
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/101034 Al
4 July 2013 (04.07.20 13) W P O P C T

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 21/24 (2006.01) G06F 21/22 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

PCT/US201 1/067781 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

29 December 201 1 (29. 12.201 1) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College (84) Designated States (unless otherwise indicated, for every

Boulevard, MS: RNB-4-150, Santa Clara, CA 95052 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

(72) Inventors; and UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
(75) Inventors/Applicants (for US only): MAOR, Moshe TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(MMAOR) [IL/IL]; 24 Harav-kook Street, 263 Kiryat DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Mozkin (IL). GUERON, Shay [IL/IL]; 18a Adam Haco- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
hen St., 32714 Haifa (IL). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).
(74) Agents: VINCENT, Lester, J. et al; Blakely, Sokoloff,

Taylor & Zafhian LLP, 1279 Oakmead Parkway, Declarations under Rule 4.17 :
Sunnyvale, CA 94085-4040 (US).

— of inventorship (Rule 4.17(iv))

[Continued on next page]

(54) Title: SOFTWARE MODIFICATION FOR PARTIAL SECURE MEMORY PROCESSING

(57) Abstract: This disclosure is directed to software modification that may
be used to prevent software piracy and prevent unauthorized modification of
applications. In some embodiments, a software vendor may modify software
prior to distribution to a user. The software vendor may extract cutouts from
an application to create a modified application. The modified application
and the cutouts may be downloaded by a user device. The user device may
run the application using the modified application and by executing the
cutouts in a secure execution environment that conceals the underlying code
in the cutouts.



w o 2013/101034 Al III 11 II II 11 I I III III 1 1 III I llll Hill II I II

Published:



SOFTWARE MODIFICATION FOR PARTIAL SECURE MEMORY
PROCESSING

TECHNICAL FIELD

This disclosure relates generally to the field of computers. In particular, this

disclosure relates to modification of computer software to repackage code for

execution in-part from secure memory on a user device.

BACKGROUND ART

Application stores are rapidly becoming an important distributor of

applications for many platforms such as smart-phones, tablets, and conventional

computers (e.g., notebook computers, desktop computers, etc.). Application stores are

often web-based stores that enable a user to download software electronically without

receiving a physical product. There are several reasons for the success of this

distribution mechanism for applications. One reason is that developers can use

application stores to enable broad distribution of their applications without a large

investment by the developer.

The application store is rapidly establishing itself as the main software

distribution channel. Currently, hundreds of thousands of smartphone applications are

available for download for popular smartphone and tablet operating systems (OS). In

addition, thousands of conventional computer applications for conventional computers

that run Windows® operating system (OS) or Apple OS are also available.

Application stores are expected to increase in popularity in the future and become a

dominant distributor of software.



While the current application store growth to date is impressive, application

stores are dealing with many challenges that either threaten to inhibit their future

growth or endanger it completely. In general the challenges for these application

stores include: 1) software piracy, 2) counterfeit applications that create operational,

legal, and security issues for application store operators, 3) inability to attract big

name independent software vendors (ISVs), and 4) difficulty in offering "try before

you buy" or other shareware versions of the applications through this distribution

mechanism.

Software piracy has been problematic for software developers and vendors

since mainstream computing has become widely available to users. Particularly, with

the ease of access to the Internet and ease of copying and sending data over the

Internet, software piracy continues to run rampant despite heavy penalties imposed to

those prosecuted for pirating software.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying

figures. In the figures, the left-most digit(s) of a reference number identifies the figure

in which the reference number first appears. The same reference numbers in different

figures indicate similar or identical items.

FIG. 1 is a schematic diagram of an illustrative computing environment to

securely provide modified software from an application store to a user device for

execution of the software.

FIG. 2 is a block diagram of an illustrative application store server.



FIG. 3 is a block diagram of an illustrative user device.

FIG. 4 is a flow diagram of an illustrative process to modify software and to

securely provide the modified software to a user device for execution of the software.

FIG. 5 is a schematic diagram showing transmission of a secure stack key from

an application store server to a user device.

FIG. 6 is a schematic diagram showing transmission of an application to the

application store server, which then modifies the application to create cutouts.

FIG. 7 is a schematic diagram showing transmission of the modified

application and cutouts to the user device.

FIG. 8 is a schematic diagram showing execution of the modified application

by the user device.

FIG. 9 is a flow diagram of an illustrative process to execute the modified

application by the user device.

FIG. 10 is a block diagram of another illustrative user device.

DETAILED DESCRIPTION

This disclosure is directed to software modification that may be used to prevent

software piracy and prevent unauthorized modification of applications. In some

embodiments, a software vendor may modify the software prior to distribution to a

user. The modified software may be sold, leased, or "tried" by users that download the

software.

The software vendor, which may host of an application store, may initially

receive an application from a developer or software company. The software vendor



may then remove portions of the software, such as sections of code, functions, or other

portions of the software, referred to herein as "cutouts." The software vendor may

encrypt the cutouts and store them as separate parts from a modified version of the

application that does not include the cutouts (but includes holes where code has been

cutout), referred to herein as the "modified application." The software vendor may

then transmit at least the modified application and the encrypted cutouts to a user

device, and possibly other data such as a license, a user manual, and so forth.

In accordance with some embodiments, the user device may store and decrypt

the cutouts in a secure memory location referred to herein as "secure memory." The

secure memory may be memory that is not accessible by external software, such as an

operating system or other native software running on the user device. The secure

memory may include a secure execution environment that enables secure execution of

contents in the secure memory by one or more processors or processor cores. The

secure memory may be limited to access by the secure execution environment. Thus,

the code contained in the cutouts is not revealed or exposed to the user of the user

device, software running on the user device, or to others (e.g., hackers, vendors, etc.).

The secure memory may store the cutouts in a working state (i.e. unencrypted). This

secure memory and secure execution environment cooperates with the modified

application in harmony to execute the original application.

The modified application may be loaded and executed by the operation system

on the user device as currently performed for unmodified applications. When a

requested part of the modified application includes one of the cutouts, redirect code

may direct processing to the secure execution environment to execute a corresponding



cutout and then return resultant data to the modified application, which may resume

running using the resultant data but without actual processing of the code in the cutout.

In some embodiments, the user device may include a single "framework"

secure execution environment that is used for different applications that include

cutouts. The secure execution environment may load a cutout of an application, along

with any appropriate meta-data (e.g., inputs, variables, etc.).

For example, one application may have two cutouts. A loader stack may load

the encrypted code of at least one of these cutouts into the secure execution

environment, including and any meta-data associated with the cutout(s). Inside the

into the secure execution environment, the cutout is decrypted and can be called by

the modified application to perform operations (e.g., function, calculations, etc.) of

these portions of the application that were removed from the application and stored in

the secure memory for processing by the secure execution environment.

In various embodiments, each application may use a different copy of the

framework of the secure memory and the secure execution environment because the

secure execution environment may be mapped on an address space of their respective

applications.

The techniques, apparatuses, and systems described herein may be

implemented in a number of ways. Example implementations are provided below

with reference to the following figures.



Illustrative Environment

FIG. 1 is a schematic diagram of an illustrative computing environment 100 to

securely provide modified software from an application store to a user device. The

environment includes a developer 102 (such as an independent software vendor (ISV)),

an application store 104, and a user 106. In some instances, the developer 102 and the

application store 104 may be the same entity. The developer may create or develop an

application 108, which may be stored and/or made accessible by a developer server

110. The application store (AS) 104 may receive the application using AS servers 112.

The AS servers 112 may modify the application 108 to create cutouts, as discussed

above, and to store encrypted cutouts 114 and a modified application 116 that does not

include the cutouts. The AS servers 112 may enable the user 106 to download the

software, via the encrypted cutouts 114 and modified application 116, to a user device

118. The user device 118 may store the encrypted cutouts 114 in secure memory and

execute the cutouts, after decryption, in a secure execution environment. The

developer server 110, AS servers 112, and the user device 118 may exchange data

over one or more networks 120.

The user device 118 may include a personal computer, a tablet computer, a

mobile telephone (including a smartphone), a personal digital assistant (PDA), a

television, a set top box, a gaming console, or another electronic, portable or handheld

device. The network(s) 120 may include wired and/or wireless networks that enable

communications between the various computing devices described in the environment

100. In some embodiments, the network(s) 120 may include local area networks

(LANs), wide area networks (WAN), mobile telephone networks (MTNs), and other



types of networks, possibly used in conjunction with one another, to facilitate

communication between the various computing devices (i.e., the developer server(s)

110, the AS servers 112, and/or the user device 118). The AS servers 112 and the user

device 118 are described in greater detail with reference to FIGS. 2 and 3, respectively.

FIG. 2 shows illustrative computing architecture 200 of the AS servers 112.

The architecture may include processors(s) 202 and memory 204. The memory 204

may store various modules, applications, programs, or other data. The memory 204

may include instructions that, when executed by the processor(s) 202, cause the

processors to perform the operations described herein for the AS servers 112. In some

embodiments, the memory 204 may store an application converter 206, a client

registration manager 208, and a download manager 210. Each module is discussed in

turn.

The application converter 206 may be a software engine that takes the

application that was uploaded by the developer as input, and extracts pieces of it the

application as cutouts. The cutouts may be selected as important portions of code that,

when extracted from the application, make the application inoperable. Further, the

cutout portions, when extracted, prevent another person from reconstructing the

complete application, thereby frustrating piracy attempts. After upload of the

application, the application converter may perform analysis of the application binary

and automatically identify those pieces that would be most relevant for the proper

execution of the application. In some instances, the developer may indicate the pieces

to be used as the cutouts. The application converter 206 may then replace the

extracted pieces with redirect code, which are calls to external locations and may be



based on a table. The cutouts may be aggregated with some metadata (such as return

values, parameters, etc.) in a separate file. This file may be encrypted.

The client registration manager 208 may provision a unique client key for each

new client that is running the client registration flow. This process may be bounded to

secure memory and to a secure execution environment technology used by the user

device 118. In some embodiments, the client registration manager 208 is provided by

a same entity that delivers a protected software distribution technology client software

stack, as discussed below with reference to FIG. 3.

The download manager 210 may create a license and encrypt the cutout of the

application. For example, the download manager 2 110 may encrypt the cutout if the

binary is to be different on a per-platform basis rather than a single encryption key per

application for all clients. The download manager 210 may encrypt the license with a

specific client key (that was provisioned by the client registration manager 208 during

enrolment time) and may transmit the specific client key with the application and the

encrypted cutout.

FIG. 3 shows illustrative computing architecture 300 of the user device 118.

The architecture may include exposed memory 302, processors(s) 304, and secure

memory 306. The exposed memory 302 may store various modules, applications,

programs, or other data. The exposed memory 302 may include instructions that,

when executed by the processor(s) 304, cause the processors to perform some of the

operations described herein for the user device 118. The exposed memory may be

conventional memory, such as flash memory, RAM, or other types of conventional

memory. In some embodiments, the exposed memory 304 may store an operating



system (OS) 308, the modified application (modified app) 114, and an application

store client 310, as well as other native applications or programs.

The application store client 310 may support secure downloads from the

application store 204. The application store client 310 may utilize the secure memory

306 of the client device 118 to store the encrypted cutouts 116. The application store

client 310 may also activate the secure memory and the secure execution environment

on the user device 118.

In accordance with various embodiments, the secure memory 306 may store a

protected software distribution licensing secure environment (PLN) 312, which may

be used for a one time enrollment into the application store 104 and later on may be

used each time the user 106 wants to launch a secured application (having the cutouts).

The PLN 312 may manage keying materials of the protected software distribution

technology and may parse licenses. The PLN 312 may be stored in the secured

memory 306 and may act as a singleton on the client platform (the user device 118)

for any given online application store that the platform works with. In some instances,

the PLN 312 may concurrently support multiple application stores. The PLN 312

may participate in the user enrollment and the application execution, as discussed

below.

In some embodiments, the secure memory 306 may store a protected software

distribution execution environment (PXN) 314 (which may be the secure execution

environment) as a secure execution environment that stores decrypted contents of the

application (cutout). A PXN 314 may be created for each secure application that

executes on the user device 118. Cutouts from different applications may vary in size.



In some embodiments, the PXN 312 is loaded at a minimum size to enable execution

and properly accommodate the cutout from the modified application. This may be

accomplished as described below.

A static PXN binary that is part of a software stack may be built to a full

maximum supported size. The PXN binary can be loaded partially to fit any smaller

demand of a particular application. For example, the maximum size per application

may be 2MB of cutout (which makes a slightly bigger maximum size PXN); however,

for a given application that uses only 0.5MB of cutout, the software stack may load

the PXN 314 with that size. A measurement table that is part of the stack may provide

a set of possible sizes with their respective measurements. When the stack loads the

PXN 314 for a particular application, it may be using the embedded protected

software distribution metadata that is part of the application, to decide the size. A

loading stack can build the PXN 314 with a correct size. An implementation

consideration for the PXN 314 is to design the PXN with minimum overhead size, due

to the fact that this architecture may pay for this overhead for every running

application.

Illustrative Operation

FIGS. 4-9 show illustrative processes to modify software and to securely

provide the modified software to a user device for secure execution by the user device.

The processes are illustrated as a collection of blocks in a logical flow graph or

schematic diagram, which represent a sequence of operations that can be implemented

in hardware, software, or a combination thereof. In some instances, the collection of



blocks is organized with respective entities that may perform the various operations

described in the blocks. In the context of software, the blocks represent computer-

executable instructions stored on one or more computer-readable storage media that,

when executed by one or more processors, perform the recited operations. Generally,

computer-executable instructions include routines, programs, objects, components,

data structures, and the like that perform particular functions or implement particular

abstract data types. The order in which the operations are described is not intended to

be construed as a limitation, and any number of the described blocks can be combined

in any order and/or in parallel to implement the processes. The processes are

described with reference to FIGS 1-3. Of course, the processes may be performed in

other similar and/or different environments.

FIG. 4 is a flow diagram of an illustrative process 400 to modify software and

to securely provide the modified software to a user device for secure execution by the

user device.

At 402, the AS servers 112 may initially enroll the user 106 and user device

118 with the application store 104. The enrollment may include an exchange of an

encryption key. In accordance with various embodiments, the enrollment may enable

establishment or use of the PLN 312 on the user device 118. The operation 402 is

described in greater detail with respect to FIG. 5 .

At 404, the developer server(s) 102 may upload an application to the AS

servers 112. The AS servers 112 may remove the cutouts 116 from the application to

create the modified application 114. The AS servers 112 may also encrypt the cutouts



at the operation 404. The operation 404 is described in greater detail with respect to

FIG. 6 .

At 406, the AS servers 112 may download the modified application 114 and the

encrypted cutouts 116 to the user device 118. The AS servers 112 may also provide a

license for the user 118 at the operation 406. The operation 406 is described in greater

detail with respect to FIG. 7 .

At 408, the user device 118 may execute the modified application. The user

device 118 may, when applicable, execute one or more of the cutouts in the PXN 314

to conceal the code in the cutouts and to pass resultant data back to the modified

application running on the user device 118. Thus, the application may operate as

designed by the developer even after the modification and the creation of the cutouts

by the AS servers 112. The code used in the cutouts may be pretested and concealed

from users, the operating system, native software, hackers, and others though use of

the secure memory 306 and the PXN 314. The operation 408 is described in greater

detail with respect to FIG. 8.

FIG. 5 is a schematic diagram depicting an environment 500 that shows

transmission of a secure stack key from the AS servers 112 to the user device 118. In

accordance with various embodiments, the user 106 may request to enroll in a

relationship with the application store 104, such as by establishing an account. The

user 106 may provide user information, payment information, contact information,

information about the user device 118, and/or other data to the application store 104.

In return, the AS servers 112 may provide a secure stack key 502 to the PLN 312

stored in the secure memory 306 of the user device 118. The secure stack key 502



may be used to decrypt the cutouts 116, the modified application 114, the license for

an application, or a combination thereof. Other encryptions may also be used when

transmitting data from the AS servers 112 to the user device 118. The user device 118

may use the secure stack key 502 (or simply "key" or "encryption key") when

decrypting as least some information or data from the AS servers 112.

FIG. 6 is a schematic diagram depicting an environment 600 that shows

transmission of an application to the application store server 104, which then modifies

the application to create cutouts. A developer messenger 602 may transmit the

application 108, which is unmodified and includes a complete set of the code, to the

AS servers 112. Thus, from the developer perspective, there is no change in the

application development itself. The building process at the developer site is the same

as a process for any other application.

For secured applications (for example, when the application is not free), after

uploading into the application store 104, the application converter 206 may analyze

the application (e.g., application binary) and generate the list of cutouts. The cutouts

may be identified by designation from the developer, from detection of discrete

portions of code by the AS servers 112, or a combination of both. An output of the

application converter 206 is a modified application 114 (e.g., application binary) that

includes proper calls (redirect code) to the secure execution environment (i.e., the

PXN 314) of the user device 118. The output also includes the cutouts that have been

encrypted by the AS servers 112. The output may also include metadata to properly

load and execute application as the modified application with the cutouts. The

metadata may further include a size for the cutouts and other possible parameters.



In some embodiments, the application converter 206 may perform an algorithm

similar to an illustrative algorithm that follows. Given an application A that is

comprised of code sequence C=(c0, cl, c2.. .cc ) and data area (dO, dl, d2.. ., ¾ ), a

process may extract n pieces of sequential code E=(el,.. .,en) where ei=(Cii ,.. .,c i2) in

such a way that: (1) when executing A along with the extracted E pieces (denoted AE)

the operation is not different from A. (2) E pieces are sequential linear code excerpts

(i.e., no jumps from within ei into ej, i<>j and no jumps between ei and A). (3) E

pieces do not include a subset of software interrupts. The cutouts may be selected in

such a way that careful examination of the application execution flow of A and E,

during interleaved running (where E execution is opaque, but can be single stepped,

etc.) an observer has no efficient way to reverse engineer the E pieces. Optionally, E

pieces also include a subset of D, especially trivial when only Ei operates on some

subset of D, that subset can be inside Ei. In some embodiments, the cutouts 116 may

be complete functions from the application. The cutouts 116 may also be leaf

functions that are not calling an outside function or system call, thereby protecting

local data of the extracted functions from being revealed. In some embodiments, the

cutouts 116 are limited in size to a threshold size of memory (bytes).

FIG. 7 is a schematic diagram depicting an environment 700 that shows

transmission of the modified application 114 to the user device 118. In some

embodiments, the AS servers 112 may generate a unique key for the application for

the particular user 106 and encrypt the cutout block with that key. The AS servers

112 may also generate a unique user license 702 for the user. The user license 702

may include optional policies for the activation of the application by the user and the



unique application key. In some embodiments, the license may only allow limited use

of the application (e.g., trial basis based on time or number of uses, etc.) or for leasing

of the application (e.g., software as a service). The AS servers 112 may encrypt the

license with the unique client key (that was provisioned during enrollment). The AS

servers 112 may create a download package 704 that includes the modified application

114, the encrypted cutout 116 and the user license 702, which may then be transmitted

to the user device 118.

FIG. 8 is a schematic diagram depicting an environment 800 that shows

execution of the modified application 114 by the user device 118. In accordance with

various embodiments, the user device 118 may load the modified application 114 for

execution. The PXN 314 may then be loaded having a size suitable for the cutouts

116. The license 702 may be sent to the PLN 312 for decryption to the PXN 314,

which may occur after a verification or notification that the application runs under

terms and policies of the license. The cutouts 116 may be streamed into the PXN 314.

The application may be activated using the modified application 114 and the cutouts

116. In addition, the stack may clean the EPC when application is terminated, among

other functions.

In some embodiments, the PXN 314 may operate as a buffer and may load

additional code for the cutouts that could not be stored in the PXN 314 due to size

constraints. Thus, the PXN 314 may retrieve, and possibly decrypt, some additional

code and/or cutouts (or portions thereof) during processing of a cutout.

FIG. 9 is a flow diagram of an illustrative process 900 to execute the modified

application by the user device 118.



At 902, the user device 118 may process code from the modified application

114 that is stored in the exposed memory 302.

At 904, the user device 118 may determine whether a redirect code is reached

in the code from the modified application 114. The redirect code (or redirection code,

jump code, etc.) may be code that links to a corresponding cutout stored in the PXN

314. When no redirect code is found (following the "no" route), then the processing

continues the operation 902. However, when the redirect code is found (following the

"yes" route from the decision operation 904), then processing may continue at 906.

At 906, the user device 118 may send a request to the PXN 314 to process the

corresponding cutout. The request may include metadata, parameters, and/or other

data. For example, the request may include variables that are used by the code in the

cutouts.

At 908, the user device 118 may process the code in the cutout in the PXN 314.

The processing of the cutout may be concealed from the operating system, other

applications, other users, the user 106, and so forth.

At 910, the user device 119 may determine whether the code has been

processed. When the code is not complete (still processing), then the process may

continue at 908 following the "no" route from the decision operation 910. When the

code from the cutout is complete (following the "yes" route from the decision

operation 910), then the process may continue at an operation 912.

At 912, the PXN 314 may pass parameters back to the exposed memory 302 to

enable the modified application 114 to continue to run. For example, the output of the

code may be passed back to the exposed memory 302 without revealing the



underlying code and by obscuring the underlying logic, to an extent possibly, of the

code in the cutout. The decrypted cutout may not be readable by any software or

hardware on the user device, other than the processor thread or processor core thread

that is executing the cutout. In various embodiments, the operation 912 may not

include the PXN 314 passing back information to the main application because the

PXN may simply change a state of the exposed memory 302 and/or return data

through registers.

In some embodiments, the user device 118 may announce or otherwise make

available information that indicates a legitimacy or valid license for the modified

application and a state of the application as modified. Thus, the user device 118 may

indicate that the application includes the cutouts as described here.

FIG. 10 is a block diagram of another illustrative user device 1000 that may

perform the processes and functionality described herein. The user device 1000 may

include one or more processors 1002-1, . . ., 1002-N (where N is a positive integer > 1),

each of which may include one or more processor cores 1004-1, 1004-M (where

M is a positive integer > 1). In some implementations, as discussed above, the

processor(s) 1002 may be a single core processor, while in other implementations, the

processor(s) 1002 may have a large number of processor cores, each of which may

include some or all of the components illustrated in FIG. 10. For example, each

processor core 1004-1, 1004-M may include an instance of logic 1006 for

interacting with a register file 1008-1, 1008-M and/or performing at least some of

the operations discussed herein. The logic 1006 may include one or more of dedicated

circuits, logic units, microcode, or the like.



The processor(s) 1002 and processor core(s) 1004 can be operated, via an

integrated memory controller (IMC) 1010 in connection with a local interconnect

1016, to read and write to a memory 1012. The processor(s) 1002 and processor

core(s) 1004 can also execute computer-readable instructions stored in a memory

1012 or other computer-readable media. The memory 1012 may include volatile and

nonvolatile memory and/or removable and non-removable media implemented in any

type of technology for storage of information, such as computer-readable instructions,

data structures, program modules or other data. Such memory may include, but is not

limited to, RAM, ROM, EEPROM, flash memory or other memory technology. In the

case in which there are multiple processor cores 1004, in some implementations, the

multiple processor cores 1004 may share a shared cache 1014, which may be

accessible via the local interconnect 1016. Additionally, storage 1018 may be

provided for storing data, code, programs, logs, and the like. The storage 1018 may

include solid state storage, magnetic disk storage, RAID storage systems, storage

arrays, network attached storage, storage area networks, cloud storage, CD-ROM,

digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic

tape, or any other medium which can be used to store desired information and which

can be accessed by a computing device. Depending on the configuration of the user

device 1000, the memory 1012 and/or the storage 1018 may be a type of computer

readable storage media and may be a non-transitory media.

In accordance with various embodiments, the processor 1102 may be in

communication with secure memory 1019 via the IMC 1010. The secure memory

1019 may include the PLN 312 and/or the PXN 314. The secure memory 1019 may



be stored, at least partially, with the processors 1002-1 or another processor or

processor core.

In various embodiments, the local interconnect 1016 may also communicate

with a graphical controller (GFX) 1020 to provide graphics processing. In some

embodiments, the local interconnect 1016 may communicate with a system agent

1022. The system agent 1022 may be in communication with a hub 1024, which

connects a display engine 1026, a PCIe 1028, and a DMI 1030.

The memory 1012 may store functional components that are executable by the

processor(s) 1002. In some implementations, these functional components comprise

instructions or programs 1032 that are executable by the processor(s) 1002. The

example functional components illustrated in FIG. 10 further include an operating

system (OS) 1034 to mange operation of the user device 1000.

The user device 1000 may include one or more communication devices 1036

that may include one or more interfaces and hardware components for enabling

communication with various other devices over a communication link, such as one or

more networks 1038. For example, communication devices 1036 may facilitate

communication through one or more of the Internet, cable networks, cellular networks,

wireless networks (e.g., Wi-Fi, cellular) and wired networks. Components used for

communication can depend at least in part upon the type of network and/or

environment selected. Protocols and components for communicating via such

networks are well known and will not be discussed herein in detail.

The user device 1000 may further be equipped with various input/output (I/O)

devices 1040. Such I/O devices 1040 may include a display, various user interface



controls (e.g., buttons, joystick, keyboard, touch screen, etc.), audio speakers,

connection ports and so forth. An interconnect 1024, which may include a system bus,

point-to-point interfaces, a chipset, or other suitable connections and components,

may be provided to enable communication between the processors 1002, the memory

1012, the storage 1018, the communication devices 1036, and the I/O devices 1040.

Conclusion

Although the subject matter has been described in language specific to

structural features and/or methodological acts, it is to be understood that the subject

matter defined in the appended claims is not necessarily limited to the specific

features or acts described. Rather, the specific features and acts are disclosed as

illustrative forms of implementing the claims.



CLAIMS

What is claimed is:

1. A processor comprising:

a first logic to process code stored in memory for an application that includes

an extracted portion of code to be stored separately in secure memory; and

a second logic to process in a secure execution environment at least a portion of

the extracted portion of code stored in the secure memory when the first logic reaches

a location of the extracted portion of code, the secure memory restricted to access by

the secure execution environment, the secure execution environment concealing

content of the extracted portion of binary code while passing resultant data back to the

first logic.

2 . The processor as recited in claim 1, wherein the first logic redirects to the

second logic upon detection of redirect code that is a placeholder in the application for

the extracted portion of the code.

3 . The processor as recited in claim 1, wherein the extracted portion of code is

decrypted by the second logic and executed in the secure execution environment.

4 . The processor as recited in claim 1, wherein the first logic passes at least

one parameter to the second logic to initiate a request to process the at least a portion

of the extracted code.



5 . The processor as recited in claim 1, further comprising a third logic to

decrypt the application and to store the extracted portion of the code in the secure

memory.

6 . A method of securely distributing software, the method comprising:

extracting portions of code as cutouts from an application to create a modified

application that does not include the cutouts;

encrypting the cutouts using an encryption key that is maintained by a user; and

transmitting the encrypted cutouts and the modified application to the user.

7 . The method as recited in claim 6, wherein the cutouts are functions of code

from the application.

8. The method as recited in claim 6, wherein the cutouts are limited in size to a

threshold size.

9 . The method as recited in claim 6, further comprising identifying the cutouts

based at least in part using indicators from a developer.

10. The method as recited in claim 6, further comprising receiving the

application in an unmodified state from a developer.

11. The method as recited in claim 6, further comprising transmitting the

encryption key to the user prior to the encrypting.



12. One or more computer-readable media maintaining computer-executable

instructions to be executed on one or more processors to perform acts comprising:

removing portions of code as cutouts from an application to create a modified

application;

encrypting the cutouts using an encryption key; and

transmitting the modified application and the encrypted cutouts to the user.

13. The method as recited in claim 12, further comprising identifying the

portions of code as the cutouts by an automated selection process.

14. The method as recited in claim 12, further comprising transmitting a user

license to the user.

15. The method as recited in claim 12, wherein the modified application and the

encrypted cutouts are included in an encrypted package for the transmitting.

16. The method as recited in claim 12, further comprising transmitting the

encryption key to the user prior to the encrypting.

17. A system to securely store and execute an application, the system

comprising:

one or more processors;

exposed memory to store an application executable by the one or more

processors;

secure memory to store code as one or more cutouts that are extracted from the

application prior to receipt of the application by the exposed memory, the secure



memory limited to access by a secure execution environment using the one or more

processors;

wherein the one or more processors execute the application from the exposed

memory; and

when the executing the application from the exposed memory reaches a cutout

in the application, executing corresponding code in the cutout in the secure execution

environment without revealing contents of the cutout to the exposed memory.

18. The system as recited in claim 17, wherein the application includes redirect

code in place of the cutouts to redirect the processing to the corresponding code in the

cutout.

19. The system as recited in claim 17, wherein the cutout is decrypted when

located in the secure encryption environment.

20. The system as recited in claim 17, wherein the cutout is a function of the

application.

21. The system as recited in claim 17, wherein the secure memory further

includes an encryption key to decrypt the application and the one or more cutouts after

a download of the application and the one or more cutouts.

22. The system as recited in claim 17, wherein the one or more processors pass

at least one parameter to the secure execution environment prior to the executing the

corresponding code.





















A. CLASSIFICATION OF SUBJECT MATTER

G06F 21/24(2006.01)i, G06F 21/22(2006. 01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F 21/24; G06F 11/30; G06F 12/14; H04L 9/30; H04L 9/32; H04L 9/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: "encrypt, protion, software, secure, execution, extract"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 7051211 Bl (STEPHEN MICHAEL MATYAS et a l .) 23 May 2006 6,7,9-16

See the abstract, column 8 , line 25-column 13, line 9 . 1-5,8,17-22

US 2008-0059812 Al (DAVID EVERETT et a l .) 06 March 2008 6,7,9-16

See the abstract, paragraphs 54-55. 1-5,8,17-22

US 04817140A A (CHANDRA; ASHILESHWARI N . et a l .) 28 March 1989 1-22

See the abstract, column 11, line 20-column 12, line 12.

US 2006-0095793 Al (WILLIAM E . HALL) 04 May 2006 1-22

See the abstract, paragraphs 32-43

Further documents are listed in the continuation of Box C . patent family annex.

* Special categories of cited documents: later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of citation or other document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

24 SEPTEMBER 2012 (24.09.2012) 24 SEPTEMBER 2012 (24.09.2012)
Name and mailing address of the ISA/KR Authorized officer ,

·«·*' · JMKorean Intellectual Property Office
mm 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan Soak, Sang Moon ! , , ' I
v City, 302-70 1, Republic of Korea

Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8470

Form PCT/ISA/210 (second sheet) (July 2009)



Information on patent family members PCT/US201 1/067781

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 705 12 B1 23 .05 .2006 None

US 2008-00598 2 A 06 .03 .2008 AU 1998-62996 B2 26 .07 ,,200

CA 228 1576 A 27 .08 ,, 1998

CA 228 1576 C 30 . 11,,2004

EP 0963580 A 17 . 12 ,,2003

EP 0963580 B 06 .05 ,,2004

EP 0976 4 A2 02 .02 ,,2000

EP 098 1805 A 0 1.03 ,,2000

EP 098 1805 B 09 .04 ,,2003

EP 098 1807 A2 0 1.03 ,,2000

EP 098 1807 B 06 .08 ,,2008

EP 0985202 A 15 .03 ,,2000

EP 0985202 B 13 .09 ,,2006

EP 0985203 A 15 .03 ,,2000

EP 0985203 B 12 .04 ,,2006

EP 0985204 A 15 .03 ,,2000

EP 0985204 B 13 . 12 ,,2006

EP 2084168 A2 05 .08 ,,2009

EP 2084168 B 27 .06 ,,2012

JP 04- 127862 B2 30 .07 ,,2008

JP 04- 129063 B2 30 .07 ,,2008

JP 04- 18 1641 B2 19 . 11,,2008

JP 04-25 1667 B2 08 .04 ,,2009

JP 04-32726 1 B2 19 .06 ,,2009

JP 04-405568 B2 13 . 11,,2009

JP 04-906168 B2 20 .0 1,,2012

JP 200 1-51 323 1 A 28 .08 ,,200

JP 200 1-525956 A 11. 12 ,,200

JP 200 1-525957 A 11. 12 ,,200

JP 200 1-525958 A 11. 12 ,,200

JP 200 1-527674 A 25 . 12 ,,200

JP 200 1-527675 A 25 . 12 ,,200

JP 2002-5127 5 A 23 .04 ,,2002

JP 2009-003945 A 08 .0 1,,2009

JP 20 10- 134933 A 17 .06 ,,2010

JP 4405568 B2 27 .0 1,,2010

US 06 164549A A 26 . 12 ,,2000

US 200 1-0056536 A 27 . 12 ,,200

US 2002-0050528 A 02 .05 ,,2002

us 2007-01436 6 A 2 1.06 ,,2007

us 2007-0255955 A 0 1. 11,,2007

us 2007- 180276 A 02 .08 ,,2007

us 2008-00 10470 A 10 .0 1,,2008

us 2008-00525 5 A 28 .02 ,,2008

us 2008-009 1956 A 17 .04 ,,2008

us 2008-009 1957 A 17 .04 ,,2008

us 2008-009 1958 A 17 .04 ,,2008

us 2008-0103330 A 0 1.05 ,,2008

PCT/ISA/210 (patent family annex) (July 2009)



Information on patent family members PCT/US201 1/067781

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2008-01 37842 A 12 06 2008

US 2009-025393 1 A 08 10 2009

us 62205 0 B1 24 04 200

us 6230267 B1 08 05 200

us 63 17832 B1 13 11 200

us 63282 7 B1 11 12 200

us 6385723 B1 07 05 2002

us 6575372 B1 10 06 2003

us 6659354 B2 09 12 2003

us 7469339 B2 23 12 2008

us 7572931 B2 11 08 2009

us 7584358 B2 0 1 09 2009

us 7669055 B2 23 02 2010

us 7689826 B2 30 03 2010

us 7702908 B2 20 04 2010

us 7707408 B2 27 04 2010

us 77303 0 B2 0 1 06 2010

us 77303 B2 0 1 06 2010

us 77303 2 B2 0 1 06 2010

us 7734923 B2 08 06 2010

us 79 17760 B2 29 03 201

o 2008-05 1584 A2 02 05 2008

o 2008-05 1584 A3 02 05 2008

wo 98-37526 A1 27 08 1998

wo 98-52 152 A2 19 11 1998

wo 98-52 153 A2 19 11 1998

wo 98-52 158 A2 19 11 1998

wo 98-52 15S A2 19 11 1998

wo 98-52 16C A2 19 11 1998

wo 98-52 6 A2 19 11 1998

wo 98-52 162 A2 19 11 1998

wo 98-52 163 A2 19 11 1998

US 0 8 17 140A A 28 .03 . 1989 EP 0266748 A3 10 04 199 1

EP 0266748 B1 08 02 1995

EP 0268 39 A3 10 04 199 1

JP 02-060009 E 14 12 1990

JP 03-0328 3 E 14 05 199 1

JP 16308 7 C 26 12 199 1

JP 16673 2 C 29 05 1992

JP 63- 127334 A 3 1 05 1988

JP 63- 128434 A 0 1 06 1988

us 05 10941 3A A 28 04 1992

US 2006-0095793 A 04 .05 .2006 None

PCT/ISA/210 (patent family annex) (July 2009)


	abstract
	description
	claims
	drawings
	wo-search-report

