0-7/001882 A2 |0 0 00O O

O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T 0RO 0O

International Bureau

(43) International Publication Date
4 January 2007 (04.01.2007)

(10) International Publication Number

WO 2007/001882 A2

(51) International Patent Classification:
GOGF 9/45 (2006.01)

(21) International Application Number:
PCT/US2006/023336

(22) International Filing Date: 14 June 2006 (14.06.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/158,398 21 June 2005 (21.06.2005) US
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, WA 98052-6399 (US).

(72) Inventor: PRAITIS, Edward, J.; One Microsoft Way,
Redmond, WA 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU,
LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG,
NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: CONTENT SYNDICATION PLATFORM

Subfolders

206

I 208
H ltems '

f210

(57) Abstract: A content syndication platform, such as a web content syndication platform, manages, organizes and makes available
for consumption content that is acquired from the Internet. In at least some embodiments, the platform can acquire and organize
€ Web content, and make such content available for consumption by many different types of applications. These applications may or
may not necessarily understand the particular syndication format. An application program interface (API) exposes an object model
which allows applications and users to easily accomplish many different tasks such as creating, reading, updating, deleting feeds and

the like.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

CONTENT SYNDICATION PLATFORM
BACKGROUND

RSS, which stands for Really Simple Syndication, is one type of web content
syndication format. RSS web feeds have become more and more popular on the web
and numerous software applications with RSS support are being developed. These
numerous applications can have many varied features and can lead users to install
several different RSS-enabled applications. Each RSS application will typically have its
own list of subscriptions. When the list of subscriptions is small, it is fairly easy for a
user to enter and manage those subscriptions across the different applications. As the
list of subscriptions grows, however, management of the subscriptions in connection
with each of these different RSS-enabled applications becomes very difficult. Thus, it is
very easy for subscription lists to become unsynchronized. |

In addition, web feeds come in several different file formats, with the popular
ones being RSS 0.91, 0.92, 1.0, 2.0 and Atom. Each RSS-enabled application has to
support most of these formats and possibly even more in the future. Implementing
parsers for use in the RSS context for some applications is more difficult than for others.
Given that not all application developers are RSS experts who possess experience and
knowledge with regard to the intricacies of each format, it is unlikely that all application
developers will implement the parsers correctly. Hence, it is likely given the rich
number of file formats that some application developers will opt to not develop
applications in this space or, if they do, the applications will not be configured to fully
exploit all of the features that are available across the different file formats.

Another aspect of RSS and web feeds pertains to the publishing of content. For
example, the number of users with blogs (weblogs) is increasing. There are many
publicly available services that provide free blog services. Publishing content to a blog
service, however, can be rather cumbersome since it might involve opening a browser,

navigating to the blog service, signing in, and then typing the entry and submitting it.

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24

25

WO 2007/001882 PCT/US2006/023336

Many application developers would prefer to be able to publish from within their
particular application, without breaking the user flow by having to go to a website. In
addition, there are many different types of protocols that can be used to communicate
between a client device and a particular service. Given this, it is unlikely that
application developers will implement all protocols. As such, the user experience will

not be all that it could be.

SUMMARY

A content syndication platform, such as a web content syndication platform,
manages, organizes and makes available for consumption content that is acquired from a
source, such as the Internet, an intranet, a private network or other computing device, to
name just a few. In some embodiments, the platform can acquire and organize web
content, and make such content available for consumption by many different types of
applications. These applications may or may not necessarily understand the particular
syndication format. An application program interface (API) exposes an object model
which allows applications and users to easily accomplish many different tasks such as
creating, reading, updating, deleting feeds and the like. J

In addition, the platform can abstract away a particular feed format to provide a
common format which promotes the useability of feed data that comes into the platform.
Further, the platform processes and manages enclosures that might be received via a
web feed in a manner that can make the enclosures available for consumption to both

syndication-aware applications and applications that are not syndication-aware.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a high level block diagram that illustrates a system that includes a web

content syndication platform in accordance with one embodiment.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

Fig. 2 is a block diagram illustrates aspects of an object model in accordance .With
one embodiment.

Fig. 3 is a block diagram that illustrates a feed synchronization engine in
accordance with one embodiment.

Fig. 4 illustrates an exemplary feed store in accordance with one embodiment.

Fig. 5 illustrates an exemplary user’s profile in accordance with one embodiment.

Fig. 6 illustrates exemplary objects in accordance with one embodiment.

Fig. 7 illustrates exemplary objects in accordance with one embodiment.

DETAILED DESCRIPTION

Overview

A content syndication platform, such as a web content syndication platform, is
described which is utilized to manage, organize and make available for consumption
content that is acquired from a source, such as the Internet, an intranet, a private network
or other computing device, to name just a few. In the context of this document, the
platform is described in the context of an RSS platform that is designed to be used in the
context of RSS web feeds. It is to be appreciated and understood that the RSS context
constitutes but one example and is not intended to limit application of the claimed
subject matter to only RSS contexts. The description below assumes some familiarity
on the part of the reader with RSS. For background on RSS, there are a number of
publicly available specifications that provide information that may be of interest to the
reader.

In this document, certain terminology will be used in the context of the RSS
embodiment that is described. An item is a basic unit of a feed. Typically, an item
represents a blog entry or a news article/abstract, with a link to the actual article on the
website. An enclosure is similar to an email attachment, except that there is a link to

actual content. A feed is a list of items in a resource, usually only the most recent
3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

additions. A system feed list is a list of feeds to which a user is subscribed. A
subscription refers to the act of signing up to receive notifications of new feed items.

In the various embodiments described in this document, the platform can acquire
and organize web content, and make such content available for consumption by many
different types of applications. These applications may or may not necessarily
understand the particulé% syndication format. Thus, in the implementation example,
applications that do not understand the RSS format can nonetheless, through the
platform, acquire and consume content, such as enclosures, acquired by the platform
through an RSS feed.

The platform comprises an application program interface (API) that exposes an
object model which allows applications and users to easily accomplish many different
tasks such as creating, reading, updating, deleting feeds and the like. For example,
using the API, many different types of applications can access, manage and consume
feedlists which includes a list of feeds.

In at least one embodiment, the platform provides multiple different feed parsers
each of which can parse a particular format in which a web feed may be received. The
parsed format is then converted into a common format which can then be leveraged by
applications and users. The common format is utilized to abstract away specific notions
embodied by any one particular format in favor of a more universal, understandable
format.

Further, the platform processes and manages enclosures that might be received
via a web feed in a manner that can make the enclosures available for consumption to
both syndication-aware applications and applications that are not syndication-aware. In
at least some embodiments, the APIs allow for discovery of the relationship between an
enclosure and its associated feed item.

In the discussion that follows, an exemplary platform and its components are first

described under the heading “Web Content Syndication Platform”. Following this
4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

discussion, an implementation example (under the heading “Implementation Example”)
is provided and describes a set of APIs that expose an object model that enables

applications and users to interact with the platform in a meaningful and robust way.

Web Content Syndication Platform

Fig. 1 shows an exemplary system in accordance with one embodiment, generally
at 100. Aspects of system 100 can be implemented in connection with any suitable
hardware, software, firmware or combination thereof. In at least one embodiment,
aspects of the system are implemented as computer-readable instructions that reside on
some type of computer-readable medium.

In this example, system 100 comprises a content syndication platform 102 and a
collection of applications 104 individual ones of which can be configured to utilize the
platform in different ways, as will become apparent below. In at least some
embodiments, the content syndication platform comprises a web content syndication
platform. In the discussion that follows, the platform 102 is described in the context of
an RSS platform. It is to be appreciated and understood that this is intended as but an
example and is not intended to limit application of the claimed subject matter to only
RSS environments. Rather, principles of the described embodiments can be utilized in
other syndication environments without departing from the spirit and scope of the
claimed subject matter.

In this example, platform 102 comprises an object model 106 that is exposed by a
set of APIs that enable applications 104 to interact with the platform. A synchronization
engine 108 is provided and is configured to, among other things, acquire web content
and, in at least some embodiments, convert the web content into a so-called common
Jformat, which is described in more detail below.

A publishing engine 110 permits users to publish content, such as blogs, in a

manner that abstracts away, via the APIs, the communication protocol that is utilized to
5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

communicate between the user’s application or computing device and the server or
destination software that is to receive the content.

In addition, in at least one embodiment, platform 102 includes a feed store 112
that stores both feed lists 114 and feed data 116. Further, platform 102 utilizes, in at
least one embodiment, file system 118 to store and maintain enclosures 120. Using the
file system carries with it advantages among which include enabling applications that do
not necessarily understand the syndication format to nonetheless consume enclosures
that may be of interest. Further, platform 102 includes a post queue 122 that holds post
data 124 that is to be posted to a particular web-accessible location.

As noted above, platform 102 can enable applications to access, consume and
publish web content. Accordingly, the collection of applications 104 can include many
different types of applications. In at least some embodiments, the types of applications
can include those that are syndication-aware and those that are not syndication-aware.
By “syndication-aware” is meant that the application is at least somewhat familiar with
the syndication format that is utilized. Thus, in the RSS context, a syndication-aware
application is one that may be configured to process data or otherwise interact with
content that is represented in an RSS format. This can include having the ability to
parse and meaningfully interact with RSS-formatted data. Similarly, an application that
is not syndication-aware is typically not configured to understand the syndication
format. Yet, through the platform, as will become apparent below, applications that are
not syndication aware can still access and consume content that arrives at the platform in
a syndication format.

Looking more specifically at the different types of applications that can interact
with the platform, collection 104 includes a web browser application 122, an RSS reader
application 124, a digital image library application 126, a media player application 128
and a blog service 130. In this example, RSS reader application 124 is a syndication-

aware application, while media player 128 may not necessarily be a syndication-aware
6

10

i1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336
application. Further, web browser application 122 may or may not be a syndication-
aware application. Of course, these applications constitute but examples of the different
types of applications that can interact with the platform. As such, other types of
applications that are the same or different from those illustrated can be utilized without
departing from the spirit and scope of the claimed subject matter. By way of example
and not limitation, these other types of applications can include calendar applications for
event feeds, social networking and email applications for contact feeds, screen saver
applications for picture feeds, CRM for document feeds, and the like.

In the discussion that follows, aspects of the individual components of the

platform 102 are described in more detail, each under its own heading.

Object Model

Fig. 2 illustrates individual objects of object model 106 in accordance with one
embodiment. The object model about to be described constitutes but one example of an
object model that can be utilized and is not intended to limit application of the claimed
subject matter to only the object model that is described below. As noted above, the
object model is exposed by an AP, an example of which is described below.

In this particular object model, a top level object 200 called Jeeds is provided.
The feeds object 200 has a property called subscriptions of the type folder. Subscription
or folder objects 202 are modeled as a hierarchy of folders. Thus, in this particular
example, subscription or folder objects have properties that include subfolders 204 of
the type folder and feeds 206 of the type feed. Underneath the feeds object 206 is an
item object 208 of the type item, and underneath the item object 206 is an enclosure
object 210 of the type object.

The individual objects of the object model have properties, methods and, in some
instances, events that can be utilized to manage web content that is received by the

platform. The above-described object model permits a hierarchical structure to be
7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336
utilized to do such things as manage feedlists and the like. For example, using a folder
structure, the platform can execute against a set of feeds. As will be appreciated by the
skilled artisan, this makes it easier for the application developer. For example,
executing against a set of feeds provides the ability to refresh all of the “news” feeds,
located within the news folder.

As an example, consider the following. Assume that a user wishes to interact
with or consume data associated with a feed to which they are not actually subscribed.
For feeds that are subscribed to, i.e. those that are represented inside the root level
subscription folder, the synchronization engine 108 (F ig. 1) will pick up the feed and
start to, on an appropriate interval, fetch data associated with the feed. There are cases,
however, when an application that uses the platform does not wish to be subscribed toa
particular feed. Rather, the application just wants to use the functionality of the
platform to access data from a feed. In this case, in this particular embodiment,
subscriptions object 202 supports a method that allows a feed to be downloaded without
subscribing to the feed. In this particular example, the application calls the method and
provides it with a URL associated with the feed. The platform then utilizes the URL to
fetch the data of interest to the application. In this manner, the application can acquire
data associated with a feed in an adhoc fashion without ever having to subscribe to the
feed.

Considering the object model further, consider item and enclosure objects 208,
210 respectively. Here, these objects very much reflect how RSS is structured itself.
That is, each RSS feed has individual items inside of which can optionally appear an
enclosure. Thus, the structure of the object model is configured to reflect the structure
of the syndication format.

From an object model perspective, there are basically two different types of

methods and properties on an item. A first type of method/property pertains to data

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336
which is read only, and a second type of method/property pertains to data which can be
both read and written.

As an example of the first type of method property, consider the following. Each
feed can have data associated with it that is represented in an XML structure. This data
includes such things as the title, author, language and the like. Data such as this is
treated by the object model as read only. For example, the data that is received by a
feed and associated with individual items is typically treated as read only. This prevents
applications from manipulating this data. Using an XML structure to represent the feed
data also carries with it advantages as follows. Assume that the synchronization engine
does not understand a new XML element that has been added. Nonetheless, the
synchronization engine can still store the element and its associated data as part of the
feed item data. For those applications that do understand the element, this element and
its associated data are still available for the application to discover and consume.

On the other hand, there is data that is treated as read/write data, such as the name
of a particular feed. That is, the user may wish to personalize a particular feed for their
particular user interface. In this case, the object model has properties that are read/write.
For example, a user may wish to change the name of a feed from “New York Times” to

“NYT”. In this situation, the name property may be readable and writable.

Feed Synchronization Engine

In the illustrated and described embodiment, feed synchronization engine 108
(Fig. 1) is responsible for downloading RSS feeds from a source. A source can
comprise any suitable source for a feed, such as a web site, a feed publishing site and the
like. In at least one embodiment, any suitable valid URL or resource identifier can
comprise the source of a feed. The synchronization engine receives feeds and processes
the various feed formats, takes care of scheduling, handles content and enclosure

downloads, as well as organizes archiving activities.
| 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

Fig. 3 shows an exemplary feed synchronization engine 108 in a little more detail
in accordance with one embodiment. In this embodiment, synchronization engine
includes a feed format module 300, a feed schedule module 302, a feed content
download module 304, an enclosure download module 306 and an archiving module
308. It is to be appreciated and understood that these module are shown as logically
separate modules for purposes of clearly describing their particular functionalities. The
logically separate modules are not intended to limit the claimed subject matter to only

the particular structures or architectures described herein.

Feed Fbrmat Module -- 300

In the illustrated and described embodiment, feeds are capable of being received
in a number of different feed formats. By way of example and not limitation, these feed
formats can include RSS 1.0, 1.1, .9%, 2.0, Atom .3, and so on. The synchronization
engine, via the feed format module, receives these feeds in the various formats, parses
the format and transforms the format into a normalized format referred to as the common
format. The common format is essentially a superset of all supported formats. One of
the benefits of using a common format is that applications that are format-aware now
need to only be aware of one format—the common format. In addition, managing
content that has been converted into the common format is much easier as the platform
need only be concerned with one format, rather than several. Further, as additional
syndication formats are developed in the future, the feed format module can be adapted
to handle the format, while at the same time permit applications that are completely
unaware of the new format to nonetheless leverage and use content that arrives at the
platform via the new format.

With regard to the common format, consider the following. From a format
standpoint, the common format is represented by an XML schema that is common

between the different formats. In a different format, certain elements may have different
10

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

names, different locations within the hierarchy of the XML format and the like.
Accordingly, the common format is directed to presenting a common structure and
syntax that is derived collectively from all of the different formats that are possible.
Thus, in some instances, elements from one format may be mapped into elements of the

common format.

Feed Schedule Module -- 302

Each feed can have its own schedule of when the synchronization engine 108
should check to ascertain whether there is new content available. Accordingly, the
synchronization engine, through the feed schedule module 302, manages such schedules
to respect a site’s as well as a user’s or a system’s requirements and limitations.

As an example, consider the following. When a feed is first downloaded, an
update schedule (i.e. a schedule of when the feed is updated) may be included in the
feed’s header. In this case, the feed schedule module 302 maintains the update schedule
for this particular feed and checks for new content in accordance with the update
schedule. If, however, no schedule information is included, then the feed schedule
module can utilize a default schedule to check for new content. Any suitable default
schedule can be used such as, for example, re-downloading the feed content every 24
hours. In at least some embodiments, the user may specify a different default work
schedule.

In addition, in at least some embodiments, the feed schedule module can support
what is referred to as a minimum schedule. The minimum schedule refers to a minimum
update time that defines a period of time between updates. That is, the platform will not
update a feed more often than what the minimum schedule defines. In at least some
embodiments, the user can change the minimum time. In addition, the user can also

initiate a manual refresh of any, or all feeds.

11

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

In addition to supporting default and minimum schedules, in at least some
embodiments, the feed schedule module can support publisher-specified schedules. As
the name implies, a publisher-specified schedule is a schedule that is specified by a
particular publisher. For example, the publisher-specified schedule can typically specify
how many minutes until the client should next update the feed. This can be specified
using the RSS 0.9x/2.0 “tt]” element. The synchronization engine should not fetch a
new copy of the feed until at least that number of minutes has passed. The publisher-
specified schedule can also be specified at different levels of granularity such as hourly,
daily, weekly, etc.

It should be noted that each copy of a feed document can have a different
publisher-specified schedule. For example, during the day, the publisher may provide a
schedule of 15 minutes, and then during the night, the publisher may provide a schedule
of 1 hour. In this case, the synchronization engine updates its behavior every time the
feed is downloaded.

In addition, in at least some embodiments, the synchronization engine, via the
feed schedule module 302, supports the notion of skipping hours and/or days.
Specifically, RSS 0.9 and 2.0 enable a server to block out certain days and houré during
which the client should not conduct an update. In this case, the synchronization engine
respects these settings, if provided by the server, and does not update the feed during
those times.

In addition to the default, minimum and publisher-specified schedules, in at least
some embodiments, the synchronization engine supports the notion of user-specified
schedules and manual updates. More specifically, on a per-feed basis, the user can
specify a schedule of their choice. From a platform perspective, the user-specified
schedule can be as complex as specified by a server. In this instance, the platform, via
the feed schedule module, maintains the most recent schedule extracted from the feed as

well as the user schedule. In at least some embodiments, the user schedule always
12

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336
overrides the publisher’s schedule. In addition, at any time, an application can initiate a
forced update of all feeds or individual feeds.

With regard to bandwidth and server considerations, consider the following. In
accordance with one embodiment, the synchronization engine can be designed in view
of two related issues. First, the synchronization should be considerate of the user’s
bandwidth and CPU. Second, because of widespread use of the RSS platform, the
synchronization engine should be considerate of its impact on servers. These two issues
have an impact on both when and how feeds are downloaded.

From the perspective of when a feed is downloaded, synchronization engine can
be designed with the following considerations in mind. In the absence of a schedule
from the server, and any other instructions from the user, the synchronization engine
should be very conservative in how often it updates. Hence, in at least some
embodiments, the default schedule is set to 24 hours. Further, to protect the user’s
resources from being adversely impacted by an inefficient server, a minimum schedule
can be enforced to keep the synchronization engine from updating too often, even if the
server specifies otherwise. In addition, updates at login time (and at common intervals,
e.g. each hour from the startup time) should be carefully managed. Feed updates should
be delayed until a specified period of time after user login has completed, and should be
staggered slightly to avoid large update hits each hour, on the hour. This can be
balanced against a user’s desire to have all of the updates happen at once. Further, when
a server uses the skip hours or skip days feature described above, the client should not
immediately fetch an update as soon as the moratorium period is over. Instead, the client
should wait a random interval ranging up to 15 minutes before fetching the content.

To assist the synchronization engine in this regard, the feed schedule module 302
can maintain a state for each feed, such as fresh or stale. A “fresh” state means that,
based on the publisher schedule, the feed is fresh. A “stale” state means that the

publisher’s schedule has indicated an update, but the synchronization engine has not yet
13

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336
completed the update. Clients with an interest in the freshest content can request an
immediate update, and be notified when it is available. If this expectation is set, then
the synchronization engine can implement arbitrary delays in updating the content,
rather than rigorously following the schedule to the detriment of the user and the server.

With regard to sow a feed is downloaded, consider the following. In one
embodiment, the synchronization engine can use a task scheduler to launch a
synchronization engine process at a pre-defined time. After the synchronization engine
has completed, it updates a task schedule with the next time it should launch the
synchronization engine again (i.e., NextSyncEngineLaunchTime).

When the synchronization engine launches, it queues up all “pending” feeds
whose NextUpdateTime is less or equal to the currentTime and then processes them as
follows. For each feed, the following properties are tracked: LastUpdateTime,
NextUpdateTime, Interval (specified in minutes) and LastErrorInterval.

At the end of successfully synching a feed, the feed’s LastUpdateTime is set to
the current time and NextUpdateTime is set to LastUpdateTime plus an interval plus

randomness (1/10th of the interval). Specifically:

currentTime
currentTime + Interval + Random({Interval * 0.1)

LastUpdateTime
NextUpdateTime
ErrorInterval = 0

Random(argument) is defined to be a positive value between 0 and its argument.

For example Random(10) returns a float between 0..10.

If synching of a feed failed for one of the following reasons:

HITP 4xx response code;

HTTP 5xx response code;

Winsock/network error; or

HTTP 200, but response body has a parsing error (not a recognized feed

format)

14

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

then an exponential back off algorithm is applied as follows:

LastUpdateTime = <unchanged>

ExrrorInterval = min(max(ErxrrorInterval * 2 , lmin), Interval)

NextUpdateTime = currentTime + ErrorInterval + Random(ErrorInterval *
0.1)

After synchronization of all “pending” feeds has completed, the synchronization
engine determines if there are any feeds whose NextUpdateTime has passed
(NextUpdateTime <= currentTime). If there are, then those “pending” feeds are queued
and processed as if the synchronization engine just launched.

If there are no outstanding “pending” feeds, then the synchronization engine
determines if there are any “soon-to-sync” feeds whose NextUpdateTime is within two
minutes of the current time (currentTime + 2min >= NextUpdateTime). If there are any
“soon-to-sync” feeds then the synchronization engine process continues to run, and it
sets a timer to “wake up” at NextUpdateTime and process “pending” feeds.

If there are no “soon-to-sync” feeds then the NextSyncEngineLaunch is set to the
NextUpdateTime of the feed with the soonest NextUpdateTime. Then the task scheduler
is set to NextSyncEngineL.aunchTime and the synchronization engine process ends.

In accordance with one embodiment, if there are several “pending” feeds in the
queue, the synchronization engine can synchronize multiple feeds in parallel. However,
the number of parallel synchronizations should be limited, as well as how many
synchronizations are performed in a certain time period in order to not saturate network
bandwidth and processor utilization. In accordance with one embodiment, feed
synchronization shaping is provided via a token-bucket. Conceptually, the token bucket

works as follows.

e A token is added to the bucket every 1/r seconds;

15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

‘o Tlie bucket'@an hold at most 5 tokens; if a token arrives when the bucket is
full, it is discarded;

e When a feed needs to be synchronized, a token is removed from the
bucket and the feed is synchronized;

o If no tokens are available, the feed stays in the queue and waits until a
token becomes available.

This approach allows for bursts of feed synchronizations of up to b feeds. Over
the long run, however, the synchronizations are limited to a constant rate . In an
implementation example, the synchronization engine uses the following values for b and

r: b=4andr=2.

Feed Content Download Module -- 304

In accordance with one embodiment, feed content download module 304 handles
the process of downloading a feed and merging the new feed items with the existing
feed data.

As an example of how one can implement a feed content download module,
consider the following. At the appropriate time, the synchronization engine, via the feed
content download module, connects to a server and downloads the appropriate content.

In accordance with one embodiment, the platform is configured to support
different protocols for downloading content. For example, the synchronization engine
can support downloading the feed document over HTTP. In addition, the
synchronization engine can support encrypted HTTP URLs (e.g., SSL, https and the
like). Likewise, the synchronization engine can also support compression using the
HTTP gzip support, as well as support feed downloads from Universal Naming
Convention (UNC) shares.

In addition, the synchronization engine via the feed content download module

can support various types of authentication. For example, the synchronization engine

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

can store a username/password for each feed, and can use this username/password for
HTTP Basic authentication to retrieve the feed document.

With regard to updating a feed, consider the following. To determine if a feed
has new content, the synchronization engine keeps the following pieces of information,

for each feed:

¢ The last time the feed was updated as reported by the Last-modified
header on the HTTP response;

o The value of the Etag header in the last HTTP response; and
* The most recent pubDate value for the feed (i.e. the feed-level publication
date and time).

If the site supports Etag or Last-modified, then the synchronization engine can
use these to check if there is new content. The site can respond with an HTTP response
code 304 to indicate that there is no new content. Otherwise, the content is downloaded.
For example, if the site supports RFC 3229-for-feeds, the site can return only the new
content, based on the Etag passed by the client. Either way, the client then merges the
new content with the stored content.

As a more detailed description of how feed content can be downloaded in but one
implementation example, consider the following. To determine if a particular site has

changed, the synchronization engine will submit a request with:

e The I[f~None-Match header, if the client has a saved Etag;
o The header A-IM with the values: feed, gzip (used for RFC 3229-
for-feeds);
o The If-Modified-Since header, if the client has a saved Last-modified
value.

If the server responds with an HTTP Response code 304, then the content has not
changed and the process may end here. If the server responds with content (i.e. HTTP

codes 200 or 206), then the downloaded content is merged with the local content (note:
17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

code 206 means that the server supports RFC3229-for-feeds, and the content
downloaded is only the new content).

If there is content available and if the synchronization engine has a pubDate
stored, and the downloaded feed document contains a channel-level pubDate element,
the two dates are compared. If the local pubDate is the same as the downloaded
pubDate, then the content has not been updated. The downloaded feed document can
then be discarded.

If the synchronization engine processes each item one at a time, each item’s
pubDate is compared against the pubDate that the synchronization engine has stored (if
any) and older items are discarded. Each item is then compared against the items in the
store. The comparison should use the guid element, if present, or the link element, if
guid is not present. If a match is found, then the content of the new item replaces that of
the old item (if both have a pubDate, then it is used to determine which is newer,
otherwise, the most recently downloaded is new). If no match is found, then the new
item is pre-pended to the stored feed content (maintaining a “most recent at the top”
semantic). If any item is added or updated in the local feed, the feed is considered
updated, and clients of the RSS platform are notified.

For error cases, consider the following. If the server responds with a code 500 or
most 400 errors, the synchronization schedule is reset and the server tries again later.
The HTTP error 410, however, should be treated as an indication to reset the update
schedule to “no more updates.”

HTTP-level redirects should be followed, but no changes should be made to the
client configuration (there are several pathological scenarios where redirects are given
accidentally).

If the server responds with an XML redirect, then the feed should be redirected,
and the stored URL to the feed should be automatically updated. This is the only case

where the client updates the feed URL automatically.
18

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

With regard to downloading the feed, the download should not interrupt ordinary
usage of the machine (e.g., bandwidth or CPU) when the user is engaged in other tasks.
In addition, the user should be able to get the content as fast as possible when in an

interactive application that relies on the content.

Enclosure Download Module -- 306

In accordance with one embodiment, enclosure download module 306 is
responsible for downloading enclosure files for a feed and applying the appropriate
security zone. At the time of downloading the feed content, the enclosures are
downloaded as well.

Downloading enclosures can be handled in a couple of different ways. First, a
basic enclosure is considered to be an RSS 2.0-style enclosure. For basic enclosures,
the synchronization engine, via the enclosure download module 306, will automatically
parse the downloaded feeds for enclosure links. The synchronization engine is
configured to support multiple basic enclosures. Using the enclosure link, the enclosure
download module can then download the enclosure. In at least some embodiments, for
any new feed, the default action is not to download basic enclosures. Using the API
which exposes the above-described object model, client can do such things as change
the behavior on a per-feed basis to, for example, always download enclosures or force
the download of a specific enclosure of a specific item in a specific feed.

Enhanced enclosure handling can be provided through the use of the common
format described above. Specifically, in at least one embodiment, the common format
defines additional functionality for enclosures. Specifically, the common format enables
multiple representations of a particular piece of content. This includes, for example,
including standard definitions of preview content and default content, as well as the
ability to indicate whether an enclosure should be downloaded or streamed. In addition,

the common format permits arbitrary metadata on an enclosure, and on representations
19

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336
of the content. For any new feed, the default action is to download the “preview”
version of any enclosure, subject to a default size limit of, for example, 10k per item.

Using the API, clients can do such things as change the behavior on the per-feed
basis. For example, the behavior can be changed to always download the “default”
version of the items in a feed or to always download any specific version that has a
metadata element of a particular value. This can be done, for example, with a client
callback which provides the “download this?” logic for each enclosure. In addition,
using the API, clients can force immediate download of any specific representation of
any specific enclosure of any specific item (or all items) in a specific feed.

With regard to providing security in the enclosure download process, consider the
following.

In accordance with one embodiment, downloaded enclosures use the Windows
XP SP2 Attachment Execution Service (SP2 AES) functionality. This functionality can
provide file-type and zone based security. For example, provided with a file name and
zone information (i.e. where an enclosure came from), AES can indicate whether to
block, allow or prompt.

With regard to zone persistence, when saving a file, AES can persist the zone
information so that, when it is subsequently opened, the user can be prompted.

The table just below describes AES risk-level/zone to action mapping:

Risk Levels Restricted Internet Intranet Local Trusted
Dangerous, e.g. | Block Prompt Allow Allow Allow
EXE

Moderate/Unknown, | Prompt Prompt Allow Allow Allow
e.g. DOC or FOO

Low, e.g. TXT or | Allow Allow Allow Allow Allow
JPG

20

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

In the illustrated and described embodiment, the synchronization engine will call
a method, for example ::CheckPolicy, for each enclosure that it downloads. Based on

the response, the synchronization engine can do one of the following:

* Block: Don’t save (mark it as failed in the feed file);

o Allow: Save the enclosure

e Prompt: Save, but persist zone information. This means that if the user
double-clicks on the file, they’ll get a “Run/Don’t Run” prompt.

In accordance with one embodiment, the synchronization engine will first save an
enclosure to disk and will not download the enclosure in memory. Saving to disk
triggers filter-based antivirus applications and gives these applications an opportunity to

quarantine the enclosure if they choose.

Archiving Module -- 308

In accordance with one embodiment, archiving module 308 is responsible for
dealing with old feed data. By default, a feed will hold a maximum of 200 items. When
a feed exceeds the specified maximum, the older feed items are deleted by the archiving

module. The associated enclosures are not, however, deleted.

Feed Store

In accordance with one embodiment, feed store 112 (Fig. 1) holds two types of
information — a feed list 114 and feed data 116. As an example, consider Fig. 4. There,
feed list 114 is embodied as a hierarchical tree structure 400 of the list of feeds. The
feed data 116 comprises the data associated with a particular feed. In this example, the
feed data 116 is arranged on a per-feed basis to include a collection 402 of items and

enclosures.

21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

There are many different ways that one might implement a feed store. In this
particular embodiment, the feed store comprises part of the file system. One reason for
this pertains to simplicity. That is, in this embodiment, the feed list is represented
simply as a regular directory under which there can be sub-directories and files. The
hierarchy is reflected as a normal file system hierarchy. Thus, each folder such as
“News” and “Blogs” is essentially a regular directory in the file system with
subdirectories and files.

In this particular example, there is a special file type that represents a feed
subscription. By way of example only, consider that this type of file has the following
format: “xyz.stg”. The .stg file stores all of the data for a feed. Thus, you have a feed
list, such as the list embodied in tree structure 400, and inside each feed (or file) is the
feed data.

In the illustrated and described embodiment, the .stg files are implemented using
structured storage technology. Structure storage techniques are known and will be
appreciated by the skilled artisan. As brief background, however, consider the -
following.

Structured storage provides file and data persistence in COM by handling a single
file as a structured collection of objects known as storages and streams. The purpose of
structured storage is to reduce the performance penalties and overhead associated with
storing separate object parts in different files. Structured storage provides a solution by
defining how to handle a single file entity as a structured collection of two types of
objects—storages and streams—through a standard implementation called compound
files. This enables the user to interact with, and manage, a compound file as if it were a
single file rather than a nested hierarchy of separate objects. The storage objects and
stream objects function as a file system within a file, as will be appreciated by the
skilled artisan. Structured storage solves performance problems by eliminating the need

to totally rewrite a file to storage whenever a new object is added to a compound file, or
22

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336
an existing object increases in size. The new data is written to the next available location
in permanent storage, and the storage object updates the table of pointers it maintains to
track the locations of its storage objects and stream objects.

Thus, in the illustrated and described embodiment, the .stg files are implemented
using structured storage techniques and an API on top of the feed store allows access to
the different streams and storages. In this particular example, each RSS item is written
into one stream. Additionally, a header stream contains information associated with a
particular feed such as the title, subscription, feed URL and the like. Further, another
stream stores index-type metadata that allows quick and efficient access to contents in
the file for purposes that include quickly marking something as read/unread, deleting an

item and the like.

File System — Enclosures

In the illustrated and described embodiment, enclosures are not stored in
structured storage or as part of the feed data, as indicated in Fig. 1. Rather, enclosures
are recognized as being items, such as a picture or pictures, that other applications and
the user may want to access and manipulate.

Thus, in the illustrated and described embodiment, enclosures are written into a
uset’s particular profile. A link, however, is maintained between the enclosure and the
associated feed item.

As an example, consider Fig. 5. Once a user starts subscribing to a feed, the feed
content is stored locally under the user’s profile, either in Application Data or in a
Knownfolder “feeds”.

The feedlist and feeds are stored in Application Data to better be able to control
the format of the feedlist and the feeds. APIs are exposed (as will be described below)

such that applications can access and manage the feeds.

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

The feedlist is the set of feeds that the user is subscribed to. In this example, the

file that comprises the Feedlist is located at:

C:\Users\<Username>\AppData\R oaming\Microsoft\RSS\

The file contains the feed’s properties, as well as items and enclosure properties
(a URL to the file that is associated to the item). For example, the file for feed “NYT”

is located at:

C:\Users\<Username>\AppData\R oaming\Microsoft\RSS\N'Y T .stg

In this example, the enclosures are grouped by feed and stored in the
Knownfolder “feeds”. This enables the user and other applications to easily access and
use downloaded files.

For example, a user subscribes to the NPR feed and wants to make sure that their
media player application can automatically add those files. Making this a Knownfolder
enables the user to browse to it from the media player and set it as a monitored folder.
Enclosures have the appropriate metadata of the feed and post such that applications can

access the associated post and feed. Enclosures are located as follows:

C:\Users\<Username>\Feeds\<Feedname>\

Each enclosure that is written to the user’s hard disk will have a secondary stream
(e.g., a NTFS stream) which contains metadata about this enclosure. The metadata can
include by way of example and not limitation, the feed that enclosure is from, author,
link to feed item, description, title, publish date, and download date as well as other

meta data as appropriate.
24

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

Publishing Engine/Post Queue

Many times when one writes a regular blog post, essentially what is being written
is an RSS item. This RSS item is typically sent to some type of server, and this server
maintains account information, the location of the blog, and the like. In this context,
publishing engine 110 (Fig. 1) is configured to enable an application to make a posting
or publish content, while at the same time abstract from the application the
communication protocol that is utilized to communicate with the server. Hence, the
application need only provide the data or content that is to be posted, and the publishing
engine will handle the remaining task of formatting and communicating the content to
the appropriate server.

As there can be several different protocols that are used, abstracting the protocols
away from the applications provides a great deal of flexibility insofar as enabling many
different types of applications to leverage the publishing functionality. In the illustrated
and described embodiment, the publishing engine’s functionality is implemented as an .
API that allows an application to post a blog without having to be knowledgable of the
protocol used to communicate with the server.

Hence, in this example, the API has a method to create a new post which, when
called, creates an RSSItem object. This RSSItem object has a post method which, when
called, stores the content—in this case a blog—in a temporary store, i.e. post queue 122
(Fig. 1). The content is stored in a temporary store because the user may not be on line
at the time the blog is created. Then, when the user makes an on line connection,
publishing engine 110 makes a connection to the appropriate server and uses the server-

appropriate protocol to upload the blog to the server.

25

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

Implementation Example

In the description that follows, an exemplary set of APIs is described to provide
but one example of how one might implement and structure APIs to implement the
above-described functionality. It is to be appreciated and understood that other APIs
can be utilized without departing from the spirit and scope of the claimed subject matter.
The described APIs are typically embodied as computer-readable instructions and data
that reside on some type of computer-readable medium.

The APIs that are described below can be used to manipulate the set of feeds that
a user is subscribed to (System Feed List) and the properties on the feeds. In addition,
feed data APIs (i.e., item and enclosures) provide access to feeds that are stored in the
feed store, as well as ad-hoc download of feeds. Using the Feed APIs, applications such
as web browsers, media players, digital image library applications and the like can then
expose the feed data within their experience.

In the example about to be described, the APIs are implemented as COM dual
interfaces which also makes the APIs useable from scripting languages, managed code
as well as native Win32 (C++) code.

Fig. 6 illustrates a top level object or interface IFeeds and an [FeedFolder object
or interface together with their associated properties, methods and events in accordance
with one embodiment.

In this example, IFeeds has one property—subscriptions which is an I[FeedFolder.
This is a root folder for all subscriptions. There are a number of methods on the root
object such as DeleteFeed(), DeleteFeedByGuid(), DeleteFolder() and the like.

Of interest in this example is the GetFeedByGuid() method. This method can be
called by applications to access a particular feed by, for example, the feed’s GUID.
Thus, the application need not be knowledgeable of the hierarchical ordering of the
feeds. Rather, the feed’s GUID can be used by the application to enable the platform to

fetch the feed.
26

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

Tn"additioh; the EXistFeed() method checks for the existence of a feed by name,
and the ExistFeedByGuid() check for a feed’s existence by GUID. The GetFeed()
method gets a feed by name or by GUID. The IsSubscribed() method enables an
application or caller to ascertain whether a particular feed has been subscribed to.

In addition, the IFeeds object also has a SubscriptionsNotifications event which
allows for registration for notifications for changes on the system feed list.

As noted above, Subscriptions are of the type IFeedFolder. The IFeedFolder
object or interface essentially provides a directory and has similar kinds of properties
such as the Name, Parent, Path and the like. In addition, the IFeedFolder object has a
Feeds property of the type IFeed and a Subfolders property of the type IFeedFolder.
The Subfolders property pertains to a collection of the folders underneath the instant
folder (e.g., this is where the hierarchical structure derives) and Feeds propetrty pertains
to the actual feeds in a particular folder. In addition, the IFeedFolder has a
LastWriteTime property which indicates the last time that anything was written to inside
the folder. This property is useful for applications that may not have been running for a -
while, but yet need to look at the feed platform and ascertain its state so that it can
synchronize if necessary.

There are a number of methods on the IFeedFolder, at some of which pertain to
creating a feed (which creates a feed that the system does not have and adds it to a
particular folder), creating a subfolder, deleting a folder or subfolder and the like.

Fig. 7 illustrates additional objects and their associated methods in accordance
with one embodiment. Specifically illustrated are the IFeed, Item and IEnclosure
objects.

Starting first with the IFeed object, consider the following. Many of the
properties associated with this object come from the RSS feed itself, e.g, Title, Url,
Webmaster, SkipHours, SkipDays, ManagingEditor, Homepage, ImageURL and the

like, as will be appreciated by the skilled artisan. In addition, there is another set of
27

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

properties of interest, i.e. the ltems property which is a collection that has all of the
items that are part of a feed and the LocalEnclosurePath property which provides the
actual directory to which all of the enclosures are written. Thus, for an application, the
latter property makes it very easy for an application to access the enclosures.

In addition, this object supports a small set of methods such as Delete() and
Download() which are used to manage particular feeds. Further, this object supports a
method XML(), which returns a feed’s XML in the common format. The XML data can
be used for such things as creating a newpaper view of a feed. Clone() returns a copy of
the feed that is not subscribed to.

Moving to the Item object, this object has a set of properties that represent
regular RSS elements, e.g. Description, Url, Title, Author and the like. In addition,
there is a Parent property that points back to the associated actual feed, and an Id
property so that an application can manipulate the Id versus having to iterate over all
items. In addition, there is an Enclosures property which is the collection of the item’s
enclosures of the type IEnclosure. Further, an IsRead property enables an application to
indicate whether a particular item has been read.

Moving to the Enclosure object, consider the following. This object has
properties that include a Type property (e.g. mp3) and Length property that describes
the length of a particular enclosure. There is also the LocalAbsolutePath to a particular
enclosure. The Download() method allows individual enclosures to be downloaded and

used by applications.

Conclusion

The web content syndication platform described above can be utilized to manage,
organize and make available for consumption content that is acquired from the Internet.
The platform can acquire and organize web content, and make such content available for

consumption by many different types of applications. These applications may or may
28

10

i1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

not necessarily understand the particular syndication format. An application program
interface (API) exposes an object model which allows applications and users to easily
accomplish many different tasks such as creating, reading, updating, deleting feeds and
the like. In addition, the platform can abstract away a particular feed format to provide a
common format which promotes the useability of feed data that comes into the platform.
Further, the platform processes and manages enclosures that might be received via a
web feed in a manner that can make the enclosures available for consumption to both
syndication-aware applications and applications that are not syndication-aware.
Although the invention has been described in language specific to structural
features énd/or methodological steps, it is to be understood that the invention defined in
the appended claims is not necessarily limited to the specific features or steps described.
Rather, the specific features and steps are disclosed as preferred forms of implementing

the claimed invention.

29

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

CLAIMS

1. A system comprising:
one or more computer-readable media;
computer-readable instructions on the media which implement a content
syndication platform comprising:
a feed synchronization engine configured to acquire content from a source
and make the content available to applications that are both syndication-aware
and applications that are not syndication-aware; and

a feed store configured to store feed lists and feed data.

2. The system of claim 1, wherein the feed synchronization engine is

configured to convert content in different formats into a common format.

3. The system of claim 1, wherein the feed synchronization engine is
configured to support multiple different types of schedules, at least one of which
comprises a minimum schedule that defines a minimum update time that defines a

period of time between updates.

4. The system of claim 1, wherein the feed synchronization engine is

configured to download feed data and update previously downloaded feed data.
5. The system of claim 1, wherein the feed synchronization engine is

configured to download enclosures and provide such enclosures into a file system,

wherein the enclosures can be accessed by applications that are not syndication-aware.

30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

6. The system of claim 5, wherein the platform is configured to write

enclosures into a user’s profile.

7. The system of claim 6, wherein the platform is configured to maintain a

link between an enclosure and an associated feed item.

8. The system of claim 1, wherein the feed store is implemented as part of a

file system.

9. The system of claim 8, wherein the feed lists are represented as directories

that can have sub-directories.

10. The system of claim 8, wherein the feed lists and feed data are managed in

the file system using structured storage techniques.
11. The system of claim 1, wherein the feed synchronization engine is
configured to enable a user to publish content in a manner that abstracts away the

communication protocol between the user’s application and a publishing location.

12. The system of claim 1, wherein the syndication platform is configured to

conduct feed synchronization.

13. The system of claim 1, wherein the content syndication platform

comprises an RSS platform.

31

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

14. A system comprising:
one or more computer-readable media embodying a set of application program
interfaces comprising:

a first interface that serves as a root folder for subscriptions and which has
one or more methods that pertain to feeds;

a second interface that serves as a folder for feeds, wherein the second
interface has a feed property and a subfolder property and one or more methods
that pertain to folders;

a third interface that includes propetties associated with an individual feed
and one or more methods that pertain to individual feeds;

a fourth interface that includes properties associated with individual items
and at least one method that pertains to individual items;

a fifth interface that includes properties associated with individual
enclosures and one or more methods associated with individual enclosures at
least one method of which permits an enclosure to be downloaded by an

application.

15. The system of claim 14, wherein the first interface has a method for

downloading a feed without requiring a subscription to the feed.

16. The system of claim 14, wherein the first interface includes a notification
event that allows an application to register for notifications that pertain to a system feed

list.

17. The system of claim 14, wherein the second interface has a property that

indicates the last time data was written to an associated folder.

32

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/001882 PCT/US2006/023336

18. The system of claim 14, wherein the third interface includes an item
property which is a collection of items associated with a particular feed and a local
enclosure path property that provides a directory to which individual enclosures are

written.

19. The system of claim 14, wherein the third interface includes a method that

returns a feed’s XML to a caller.

20. The system of claim 14, wherein the fourth interface includes a parent

property that points to an associated feed and an enclosure property associated with an

item’s enclosures.

33

PCT/US2006/023336

WO 2007/001882

177

‘14 e1eq

. Isod

vgL X

saInsojoug eled s
pas4 P94
- ITEEN _A<ZLl

ﬁ . —

0Ll

— 80l

auibu3z Bulysiignd

suIbu uoneziucIyouAs pao-

[epoW 108l00
\— g0l /
lakeld Keeiqry lesmolg
ao1neg Bolg eIpol ﬁ oBew| [e1Big lopeay SSY oM
sl 8zl N N \—zzl

AN

 *oo0l

PCT/US2006/023336

WO 2007/001882

217

salnsojoud

spaa4

s1apjojdns

Iop|od

PCT/US2006/023336

WO 2007/001882

317

€

B4

N
80¢
a|npo ButAlyoay
90¢ ¥0¢
8|NPOI\ peocjumod 8|Npo peojumo(
ainsojoul JUSU0D paa4
20¢g 00¢
ajnpo anpon
a|npayos pae- Jewiio pao-
auIBug uoieziuciyouAg pes
— 801

PCT/US2006/023336

WO 2007/001882

B4

sa.nsojpouy _
SWwa) _
cOv
YV Poa- smanN
\

& S
< N s/
AN Vd
P a—
eleq
paod
9Ll — TS~
2I0}S pos

435

00v

PCT/US2006/023336

WO 2007/001882

57

M % ‘i
¢ wey +
way + w wey + wayj + opowzioy
g aInsopug + i way + way + paipA
way + f{| ¢ amsopuly + waj + ogd
GoImnsopug + h way) + wayj + sleuueyn
walf + j| g emnsojuz + way| + aoedg s Apnp
¥ ainsopud + x| | ainsopulx + way + SOWILAN
way + |; way + way +
4 £
ssrgpuuByD ss1 eoed$ sApnp ssIsauWl) AN SSIISpao
]] ssy 3
yosonoy £
Bujueoy! €%

2007 MM
(ueppyy) ejeqddy £
eduriuswdoensp #0 gz}

edw’ melnisul seoeds mm.w
cdwr olpn)s jensia ue NAsW mw
gauueyn g{
AGW" ABpd SUos AR ﬁ.w :
fdf sueyq)]

odfiemen [
soeds sApnp £
STUNSOTONT spead I3
saInpid m
SsjuswinooC] m
PUBUIBSNHSISSMND £

PCT/US2006/023336

WO 2007/001882

6/7

9 "Oi-

pioa : (Jaweusy ¥z

proa : (1eploygnsiss Fis

pioa : (Jpoaf1en #=

f00q : (Jpsedisig #

proa : ()a19/8a #i=

Japjodpaad : ()1apojanseess) =
paadr : (Jpaafarealy #=

PIoA : ()paaippy #s

kit

spousalA |

<JBP|OIPORAISISITT * SIpI0JNS W
bugs : yed ¥

19pJ0Jpaad ; JUBIEd pies

Bugs : swey 5

s/ ared : sunLammale] (&l
<poad[>ISITI * 5PPad i

saipadold

soeuelU|
Jsplodpaa4|

(7

Jo[puBijuaAs : SUOHEOIIONSUORALOSGNS

SjuUaAg
pood] : (psedmay
100q ; (Jpaqrosqnssy sz

J8p[odpasd] : (Mepjod1e0 #x=
paady : (JoinoAgpoadien #s
paaJr : paaien =

100G : (apjoisyg ¥

jooq : (JpinoAgpaadisnd i
fooq : (Jpaafisig fu

paadr : (Jpaadpeoumog &
pioa : (Jiepjogerapeq =
pioa : ()pinoAgpaasaroed s
pion : (Jpea4aiofeg #y

spoulel
19p[Cpaad] ; SUORAIISGNS i

mw_tmaoE

T
spead |

PCT/US2006/023336

WO 2007/001882

77

JJE

(7 =N
ploa > Qpeojumvog s
muoﬁms_
m:m
bugs : sdAl «
winug * STRES
| weayy : JuRIed
ofujfiojoall(q : Yjedainjosqy|eooT
Buo) : ypbusy
ojuioLIg| JdoLgpeoumogise] %
pno 1 pr &
00q : papeojLMOd vz
semadold _

eoepa; ||
ansopug]

z ﬁ /
pion : (Jageeg ¥

Spouen]
wim
Buigs : opiL &
oL : iased
100G : peRRNIST S
P9 :pr
<ansopLII>ISIT ..u@:.ﬁuﬁ sﬂ%

mm_tmnoi _

soepaU|
wey|

j
Jo|pUBHIUSAT : UOREIYRONWSIN £

Sjueng _

weagsy : (rux e
PIOA : (Qawieusy #us=
ploa : ()peojumog ¥s=
proa : (Jarseg e
paadr : (Jauop #4=

SpouIol |

DUIS < 12158 WG/
Hn 2 HN
uedsauwif > g1
bugs : apLL
Uy © SINOHANS
Burgs : sAeqgdpls
suwi[@jeq : 81equUORENIGNd
b6urgs : yped
J8pjo4paar - Juaied
Burgs : swey .
Burgs : 1oypIbubeusyt
OJUIAL03D3HI(: YIBADINSOIIUF|EI0T
awi e : Wil dYIseT
awied : sl PeojLUMOgISe]
OJUIOIITT > SO PEOJUMOGISET
awiajeq : ayegpingiset
Bugs : sbenbue
<WIA>ISITE SWH o
100G : ISIIST i
[ooq : pajsfeasy
un : Hnebewr
ping L pr
1 : ebedswoy r E]
BULS : 101I0UBE) wiew
1125000 v
BuLgs : vogdussad g
Butgs : ybLAdod &5
<A10653801 381 © S9H0031ED WL

AL

n

liz it

3

ol
R v H el I cA i R

ks

ka

%,
w2

soiuadold |

soepa)U|
pasd]

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings

