US 20120240116A1

a2y Patent Application Publication o) Pub. No.: US 2012/0240116 A1

a9 United States

Leung et al.

(54) PERFORMANCE IN A VIRTUALIZATION
ARCHITECTURE WITH A PROCESSOR
ABSTRACTION LAYER

(76) Inventors: Hin L. Leung, San Jose, CA (US);
Amy L. Santoni, Austin, TX (US);
Gary N. Hammond, Fort Collins,
CO (US); William R. Greene, Fort
Collins, CO (US); Kushagra V.
Vaid, San Jose, CA (US); Dale
Morris, Streamboat Springs, CO

(US); Jonathan Ross, Woodinville,
WA (US)

(21) Appl. No.: 13/483,307

(22) Filed: May 30, 2012

Related U.S. Application Data

(63) Continuation of application No. 11/041,061, filed on
Jan. 19, 2005, now Pat. No. 8,214,830.

D

(52)

&7

43) Pub. Date: Sep. 20, 2012
Publication Classification

Int. CI.

GO6F 9/455 (2006.01)

GO6F 9/46 (2006.01)

US.CL .o 718/1;718/100

ABSTRACT

Embodiments of apparatuses and methods for improving per-
formance in a virtualization architecture are disclosed. In one
embodiment, an apparatus includes a processor and a proces-
sor abstraction layer. The processor abstraction layer includes
instructions that, when executed by the processor, support
techniques to improve the performance of the apparatus in a
virtualization architecture.

08
1oy 0.
VIRTUAL PROCESSOR VIRTUAL PROCESSOR
1304 1302
./ 3)
VPD VPD
P = || =
TCR TR
' 1381, 1382,
L 4 b 4

PAL

110

PROCEDURES
ICR i
138 SERVICES
12
JUMPTABLE
ik}
PROCESSOR
e

Patent Application Publication Sep. 20, 2012 Sheet 1 of 10 US 2012/0240116 A1

08
08
VIRTUAL PROCESSOR VIRTUAL PROCESSOR
mjh = -
& \}/ I ¥
VPD VPD
ey 1364 1362,
: eR CR
138:1, 136-2,
¢
*
PAL
110
PROCEDURES
iCR 11
138 SERVICES
12
JUMPTABLE
113
PROCESSOR
¢

FIG. 1

Patent Application Publication Sep. 20, 2012 Sheet 2 of 10 US 2012/0240116 A1

INFTIALIZE VIRTUALIZATION ENVIRONMENT
00

. ¢
PASS BASE ADDRESS TO CALLER
208

—

CALLER SETS UP INPUT PARAMETERS
210

¥

CALLER SETS UP ;ZFZIQE_T URN ADDRESS

v

OBTAIN OFFSETZFZ;OM JUMP TABLE

r

DETERMINE ADDRESS OF ENTRY FOINT TQ PAL
SEE.;CE

Y _

'S

BRANCH TO PAL SERVICE
20

¥

PAL SERVICE EXECUTES FUNCTION
A0

v

PAL SERVICE SETS zéJ; RETURN YALUES

¢

BRANCH TO ADDRESZ%{‘SPECIMED IN BLOCK

FIG. 2

Patent Application Publication Sep. 20, 2012 Sheet 3 of 10 US 2012/0240116 A1
PAL
e
SNYC CODE
ki1
SYNC_READ
KiES R
SYNC_WRITE
HE2
SHADOW
308
iCR
36
PROCESSOR
300

FIG. 3

Patent Application Publication Sep. 20, 2012 Sheet 4 of 10 US 2012/0240116 A1

GUEST RUNNING WITH F;‘;WQSHAD—OWWG EMABLED

: T

GUEST EXECUTION COMPLETED
420

:

N R q

VMM CALLS SYNC_READ
430

e

— .

SYNC_READ COPIES SHADOW REQISTERS TO VPD
440

1

WiM READS FROM VPD
450

S——— Y

FIG. 4

Patent Application Publication Sep. 20, 2012 Sheet 5 of 10 US 2012/0240116 A1

VMM CALLS SYNC_WRITE
810

SYNC_WRITE COPIES YPD YO SHADCW REGISTERS
520

! —

ViMM STARTS EXECUTION OF GUEST WITH
HARDWARE SHADOWING ENABLED

R0

:

GUEST READS FROM SHADOW REGISTER
240

FIG. 5

Patent Application Publication Sep. 20, 2012 Sheet 6 of 10 US 2012/0240116 A1

GUEST ATTEMPTS TO WRITE TO PRIVILEGED REGISTER
gid

v

INTERCEPT TO VMM
82 -

—

VMM WRITES TO MEMORY
830

i

VMM CALLS SYNC_WRITE
840

’

SYNC_WRITE COPIES FROM MEMORY TO SHADOW
REGISTER

g5

_—

VMM RETURNS Cﬁcg'!' ROL TO GUEST

v

GQUEST READS FRDE}SHADOW REGISTER

FIG. 6

Patent Application Publication Sep. 20, 2012 Sheet 7 of 10 US 2012/0240116 A1

PAL
FAlH

OFTIMIZATION
TEMPLATE
720

FIG. 7A

Patent Application Publication Sep. 20, 2012 Sheet 8 of 10 US 2012/0240116 A1

IMITIALIZE VIRTUALIZATION ENVIRONMENT
130

¢

LOAD CPT IMIZABTID-ON TEMPLATE

v

VIRTUALIZATION EVENT OCCURS
130

CPTIMIZATION TEMPLATE
{NDICATE THAT EVENT IS TO
BE HANDLED BY VMM?

NO

TRANSFER Cﬁg&' ROL TO VMM

EXECUTION CONTINUES
180

FIG. 7B

Patent Application Publication Sep. 20, 2012 Sheet 9 of 10 US 2012/0240116 A1

NITIALIZE WRTUALJ'.E?ON ENYIRONMENT

- T

VIRTUALIZATION EVENT OCCURS
Vi3 R

18 OFTIMIZATION NG

ENABLED?

TRANSFER CONTROL TO VMM
i1

EXECUTiﬂiiﬁiDNﬂNUES e

FIG. 7C

Patent Application Publication Sep. 20,2012 Sheet 10 of 10 US 2012/0240116 A1

SYSTEM
200
MEMORY |
0
U3 825
PAL
815
PROCES3CR
810

FiG. 8

US 2012/0240116 Al

PERFORMANCE IN A VIRTUALIZATION
ARCHITECTURE WITH A PROCESSOR
ABSTRACTION LAYER

[0001] This application is a continuation of U.S. patent
application Ser. No. 11/041,061, filed Jan. 19, 2005, the con-
tent of which is hereby incorporated by reference.

BACKGROUND

[0002] 1. Field

[0003] The present disclosure pertains to the field of data
processing, and more particularly, to the field of virtualizing
resources in data processing apparatuses.

[0004] 2. Description of Related Art

[0005] Generally, the concept of virtualization of resources
in data processing apparatuses allows multiple instances of
one or more operating systems (each, an “OS”) to run on a
single data processing apparatus, even though each OS is
designed to have complete, direct control over the apparatus
and its resources. Virtualization is typically implemented by
using software (e.g., a virtual machine monitor, ora “VMM”)
to present to each OS a “virtual machine” having virtual
resources that the OS may completely and directly control,
while the VMM maintains a system environment for imple-
menting virtualization policies such as sharing and/or allo-
cating the physical resources among the virtual machines (the
“virtualization environment™). Each OS, and any other soft-
ware, that runs on a virtual machine, unaware of the virtual-
ization environment, is referred to as a “guest” or as “‘guest
software,” while a “host” or “host software” is software, such
as a VMM, that runs outside of, and may or may not be aware
of, the virtualization environment.

[0006] A processor in a data processing apparatus may
support virtualization, for example, by supporting an instruc-
tion to enter a virtualization environment to run a guest on a
virtual processor. In the virtualization environment, certain
events, operations, and situations, such as external interrupts
or attempts to access privileged registers or resources, may be
“intercepted,” i.e., cause the processor to exit the virtualiza-
tion environment so thata VMM may operate, for example, to
implement virtualization policies. A processor may also sup-
port other instructions for maintaining a virtualization envi-
ronment, and may include register bits that indicate or control
virtualization capabilities of the processor.

BRIEF DESCRIPTION OF THE FIGURES

[0007] The present invention is illustrated by way of
example and not limitation in the accompanying figures.
[0008] FIG. 1 illustrates an architecture for supporting vir-
tualization according to an embodiment of the present inven-
tion.

[0009] FIG. 2 illustrates a method for calling a processor
abstraction layer service according to an embodiment of the
present invention.

[0010] FIG. 3 illustrates an embodiment of the present
invention using shadow registers to support virtualization.
[0011] FIG. 4 illustrates a method for shadow register syn-
chronization according to an embodiment of the present
invention.

[0012] FIG. 5 illustrates another method for shadow regis-
ter synchronization according to an embodiment of the
present invention.

Sep. 20, 2012

[0013] FIG. 6 illustrates another method for shadow regis-
ter synchronization according to an embodiment of the
present invention.

[0014] FIG. 7A illustrate an embodiment of the present
invention using an optimization template.

[0015] FIG. 7B illustrates a method of handling a virtual-
ization event according to an embodiment of the invention.
[0016] FIG. 7C illustrates a method of handling a virtual-
ization event according to another embodiment of the inven-
tion.

[0017] FIG. 8 illustrates a system supporting virtualization
according to an embodiment of the present invention.

DETAILED DESCRIPTION

[0018] The following description describes embodiments
of techniques for improving performance in a virtualization
architecture with a processor abstraction layer (“PAL”). In
the following description, numerous specific details, such as
component and system configurations, may be set forth in
order to provide a more thorough understanding of the present
invention. It will be appreciated, however, by one skilled in
the art, that the invention may be practiced without such
specific details. Additionally, some well known structures,
circuits, and the like have not been shown in detail, to avoid
unnecessarily obscuring the present invention.

[0019] Embodiments of the present invention include tech-
niques for improving performance in a virtualization archi-
tecture, and may be applied to any data processing apparatus
having a processor and a PAL. For example, the techniques
may be applied to an apparatus having a single processor and
a single PAL supporting a single or multiple virtualization
environments, each having its own VMM, to an apparatus
having multiple processors and multiple PALs supporting a
single or multiple virtualization environments, and to an
apparatus having one or more multicore processors and one or
more PALs supporting one or more virtualization environ-
ments.

[0020] FIG. 1 illustrates an architecture for supporting vir-
tualization according to an embodiment of the present inven-
tion. Processor 100 may be any of a variety of different types
of'processors that may be used in a virtualization architecture.
For example, the processor may be a general purpose proces-
sor such as a processor in the Pentium® Processor Family, the
Ttanium® Processor Family, or other processor family from
Intel Corporation, or another processor from another com-
pany.

[0021] PAL 110 is code for accessing processor hardware
and creating and managing virtualization data structures, and
may be implemented in firmware, microcode, or any other
form of non-volatile or persistent memory, but may be copied
to dynamic or any other form of memory. PAL 110 may also
include code unrelated to virtualization.

[0022] VMM 120 is software for creating and managing
virtual processors and implementing virtualization policies
within one or more virtualization environments. In the
embodiment of FIG. 1, VMM 120 has created virtual proces-
sor 130-1 for running OS 140-1 and application software
145-1, 145-3, and 145-5, and virtual processor 130-2 for
running OS 140-2 and application software 145-2, 145-4, and
145-6. Although FIG. 1 shows only two virtual processors
and eight guests, any number of virtual processors may be
created, any number of guests may be run on each virtual
processor, and any guest may run on more than one virtual
processor within the scope of the present invention.

US 2012/0240116 Al

[0023] PAL 110 may be used to provide a consistent soft-
ware interface for VMM 120 to access processor hardware.
For example, PAL. 110 may be modified to access the
enhanced hardware of a new processor, such as the next
generation of processor 100, or to account for hardware fea-
tures that have been removed from a new processor, with no
change to VMM 120 or any guest.

[0024] PAL 110 may be implemented to include PAL pro-
cedures 111 and PAL services 112. PAL procedures 111 are
known functions, typically called to manipulate processor-
specific settings, such as settings in a machine specific regis-
ter. Therefore, a caller typically preserves some architectural
state before calling a PAL procedure 111, and PAL proce-
dures 111 include checks to be performed at entry to ensure
that the input parameters and the calling environment con-
form to the architecture. Also, PAL procedures 111 are called
by jumping to a single entry point of PAL code that includes
adecode operation to determine the function to be performed.
[0025] In contrast, PAL services 112 are low latency, low
overhead functions that do not include any input parameter or
processor state checking, and do not include a decode opera-
tion. Input parameter and processor state checking may be
avoided by assuming that the caller is responsible for the
integrity of the input parameters to PAL services 112.
[0026] The decode operations necessary for PAL proce-
dures 111 may be avoided by passing to a caller, at initializa-
tion, a base address for PAL service code. An entry point for
each PAL service is defined as an offset in jump table 113,
which is stored in memory accessible to the caller. Therefore,
the caller may branch directly to the offset from the base
address corresponding to the desired PAL service, and no
decode is required.

[0027] Furthermore, in some embodiments, the preserva-
tion of architectural state by a caller may be avoided or
minimized. Typically, PAL services are called by a VMM
while the VMM is executing an interrupt handler. To allow the
interrupt handler access to certain hardware resources, certain
architectural state information may have been saved upon
entry to the interrupt handler. For example, in a processor in
the Itanium® Processor Family, sixteen of the static registers
are automatically saved by hardware when an interrupt
occurs. By using some of these static registers to pass param-
eters to a PAL service, no additional architectural state needs
to be saved by the VMM when calling the PAL service.
[0028] FIG. 2 illustrates a method for calling a PAL service
according to an embodiment of the present invention. In block
200, a virtualization environment is initialized. In block 205,
abase address is passed to a caller. In block 210, the caller sets
up input parameters for the PAL service. In block 220, the
caller sets up a return address to which the PAL service will
branch when it is complete. In block 225, the offset for the
PAL service is obtained from a jump table. In block 226, the
address of'the entry point to the PAL service is determined by
adding the offset to the base address. In block 230, the caller
invokes the PAL service by branching to the address deter-
mined in block 226. In block 240, the PAL service executes
the PAL function. In block 250, the PAL service sets up one or
more return values, if any. In block 260, the PAL service
transfers control to the address specified in block 220.
[0029] Therefore, performance may be improved by imple-
menting virtualization functions, or any other functions, as
PAL services instead of as PAL procedures. For example,
functions that are not invoked frequently, perhaps only at boot
time, may be implemented as PAL procedures, whereas func-

Sep. 20, 2012

tions that are invoked frequently during run-time may be
implemented as PAL services. In some embodiments, such as
those described for PAL services to virtualization, lower
latency may be achieved by designing the interface to the PAL
service to exactly match the state that the processor will be in
when the caller calls the procedure.

[0030] Returning to FIG. 1, associated with virtual proces-
sors 130-1 and 130-2, respectively, are virtual processor
descriptor (“VPD”) 135-1 and 135-2, which are data struc-
tures encapsulating the performance-critical architectural
state of the associated virtual processors. For example, VPD
135-1 and 135-2 may include, respectively, virtual copies
136-1 and 136-2 of interrupt control register 136. VPDs 135-1
and 135-2 may also include any additional state or other
information related to a virtual processor, such as configura-
tion options specific to a virtual processor to allow perfor-
mance tuning. For example, different interrupt handlers may
be used depending on the OS.

[0031] In one embodiment, when a guest is running on
processor 100, an access to interrupt control register 136 may
be intercepted, such that the virtual copy of the interrupt
control register in that virtual processor’s VPD is accessed by
VMM 120 without interfering with the architectural state of
processor 100 or of the other virtual processors supported by
processor 100. A VPD may be stored anywhere in the
memory accessible to processor 100 through PAL 110 and
VMM 120.

[0032] In another embodiment, for example, as shown in
FIG. 3, processor 300 may include one or more shadow
registers 305 for supporting virtualization. For example, one
shadow register 305 may be used to shadow interrupt control
register 336. In this embodiment, an access to interrupt con-
trol register 336 by a guest is directed, through processor 300,
to shadow register 305. Therefore, performance may be
improved by eliminating the software overhead associated
with exiting the virtualization environment to allow a VMM
to access the VPD of the running guest, then re-entering the
virtualization environment to continue executing the guest.
The performance improvement may be significant because
every access to a virtualized register may otherwise result in
a separate exit from and entry into the virtualization environ-
ment.

[0033] In the embodiment of FIG. 3, PAL 310 includes
synchronization code 315, which has a SYNC_READ rou-
tine 315-1 and a SYNC_WRITE routine 315-2, to support
hardware shadowing. SYNC_READ routine 315-1 and SYN-
C_WRITE routine 315-2 may be implemented as PAL ser-
vices, as described above.

[0034] For example, in block 410 of FIG. 4, a guest runs
with hardware shadowing enabled on processor 300. Because
hardware shadowing is enabled, as described above, an
attempt by the guest to write to a register that is shadowed
with shadow register 305 may result in modification of the
value in shadow register 305 but not the corresponding value
in the VPD for that guest. Therefore, as follows, the VMM
uses SYNC_READ routine 315-1 to ensure that the latest
values that should be in the virtual register for that guest are
available to the VMM.

[0035] In block 420, guest execution is completed, sus-
pended, or otherwise terminated such that control is passed to
a VMM. Then, in block 430, before the VMM reads the VPD
for that guest, the VMM calls SYNC_READ routine 315-1.
In block 440, SYNC_READ routine 315-1 copies the values

US 2012/0240116 Al

from the shadow registers 305 to the corresponding entries in
the VPD. Then, in block 450, the VMM reads the latest values
from the VPD.

[0036] Similarly, in block 510 of FIG. 5, before a VMM
starts the execution of a guest with hardware shadowing
enabled on processor 300, the VMM calls SYNC_WRITE
routine 315-2. In block 520, SYNC_WRITE routine 315-2
copies the values from the VPD of the guest into shadow
registers 305, to ensure that the latest values are available to
that guest. In block 530, the VMM starts execution of the
guest with hardware shadowing enabled on processor 300. In
block 540, the guest reads the latest value of its virtual register
from shadow register 305.

[0037] Another embodiment, where a guest is running, the
VMM is called, then the VMM returns control to the guest, is
illustrated in FIG. 6. This sequence may occur, for example,
where a guest is not permitted to write to a certain register (a
“privileged” register), even if it is shadowed in hardware. In
block 610, a guest attempts to write to a privileged register. In
block 620, an intercept to a VMM is raised. In block 630, the
VMM performs the write to memory. In block 640, the VMM
calls a SYNC_WRITE routine. In block 650, the SYNC_
WRITE routine copies the value from memory to a shadow
register. In block 660, the VMM returns control to the guest.
Inblock 670, the guest reads the latest value of its virtual copy
of the privileged register from the shadow register.

[0038] Althoughthe embodiment of FIG. 3 illustrates shad-
owing of interrupt control register 336, any other architectural
registers of processor 300 may be shadowed instead of or in
addition to interrupt control register 336, and any number of
shadow registers may be provided to shadow one or more
architectural registers. Here, “architectural register” means
any register or processor state information that is visible to or
accessible through software. Therefore, the implementation
of synchronization code 315 depends on the hardware shad-
owing provided by processor 300. However, as described
above, PAL 310 may provide a consistent software interface
regardless of the hardware implementation.

[0039] For example, PAL. 310 may be written to directly
access the appropriate shadow register in processor 300 when
a shadowed architectural register is accessed by a guest and
hardware shadowing is enabled, but to access the appropriate
memory location when an architectural register is not shad-
owed in hardware or hardware shadowing is disabled. Then,
synchronization code 315 is written to synchronize only those
registers that may actually be shadowed in hardware (i.e.,
hardware shadowing is provided and enabled).

[0040] PAL 310 also handles the case of VMM enabling
hardware shadowing of a register that is not shadowed in
hardware. For example, a processor may provide no shadow
registers, but PAL 310 may nevertheless provide fora VMM
to enable shadowing of certain architectural registers in
anticipation of support for hardware shadowing in future
generations of the processor. In this case, PAL 310 handles a
virtualization event caused by a register access instead of
passing it to the VMM as an intercept, because the VMM is
operating under the assumption that hardware shadowing of
the register is provided. Having PAL 310 provide for the
shadowing of certain hardware resources even before any
processor is designed to support such shadowing may be
desirable because it allows VMM software to be written in
advance, such that the VMM software may be compatible

Sep. 20, 2012

with earlier processors that do not provide such shadowing
and may also take advantage of shadowing capabilities pro-
vided by later processors.

[0041] Therefore, in one embodiment, upon detecting the
virtualization event related to hardware shadowing, PAL 310
may check if hardware shadowing is enabled to determine
whether to handle the event or pass it to the VMM. Although
this approach has been described with respect to hardware
shadowing, it may be used for virtualization events related to
any other optimizations that PAL 310 and/or processor 300
may provide.

[0042] Inanother embodiment, illustrated in FIG. 7A, per-
formance may be improved by eliminating the overhead asso-
ciated with PAL 710 checking whether an optimization is
enabled every time a corresponding virtualization event
occurs. Instead of such checking, a predetermination of
whether PAL 710 handles the virtualization event or passes it
to a VMM is provided by an optimization template 720.
Optimization template 720, made available by PAL 710, is
chosen from a number of optimization templates when the
virtualization environment is initialized. The choice of opti-
mization template 720 may be based on optimization settings
selected by the VMM and the hardware capabilities of the
processor.

[0043] Oneembodiment of optimization template 720 may
provide for the VMM to handle all virtualization events cor-
responding to optimizations (a “VMM-optimized template™).
If a VMM-optimized template is chosen at initialization, PAL
710 will transfer control to the VMM immediately upon
detecting a virtualization event corresponding to an optimi-
zation. Another embodiment of optimization template 720
may provide for PAL 710 to handle all virtualization events
corresponding to optimizations (a “generic template™). A
generic template may be used to avoid modifying a VMM for
different implementations of processors, and/or to provide for
the use of optimizations of which a VMM may not be aware.
[0044] Any number of different optimization templates 720
is possible within the scope of the present invention, because,
among other reasons, a different template may be used
depending on what optimizations are supported or contem-
plated. For example, backward compatibility to previous pro-
cessor generations may be supported by providing, in PAL
710, a choice of VMM-optimized templates corresponding
those previous processor generations.

[0045] Inyet another embodiment of an optimization tem-
plate, the PAL handles all events related to optimizations for
which hardware is provided to accelerate the optimization.
Conversely, the VMM handles all events related to optimiza-
tions for which no hardware is provided to accelerate the
optimization because no performance advantage may be
gained by allowing the PAL to handle these events.

[0046] FIG. 7B illustrates a method of handling a virtual-
ization event according to an embodiment of the present
invention. In block 730, a virtualization environment is ini-
tialized. In block 740, an optimization template is loaded. In
block 750, a virtualization event relating to an optimization
occurs. In block 760, an indicator in the optimization tem-
plate determines whether the event is to be handled by a
VMM. If so, then in block 770, control is transferred to the
VMM. If not, then in block 780, execution continues with no
transfer of control to the VMM.

[0047] FIG. 7C illustrates an alternate embodiment where
an optimization template is not used. In block 731, a virtual-
ization environment is initialized. In block 751, a virtualiza-

US 2012/0240116 Al

tion event relating to an optimization occurs. In block 761, the
PAL checks whether the optimization is enabled. If the opti-
mization is enabled, then in block 771, control is transferred
to the VMM. If not, then in block 781, execution continues
with no transfer of control to the VMM.

[0048] FIG. 8 illustrates a system 800 supporting virtual-
ization in accordance with an embodiment of the present
invention. System 800 includes processor 810 and PAL 815
from FIG. 1, implemented according to the embodiment of
FIG. 1 and coupled to memory 820 through bus 825, or
through any other buses or components, such as a memory
controller or system logic. Memory 820 may be any type of
memory capable of storing data to be operated on by proces-
sor 810, such as static or dynamic random access memory,
semiconductor-based read only or flash memory, or a mag-
netic or optical disk memory. VMM, operating system, appli-
cation, and any other type of software may be stored in
memory 820. System 800 may also include any other buses,
such as a peripheral bus, or components, such as input/output
devices, in addition to processor 810, PAL 815, memory 820,
and bus 825.

[0049] Processor 100, processor 810, or any other compo-
nent or portion of a component designed according to an
embodiment of the present invention may be designed in
various stages, from creation to simulation to fabrication.
Data representing a design may represent the design in a
number of manners. First, as is useful in simulations, the
hardware may be represented using a hardware description
language or another functional description language. Addi-
tionally or alternatively, a circuit level model with logic and/
or transistor gates may be produced at some stages of the
design process. Furthermore, most designs, at some stage,
reach a level where they may be modeled with data represent-
ing the physical placement of various devices. In the case
where conventional semiconductor fabrication techniques
are used, the data representing the device placement model
may be the data specitying the presence or absence of various
features on different mask layers for masks used to produce
an integrated circuit.

[0050] In any representation of the design, the data may be
stored in any form of a machine-readable medium. An optical
or electrical wave modulated or otherwise generated to trans-
mit such information, a memory, or a magnetic or optical
storage medium, such as a disc, may be the machine-readable
medium. Any of these media may “carry” or “indicate” the
design, or other information used in an embodiment of the
present invention, such as the instructions in an error recovery
routine. When an electrical carrier wave indicating or carry-
ing the information is transmitted, to the extent that copying,
buffering, or re-transmission of the electrical signal is per-
formed, a new copy is made. Thus, the actions of a commu-
nication provider or a network provider may be making cop-
ies of an article, e.g., a carrier wave, embodying techniques of
the present invention.

[0051] Thus, techniques for improving performance in a
virtual architecture with a PAL been disclosed. While certain
embodiments have been described, and shown in the accom-
panying drawings, it is to be understood that such embodi-
ments are merely illustrative of and not restrictive on the
broad invention, and that this invention not be limited to the
specific constructions and arrangements shown and
described, since various other modifications may occur to
those ordinarily skilled in the art upon studying this disclo-
sure. In an area of technology such as this, where growth is

Sep. 20, 2012

fast and further advancements are not easily foreseen, the
disclosed embodiments may be readily modifiable in arrange-
ment and detail as facilitated by enabling technological
advancements without departing from the principles of the
present disclosure or the scope of the accompanying claims.

What is claimed is:

1. An apparatus comprising:

aprocessor including a storage to store a processor abstrac-

tion layer (“PAL”) including service instructions, acces-
sible to the processor as a PAL service without a decode
operation, to determine a function to be performed with-
out performance of a parameter checking operation and
a processor state checking operation.

2. The apparatus of claim 1, wherein the storage is to
further store PAL procedure instructions, accessible to the
processor as a PAL procedure with a decode operation, to
determine a first function to be performed with the parameter
checking operation and with the processor state checking
operation.

3. The apparatus of claim 1, wherein the PAL service
instructions, when executed by the processor, support at least
one technique to improve performance of the apparatus in a
virtualization architecture.

4. The apparatus of claim 1, wherein the storage is also to
store a PAL service jump table.

5. The apparatus of claim 4, wherein the PAL service jump
table includes an offset value, and the PAL service is acces-
sible to the processor by execution of an instruction to branch
to a memory location addressable as a base address plus the
offset value.

6. The apparatus of claim 1, wherein the processor includes
circuitry to support virtualization of a hardware resource.

7. The apparatus of claim 6, wherein the circuitry com-
prises a shadow register to shadow attempts to access an
architectural register.

8. The apparatus of claim 7, wherein the storage is to store
synchronization instructions that, when executed by the pro-
cessor, synchronize the values in the shadow register with the
values in a virtual register corresponding to the architectural
register.

9. A method comprising:

initializing a virtualization environment in a virtualization

architecture;
performing a parameter checking operation and a proces-
sor state checking operation in connection with calling a
procedure instruction in a processor executing instruc-
tions of a processor abstraction layer (“PAL”) stored in
a storage;

performing a decode operation, in response to calling the
procedure instruction, to determine a first function to be
performed; and

calling a service instruction in the PAL without a decode

operation to determine a second function to be per-
formed without the parameter checking operation and
without the processor state checking operation.

10. The method of claim 9, further comprising passing a
base address to a caller of the procedure instruction.

11. The method of claim 9, further comprising executing
the service instruction to synchronize a hardware resource to
support virtualization with a virtual resource.

12. The method of claim 11, wherein the hardware resource
is a shadow register and the virtual resource is a virtualized
copy of an architectural register.

US 2012/0240116 Al

13. The method of claim 9, further comprising determining
whether the service instruction is to be executed based on an
indicator.

14. The method of claim 13, wherein the indicator is based
on an enable indicator that indicates whether a virtualization
technique is enabled.

15. The method of claim 14, wherein the indicator is based
on a selection indicator that indicates whether the service
instruction is selected.

16. An apparatus comprising:

a processor to load an optimization template made avail-
able via a processor abstraction layer (“PAL”), the opti-
mization template including an indicator to indicate
whether a virtualization event is to be handled by a
virtual machine monitor (VMM) of a virtualization envi-
ronment and if so to transfer control to the VMM, and

Sep. 20, 2012

otherwise to continue execution via the PAL, wherein
the execution is continue via the PAL without the control
transfer to the VMM.

17. The apparatus of claim 16, wherein the processor is to
perform a parameter checking operation and a processor state
checking operation in connection with a call to a procedure
instruction.

18. The apparatus of claim 17, wherein the processor is to
perform a decode operation, in response to the call to the
procedure instruction, to determine a first function to be per-
formed.

19. The apparatus of claim 18, wherein the processor is to
call a service instruction in the PAL without a decode opera-
tion to determine a second function to be performed without
the parameter checking operation and without the processor
state checking operation.

sk sk sk sk sk

