIN EOEC@:«Q

GGz ouibug buideys oigel)

[GZ eulbug uonosjes uoneinBiuoy MJomsN

PCT/US2012/035608
8/38

WO 2012/149434

VE€ DIA

91¢

Aiojisodeay
—_— -— —_— 95¢ Jepliroid
86¢ L6¢ 96¢
Jebeuey J8{|jojuoD J8[|0u0D eINPON SOIMSS HOMPSN
yeaquesH | |idimaeuseiul olpey |090]0ld
uoneolddy
Ghe Jabeuely uonosuuo) GGg Jabeuep
£oljo4 Buiyoe N
llod buiyoed RS
Aioysoday

_ uoljewloju| 891A8(

ie 8|npo _oﬁgc ele LT
a|npojA Buiyoleq INPOW Jojepl|eAu] Ejeq D

— Z8E eInpopy Z¥€ JopsleQg
9.& ssaualemy Ajioud eleq meN \Nﬂj
[020)01d [0JJU0D) Aiojsoday

0T ©NPO\ Sseusemy

ST suibug Jolneyag/AANOY SPE eulbug EIEPEISIA JUSIUOY
Buideys owel| ToT SS820V d11H pue Lonosutog
! ! GOg Jo|j0)juon) Axold \}
mmw
18MIBS Ax0id
| dnwemieo | | 411141 | | 4/ SIS _

O eoeps)u| YomeN

oomlx }

19AJ8S JSOH 2
ces 01¢ 00¢e g0c¢
\w % lepinold 8oIAIeg (s)heneg (s)lenies Jusjuo) Awr%mm
0se = /1anles uoieolddy uodnon-3 [euonowo.ld S PV

PCT/US2012/035608

WO 2012/149434

9/38

qa¢ ‘DIAd

p8se

19¢
JazAjeuy ssuodsay

auIbug Juswisnipy swi|

08G¢E
sulbug syepdn snpayos

65E
10)09)8(] JUBIUOYD
Mma) Jo pajepdn

0gGge Jebeuepy
/10jo818(] 188nbay ||jod Buo

95¢
8|NpPOJN |000)01d uoneolddy

egGe

Joje|nwig Buiwil] 1SOH

S0E
auibug dn-yoo7 8yoe)n

8GE
JebBeuel s|Npayos ||od

15¢

auIBug Bulo)UOl 82JN0S JUBJUOY

£0¢
lojeiausan) Blepelsi

11
Jabeuepy Ao1j0d Buiyoe)n

gee
ayoen JaAleg

PCT/US2012/035608

WO 2012/149434

10/38

JE OIA

B5E 9g¢
10)09)8(JUBJUOH aINpon
Mma) Jo pajepdn [000]0.d uoijeolddy

8G¢e 7253 [T
Jabeuepy a|npoly Bupoel | a|NpoN
8[Npayos ||od uisyed Jaihuspl 18lJIPOIA Jeiliusp|
15¢€

aulbug Buuojuopy
80.N0g JUBIUOYD

Z5¢E

Jabeueyy 8oinog Bunesjaq ayoen

GGe
Jabeuepy Aoljod Buiyoe)n

PCT/US2012/035608

WO 2012/149434

11/38

as DId

20

el el CIRS
ueusUIR aAloRIB| | suiBug tonoseg

Ayjeonuo swil

PLys Jezuobsjen oiel|

punoibxoeq puno.balo4 ELyE

— aulbug

Jlve

uoneznuolld
Jaziiobeien sjelg uoneolddy

€¢ JozAjeuy olel |

1I¢ 8I¢E
s|npo Buiyoleg 8|Npo Juswubiy

G/¢ eulbug buideys oiyel]

PCT/US2012/035608

WO 2012/149434

12/38

Ve OIAd

¥0¢
wa)sAg
Bunesedo

90¢
[dV X8ju0D

/1 4enj|e

/1 HHIM

4/ SIS

80¢ 8oel8lu| diomPeN

10¥

aubug uoneAlesald
pue uonoeje(alels

SIT aInpol\ ANAnoY Jasn

e
suIBbug uoieznuold

BE¢ J0jelauso
8|ljoid uoleol|ddy

yA%4
J0j108)8Q Ulsned

T2 Jojosle(Joireyag uoeolddy

gee

Jabeuey uonoesuel | senbay

192
Jebeuel 1esqueoH

99¢
18|01JU0Y olpey

Go¢ Jabeuejy uonosuuon

IS¢ 95¢
a|npoly Buiyojeg 8INpo\ Juawubiy
GGe oulbug buideys oyes]

TZe |1dV Axoid

(574
8|npoJy |020j01d uonedlddy

Gz Jabeuepy Aoljod Buiyoen

GL¢C
Axold [e207]

\I\

8|IqoJ\ aiemy-Axold

0c¢
uoneolddy

(i]%4
uoneolddy

8|Iqo 8lemeun-Axold

8¢
ayoen

\I\

0G¢ ad1AsQ 3llqon

PCT/US2012/035608

WO 2012/149434

13/38

g8v
ayoed [2007

qar "OIA

457
aulBue JoAjossl

alels ayoen

Ty
lojo8)ep 8jels ayoen

cov
lojeplleAul syoen

207
Jabeuew Aojjod syoen

[0v euiBug uonealssald pue uonosle(alels

PCT/US2012/035608

WO 2012/149434

14/38

Ve OIAd

91¢

Aiojisodeay
— - — 9c¢ J8piro.d
86¢ 16¢ 96¢
Jsbeuepy Jgjjonuon Jg|j0auo) eINPON SOIMISS HOMISN
jeaquesH | |dimneulsiy| olpey 1090101d 705
uopeolddy sulbug
_— — uoneAless.ld pue
6E Jebeuepy uoioBUUO) Soo Jebeuepy uoIDaIa(18IS
£o1j04 Buiyoen N
1453
Aioysoday
| | uoleWlIOIU| 821AB(
—= 89¢€
77¢ ~N__
SINpOI BUILOIEE 8|Npoy\ Jojepljeau| eleq
— 79€ SINPOw _ =N
9.¢ ssauslemy A)Lold Z¥¢ 10)0818Q s cle
|020}014 [0U0D) eleq MaN aulbuz Aioysodey
IO 5|NPOyy SSaUBIEMY Bunjoel | BIEPEISI JUBJUOD
TTE oulbug Joineyag/AlnioY ST oUIBUT uoneoljddy pue uoljoBuUu0)
Buideys oujel | TO¢ Jo||ouon) AX0ld $$800V d11H L T
gce
Janieg Axold
| dnwemieo]| 4/1 1M _ 4/ SWS _
B0C ooBLOIU| YJOMIBN
T
00¢
J8AIBS 1SOH —
oLe 20¢S d0¢5 Y05
18pInold 82IAIBS (sJenieg (s}eneg uauo)n (s)1on10
/1eAIas uonedlddy uodnon-3 |euoljowold S PV

PCT/US2012/035608

WO 2012/149434

15/38

098G
sigjoweled

alels syoen

qas ‘DId

T2g Jebeuew
a)e)s uoneo|ddy Jed

T1G Jebeuew
a)els ao1Aa(Jod

TG Jox0el) 8)e)s ||od

GGG Jabeuew Aoijod syoen

T0OG eulbug
uoljeAIBSald PUB UoI109)18Qq 91BIS

PCT/US2012/035608

WO 2012/149434

16/38

asuodsal ayoed wouy
Bunepiiea wio4 asuodsal wio

A
0€9

A

V9 ‘DIA
as|el »{ osuodsel Jonleq

L

asuodsal ayoen |lod 188nbay asuodsal aAle0aYy

019

8|qesyoed
asuodsal yo8ynH

asuodsal aAlgoay 1senbal pusg

8|qeayord

J0jepl|eA SUlgjuoD
1senbau yo8ynH

8¢9

es|e)

1senbal pusg

188nbal yo8yH

glg [punoyjou]

pliea Anuse yo8yo ayoed dnyoo 4N 8zIjeWwIoN

1senbel aAle00y

c09

PCT/US2012/035608

WO 2012/149434

17/38

q9 ‘OId

12314

Ax01d gepn Buiyoes w

b1 poysies jsenbay |

) &

»i

9/ esuodsay psbueyny

v.v eyeq JojUop

90f esuodsey swes

Ll

Y9t ejeq JojIuo

»

8.Y
UONEDIION BjeplleAu

Z8Y 1senbay
ejeq paixold

»

2./t 8yoen |eoo wpi4 palsnes 1senbay

)

99¥ 1senbay
eeq paixold

29¥ 1senbay
e JoUUO

9GY esuodsay
ejeq peixold

9G¥ 1senbay
eeq paixold

$G esuodsey ejeq

Gt 1senbay ejeq

GBY 1epinold —_—
usjuoD/IsnIeg ddy

S8

IaAIB8S 1SOH

SI¥ Axoid Sov
Buiyoen

Axo0ld |e207]

GGY 196pIM
U99I0g SWOoH

J .

~
0Ly
epIS-Ienies

J

Y
0S¥
801A8(Q 8|IGOIN

N
09t

wasAg Axold peainguisiq

WO 2012/149434 PCT/US2012/035608

18/38

Traffic Category/Application Category 700
Interactive traffic Background traffic
User waiting for response User not waiting for response
Application in foreground Application in background
Backlight on Backlight off
FIG. 7

Content Category 800

High priority Low priority

Time critical Non-time critical

FIG. 8

PCT/US2012/035608

WO 2012/149434

19/38

6 ‘DIAd

086 Jepliroidionies

uoneoldde ey} wody pauysies jsenbay

¥86 osuodsal
8y} spues pue wol [[od saAleoey

286 Jepiaoud
flanses uoleoljdde ayj 0} |jod 8y} spiemio) pue
a|qe|ieA. S| Asjue ayoed pljeA oU Jey} seulisleqg

86 Jopiaoud jusiuod/iaales uoljeoldde sjjod

876 Axoud Buiyoed

10 808D JaAISS By} WOy paysies jsenbey

976 Axoud |2o0| 8y} 0} esuodsal
8y} spues pue asuodsal mau auf} o} }senbal seAlaoey

V.6
2oL JoAIeS 8y} WOl ssuodsal auf) SeAsljal pue
a|qe|ieae s| Aus 8YoED pijeA OU Jey) seullleleq

776 Jopinoud jusjuosyianias uoneoldde s|jod

076 Seljue ayoro JueAs|al Sa)epl|eAul ‘s|qelieA.
sI ejep pebueyo Jo mau Jey} UOIEOYIoU SeAlsoey

896 Axoud Buiyoed ay) Jo
aoeD JaAIes 8y} Ul palo)s asuodsas mau Jo pabuey)

996 Axoud
|e00]| 8y} sauou ‘esuodsal mau Jo pabueyd sjos}eq

¥96 osuodsal ay} spues pue
J18AJ8S Jsoy woyy |jod seAledey

296 @npayos Bujjod ay} uo
paseq uoneoldde ay; s|ind ‘paaiedal esuodsel awes

096 @suodsal ay} spues pue
18AJ8S Jsoy woyy |jod seAledey

BG6 }senbau ay} 0} asuodsal
ay} Jojuow o} Jepiroidyieases uoneslddy ay; sjjod

966 a|npayos Bujjod
e pue pajjod aq 0} Jepiaroid/iaaias uoleoldde ay;
10 uoneoyuapl ue Buipnoul dnjes ayoed 8y} SeAIadeY

$G6 Jonlas jsoy oy} 0} dnjes ayoeo ay) spues

266 Joatas Jsoy ay) Jof a|npayos Buljjod e dn sjes
pue uopeoldde ay; jo Aousnbayy Buljjod syoel]

0G6 Jeplaoidianias uoneoldde ayj woy
1senbal sy} AIsijes 0} asuodsal ay} seAledey

BY6 Jsenbai
JuaLInd ay} AJsijes o} esuodsal
e sepiaosd pue uoleoldde
ay} wol }senbau |jod ay) seAledey

6 20.n0s 8y} 0} pepsemio} jsenbal |jod

¥¥6 Buyoeo
10} ®24nos pajjod ay; dnjes 0} seplosp pue
8|ge|ieABUN S| JUBIUOD BYoED ey} sjoejep Axold

Z¥6 pajdaaiaul lod

0F6 Jepiroidjianias uolieoidde sjjod

§EB Ajue ayoed

e woy ||od ayj 0} esuodsas e sealgoey

9¢6 |lod ayy Ajsies o) esuodsal e
SaAaL}al SNy} pue pljeA SI pue Juajuod pajjod ay;
10} 9|gE|IBAR S| JUBIUOD 8YoED Jey) sjoalep Axold

¥EG pajdaaiaul lod

€6 Jopiaoudyieales uoleoldde sjjod

G66 J9plaoud Juajuon
[an1ag uoneslddy

G/6 Axoid Buiyoe) 1o GE ayoe 19AI9S
G86 J9AI9S JSOH

G96 Axoud |e207]

GG6 Jobpip/uonesijddy ajiqol

PCT/US2012/035608

WO 2012/149434

20/38

01 ‘OIA

8801 Jeplroidiienlas
uojjeoldde ay} wody paysies jsenbay

980} esuodsal ay)
spues pue woJ |jod seAleoey

7801 Jepiaoidiiealas uoneoldde ay; o} jod 8y} spiemioy
pue a|ge|ieAe s Ajus aydoed pijeA OU jey} saulleeQ

2801 4epiroud
JU8juU09/IaAIaS Uoledldde s|jod

0801 Axoud Buiyoed Jo ayoed
JaAIBs BU) Woly pausijes jsanbay

8701 Axoud [200| 8y} 0} esuodsal
ay) spuas pue asuodses meu ey} 1o} jsenbai sanledey

9707 eyoeo JeAles sy} woly asuodsal ay) seslal
pue a|qe|leAe s| Aljus ayoed plleA ou ey} seuluLisleq

¥101 Jepiroid
JU8juU09/IaAIaS Uoledldde s|jod

ZZ01 Seljue ayoeo JueAs|al S8jepl[eAUl ‘e|ge|iea.
s1 eyep pebueyo JO MU Jey) UOIEOIIoU SaAle0ey

0701 Axoud Buiyoed sy}
10 8Y0oBD JBAISS 8Y} Ul palojs asuodsal mau Jo pabueyn

8901 Axoud
|eo0] @y} Seuou ‘esuodsal mau Jo pabueyd sjoaleq

9901 esuodsal sy spuas pue
J8AJ9S }S0Y WOy [|od SeAleoey

79071 einpeyos Buyjjod ey}
uo paseq uoleoldde ayj s|ind ‘pesledeal esuodsel swes

Z901 esuodsal sy spuas pue
J8AJ8S }S0Y WOy [|od SeAleoey

0901 }senbal ay} 0} @suodsel
ay} Jojuow o} Japiaoidiienses uoneslddy ay; s|jod

8501 ®Inpayos
Bujod e pue psjjod aq o} Jepiroidyiealas uoneoldde ay;
10 uonesyuapl ue Buipnjoul dnjes ayoed au} SaAladey

9601
JalIuspl 8y} JO UOISISA PaZI[eLLIOU & 1O Jaljuapl 8y}
Buipnoul ‘JeAies }soy ayy 0} dnjes ayoeo ay) spues

FGOT |eAsL}al pue uonieoluep! anyny 1oy
asuodsal paAlgoal au) YlIM UOIBIOOSSE U Jayjuapl ey}
JO UOISIaA PaZI[euLIoU B 810)S pUB asuodsal al) ayoe)

501, Jepiaoud
f1entes uoneoldde ayy wouy jsenbal
ay} AJsies 0} asuodsal ey} senledey

0G01 jsenbai
Jua.und ay} Ajsies o} asuodsal
e sepiaoid pue uoneoldde ayy
woyy }sanbal [jod 8y} seAledey

BFOT 224n0S 8y} 0} papiemioy jsenbail [jod

Ov0] Jentss }s0y ayy Jo} a|npayos Buljjod e
dn sjes pue uoneoldde ayy jo Aousnbayy Buljjod syoel
pue jsenbau ay) Jo Jeynuapl ue Jo uleped e sjoelxg

TPOT Buiyoeo 1oy 821nos pajjod oy dnies o} seplosp
puUE 8|qe|lgARUN SI JUSJUOD BUOED JY} Sj0818p AX0id

201 Jepiaoud
Hanas ay} Aq paiojdwe s wsiueyoaw Buesiep
aoED B jey)) seulwielep Axoid pue paydesiaiul |jod

0V01 Jepiaoidiiensas uoljeoldde s|jod

BEOT Anue ayoeo
e woy ||od 8y} 0} esuodsal e seAlgoey

9201 llod 8y Asnes
0} esuodsal B aAsL}al 0} Seploap pue Jusiuod pajjod
8} Jo} B|qe|leA. S| JUSJU0D BUoeD jey) sjoejep Axold

F201 4epiroud
Hanlas ay} Aq paioldwe s wsiueyoaw Bunesiep
ayoeo e jel) seululeiep Axoid pue paydadiajul |jod

Ol Jeplaosdiianias uoneoidde s|jod

G601 J9plno.d jusjuod
[aniag uonesiddy

G701 Axoud Buiyse) 1o GEQI ayose D J9AI9g
G801 J9AJ9S JSOH

GO0l Axoid |20

GGol
Jobpipyuonesi|ddy sjiqop

WO 2012/149434

PCT/US2012/035608
21/38
Collect information about a request and information about the
response received for the request <
1102

v

v

Use information about the
request initiated at the mobile
device 1104

Use information about the
response received for the

request 1106

Response not cached
1110

1112

Store the response in the cache as a cache
entry including metadata having additional
information regarding caching of the response

v

Detect a subsequent request
1114

A

Perform cache look-up in the local
cache to identify the cache entry to
be used in responding to the
subsequent request 1116

v

Serve the response from the cache
to satisfy the subsequent request
1118

Does the
fesponse stored in the
cache needs to be
updated?
1120

Yes

Invalidate the response stored
in the cache of the mobile
device or remove the response
from the cache
1122

FIG. 11

PCT/US2012/035608
22/38

WO 2012/149434

¢l "ODIA

q g6¢l W
4 A g psayoed aq ued asuodsey B A
Ggcl
"1 psyoeo jou ssuodssy | Y
A A
ON
cecl
JAUEI[Vok)
ousukp 0e2L °N S5
ON urgjuo9 ppes slqeatioeo
0 Iqesy
N sasuodsa a|qesyoeo ON SINAN SOA B p8adXxa azZIs
sa e p9sIXa 9ZIs et | ON
A N\ @suodsai ¢PoyhUSp!
co0q 4 so A\ A1oipouad
9cclL SOA $olgesyoe)d
Ba A /¢ asuodsal
8y} ul pasn
Buipoous)
Jajsuel] A Lzl Olct
S| wwcwmm@_ ZCZl 9suodsal 0ccl U810 swes ay) Aq pajessusb 1s8nbay oy
9} JO 8zIs 8p0o9 snjels sisanbal Jayjo pue jsanbal - 80¢1L
ezAjeuy ay; suIwILIB(ay; Anusp 8y} usamiaq uonewoUl 40 9218 ou poyiew 1senbal
A X K Y Aoipousd suwisleg euIsied auy Aynuep
9021 1senbal ay) Jo) paAlsoal soA 0ot
asuodsal 8] YIm pajeIioosse UOoeLUIOJUI SoljSLB]oRIRYD 8suodsal 8zAjeuy 150nboJ BU} LJIM POTEIOSSE UOIELLIOJUI SONSUBIOBIEYD 1senbel azAeuy

A

Z0eT

oneunsap pajsioe]

ON e 0] pajoalip 1sanbal ON
oy} S|

PCT/US2012/035608

23/38

&1 °OIA

A

geel
;. sasuodsal ay) payoed 8g UED JUBJU0D Bsuodsay
0 OM] 1SE8|] JO JUBIUO! ToeT y

ay) ul Ajue|iwis alay) S| Jo
swes ay) sesuodsa,
ay) a1y

peyoed jou esuodsey

T\

SBA

80¢l

WO 2012/149434

ZISL oL A ¢sisenbal sy} Jo
sosuodsol sosuodsal souBIB|O) B UIYIM |[B] Buiwn sy) Ul susened
8U) ypm pajeioosse 8y} JO s8Ipoq esuodsal 8|enis)ul)sanbay glqejoipa.d aisy
$Op0o SNjelIs sulwex] 10 senjeA ysey sujwexy
A y
YOET

c0gl
s)senbai ay) Jo Ajoipousd
108)9p 0} JuBl|D 8y} Aq pajelsuab sjsenbau yoel]

sasuodsal ay) JO Jusjuod Ul Ajljigejeadal
108]9p 0} Jusl|D 8y Ag pejeisush
sisanbal 1o} paalgoal sesuodsal yoel |

WO 2012/149434

PCT/US2012/035608
24/38
Track requests generated by a client or
directed to a host at the mobile device
to detect periodicity of the requests
1402
. Determine that the request Determine that the request
intervals between the two or more .
intervals between the two or more
requests are the same or s
: requests fall within a tolerance level
approximately the same 1406
1404 —
A A
Receive the response received for . .
. e Determine a rate to monitor a host,
the requests for which periodicity is .
<« from the request intervals
detected 1410
1408 —
A
Cache a response as a cache entry A -
in a cache of the mobile device Detect change in request
1412 y intervals for requests
generated by the client
’ Set or update the 1422
Monitor the host at a rate ratg at WhICh.the
. given host is
to verify relevance or monitored to verif _
validity of the cache entry[" iy Compute a different rate
1414 relevance or validity | based on the change in
of the cache entry request intervals
] v 1420 1424
Serve the response from the cache
to satisfy a subsequent request
1416

FIG. 14

PCT/US2012/035608

WO 2012/149434

25/38

v2Gl elep pabueyo Jo mau ay) jo Buipuss ay) sseuddng

§I1°OIA

TZGIL ©91A8p a|iqow 8y} 0] elep pabueyo Jo Mau ay) puasg

A

ON

ul pspiaoad
8q p|nom jey)
asuodsal e 1o}
Buniem Jasn

0251
¢[eano swi
elep sy
5|

ON

ON

gIST
¢Aond
yby eyep
ay} s|

0lG1
elep sy} azuobalen

%

8061

elep pabueyo 1o mau 8y} Jo Ajljeonuo awi Jo Ajuoud sulwieleq

A

91Gl
¢ punoubxoeq
ay} ul Buiuunu
uoneodde
syl 8|

Y) N\
= = =
<) K), K J 3) \
SOA
SOA SSA SBA SSA
ON 2GS 1 ON ON ON ON
¢erep oy yiat

£,801A8p
8|lqow 8y
uo punoJbaioy
ay1 ul Buiuunu
uoneoldde

ON

ON

clsl
£,801A8p
8lqow 8y
uo Jasn e yum
Buijoeisiul ejels
8AIOE UB Ul
uoneoidde,

9051
uonjeoldde sy azuobsie)

%

¥051

ps10aJIp s elep pabueyo 1o mau syl yoiym o) uonesiidde ue Ajjuap)

A

ZOGIL 801A8p 8|IgoW . 0} JUss 8(0] 8|ge|ieAe elep pabueyo Jo mau 10818

WO 2012/149434 PCT/US2012/035608

26/38
y A 4
Wait until for a time period to Wait until there is additional
elapse 1602 data to be sent 1604
y A 4

Transmit the new or changed data 1606

FIG. 164

PCT/US2012/035608

WO 2012/149434

27/38

02Ol swuiod sssooe
Buifyosds Aq uoneinByuod
3I0MIBU B 108|9S

A

qa91 ‘Old

8191
ajel elep Aq uoneinbiyuod
yiomjau e 109|8s

A

82or veor
N 0cor
Am_mo@n_f (HOV4) ov o€
SULBUD |lsuueyd
o_ﬁmo_ocoo s50008 9291 2291
. piemiod 311 96'2/92
A A A A
9191 edh 710l piepuels
|[auUBYD SSB00E JO 109|898 ss8jalim Jo uolelsusb 1088

A

A

3JOM])BU SSBjalim BU) Ul JoAISS 1SOY B pUE 801A8p 8|IqoW B ussm)eq dlljel) Buipuas Ul esn Joj UoneinBijuoo yiomisu e 109jes

cl9l

oilgl

18AJ8S 1S0Y 8Uj) pUe 80IASp 8|IgoW 8Uj) Ussmaq JUss aq
0] QlJeJ) 8U) Ul paulejuod ejep 1o A)ljeonuo aWl) e aulwlee(

woJ) pajeulBlLo 1o 0) paoalip SI d11.l) YoIYm JO) 80IASp
8|igow 8y uo uoneoidde ue Jo s)els AllAoe ue Jo8)8(

8091

PCT/US2012/035608

WO 2012/149434

28/38

91 “DIA

4z
801A8p 9|Iqow 8y
wolj pue o} oijel) Bbuissed ul
8SN 10} YJOM)BU SSB[aJIm Bu] Ul
uolje.nBiuod yiomjau e 108|8S

ov9l
ybnouy) ssed

0} pamol|e S| d1jjel) 84} YoIuM
ym Buill) 8y) Uo peseq solAsp
8|Igow 8y} Uo 8sn olpel |0JjuoD

A

A

8¢9l
A)jeonuo sy 8y} Jo 8)e)s
‘yBnouy) ssed o0} oIyLl] BY) MOJ|E O}

AlAloE 8Y) UO paseq
yoIym yum Buiwi e sululeleq

991
18AJ8S JSOY 8U)) puB 80IASp 8|IJoW ByY)
usam)aq JUas aq 0) dlllel) 8U) Ul paulejuod
elep Jo A)||eonuo swWi) e aulwisle(

¥EQT
WwoJ} paleulBluo Jo 0} paallp
S| D1jel} YdIYM IO} 80IA8P 8[IqoW 8y} Uo
uoneoldde ue Jo ajels AllAloe ue 10818(]

WO 2012/149434 PCT/US2012/035608

29/38

=

Detect backlight status Determine whether
of the mobile device a user is expecting
1702 data contained in the
traffic directed to the
M - mobile device
" 1706

Detect user interaction
with an application on
a mobile device
1704

A ¢ A

Determine an activity state of an application on the mobile
device for which traffic is originated from or directed to
1708

v

Select whether 3G, 4G or LTE network is used
in sending traffic between a mobile device and
a host server in the wireless network
1710

FIG. 17

PCT/US2012/035608

WO 2012/149434

30/38

oL8lL 2081 %N .@NRN
= <

00:00

90:€0 PUE $G:20 008l
usamjaq psuaddey |[eadsiul inoy |
1 @seo ul oipouad Joeseo ululw zL ‘el
palapisuod usaq aaey ‘leassyul snolaeud ay)
os|e pjnom }senbay 10 9%,0Z S! SMOPUIAA
oy | Jnoy |
00:€0— 0020 0020 - 00°10
Jjsenbay & Jsenbas 7)senbay (|
00°€0 00:20 00°10
Janies Axoud ay) o) payoads (unoy | [eAtsiul yum pajepdn pejeslo Buiaq
“B-8) jeadsjul yum 1senbal Buijjod uels Buleq sI Ajus ayoen sl Ajjue ayoe)

spuss pue esuodsal seyoeo Axoid
[e00] ‘pejosiep s isenbal oipolad g

¥081
\I\

9081

\I\

<081

PCT/US2012/035608

WO 2012/149434

31/38

61 ‘OIA

seINUIW GG seINUIW GG oy |
0G'¥0 — G5°€0 GG:e0—00'€0 00:€0—00-20
00:50 A ~ Al \ 0010
% ﬁ
1senbal uS 1senbal uV 1senbal ouC
0S50 gge0 00:20
Jsenbal ¢
'SOINUIW || O} 2L WO 00:€0
sefueyd azIs MOPUIA (S8INUIW GG
0] 188 mou “6°8) |eassiul pajepdn Mopuim sy}

yum 1ssnbau Buijjod pels Buipussal Ojul S) IS [BAI8)U| Jonas Axoud o) (1noy | o} “6'9)

pue ayoeo buiysse.jel 1enies Axoud \I\ 165 [eABIUl UM jsanbal Buljjod pels

wolj soInoses BuineLysy “siowhue 061 spuas pue asuodsal seyoeo Axoud

MOpUIM 843 OJul 1} Jou S9Op |EAISI| [e00| ‘pajosiep 1senbal oipousd

9061 2061 0061

PCT/US2012/035608

WO 2012/149434

32/38

0C "OIA

0€'€0 00°€0
~N
7
N ~N Ve
~ 7
~ 1senbal ccao_mo_ou_ ouC 1senbal cgo_mo_ou_ sk P /
0c'€0 0002 0L'€0 P s jsenbai ¢
~N / 00°€0
N o I P
~ *JoAIBS B) 7
~ 0} Juss JOU S| [eAlB)ul) s
~ ~ maN "pajepdn 186 |Im p
~ ejep asuodsal payoe) o noyt
~ ~00:€0—00:20
00:90 > ~N z A 00:10
: 7 :
N——— N
I
|
1senbal e 1senbal uv 1senbal oul
00:50 00:%0 00:20
J)senbai ¢
00°c0
o4oeO Wolj aUoBd Wol) /
peaes asuodsay

\I\

900¢

peAles asuodsay

Janies 0} (unoy | 0} “6'8)

\l\

¥00Z

188 [eAJBIUI Y)m 1senbal Buijjod 0002

1Je)s spuss pue esuodsa. seyoed
2002 .\. 1usl0 ‘perosiep Jsenbal olpolied

PCT/US2012/035608

WO 2012/149434

33/38

00lL¢c NN .@NRN

lnoy | noy
2¢0:50 — 200 ¢0'¥0— 200
00:20 e A s A N 00:¢0

Axo.d [eo0| O

UOIEPI[BAUI BUDED sabueyo ou ‘edinosal s|jod JaAIeg

Spues JoAleg 5 : d cov0 »>
abueyo sjoslep ‘eoinosal sjjod Jeniesg Jsonbaijjod SaAIB081 JOAISS
/ 2050 .
0Lz coe0 .
sefueyo aoinosey / \.
00 lnoy | 0} }18s |enJou|
00:20 ﬁ 00:20
uoneplieAUl syoey jsenbes ¢
¥0:50 00:€0
Jsenbas 9
00:90 Hwo:c.o_ % /
)senbas g 00-+0 Janies 0} 1senbau Buijjod
00:S0 Mels spuas pue asuodsal seyoed
Juelo ‘peyosiep 1senbal dipoliad
Jeje| pouad | paianlep J
MOU JUBJU0D sl 2012
7 .\ palaAljep useq aAey
90lz voLZ pINOM JUBIUOD YSal

PCT/US2012/035608

WO 2012/149434

34/38

clae

~

Janies 0} (unoy | 0} “6'8)
188 [eAJBlUI Yyim 1senbal Buijjod
Mels spuss pue asuodsal seyoed
WD ‘peloslep jsenbau oipolied

cC DIA

olLce

80¢¢
— ~

[eAlS)ul Yim
pejepdn Buieq
sl Ajjue ayoe)

pajealo Buleq
s| Ajue ayoe)

00:%0 00:00
~ - \
~~—_ \
~—_)senbay .z \
Hwo:c.o_ o€ -~ - 00:20 \
00:€0 ~——_ jsenbal | \
—
~ - . / .
1060 -~ 00°10 0:00
0L0Z/LL/0E -~~~ oLog/LLiee
— ~— -
I
I
l
panowsal sjob J)senbal (|
ejep chmwawom 00:10
Jsenbal g
)senbas gz 00:50
00:%0
/ ayoed wou}

Janies 0} (unoy | 0} “6'8)
18s [eAJBIUI Y)m 1senbal Buljjod H 90¢c
Jels spuas pue asuodsal seyoed
JusID ‘paroslep Jsenbal dipoliad

00cc

peAles asuodsay

~ 0522

v0ze (sinoy $z 01 “6°8)
189S 111 elep ssuodsay

WO 2012/149434

35/38

Detect a content source, with which the mobile
device interacts, as having content suitable for
caching 2302

y

Store content received from the content source as
cache elements in a local cache on the mobile
device 2304

PCT/US2012/035608

y

The proxy server monitors the content
source for new or changed data
2320

Associate the cache elements with state
information 2306

y

y

Detect new or changed data
2322

Identify the content source to a proxy server remote
from and in wireless communication with the mobile
device 2308

y

v

Transmit a message to the mobile
device notifying it to invalidate the
cache elements 2324

The proxy server monitors the content source for
new or changed data 2310

v

v v

Include state information in the
message 2326

Update or create the Invalidate the cache
state information elements in the local
2312 cache when the proxy

server detects new or
changed data
2314

FIG. 234

FIG. 23B

WO 2012/149434 PCT/US2012/035608

36/38
Determine Determine a time Identify a Identify a polling
. . . request whose
an ordering interval between mapping of the .
. . ; corresponding
of the polling the polling polling requests
cached elements are
requests requests to the cached to be invalidated
2402 2404 elements 2406
2408
A A 4 A 4

Detect state information
2410

A

Create state table across applications and/or across mobile devices
2412

v

Monitor content servers for changed or new data for the polling requests
2414

A

Track and update state information
2416

A

Convey state information to mobile devices on a periodic basis
2418

FIG. 24

WO 2012/149434 PCT/US2012/035608

37/38

Store content from a content server as cached elements in a local cache on the
mobile device 2502

A

Receive polling request to contact the content server by the mobile device
2504

v

Retrieve the cached elements from the local cache to respond to the polling
request made at the mobile device 2506

A y

Using state information associated
with the cached elements to provide

Enable use of the radio on the mobile
device to satisfy the polling request

the cached elements as responses
to the polling requests such that user
experience is preserved
2508

when the cache elements have been
invalidated 2510

v

Receive responses from the use of
the radio 2512

v

Use the state information to
determine order or timing with which
the responses are provided to an
application on the mobile device
2514

FIG. 25

WO 2012/149434 PCT/US2012/035608

38/38

2600

Processor

Video Display

‘ Instructions

Alpha-numeric Input Device

Main Memory

Bus

Instructions

‘ Cursor Control Device

Drive Unit

Machine-readable
(Storage) Medium

Non-volatile Memory

Instructions
Network Interface Device

Signal Generation Device

FIG. 26

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - claims
	Page 116 - claims
	Page 117 - claims
	Page 118 - claims
	Page 119 - claims
	Page 120 - claims
	Page 121 - claims
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings

