PATENT SPECIFICATION

(22) Filed 21 April 1977

(21) Application No. 1667777(22) Filed 21(23) Complete Specification filed 20 April 1978

(44) Complete Specification published 23 April 1980

(51) INT CL3 G03C 1/40; C09B 23/06

(52) Index at acceptance

G2C C19A C19E2A

C4P 106 DIQ10AX DIQ1 DIQ1A1 DIQ1B3 DIQ1C12 DIQ1C15 DIQ1C1A DIQ1C1B DIQ1C2 DIQ1C5

(72) Inventor BERNARD ALAN LEA

 $1\,565\,593$

(54) PHOTO-SENSITIVE COMPOSITIONS

(71) We, MINNESOTA MINING AND MANUFACTURING COMPANY, a corporation organised and existing under the laws of the State of Delaware, United States of America, of 3M Center, Saint Paul, Minnesota 55101, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to photo-sensitive compositions and to the incorporation of acutance dyes in such systems. The invention is particularly concerned with photo-sensitive compositions of the type known as "dry silver"

compositions.

Dry silver photo-sensitive compositions comprise an intimate mixture of a light sensitive silver halide and another silver compound such as a silver salt of an organic acid, e.g. silver behenate or silver saccharine, which upon reduction gives a visible change and which is substantially light-insensitive. Such a mixture is usually prepared in suspension and the resulting dispersion spread on a suitable substrate. When dry, the resulting layer is exposed to a light image and thereafter a reproduction of the image can be developed by heating the layer in the presence of a reducing agent such as hydroquinone or certain substituted phenols.

It is because the exposure and development of the layer occur without using water, that these materials are often referred to as dry silver light-sensitive materials. Such materials in which minor amounts of a photo-sensitive silver halide catalyst-progenitor are associated in catalytic proximity with major amounts of a heat-sensitive oxidation-reduction image forming reaction mixture which reacts more rapidly in the presence of the catalyst resulting upon exposure of the silver halide are well known in the art. Examples of such materials are described in our British Patent No. 1110046 and in United States Patents Nos. 3457075 and 3839049.

We believe, that when the mixture is exposed to light, a latent image is formed in the silver halide. Thereafter, the silver com-

pound can be reduced by heating with the reducing agent, this reduction being catalysed image-wise by the light exposed silver halide. By a suitable choice of temperature, the reduction of the silver compound can be catalysed in the light exposed areas to give a visible darkening while any slight reduction which occurs in the non-light exposed areas is insufficient to give a marked change. Of course, because the silver halide acts as a catalyst progenitor, only very small amounts of it are required, e.g. 0.1 to 20% by weight of the mixture, and preferably 0.1 to 10 percent.

(11)

In order to improve the sharpness or definition of photographic images a dye known as an acutance dye is often incorporated into photo-sensitive compositions. The acutance dye will absorb at the wavelengths at which the photo-sensitive composition is sensitive. It attenuates all the light passing into a layer of the light-sensitive composition but the longer the path length of the light in the layer the greater the attenuation. Therefore, scattered light is attenuated or absorbed to a larger extent that light which impinges directly on a light-sensitive crystal. As a result, therefore, although the overall speed of the composition is reduced slightly, scattered light and other light rays which are liable to produce a blurred image are preferentially absorbed and so the overall definition and sharpness of images produced in the layer are increased

An acutance dye for use in a dry silver composition must be heat labile, that is to say, that it must it must be destroyed by the heat development of the dry silver composition to one or more compounds which are colourless. It is therefore an object of this invention to provide dry silver compositions which contain magenta acutance dyes, i.e. those which will absorb green light, the dyes being rendeted colourless upon heat development of the dry silver composition.

According to the invention there is provided a light-sensitive composition comprising an intimate mixture of a substantially lightinsensitive silver compound upon which reduction gives a visible change and sufficient of a 50

55

60

65

70

75

80

85

90

95

95

~__

20

35

40

45

10

15

silver halide to catalyse this reduction to give a visible change in those areas where the silver halide has been exposed to light when the mixture is heated in the presence of a reducing 5 agent, and a magenta acutance due having the general formula:

f 2 5 5 5 5 5 6

in which R¹ and R², which may be the same as or different from one another, each represents an alkyl group and in particular one containing from 1 to 12 carbon atoms, and R³ represents a hydrogen atom, an ailtyl group, preferably a lower alkyl group, an aralkyl group such as a benzyl group, an aryl group such as a phenyl group or an electronegative group. The term "electronegative group" refers to a group which is more electronegative than a methyl group,

e.g. ethoxycarbonyl, cyano and toluene sulphonyl groups.

It is found that dry silver compositions containing one of the above noted acutance dyes can give excellent sharp images and that the acutance dye will be rendered colourless by the heating required to develop the composition. This is surprising in view of the fact that these dyes are found not be decomposed to a colourless state when they are heated on their ewn to the temperature at which the dry silver compositions are heated for development.

The acutance dyes in the compositions of the invention can be prepared in a manner analogous to the synthesis of 1.1 - dicyano-2,2 - bis(3 - alkyl - 2 - berzothiazolinylide-methyl alkenes (described in Chemical Abstracts 50, 12711a) by reacting a 3:3'-dialkyl - 9 - alkylthio - thiacarbocyanine-iodide with a nitroalkane or a substituted nitroalkane R—CH NO; in which R³ is as defined above.

Examples of acutance dyes which can be used according to the invention are those having the values of R¹, R² and R³ as set out in the following Table 1.

TABLE 1

Compound	ĸ.	, R²	R'	Melting point (°C)	λ max (nm)
1	C,!I,-	CH ₃ —	11-	190–205 (d)	565
2	C _z H _e –	CH, -	CH ₃ –	210 (3)	568
3	CH, -	CH ₃	Н	195–205 (d)	567
4	C, 1, -	C, H, –	C ₂ 11, –	200 (d)	56.5
5	C ₂ 11,	C, H, –	Н	195-210	569
6	CH ₂ :CH ₂) ₁₁ =	СН, —	i!	113—129 (d) 150	570
7	CH ₂ =	C ₂ H ₅ -	C, H, -	191–192 (d) _	567

(d) * with decomposition

The acutance dyes can be incorporated into the compositions of the invention in an amount from 1×10^{-6} to 3×10^{-6} mole of acutance dye per kilogram of dry solids in the composition. Preferably, however the dyes are incorporated in an amount of from 3×10^{-6} to 1×10^{-6} mole of acutance dye per kilogram of dry solids in the composition.

The light-sensitive compositions of the invention will normally be spread for use on a support, suitable supports including, for

example, paper, polyester or polyamide film bases, and glass. The compositions will normally be prepared as a solution or suspension which is spread as a layer on the support and then the solvent or vehicle is evaporated off to leave a dry photosensitive layer. If desired a coating aid or binder such as polyvinyl butyral, polymethyl methacrylate, cellulose acetate, polyvinyl acetate, cellulose acetate propionate and cellulose acetate butyrate, can be incorporated in the light-sensitive mixture.

60

65

50

:

כו

. --- The substantially light-insensitive silver compound is suitably a silver salt of an organic acid. Examples include silver behenate, silver caprate, silver laurate, silver myristate, silver palmitate, silver stearate, silver arachidate and silver saccharine.

The reducing agent for this substantially light-insensitive silver compound can normally be quite mild. Suitable examples include hydroquinone and substituted phenols such as 1-methyl-4-hydroxy-naphthalen: methyl gallate, catechol, phenylene diamine, p-aminophenol and 1-phenol-3-pyrazolidone. The reducing agent can be incorporated into the light-sensitive composition. Alternatively, the composition can be placed in contact with the reducing agent afer exposure to light. For example, a light-sensitive coating can be exposed to a light image, placed in contact with a layer containing the reducing agent and the image then developed by heating. Preferably, however, the reducing agent is incorporated in the light-sensitive composition before this is spread on the support. Then the storage stability of the composition can be improved by incorporating in the composition a small amount of a stabilizer such as an acid stabilizer, e.g. succinic acid, benzoic acid or salicylic acid.

The silver falide can be present in quite small amounts, e.g. 0.1 to 10% by weight of the mixture of silver compounds. It can be added as such to the substantially light-insensitive compound or by adding a soluble halide, e.g. a mercury or sedium halide, to the substantially light-sensitive silver compound. The silver halide can, for example, by chloride, bromide or a mixture of them and/or other silver halides.

30

The light-sensitive compositions of the invention can include one or more sensitizing dyes to improve their sensitivity to parts of the spectrum other than the shorter wavelengths.

Examples of dry silver composition according to the invention containing various acutance dyes were tested as follows: 31 parts

being by weight unless otherwise indicated. The test coatings were first prepared by charging a mixing vessel at room temperature under room light a 500 gram dispersion containing 13.8 parts of silver behenate in 86.2 parts of solvent which in turn was comprised of 67 parts methyl ethyl ketone, 25 parts toluene and 7 parts methyl isobutyl ketone. Seven grams of polyvinyl butyral resin (Butvar B—76) was stirred in followed by 15 grams of 1 - methyl 2 - pyrrolidinone, and the whole stirred an additional 15 minutes.

Under Wratten 1A safelight a mixture containing hydrobromic acid (20 ml, 1.0 molar in methanol) and hydroiodic acid (5 mi, 0.1 molar in methanol) was pipetted in with stirring. After 40 minutes at room temperature mercuric bromide solution (0.5 molar in methanol 3 ml) was added followed immediately by an additional 25 grams of Butvar B-76. After 20 minutes a slurry of 5 - ethyl - 5 - [(1 - ethyl - 1,2 - dihydroquinolinytidene - 2) - ethylidene] - 2 - 13carboxymethyl - 4 - oxo - 2 - thio - 5 - thiazolidinylidene) - 4 - thiazolidene (Example 2 Dye B of our U.S. Patent No. 3,719,495) in methyl ethyl ketone (11.8 mg in 10 ml) was added, the mixture stirred for 10 minutes, allowed to stand for 60 minutes, then stirred an additional 10 minutes. With this addition the dispersion became pan sensitive and thereafter had to be handled under total darkness or satisfactory safelight, for example Wratton No. 11.

Equimolar amounts of the actuance dyes to be tested were charged to appropriate containers and dispersed in 3 ml of methyl ethyl ketone (MEK). Fifty gram aliquots of the light-sensitive dispersion prepared above were added, the mixture shaken, left to stand for 30 minutes, then shaken again prior to coating. Table 2 summarizes the amounts of each dye added to the light-sensitive dispersions to give compositions identified as I to VI as in Table 2.

50

35

60

65

70

75

80

85

90

25

35

40

20

5

10

15

TABLE 2

Composition No.	Compound added	Molecular weight	mg 50 g uliquot	
ī	None (control)	_	3 ml MEK only	
11	ı	409	19	
111	2	464	22	
IV	3	395	18	
v	4	451	21	
VI	6	536	25	

Knife coatings 125 microns thick on polyester film were prepared from each of the light-sensitive compositions I to VI and dried for 4 to 5 minutes at 85°C. These dried coatings were then over-coated with the knife set 60 microns above the base and dried as before. The overcoat solution contained 31 parts methyl ethyl ketone, 5 parts methanol, 10 1.5 parts phthalazinone, 7.5 parts of bis-(2,2' - dihydroxy - 3,3',5,5' - tetramethyl-diphenyl) - (2,4,4 - trimethylpentyl) methane (NoNox WSO available from I.C.I. Limited) and 5 parts of vinyl chloride/vinyl acetate copolymer (VYNS available from Union Carbide).

The performance of the resulting coatings of these compositions I to VI was then evalu-

A combination of tungsten source, narrow band filter, and aperture target overlaid with a 0 to 4 continuous density wedge in a vacuum frame was used to make contact exposures at a wavelength closely matching the spectral absorbance maximum of each dye. Microdensitometer traces across the width of the image at D=2.0 (obtained after processing the exposed strips 15 seconds at 127°C in a fluorochemical bath to give reproducible heating for these tests) were used to judge the effectiveness of each dye. The "widths" reported are those units of chart paper grid recorded as the microdensitometer moved from a point 0.05 above Dmin acorss D=2.0 and back to 0.05 above Dmin of the image as indicated in the accompanying drawing. The absolute width of the target was $5.50~\pi$ 0.05~mm.

The results of testing the compositions are given below in Table 3.

TABLE 3

Coating of Composition No.	Wavelength Exposed (nm)	Maximur. Density	Image Width	Target Width	Ratio
I	560	2.00	254.0	142.5	1.78
111	560	1.50	171.3	140.7	1.22
IV	560	1.92	208.0	141.0	1.47
ı	580	2.00	258.0	120.7	1.83
11	580	2.00	171.0	140.5	1,22
iv	580	2.07	, 164.0	141.0	1.16
VI	586	2.04	166.0	141.5	1.17

50

55

25

30

35

40

25

30

35

In an ideal case the image width would equal the target width and so the ratio would be 1.0. However, as can be seen from Table 3, the ratios for coating II to VI according 5 to the invention are significantly closer to 1.0 than for the control coating I.

Once the coatings had been processed it was found that each of the dyes was substantially destroyed leaving film with an essen-10 tially neutral background.

The words "Wratten", "Butvar" "NoNox" are registered Trade Marks.

WHAT WE CLAIM IS:-

1. A light-sensitive composition comprising an intimate mixture of a substantially lightinsensitive silver compound which upon reduction gives a visible change and sufficient of a silver halide to catalyse this reduction to give a visible change in those areas where the silver halide has been exposed to light when the mixture is heated in the presence of a reducing agent, and a magenta acutance dye having the general formula:

in which R' and R2, which can be the same as or different from one another, each represents an alkyl group, and R3 represents a hydrogen atom, an alkyl group, an aralkyl group, an aryl group or an electronegative group (as defined herein).

2. A light-sensitive composition as claimed in Claim 1 in which the electronegative group represented by R' is an ethoxycarbonyl group, a cyano group or toluene sulphonyl group.

3. A light-sensitive composition comprising an infimate mixture of a substantially lightinsensitive silver compound which upon reduction gives a visible change and sufficient of a silver halide to catalyse this reduction to give a visible change in those areas where the silver

halide has been exposed to light when the mixture is heated in the presence of a reducing agent, and a magenta acutence dye having the general formula:

in which R1 and R2, which can be the same as or different from one another, each represents an alkyl group, and R' represents a hydrogen atom or an alkyl group.

4. A light-sensitive composition as claimed in any preceding claim in which R1 and R4 each represents an alkyl group containing from 1 to 12 carbon atoms.

5. A light-sensitive composition as claimed in Claim 3 in which the acutance dye is one of the compounds I to 6 of Table I herein.

6. A light-sensitive composition as claimed in Claim 1 or Cinim 2 in which the acutance dye is the compound 7 of Table 1 herein.

7. A light-sensitive composition as claimed in any preceding claim in which the acutance dye is present in an amount of from 1 × 10to 3 × 10-2 mole per kilogram of dry solids in the composition.

8. A light-sensitive composition as claimed in Claim 7 in which the acutance dye is present in an amount of from 3 × 10-3 to 1 × 10-3 mole per kilogram of any solids in the composition.

9. A light-sensitive composition substantially as herein described with reference to any of the compositions II to VI of Table 2 harein.

10. A light-sensitive material comprising a layer of a composition as claimed in any preceding claim on a support.

For the Applicants: LLOYD WISE, BOULY & HAIG. Chartered Patent Agents, Torman House, 105-109 Strand. * ondon, WC2R OAE.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa. 1930. Published by the Patent Office, 25 Southempton Buildings, London, WC2A 1AY, from which copies may be obtained.