03/071447 A2

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 03/071447 A2

28 August 2003 (28.08.2003) PCT
(51) International Patent Classification”: GO6F 17/30
(21) International Application Number: PCT/IL03/00137

(22) International Filing Date: 20 February 2003 (20.02.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/359,247
10/347,033

21 February 2002 (21.02.2002)
17 January 2003 (17.01.2003)

Us
Uus

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
Us
Filed on

USSN 10/347,033 (CIP)
17 January 2003 (17.01.2003)

(71) Applicant (for all designated States except US): INFO-
CYCLONE LTD. [IL/IL]; 1 AZRIELI CENTER, 67021
TEL-AVIV (IL).

(72) Inventors; and
(75) Inventors/Applicants (for US only): LEVY, Eliezer

74

[ILAL]; 16 RACHEL STREET, 34401 HAIFA (IL).
KFIR, Ziv [IL/IL]; 26 DAVID HAMELECH STREET,
64954 TEL-AVIV (IL). KAPLAN, Yiftach [IL/IL]; 7
KEREN HAYESOD STREET, 53607 GIVAT-SHMUEL
(IL). BEN-ELIAHU, Rachel [IL/IL]; 40 Habanay
st, 96264 JERUSALEM (IL). TURKEL, Itzhak
[IL/IL]; 8/4 ITZHAK ELCHANAN STREET, 47218
RAMAT-HASHARON (IL). MOSKOVICH, Reuven
[ILAL]; 25 HAZOHAR STREET, 62507 TEL-AVIV
(IL). MENACHLI, Eliav [IL/IL]; 2 MICHAEL ANGELO
STREET, 77661 ASHDOD (IL). GILADI, Ran [IL/IL];
26 IRUS STREET, 84965 OMER (IL). GANG, Shahar
[IL/AL]; 2/1 HAKESHET STREET, 55401 KIRYAT-ONO
(IL). WEINRAUB, Yehuda [IL/IL]; 4/32 HAIM HAZAZ
STREET, 84373 BEER-SHEVA (IL). SHURMAN,
Michael [IL/IL]; 10 DAYA STREET, 42842 BAT-HEFER
(IL). BERLOVITCH, Albert [IL/IL]; 15 HAAGADA
STREET, 52377 RAMAT-GAN (IL).

Agents: FENSTER, Paul et al.; FENSTER & COM-
PANY, INTELLECTUAL PROPERTY 2002 LTD., P. O.
BOX 10256, 49002 PETACH TIKVA (IL).

[Continued on next page]

(54) Title: ADAPTIVE ACCELERATION OF RETRIEVAL QUERIES

100
/

RESULTS
108 106 104 102
h N 112 [
WEB | | APPLICATION |/ SQL | DATABASE
SERVER SERVER SERVER
saL
110
CONTROL _ ™ DATABASE e}
RESULTS SERVER [CACHE
ACCELERATOR N
120

(57) Abstract: A database server accelerator, comprising a plurality of query execution machines, adapted to resolve database
queries, a plurality of respective memory units, adapted to cache data from the database, each memory unit being accessible only by
its respective execution machine, and a data-manager adapted to determine the data to be cached in each of the plurality of memory

units.

WO 03/071447

A2 VA 00 0 R0

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
ADAPTIVE ACCELERATION OF RETRIEVAL QUERIES
RELATED APPLICATIONS

This application claims the benefit under §119(e) of US provisional patent application
60/359,247, filed on February 21, 2002, and is a continuation-in-part (CIP) of U.S. patent
application 10/347,033 filed January 17, 2003, the disclosures of which are incorporated
herein by reference.

FIELD OF THE INVENTION
The present invention relates to data storage access systems.
BACKGROUND OF THE INVENTION

Database servers are used to manage databases and provide data to applications in
response to database queries. The databases are generally formed of tables whose fields are
referred to as columns and each record is a row. The database server receives database access
commands, which are generally provided in the SQL language. The database access commands
mclude database queries and database updates. The database server changes the contents of the
database responsive to the database updates and provides data responsive to the queries.
Methods of responding to queries by database servers are well known in the art. One of the
major attributes of a database server is the speed at which it provides query results.

Database servers are limited in the number of queries they can serve in a given period,
by the processing power of the database server and by the throughput of a storage device
storing the database. Increasing the number of database queries serviced in a given period, may
be performed by adding an additional database server and a load balancer which distributes the
queries between the database servers. Adding an additional database server is expensive and
requires synchronization of the data provided by the database servers.

There exist software techniques that are used to enhance the operation speed of the
database server. For example, some compilers that translate the SQL queries into segmerits of
operator statements executable by the processors of the database server, attempt to optimize
the segments of executable statements during compilation. The optimization includes, for
example, determination of when to perform a sort, e.g., before or after other operations,
according to operation cost.

It also has been suggested to create indices, which provide fast access to respective
columns, for some of the columns of the database. The indices to be created are determined

off-line by a database manager or by a computer program. The computer program may, for

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
example, collect the types of queries directed to the database, and accordingly determine

automatically, off-line, which indices should be created.

One method of enhancing the response time to queries is providing an enhancement
database unit, such as the dbCruiser provided by infoCruiser, which caches frequently accessed
information in a main memory unit, and, using the cached information, responds to some of
the queries directed to the database server, instead of the database server. The dbCruiser uses
principles of fuzzy logic and uncertainty theory to adaptively determine which portions of the
database are cached in the main memory, as described in U.S. patent publication
2002/0087798, which is incorporated herein by reference. Alternatively, an administrator may
set the portions of the database cached in the main memory.

SUMMARY OF THE INVENTION

Multi-machine accelerator

An aspect of some embodiments of the invention relates to a database server
accelerator, which has a plurality of separate execution machines associated with separate
memory units. The plurality of execution machines are optionally included in a single housing
and/or are controlled by a single controller. In some embodiments of the invention, at least
some queries handled by the accelerator are resolved jointly by a plurality of the execution
machines. Use of a plurality of execution machines that have separate memory units, in a
single accelerator, allows the accelerator to have an amount of memory larger than the address
space that can be accessed by a single execution machine.

Tn some embodiments of the invention, a single resource governor controls the contents
of a plurality of the memory units associated with different ones of the execution machines, so
as to maximize the acceleration affect of the accelerator. In some embodiments of the
invention, the resource governor controls the contents of the memory units in a manner which
prevents a plurality of memory units from caching the same database portions. Alternatively or
additionally, the resource governor instructs a plurality of the memory units to store a single
database portion in a plurality of the memory units for better parallel resolution of one or more
frequent database queries.

In some embodiments of the invention, a single compiler is used to convert database
queries received by the accelerator into code segments executable by the execution machines,
for at least a plurality of the execution machines.

Non-specific Compilation

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
An aspect of some embodiments of the present invention relates to a compiler of

database access commands for a multi-machine database server. The compiler converts
database access commands into plans formed of executable operator statements, without
stating the specific ﬁachne which is to carry out the statements. Since the compiled
commands do not include data position information, the compiled commands may be used
even after the positions of some of the data accessed by the commands changes locations
between machines. Thus, before execution of a command, the command only needs to be
adjusted to the positions of the data and there is no need to recompile the command. This
allows, in some embodiments of the invention, dynamic movement of data between the
machines of the database server at a relatively high rate, without wasting processing resources
on recompilation.

Optionally, at least some of the plans generated by the compiler are executed by a
plurality of machines of the database server. These plans are optionally moved between the
machines executing the plan, each machine executing a portion of the plan and moving the
plan and the resultant data to a next machine for further processing.

Moving data between machines

An aspect of some embodiments of the present invention relates to a multi-machine
database server, which includes a resource governor that dynamically determines the database
portions hosted by each of the machines.

In some embodiments of the invention, the resource governor optionally moves data
portions between the machines, when determined to be advantageous, for example, in order to
concentrate data required by popular queries in as few execution machines as possible.
Optionally, the resource governor determines which data portions are to be handled by each
machine based on statistics on the database commands (e.g., queries) recently received by the
database server. By dynamically adjusting the data handled by each of the machines, the data
can be placed in the machines according to the queries currently being received by the database
server. Thus, the number of times queries, and the data they manipulate, need to be transferred
between machines during resolution of the queries, can be reduced.

In some embodiments of the invention, the multi-machine database server comprises a
primary database server, which performs substantially all the tasks required from a database
server. Alternatively, the multi-machine database server comprises a database accelerator,

which performs only some database tasks, for example only data retrieval tasks.

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
In some embodiments of the invention, the resource governor periodically, for example

every 3-5 minutes, reviews the queries recently received by the database server and
accordingly determines which database portions are to be handled by each of the machines.
The periodic operation of the resource governor may have shorter (e.g., 10-20 seconds) or
longer (e.g., 1-2 hours) durations than indicated above, depending on the type of queries
forwarded to the database and/or the frequency at which the types of queries change.

In some embodiments of the invention, atlleast some of the decisions of the resource
governor result in a transfer of data already stored in a first one of the machines to a second
machine, different from the first. Alternatively or additionally, the decisions result in loading
data portions from a secondary memory (optionally not associated with a single execution
machine) to the memory units. The secondary memory may be used to store data which is
determined to be cached but is not accessed at a high rate. Further alternatively or additionally,
the decisions result in caching data portions from a database being accelerated. Further
alternatively or additionally, the decisions result in generating additional copies of one or more
data portions from the database, so that the same data is directly accessible by more than one
execution machine.

Selecting indices

An aspect of some embodiments of the present invention relates to a database server
that periodically determines which indices should be created for columns of tables stored in the
database and accordingly automatically creates the indices. Optionally, the database server
monitors the queries recently directed to the server, and accordingly determines which indices
are most worthwhile to create. In some embodiments of the invention, the determination of
which indices are to be created is based on the popularity of the recently received queries.
Thus, the created indices are those which are expected to provide maximal acceleration in
view of recently received database queries.

Accelerator with data not in original database

An aspect of some embodiments of the invention relates to a database accelerator
adapted to accelerate the operation of a database, which accelerator stores data not hosted by
the original database. The data stored in the accelerator but not in the accelerated database is
optionally stored in a manner which allows use by a plurality of queries, i.e., is not stored
temporarily for use in resolving a single query.

In some embodiments of the invention, the data not in the database that is stored in the

accelerator comprises one or more indices generated for use by queries to be accelerated by the

4

10

15

20

25

30

WO 03/071447 ~ PCT/IL03/00137
accelerator. Alternatively or additionally, the data stored exclusively in the accelerator
comprises one or more table columns sorted differently than the base table in the accelerated
database. Further alternatively or additionally, the data stored exclusively in the accelerator
comprises one or more table views, such as resulting from a join, sort, aggregation and/or
grouping. Optionally, the views are prepared by the accelerator before resolving the queries
that use the data of the views. Alternatively or additionally, each view is prepared during
resolution of the first query requiring the data of the view. In some embodiments of the
invention, when possible, one or more of the tables and/or columns used in creating the data
stored in the accelerator but not in the database, is not cached by the accelerator. For example,
if the popular queries that relate to a column for which a view is created by the accelerator are
accessed only through an operation having a result in a view determined to be resolved, the
column is optionally not cached by the accelerator.

In some embodiments of the invention, one or more of the views is generated in
parallel to an index for the view. Generating the view together with an index reduces the costs
of generating the view and index.

Non-executable directives

An aspect of some embodiments of the present invention relates to a compiler which
translates database access commands into operator segments, i.e., compiled plans. At least one
of the compiled plans includes a non-executable directive which is replaced by an executable
portion after the compilation. The non-executable directive represents a group of a plurality of
equivalent executable portions, from which the replacement executable portion is selected,
after the compilation. The execution portions in the group of equivalents of a non-executable
directive optionally differ in the method in which they perform a required task represented by
the directive, while the results of the equivalent execution portions are substantially the same.

In some embodiments of the invention, the selection of the executable portion from the
group of equivalents is performed responsive to at least one attribute of the data manipulated
by the executable portion, for example, the number of rows in the manipulated data, the time
required so far to execute the compiled plan, the importance of the compiled plan and/or the
expected time remaining until completion of the plan. For example, for a plan nearly
completed, an executable portion that minimizes execution time of the plan may be selected,
while for a plan with substantial time remaining until completion, an executable portion that

minimizes throughput may be selected.

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

Alternatively or additionally, the selection is performed responsive to dynamic or static
parameters of the machine executing the compiled plan. Dynamic parameters may include, for
example, the available memory of the machine and/or the load (e.g., the number of plans
waiting for execution) on the machine. Static parameters may include, for example, the
processing power of the machine and/or the size of the memory associated with the machine,
when the at least some of the execution machines differ in one or more static parameters.
Further alternatively or additionally, the selection of the executable portion is performed
responsive to execution times of the compiled plan with the different possible executable
portions. Optionally, at the first few times the compiled plan is executed, some or all of the
possible executable portions are selected and the execution times are measured for the
different equivalent portions. Thereafter, the executable portion with the best response time is
selected.

Optionally, the selection of the executable portion from the group of equivalents is
performed during the execution. In some embodiments of the invention, the selection is
performed by an execution machine that executes at least a portion of the compiled plan,
optionally by the machine that executes the selected execution portion. Alternatively, the
selection of the executable portion from the group of equivalents is performed by a dispatcher
that passes the compiled plans to the execution machines, for example when the execution is
performed based on the importance of the query.

Selecting the executed portion after the compilation allows better optimization of the
compiled plans according to the manipulated data at the time of execution. Thus, the
optimization can be performed based on information on the data which is not available during
compilation, for example, the accurate size of an intermediate table (instead of a general
approximation available during compilation). In addition, the compilation can be performed
once for a plurality of repetitions of the compiled database command, without losing the
benefits of optimization of the compilation based on attributes of the manipulated data.

In some embodiments of the invention, the compiler does not relate at all to attributes
of the manipulated data, and all optimizations responsive to the data size are performed after
compilation. That is, in any case that there is a possibility to perform one of a plurality of
different commands, the compiler inserts a non-executable directive to the plan and does not
attempt to select a specific directive. Alternatively, the compiler relates to the attributes of the

database for at least some of the statements of the compiled query. For example, for statements

10

15 .

20

25

30

WO 03/071447 PCT/1IL03/00137
that manipulate base tables whose size is substantially known, the compiler optionally selects a
specific operator to be used.

In some embodiments of the invention, the executable portions represented by the
directives include single operator statements. For example, a directive may represent a join
operation, which is to be performed in one of a plurality of different methods. The general join
directive is replaced after compilation by a single operator statement that performs the join
operation using a selected method. Alternatively or additionally, one or more of the directives
represents a plurality of segments of one or more operators, at least one of which includes a
sequence of a plurality of operators. Optionally, the operator segments include standard library
segments for performing complex operations. Alternatively or additionally, one or more of the
operator segments is generated during compilation of the command. For example, the compiler
may generate a plurality of possible operator segments from which one is to be selected at a
later time, e.g., during execution. The plurality of segments may be optimized to achieve
different goals, for example throughput (i.e., the number of queries handled in a specific time)
verses response time (i.e., the time between receiving a query and providing a response to the
query). During execution it is optionally determined whether throughput or response time is
more important for the specific query, and accordingly the executable portion is selected.

In some embodiments of the invention, the selected executed portion comprises the
entire compiled plan. Optionally, the compiler generates a plurality of plans for the command,
from which one plan is selected when the command is to be executed. The plurality of plans
are optionally optimized during compilation based on different assumptions on the
manipulated data. In some embodiments of the invention, the plurality of plans are generated
at substantially the same time. Alternatively or additionally, the plurality of plans are generated
at different times, for example under different data conditions. The selection is optionally
performed based on a comparison between current data conditions and the conditions at the
times of the different compilations.

Selecting cached-data based on gueries

An aspect of some embodiments of the present invention relates to determining which
data is to be cached by a database accelerator, by selecting a group of queries to be handled by
the accelerator and caching the data required by those queries. In some embodiments of the
invention, only queries in the selected group are provided thereafter to the accelerator.

Alternatively, queries not in the selected group, but relating to data cached by the accelerator,

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
may be handled by the accelerator, for example when the accelerator is relatively lightly
loaded.

In some embodiments of the invention, the selected queries used in determining the
data to be cached by the accelerator are selected at least partially according to the benefit to the
execution of the queries from being handled by the accelerator. In some embodiments of the
invention, the determination is performed responsive to previously measured execution times
of the queries. Queries that are expected to be handled much faster by the accelerator than by
the primary database server are optionally given precedence in being handled by the
accelerator. Thus, the decision of which queries are to be cached does not only reduce the load
on the primary server but does so in a manner which increases the response time of the queries
handled by the accelerator.

Clustering of queries

An aspect of some embodiments of the present invention relates to a method of
determining the data organization of a database. The method includes accumulating queries
recently directed to the database, clustering the accumulated queries into clusters that relate to
same and/or similar data portions and determining the data organization according to the data
needs of the queries of one or more of the clusters. At least one of the clusters includes a
plurality of non-identical queries. Optionally, each of the clusters is assigned a priority score
and one or more clusters having best scores are related to in determining the data organization.
The priority score of each cluster optionally depends on the resources required in order to
accelerate the queries in the cluster and the expected benefit from accelerating the queries of
the cluster. Alternatively, one or more of the clusters are selected arbitrarily, so as not to waste
resources on assigning scores to the clusters.

Determining the data organization based on query clusters, rather than single queries,
allows better utilization of the resources of the database server. Better utilization is achieved,
for example, by optimizing the handling of relatively low importance queries which require
similar data as one or more high importance queries.

Determining the data organization optionally comprises determining indices to be
created by the database server. In some embodiments of the invention, the database server
comprises a database accelerator. In some of these embodiments, determining the data
organization comprises selecting data portions to be cached by the accelerator and/or the
queries to be accelerated. Alternatively or additionally, determining the data organization

comprises determining the partitioning of the cached data within the accelerator.

8

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

In some embodiments of the invention, the database server comprises a plurality of
execution machines with separate respective memory units. In some of these embodiments,
determining the data organization comprises determining which data portions are stored in
each memory unit.

Query load balancing

An aspect of some embodiments of the present invention relates to determining
whether a query is to be handled by a database accelerator, according to at least one attribute
additional to whether the accelerator can handle the query with its currently cached data.
Optionally, the at least one attribute comprises the current processing load of the accelerator
and/or whether the query was previously compiled. Alternatively or additionally, the at least
one attribute comprises an expected benefit to the handling of the query. In some embodiments
of the invention, the expected benefit to the handling of the query comprises a relative
response time and/or execution time of the accelerator verses the response time and/or
execution time of an accelerated server. Alternatively or additionally, the expected benefit is a
function of an expected accuracy of the handling of the query. For example, the accelerator
may have fewer precision positions than the database server, and queries which require high
precision may be directed only to the database server.

An aspect of some embodiments of the present invention relates to determining to
which of a plurality of database servers to provide a query to be resolved, based on the type of
the query. The determination is performed at least partially according to the expected benefit
from passing the query to a specific database server. In some embodiments of the invention,
the determination is performed responsive to previously measured execution times of the same
or similar queries.

In some embodiments of the invention, the selection is performed between a plurality
of primary database servefs hosting the same data. Optionally, the selection is performed by a
database load balancer that determines to which of the servers queries are to be forwarded.
Alternatively or additionally, the database servers from which the selection is performed
comprise a primary server and at least one database server accelerator. Optionally, at least
some of the queries that can be handled by the accelerator in view of the data hosted by the
accelerator are not handled by the accelerator, for example, since the queries are handled faster
by the primary database server.

Partitioning of tables

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

An aspect of some embodiments of the present invention relates to a database server
that stores the data of at least some of the tables of a database in a plurality of separate groups
of one or more columns (these groups of one or more columns are referred to herein as
verticals). During processing of a database command, the database loads into its CPU the rows
of a vertical rather than rows of the entire table. By separating the tables into smaller groups of
columns, the processing time required for queries which relate to fewer than all the columns of
a table is reduced. The database optionally stores the entire table, although in a plurality of
different verticals. Alternatively, for some tables, the database stores a plurality of verticals
including only a portion of a table, according to the amount of data required for processing
database commands.

In some embodiments of the invention, the database server comprises a database
accelerator which caches data from a primary database. In some embodiments of the invention,
columns of a single table are cached into the accelerator in a plurality of verticals. The plurality
of verticals may be stored in multi-machine accelerators in the same machine or in different
machines.

An aspect of some embodiments of the present invention relates to a database server
which stores the data of at least some of the tables of a database in a plurality of separate
groups of sub-tables, selected responsive to the queries expected to be received by the database
server. Optionally, the queries expected to be received are determined according to queries
recently received by the database server and/or by a database server system including the
database server along with other database resolution units (e.g., other database servers, query
caches and/or database accelerators).

QoS

An aspect of some embodiments of the present invention relates to determining which
database commands should be handled by an accelerator, at least partially according to quality
of service (QoS) ratings of the commands. Optionally, commands having and/or deserving a
high quality of service are given priority when determining which commands are handled by
the accelerator. Alternatively, high QoS commands are given priority in being handled by a
primary database server accelerated by the accelerator.

It is noted that the different aspects of the present invention may be implemented
together in a single system or may be utilized separately in enhancing database systems. In

some embodiments of the invention, only one or a few of the aspects are implemented.

10

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

There is therefore provided in accordance with an embodiment of the present invention,
a database server accelerator, comprising a plurality of query execution machines, adapted to
resolve database queries, a plurality of respective memory units, adapted to cache data from
the database, each memory unit being accessible only by its respective execution machine, and
a data-manager adapted to determine the data to be cached in each of the plurality of memory
units.

Optionally, the plurality of execution machines are included in a single casing.
Optionally, the accelerator includes a query dispatcher adapted to provide queries to the
plurality of query execution machines. Optionally, the query dispatcher is adapted to provide at
least some of the queries to a plurality of execution machines which jointly resolve the at least
some queries. Alternatively or additionally, the query dispatcher is adapted to select one or
more query machines to perform a query, at least partially according to the data referred to by
the query and the data stored in the memory units. Optionally, at least one of the execution
machines comprises a plurality of processors. Optionally, each of the plurality of processors of
a specific execution machine can access all the address space of the respective memory unit of
the execution machine. Optionally, at least one of the processors of a specific execution
machine can access only a portion of the address space of the respective memory unit of the
execution machine. Optionally, at least two of the execution machines have different
processing powers. Alternatively, all the execution machines have the same processing power.
Optionally, at least two of the memory units have different storage space. Alternatively, all the
memory units have the same storage space. Optionally, at least two of the execution machines
are adapted to resolve different types of queries.

Optionally, the data-manager is adapted to have each memory unit cache only data not
stored in any of the other memory units. Alternatively, the data-manager is adapted to have at
least two memory units store at least one common data portion. Alternatively or additionally,
the data-manager is adapted to have at least two memory units cache the same data.
Optionally, the accelerator includes a compiler adapted to convert queries provided to a
plurality of the execution machines into operator statements executable by the machines.

Optionally, the data-manager is adapted to determine the data to be cached according to
a roster of queries recently received by a system including the accelerator. Optionally, the data-
manager is adapted to determine the data to be cached based on the response times of the

accelerator and at least one database server to at least one of the queries of the roster.

11

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
Optionally, the data-manager is adapted to repeatedly determine periodically the data to be
cached in each of the plurality of memory units. ’

There is further provided in accordance with an embodiment of the present invention, a
method of preparing a database command for execution by a multi-executor database server,
comprising receiving a high level database command, retrieving, from an execution plan
cache, an execution plan including one or more executable operator statements, corresponding
to the received database command, the execution plan not defining which executor is to
execute each of the operator statements; and converting the execution plan into an operational
plan that, for each of the operator statements, states a group of one or more executors from
which an executor which is to execute the statement is to be selected.

Optionally, converting the execution plan into an operational plan comprises
converting into an operational plan that states for each of the operator statements a single
executor which is to execute the statement. Optionally, converting the execution plan into an
operational plan comprises converting using a method adapted to minimize the number of
executors used in handling the command. Optionally, for each statement, the group of one or
more executors includes all the executors stated for other statements of the plan that generate
data required by the statement.

There is further provided in accordance with an embodiment of the present invention, a
database server, comprising a plurality of database execution machines, a plurality of memory
units, associated respectively with the execution machines, adapted to store data of a database;
and a resource governor adapted to periodically determine which portions of the database are
to be stored in each of the memory units.

Optionally, the resource governor is adapted to determine a transfer of a database
portion from a first memory unit to a second memory unit. Optionally, the resource governor is
adapted to determine which portions of the database are to be stored in each of the memory
units responsive to a roster of queries recently received by a system including the database
server. Optionally, the resource governor is adapted to group the queries of the roster into
clusters and to determine the portions of the database to be stored in each of the memory units
in a manner which preferentially places data referenced by queries of a single cluster in the
same memory unit.

There is further provided in accordance with an embodiment of the present invention, a
database server, comprising at least one memory unit adapted to store data of a database, a

resource governor adapted to periodically determine which indices should be created for which

12

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

portions of the database stored in the memory unit, and an index creating unit adapted to
automatically create the indices determined by the resource governor, responsive to the
periodic determination.

Optionally, the resource governor is adapted to determine the indices that should be
created at least partially according to a roster of queries recently directed to a system including
the database server. Optionally, the resource governor is adapted to organize the queries of the
roster into clusters, to assign importance scores to the clusters and to determine the indices to
be created for one or more of the clusters at least partially according to an order of the scores
of the clusters.

Optionally, for one or more of the clusters, the resource governor is adapted to
determine for one or more columns referenced by queries of the cluster, access types most
commonly used in accessing the columns and to select one or more indices for the column at
least partially according to the determined access types.

There is further provided in accordance with an embodiment of the present invention, a
method of resolving a database command, comprising receiving a high level database
command, retrieving an execution plan corresponding to the received database command, the
execution plan including at least one non-executable replaceable directive representing a group

of a plurality of different sequences of one or more directives, which perform the same task,

.and replacing the non-executable replaceable directive by one of the sequences of the group.

Optionally, receiving the high level database command comprises receiving an SQL
command. Optionally, replacing the non-executable directive comprises selecting one of the
sequences of the group to replace the non-executable directive, at least partially according to at
least one parameter of data generated by the at least one of the directives of the plan executed
before the replacement.

Optionally, the at least one parameter comprises a number of rows of in the generated
data. Optionally, replacing the non-executable directive comprises selecting one of the
sequences of the group to replace the non-executable directive, depending on one or both of a
time utilized so far to execute the plan or an expected time remaining until completion of the
plan. Optionally, replacing the non-executable directive comprises selecting one of the
sequences of the group to replace the non-executable directive, depending on at least one state

parameter of an execution machine executing the plan.

13

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

Optionally, the at least one state parameter comprises a work load of the execution
machine. Optionally, the at least one state parameter comprises a number of queries waiting to
be executed by the machine and/or an amount of available memory in the machine.

Optionally, replacing the non-executable directive comprises replacing after executing
at least one of the directives of the plan. Alternatively or additionally, replacing the non-
executable directive comprises replacing by a processor which is to execute the segment
replacing the non-executable directive. Optionally, replacing the non-executable directive
comprises replacing by an executor which did not generate the execution plan. Optionally,
each of the sequences of one or more directives comprises a single directive. Optionally, at
least one of the sequences of one or more directives comprises a plurality of directives.

Optionally, the method includes estimating an execution time of each of a plurality of
the sequences of the group and replacing the non-executable directive comprises replacing by a
sequence having a shortest execution time.

There is further provided in accordance with an embodiment of the present invention, a
method of caching data by a database server accelerator, comprising selecting queries to be
handled by the accelerator and caching the data required to resolve the selected queries,
responsive to the selection.

Optionally, selecting the queries to be handled by the accelerator comprises estimating,
for a plurality of queries, the benefit to the queries from handling the queries by the accelerator
and selecting the queries to be handled by the accelerator responsive to the estimation.

Optionally, estimating the benefit to the queries comprises estimating, for each of the
plurality of queries, the difference between the handling time of the query by the accelerator
and the handling time of the query by at least one database server.

Optionally, determining which queries are to be handled by the accelerator comprises
assigning each of the queries an acceleration score and determining the handled queries at least
partially according to the scores, preferring queries with higher scores to be handled by the
accelerator. Optionally, determining the handled queries comprises grouping the queries into
clusters and determining one or more clusters of queries to be handled. Optionally, grouping
the queries into clusters comprises grouping queries relating to the same data columns in same
clusters. Optionally, better acceleration scores are given to queries with higher QoS ratings.
Optionally, the acceleration score increases with the popularity of the query.

There is further provided in accordance with an embodiment of the present invention, a

method of determining a data organization of data of a database, comprising accumulating a

14

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
roster of queries recently directed to the database, grouping the queries of the roster into a
plurality of clusters, arranging the clusters in an order in which their data is to be handled, and
determining an organization for the data of queries of one or more clusters at least partially
according to the order from the arranging.

Optionally, accumulating the roster of queries comprises accumulating queries directed
to the database in a recent predetermined time period. Optionally, accumulating the roster of
queries comprises accumulating queries which were recently directed to the database at least a
predetermined number of times. Optionally, grouping the queries into clusters comprises
grouping the queries at least partially according to the data portions they reference.

Optionally, the method includes defining a query distance function which provides a
distance measure for pairs of queries and wherein grouping the queries into clusters comprises
grouping queries into clusters which each has a respective hub query, such that the distance
between each query and the hub of the cluster to which the query is assigned is shorter than the
distance to any other hub. Optionally, the value of the query distance function depends on the
number of data portions referenced by both the queries to which the function is applied.
Optionally, the value of the query distance function depends on the sizes of data portions
referenced by both the queries to which the function is applied.

Optionally, the value of the query distance function depends on the similarity of the
access types used by the queries to which the function is applied in accessing data portions
referenced by both the queries. Optionally, grouping the queries into clusters comprises
grouping such that each query is included in only a single cluster. Optionally, grouping the
queries into clusters comprises grouping such that all the data portions referenced by queries of
a single cluster can be hosted by a single execution machine of a server of the database.

Optionally, arranging the clusters comprises assigning each cluster a score and
organizing the clusters at least partially according to the score values. Optionally, the cluster
score depends on resources required in order to handle the queries of the cluster and/or in order
to organize the data required by the cluster. Optionally, the organization is performed for a
database accelerator and wherein the cluster score depends on an expected advantage from
handling the queries of the cluster by the accelerator as compared to handling by a database
server associated with the accelerator.

Optionally, determining an organization for the data comprises determining which
indices are to be created and/or which data portions are to be cached by an accelerator.

Optionally, determining an organization for the data comprises determining a partitioning of

15

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
one or more data tables. Optionally, determining an organization for the data comprises
determining which data portions are to be hosted by each of a plurality of separate execution
machines.

There is further provided in accordance with an embodiment of the present invention, a
method of determining whether a query is to be handled by an accelerator, comprising
determining whether the query can be resolved by the accelerator with its currently cached
data, determining at least one additional atiribute of the accelerator or the query, and
determining whether to handle the query by the accelerator, responsive to the at least one
additional attribute.

Optionally, the at least one additional attribute comprises a current load of the
accelerator. Optionally, the at least one additional attribute comprises an expected response
time of the accelerator for the query. Optionally, the at least one additional attribute comprises
an expected response time of a database server accelerated by the accelerator, for the query.
Optionally, the at least one additional attribute comprises whether the accelerator has a
compiled version of the query.

There is further provided in accordance with an embodiment of the present invention, a
database server, comprising at least one memory unit adapted to store data of a database
including tables, in verticals including one or more columns of the table, at least one of the
tables being stored in a plurality of separate verticals; and an execution machine adapted to
resolve queries using the data in the at least one memory unit, the execution machine adapted
to always load into a processor of the machine entire rows of verticals on which it operates.

Optionally, the execution machine is not adapted to execute directives that relate to a
plurality of verticals of a single table. Optionally, the server includes a resource governor
adapted to determine which columns of a table are to be stored in the at least one memory unit
in a single vertical, at least partially according to directives expected to be performed by the
execution machine. Optionally, the at least one memory unit is adapted to store only a portion
of at least one table.

There is further provided in accordance with an embodiment of the present invention, a
database server, comprising at least one memory unit adapted to store data of a database
including tables, at least one of the tables being stored in a plurality of separate sub-portions,
an execution machine adapted to resolve queries using the data in the at least one memory unit;

and a resource governor adapted to determine the sub-groups in which the data to be stored in

16

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
the at least one memory unit are to be organized, at least partially according to the queries
expected to be received by the database server.

Optionally, the execution machine is not adapted to execute directives that relate to
data in a plurality of sub-portions of a single table.

There is further provided in accordance with an exemplary embodiment of the
invention, a database accelerator, comprising a memory adapted to store database data derived
from an accelerated database, one or more execution machines adapted to resolve database
queries directed to the accelerated database, and a resource governor adapted to determine the
contents of the memory, such that the memory includes copies of portions of the accelerated
database and data not included in the same format in the accelerated database.

Optionally, the data not included in the same format in the accelerated database
comprises data sorted differently than in the accelerated database. Optionally, the data not
included in the same format in the accelerated database comprises data not included at all in
the accelerated database. Optionally, the data not included in the same format in the
accelerated database comprises an index not included in the accelerated database. Optionally,
the data not included in the same format in the accelerated database comprises one or more

views. Optionally, the one or more views are selected according to the popularity of queries

directed to the database.

In some embodiments of the invention, the resource governor is adapted to determine
the contents of the memory, such that in at least some instances the memory includes data not
included in the accelerated database in the same format, together with all the data used in
generating the data not included in the accelerated database in the same format.

In some embodiments of the invention, the resource governor is adapted to determine
the contents of the memory, such that substantially always the memory includes data not
included in the accelerated database in the same format, together with all the data used in
generating the data not included in the accelerated database in the same format.

In some embodiments of the invention, the resource governor is adapted to determine
the contents of the memory, such that in at least some instances the memory includes data not
included in the accelerated database in the same format, but does not include at least one
portion of data used in generating the data not included in the accelerated database.

In some embodiments of the invention, the resource governor is adapted to determine

the contents of the memory, such that substantially always the memory includes data not

17

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
included in the accelerated database in the same format, but does not include at least one
portion of data used in generating the data not included in the accelerated database.

In some embodiments of the invention, the resource governor is adapted to prepare a
view not included in the database and an index for the view in a combined process.

BRIEF DESCRIPTION OF FIGURES

Exemplary non-limiting embodiments of the invention will be described with reference
to the following description of embodiments in conjunction with the figures. Identical
structures, elements or parts which appear in more than one figure are preferably labeled with a
same or similar number in all the figures in which they appear, in which:

Fig. 1 is a schematic illustration of a database access system, in accordance with some
embodiments of the present invention;

Fig. 2 is a schematic block diagram of a database accelerator, in accordance with an
embodiment of the present invention;

Fig. 3 is a flowchart of the acts performed in determining whether to forward database
commands to an accelerator, in accordance with an embodiment of the present invention;

Fig. 4 is a flowchart of the acts performed by a database accelerator, on received
queries, in accordance with an embodiment of the present invention;

Fig. 5 is a schematic illustration of an execution plan, in accordance with an
embodiment of the present invention;

Fig. 6 is a flowchart of acts performed by a dispatcher in coloring an execution plan, in
accordance with an embodiment of the present invention;

Fig. 7 is a schematic illustration of a portion of an execution plan, useful in explaining
the selection of an execution machine (EM) to execute a directive of the plan, in accordance
with an embodiment of the present invention;

Fig. 8 is a flowcharts of acts performed by an accelerator resource governor, in
accordance with an embodiment of the present invention;

Fig. 9 is a flowchart of acts performed in vertical decomposition of tables referenced by
a cluster, in accordance with an embodiment of the present invention;

Fig. 10 is a flowchart of acts performed in determining which indices are to be used for
a cluster of queries, in accordance with an embodiment of the present invention;

Fig. 11 is a flowchart of acts performed in selecting memory units for each of the
portions of the database stored in the accelerator, in accordance with an exemplary

embodiment of the present invention; and

18

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

Fig. 12 is a flowchart of acts performed during a clustering procedure, in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
System

Fig. 1 is a schematic illustration of a database access system 100, in accordance with
an embodiment of the present invention. Database access system 100 comprises a storage disk
102, or any other storage unit, which stores a database. A database server 104 receives
database access commands, directed to the database stored in storage disk 102. The commands
directed to database server 104 are, for example, in the SQL database query language, in the
Extendible Markup Language (XML), or in other suitable languages, such as executable
languages of database servers. The database access commands include, for example, database
update commands, which cause database server 104 to alter the data stored in disk 102, and
data retrieval queries, which are responded to by database server 104 with requested data from
the database. An application server 106 prepares database commands provided to database
server 104. In an exemplary embodiment of the invention, application server 106 prepares the
database commands in response to user commands received from a web server 108.
Alternatively or additionally, application server 106 receives user commands from other
computers, processors and/or user interfaces.

Optionally, web server 108 and/or applications providing queries to the web server
may mark queries as important (e.g., having a high QoS) and these queries are given
precedence, when possible. Alternatively or additionally, queries are considered important
when they are received from specific clients and/or when they relate to specific database
portions marked as important.

In some embodiments of the invention, in order to enhance the operation of database
system 100, a database server accelerator 110 is positioned in parallel to database server 104.
Optionally, a splitter 112, hosted for example by application server 106, examines the
database commands directed to database server 104 and determines, based, for example, on
instructions from accelerator 110, which commands are to be forwarded to accelerator 110,
instead of to database server 104. An exemplary method of the operation of splitter 112 is
described hereinbelow with reference to Fig. 3. Splitter 112 optionally also collects statistics
on the commands directed to database server 104 and/or to accelerator 110. According to the

accumulated statistics, accelerator 110 determines, for example as described hereinbelow with

19

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

reference to Fig. 8, which database commands are to be referred by splitter 112 to accelerator
110 instead of to database server 104.

Accelerator 110 optionally includes a cache memory, referred to herein as an in-
memory database (IMDB) 120, which stores portions of the database that accelerator 110 uses
in resolving database commands. Optionally, in-memory database 120 comprises one or more
main memory units that allow fast access to the contents of the in-memory database.
Alternatively or additionally, in-memory database 120 includes other types of storage units. In
some embodiments of the invention, in-memory database 120 includes a secondary storage
unit. The secondary storage unit may be used when the main memory units are exhausted
and/or for data which is accessed less often, as described below.

A back end (BE) unit 114 optionally loads data from storage disk 102 into in-memory
database 120 and/or updates values of data in in-memory database 120, responsive to changes
in storage disk 102. Back end unit 114 may use, for example, the redo log of the database, as
is known in the art, as a source of data for updating in-memory database 120. Use of the redo
log is considered a relatively low intrusive method that minimizes the load on database server
104 due to the operation of accelerator 110. Alternatively or additionally, any other update
methods known in the art are used.

As is known in the art, the data in the database is optionally organized in tables. Each
table includes one or more columns, which represent the different data stored in the table.
Each table also includes one or more rows, each row representing an entry of the table,
generally having values for each of the columns of the table. For example, a table correlating
names and salaries may have a column of names and a column of salaries, and rows for each
person listed in the table. In some embodiments of the invention, the data stored in in-memory
database 120 is partitioned into groups of one or more columns, referred to herein as verticals.
An exemplary method of partitioning the database tables into verticals is described
hereinbelow with reference to Fig. 9.

In the following description, tables, verticals and columns copied from storage disk
102 are referred to as base tables, base verticals and base columns, respectively, while
verticals generated by accelerator 110 are referred to as intermediate verticals. The term
intermediate verticals, therefore, as used herein also includes final results.

Fig. 2 is a schematic block diagram of accelerator 110, in accordance with an
exemplary embodiment of the present invention. In the embodiment of Fig. 2, accelerator 110

comprises a plurality of execution machines (EMs) 204 that perform database instructions

20

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
directed to accelerator 110. Each execution machine 204 optionally comprises one or more
processors (CPUs) 205. In some embodiments of the invention, all of execution machines 204
include, for simplicity, the same number of processors 205. In other embodiments of the
invention, different execution machines 204 include different numbers of processors 205,
allowing better fitting of different tasks to specific execution machines 204. Processors 205
may all have the same processing power or may have different amounts of processing power.

In some embodiments of the invention, each EM 204 has a respective EM memory unit
210, which stores data on which the respective execution machine 204 operates. In these
embodiments, EM memory units 210, together, optionally form in-memory database 120. In
some embodiments of the invention, for simplicity, the capacities of all of EM memory units
210 are substantially the same. Alternatively, different EM memory units 210 have different
capacities, so as to better fit specific different tasks handled by accelerator 110. In some
embodiments of the invention, the capacities of EM memory units 210 are at least partially
correlated to the processing power of their respective EMs 204, such that EMs with a
relatively high processing power are associated with a relatively large EM memory unit 210.
In an exemplary embodiment of the invention, some or all of EM memory units 210 are of the
largest possible size which can be accessed by their respective EM 204.

The plurality of CPUs 205 within a single EM 204 optionally operate in parallel on
different queries that relate to the same data. Alternatively, the plurality of CPUs 205 operate
in parallel on different queries that relate to different verticals hosted by the memory unit 210
of the particular EM 204. Further alternatively or additionally, one or more the plurality of
CPUs 205 operate in parallel on different operator statements of a single query. Further
alternatively or additionally, any other parallel query processing methods known in the art are
used to govern the operation of the CPUs 205 of a single EM 204. Optionally, the usage of
CPUs 205 of a single EM 204 is controlled by a multi-processor operating system, using
methods known in the art.

In some embodiments of the invention, each of CPUs 205 within a single EM 204 has
access to the entire address space of the memory unit 210 associated with the EM 204.
Alternatively or additionally, at least some of the portions of the memory of an EM 204 are
assigned for use by fewer than all the CPUs 205 of the EM. For example, in order to simplify
the hardware of EM 204 (e.g., relax the parallelism constraints) each CPU 205 has a portion of
memory unit 210 for which it is a sole user. In some embodiments of the invention, the base

verticals in the memory unit 210 of the EM 204 are shared by all of CPUs 205 of the EM, as
21

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

they are only read and not written to, while the intermediate storage space in memory unit 210
is distributed among CPUs 205, since it is used as both a read and write memory. Optionally,
the intermediate storage space of each CPU 205 is dynamically adjusted according to the tasks
being carried out by the CPUs 205. For example, within a single EM 204, a memory portion
may be first assigned to a first CPU 205, which generates an intermediate table, and then
transferred to a second CPU 205 that uses the intermediate table.

In some embodiments of the invention, accelerator 110 includes a resource governor
(RG) 212 that controls the data contents of memory units 210 and the commands handled by
accelerator 110, for example, as described hereinbelow with reference to Fig. 8. Optionally,
resource governor 212 receives statistics from splitter 112 and/or from other elements of
system 100, and accordingly controls and/or determines the commands handled by accelerator
110.

Accelerator 110 optionally includes a compiler 200 that translates database commands
received from application server 106 into execution plans of operator statements executable by
EM:s 204. Compiler 200 optionally operates under the instructions of resource governor 212,
based on its determination of the commands to be handled by accelerator 110. Compiler 200
optionally is adapted to translate database queries from a plurality of different languages. In
some embodiments of the invention, compiler 200 is adapted to receive compiled queries from
other database servers and convert the received compiled queries into plans executable by
EMs 204,

In some embodiments of the invention, for some commands, compiler 200 generates a
plurality of different plans that optimize the resolution of the command for different
parameters. For example, a first plan may optimize the resolution of the command, when an
intermediate table is larger than a specific size, and a second plan may optimize the resolution
of the command, when the intermediate table is smaller than the specific size. Alternatively or
additionally, different plans are generated in order to achieve different optimization goals. For
example, a first plan may be prepared for throughput optimization, while a second plan is
generated for response time optimization.

In some embodiments of the invention, accelerator 110 includes a plan depository 202
in which compiled plans of previously received instructions are stored. Optionally, the
execution plans include information on which operator statements can be performed in
parallel. In some embodiments of the invention, the compiled plans are in the form of operator

statement trees (as shown for example in Fig. 5) in which each node represents an operator

22

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
statement. Each operator statement is performed after the performance of the operator
statements of all its child nodes are completed. A dispatcher 206 optionally receives compiled
plans, converts the plans into executable code segments and provides the code segments to
one or more of execution machines 204. In some embodiments of the invention, when a
command has a plurality of respective plans, dispatcher 206 selects the plan to be used,
according to the information available to dispatcher 206 on the data manipulated by the plans.
Alternatively or additionally to having a single dispatcher, each EM 204 has a respective
dispatcher, which performs some or all of the dispatching tasks, such as determining which
EM is to perform each directive of the plan and/or replacing general directives by specific
directives, as described below.

In some embodiments of the invention, resource governor 212 and/or compiler 200
comprise software codes that run on one or more of execution machines 204. Alternatively or
additionally, resource governor 212 and/or compiler 200 run on a separate processor or on two
separate processors dedicated for resource governor 212 and/or compiler 200. In this
alternative, the compilation may be performed in parallel with the resolution of previously
compiled queries without the compilation interfering with the query resolution. An output
interface 222 optionally provides command responses as prepared by EMs 204 back to
application server 206.

Splitter operation

Fig. 3 is a flowchart of acts performed by splitter 112, in accordance with an
embodiment of the present invention. Splitter 112 optionally receives (300) database access
commands from application server 106. If (301) a command is not suitable for execution by
accelerator 110, the command is forwarded (302) directly to database server 104. If (301) the
command is executable by accelerator 110, splitter 112 determines whether (304) the
command is familiar to accelerator 110, for example by comparing the command to a list of
familiar commands managed by the splitter. If (304) the command is familiar to accelerator
110, the command is provided (306) to accelerator 110 for execution. If (304), however, the
command is not familiar to accelerator 110, the command is optionally provided (308) to
database server 104 for execution.

In some embodiments of the invention, if (309) the unfamiliar command relates to data
already in in-memory database 120 of accelerator 110, the unfamiliar command is provided

(310), in parallel to its being provided to database server 104, to compiler 200 for compilation,

23

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

in case a similar query is received again by splitter 112, in the near future. Splitter 112 is
optionally notified to add (312) the compiled command to the list of familiar commands.

Alternatively or additionally, if (309) an unfamiliar command relates to data already in
in-memory database 120 of accelerator 110, the unfamiliar command is passed only to
accelerator 110 for compilation and execution. In some embodiments of the invention, this
alternative is used in some specific cases, for example, when the load on accelerator 110 is
relatively low and/or when the unfamiliar queries are relatively simple. Alternatively or
additionally, unfamiliar queries are passed to accelerator 110 when the expected execution
time of the query by accelerator 110 is much shorter than by database server 104.

Referring in more detail to determining (301) whether a command is suitable for
handling by accelerator 110, in some embodiments of the invention, updates are not handled
by accelerator 110. Alternatively or additionally, splitter 112 manages a list of a subset syntax
recognized by accelerator 110. Queries including portions not included in the subset syntax are
not handled by accelerator 110. Further alternatively or additionally, accelerator 110 only
handles commands that relate to certain portions of the database, and commands are
considered executable if they only relate to these certain portions of the database.
Alternatively, accelerator 110 may handle all portions of the database, and the determination
of whether a command is executable is performed irrespective of the data referenced by the
command.

In some embodiments of the invention, in comparing (304) queries to the list of
familiar queries, the queries are converted to a canonized form that allows better comparison
of the queries. Optionally, converting queries into the canonized form includes removing
unimportant spaces and tabs and/or combining the interpretation of upper and lower case
letters in case-insensitive fields of the commands. In some embodiments of the invention,
converting queries into the canonized form includes removing constant values, such that
queries that differ only in constant values are considered the same for familiarity and
compilation purposes.

In some embodiments of the invention, splitter 112 also manages a list of commands
rejected from handling by the accelerator, so that determination time is not repeatedly wasted
on rejected claims. Commands in the rejected list are optionally passed only to database server
104 and no determination (309) is performed for these commands on whether they should be
passed for compilation (310). Optionally, the list of rejected commands is periodically

emptied, for example, each time the contents of in-memory database 120 is changed, as

24

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

described hereinbelow. The use of the list of rejected commands prevents splitter 112 from
repeatedly transferring queries that will probably be determined not to be handled to
accelerator 110. Alternatively to preventing queries rejected once from being reviewed by
accelerator 110, only queries rejected a predetermined number of times are not referred to
accelerator 110. Thus, for example, a query rejected due to a momentary heavy load on one of
EMs 204 may be given an additional chance.

Query confirmation

Optionally, all compiled unfamiliar commands are registered as familiar, after their
compilation. Alternatively, after an unfamiliar command is compiled (310), resource governor
212 determines whether the command should be handled, for example, based on the
processing resources it requires. A command determined to be handled is referred to herein as
being confirmed. Performing the determination after the compilation, provides a more
accurate determination of whether to confirm the command, as information from the
compilation is available during the determination. Further alternatively or additionally, the
required processing resources of the query are estimated before compilation, and accordingly
it is determined whether to handle the query before compilation. In this alternative, processing
resources are not wasted on compiling non-confirmed commands.

Optionally, the determination of whether to confirm the command is based on the
processing resources the command requires, e.g., the processing power, the communication
requirements and/or the intermediate memory space. Alternatively or additionally, the
determination of whether to confirm the command is made at least partially according to the
number of EMs 204 that are required to handle the query.

In some embodiments of the invention, the processing power required by the compiled
query is estimated, and the query is confirmed if the required processing power does not
exceed a predetermined value. Alternatively or additionally, the query is confirmed if the
required processing power is not above a variable threshold, which is a function of the current
load and/or expected load of accelerator 110. The current load is optionally determined from
the actual utilization of accelerator 110, for example, based on the number of idle cycles of the
processors of the accelerator and/or the amount of time queries wait until they are processed.
The expected load is optionally determined according to the processing power of the queries
familiar to accelerator 110.

Additional methods for determining whether to confirm a command are described

hereinbelow, with reference to the confirmation of commands by resource governor 212. In

25

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

some embodiments of the invention, the same confirmation method is applied to queries
handled during the periodic operation of resource governor 212 (described in detail below
with reference to Fig. 8) and to queries received from splitter 112 between periodic operations
of resource governor 212. Alternatively, different confirmation methods and/or different
threshold values are used. For example, for queries received from splitter 112, the processing
load on accelerator 110 used in the confirmation determination may comprise the actual load
of the accelerator rather than an estimation thereof, as is optionally used by resource governor
212 in its periodic determination. Alternatively or additionally, in order to confirm a query
received from splitter 112, a higher or lower expeéted benefit from the acceleration and/or
processing complexity is required than that required in the periodic operation of resource
governor 212. A higher expected benefit may be required for queries received from splitter
112, as these queries are common out of turn, as they were not determined to be handled in the
regular procedures of resource governor 212. On the other hand, a lower expected benefit may
be required for queries received from splitter 112, when these queries may utilize processing
power which otherwise would not be utilized.

Fig. 4 is a flowchart of acts performed by accelerator 110 on familiar queries received
from splitter 112, in accordance with an exemplary embodiment of the present invention.
Upon receiving (350) a query from splitter 112, accelerator 110, e.g., dispatcher 206 thereof,
optionally finds (352) a previously compiled plan of the query in plan depository 202. The
previously compiled plan was optionally prepared under instructions of resource governor
212, as described hereinbelow with reference to Fig. 8. The plan is passed to dispatcher 206,
which optionally prepares (354) an executable code segment of the plan (referred to herein
also as a colored plan or operational plan), that indicates which execution machines 204 are to
resolve the query and in which order the resolution is to be performed. It is noted that, in some
embodiments of the invention, the plan resulting from compilation is not directly executable.
Before execution the plan is colored by dispatcher 206 which converts the plan into an
executable form.

The colored plan is then passed to one or more of execution machines 204 for
execution (358). In some embodiments of the invention, if the colored plan includes unrelated
portions to be performed by different EMs 204, copies of the plan are passed to a plurality of
the EMs 204 in parallel. Optionally, the colored plan includes instructions to each of the EMs
204 which portions of the plan it is to execute and where the different copies of the plan are to

be combined.

26

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

Each execution machine 204 that completes execution of its portion of the colored
plan, optionally passes its intermediate and final results and the colored plan to a different
execution machine 204 according to flow statements within the colored plan. Alternatively,
the final results are passed to output interface 222 which accumulates the results from the EMs
204 until all the results are received. Alternatively or additionally, in some cases, the
execution machine 204 receiving a colored plan, retrieves the data it requires from the
memory units 210 of one or more other execution machines 204. The last execution machine
204 in the colored plan optionally provides (360) the final results to output interface 222,
which optionally provides the results to application server 106.

As described above with reference to Fig. 3, in some alternative embodiments of the
invention, some unfamiliar queries are provided to accelerator 110 for execution. When an
unfamiliar query is received by accelerator 110, the query is passed to compiler 200 for
compilation, and the resultant plan is passed to dispatcher 206 as described above for plans
from plan depository 202.

Compiler operation and non-executable operators

Referring in more detail to the execution plan prepared by compiler 200, in some

embodiments of the invention, preparing the execution plan comprises converting the SQL
commands received from application server 106 into a tree of relational operator statements in
a language executable by machines 204. Optionally, the execution plan addresses the data it
manipulates by a logical name, without being aware of, or relating to, the machine 204 in

which the data is stored. Thus, there is no need to recompile a query when the data the query

' relates to is moved between machines 204. Dispatcher 206, as described below, optionally

keeps track of the location of the data and prepares the compiled plans for execution
immediately before the execution.

Optionally, in generating execution plans, compiler 200 determines which methods are
to be used to execute the command, in a procedure referred to as optimization. The
optimization, for example, determines when a sort is to be performed, the order in which a
complex join is performed, which indices are to be used and/or any other optimization
decisions known in the art. According to the methods selected during optimization, the
operator statements of the plan are chosen.

The methods selected during optimization are optionally those that are expected to

perform the command using the least processing resources. Alternatively or additionally, the

27

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

optimization is directed to maximize throughput, response time and/or any other parameter or
set of parameters.

In an exemplary embodiment of the invention, the relational operators are either binary
operators having two vertical operands or unitary operators having only a single vertical
operand. The operator statements are optionally of the form:

X = operator Y [Z] (predicate-list) (projection-list)
in which Y and optionally Z are the vertical operands, X is the resultant vertical, predicate-list
is a list of one or more conditions that define which rows are to be carried on to X (according
to the specific operator), and projection-list defines the columns included in X and their
format. Tn some embodiments of the invention, the projection list (referred to below as proj)
includes for each of the columns of X, the content to be included in that column. Optionally,
the content of the column is stated as a function of one or more columns of operands Z and/or
Y.

In an exemplary embodiment of the invention, the following operators are employed:

X = SCN Y arbprd proj - X receives the rows of Y that fulfill the conditions of the
arbitrary predicate list arbprd.

X =LU Y egpred [arbprd] proj - X receives rows of Y that fulfill both egpred and
arbprd, where egpred lists equality predicates and other predicates are included in arbprd.

X =RNG Y rngprd [arbprd] proj - X receives rows of Y that are in the range defined
by rngprd and fulfill the predicate list in arbprd - arbprd is optional

X = INFR Y Z arbprd proj - X receives the intersection of Y and Z, (the rows that
fulfill the conditions of arbprd), wherein one of Y or Z is a list of row numbers.

X =IRSN Y Z proj - X receives the intersection of Y and Z

X =UNN Y Z proj - X receives the union of Y and Z

X = GVL Y Z proj - X receives the rows of Z, whose numbers are included in a list of
row numbers in Y

X =DST Y (cols) - X receives the rows of Y that have distinct values for the columns
cols. That is, the rows not included in X have the same values in all of columns cols as at least
one other row of Y.

X =TOP Y n — X receives the first n values of Y

X = SRT Y cols proj - X receives Y sorted according to the columns listed in cols.
Optionally, the sort list (cols) includes an indication, for each column in the list, of whether

the sorting is to be performed ascending or descending.

28

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
X = GRP Y Z cols proj - The rows of Y that have the same values in the columns cols

are grouped together. The projection-list may include columns also from Z.

X =JOIN Y Z pred proj - X is a table which combines the columns in Y and Z using a
join operation, based on pred.

Tt is noted that the above list of operators is by way of example and many other sets of
operators may be used, including fewer or more operators, in accordance with the present
invention.

In some embodiments of the invention, the set of operators recognized by executors
204 includes at least one group (referred to herein as a task group) of equivalent operators
which perform the same task using different methods. For example, a task group of operators
may include a plurality of sorting operators, which use different sorting methods.

In an exemplary embodiment of the invention, EMs 204 recognize the following
equivalent look up (LU) operators, which form a look-up task group:

Open hash lookup (LUOH) - uses a hash index of the columns of Y in eqpred.

CS hash lookup (LUCSH) - uses a cache sensitive (CS) hash index of the columms of
Y in egpred.

CS array lookup (LUCSA) - uses a CS array index of the columns of Y in eqpred.

CS-B+Tree lookup (LUCSB) - uses a CS B+ tree index of the columns of Y in egpred.

Sorted vertical lookup (LUSRT) - assumes Y is sorted according to the columns of
eqpred.

The cache sensitive (CS) hash index, the cache sensitive array (CSA) index and the CS
B+ tree index are optionally as described in Anastassia Ailamakai, David J. Dewitt, Mark D.
Hill, David A. Wood, "DBMSs on a Modern Processor: Where Does Time Go?" VLDB 1999,
pages 266-277; Jun Rao, Kenneth A. Ross, "Making B+ Trees Cache Conscious in Main
Memory" SIGMOD Conference 2000, pages 475-486; and/or Jun Rao, Kenneth A. Ross,
"Cache Conscious Indexing for Decision-Support in Main Memory", VLDB 1999, pages 78-
89, the disclosures of which documents are incorporated herein by reference.

Other task groups, including a plurality of different equivalent operators, are optionally
available for range, sort, group and/or join operators. In an exemplary embodiment of the
invention, the task group of "sort" operators comprises a sort-in-place operator, a sort out of
place operator and a linear sort operator. Alternatively or additionally, the sort operators
comprise a counting sort operator and/or a radix sort operator. In some embodiments of the

invention, the EM 204 performing the sort determines at the time of executing the operator,

29

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

whether there is sufficient space to perform the type of sort of the operator, and if there is not
sufficient space, a different type of sort is used.

The "group" operator task optionally includes an operator for sorted data and an
operator that uses a hash index. In an exemplary embodiment of the present invention, the
"range" operators include an operator that uses a B+ tree, an operator for sorted data, and/or an
operator that uses a cache sensitive array. The "join" task group includes, for example, a hash
join, an index join, a merge join and/or a nested loop join.

TIn some embodiments of the invention, when an operator from a task group is required,
compiler 200 selects a best operator from the task group of operators, according to one or
more parameters of the vertical(s) manipulated by the operator. The selected operator is
optionally an operator that is expected to perform the operation at a fastest rate, using a lowest
amount of processing power and/or according to any other optimization criteria.

The selection of the specific operator by compiler 200 is optionally performed
according to the number of rows in the manipulated columns, the data types of the
manipulated columns, the condition of the predicate, the indices available for the manipulated
data, the importance of the query and/or the point of execution of the operator within the plan.

It is noted that, in some embodiments of the invention, compiler 200 does not always
have accurate estimates of the values required for the selection of the specific operator. For
example, the number of rows in an intermediate vertical may not be known. In some
embodiments of the invention, the selection of an operator from a task group is performed
based on an estimate of the values of the relevant parameters, even if the estimate is not
accurate. Optionally, the selection by compiler 200 is only performed if sufficient information
is available. Alternatively or additionally, the selection by compiler 200 is performed only if
one of the operators of the group is determined to be better than all the other operators of the
group by at least a predetermined distinctness. If the selection is not performed by compiler
200, compiler 200 uses a non-executable replaceable directive, as is now described.

Non-executable replaceable directives

In some embodiments of the invention, in some cases, compiler 200 uses a non-
executable directive (referred to herein also as an adaptive operator) representing a task group
in the compiled plan, instead of using a specific operator from the group. The non-executable
directive is later converted into a specific executable operator by the execution machine 204
executing the compiled plan. The EM 204 generally has accurate information on the sizes of

the manipulated verticals, and therefore its selection provides more optimal results.

30

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

In an exemplary embodiment of the invention, compiler 200 uses a non-executable
directive when the size of at least one of the manipulated verticals is not known, e.g., at least
one of the verticals is not a base vertical. Alternatively or additionally, compiler 200 uses a
non-executable directive when the manipulated vertical does not have an index. Thus, the
decision of whether to build a temporary index is postponed to run time.

In some embodiments of the invention, the same considerations are used in selecting
specific operators for a task group, irrespective of whether the selection is performed by
compiler 200 or by EM 204. Alternatively, different considerations in selecting specific
operators are used by compiler 200 and EM 204.

In some embodiments of the invention, the specific operator is selected, during
execution, based on the size of the verticals manipulated by the operator and the available
memory and/or processing resources of the EM 204 executing the operator. The size of the
vertical optionally includes the number of rows in the vertical, the number of columns in the
vertical and/or the data types or field lengths of the columns. Alternatively or additionally, the
specific operator is selected according to whether the manipulated verticals are sorted and/or
according to the type of condition of the predicate of the command. Further alternatively or
additionally, the EM 204 selects the specific operator according to the importance of the
executed query.

Non-executable directives are optionally available for each of the task groups.
Alternatively, non-executable directives are available only for some task groups, i.e., task
groups for which optimization data is frequently not available during compilation.

In an exemplary embodiment of the invention, when a plan needs to perform a join on
a column that has no indices, compiler 200 uses an adaptive join operator. At run time, the
adaptive join is optionally replaced by a nested loop join or by a hash join, which ever has a
lower cost. The cost of the nested loop join is optionally determined as
n1*n2*MemoryAccessCost, where nl and n2 are the row counts of the joined tables. The cost
of the hash join is optionally calculated as the sum of the cost of building the hash table
(HashBuildCost(n1)) and the cost of probing the table (n2 * ProbeCost).

Optionally, an adaptive lookup operator is used by compiler 200 when 2 lookup is
required for a vertical not sorted and not having an index that supports the lookup. During run
time the adaptive lookup operator is optionally replaced by a simple scan or by an open hash
lookup, depending on their costs for the specific vertical referenced by the operator. The cost

of a simple scan is optionally calculated as nl*MemoryAccessCost, while the cost of the open

31

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
hash lookup is optionally calculated as buildcost(nl) + ProbeCost, where ProbeCost is

generally negligible.

Optionally, an adaptive range operator is used by compiler 200 when a range scan is
required for a vertical not sorted and not having an index that supports the range scan. During
run time the adaptive range operator is optionally replaced by a simple scan, by a CSB-Tree
range scan or by a sorted vertical range scan, depending on their costs for the specific vertical
referenced by the operator. The cost of a simple scan is optionally calculated as
nl*MemoryAccessCost. The cost of the CSB-Tree range scan is optionally calculated as the
sum of the cost of building the CSB-Tree, the cost of looking up the boundary of the range,
and the cost of scanning until the other boundary of the range (or to the last row of the table).
The cost of the sorted vertical range scan is optionally calculated as the cost of sorting the
table, the cost of looking up the boundary of the range and the cost of scanning until the other
boundary of the range (or to the last row of the table).

Alternatively or additionally to representing single operator statements, non-executable
directives are used to represent segments of a plurality of operator statements. Optionally, in
some cases when during compilation a plurality of operator sequences can be used, compiler
200 generates a plurality of sequences and inserts a directive that represents the task to be
performed by the sequences. During the execution, EM 204 selects the sequence to be used, as
described above with reference to the directives representing single operators. Alternatively or
additionally, the plurality of sequences represented by the directive, include one or more
library sequences prepared for general use and not for the specific plan.

Optionally, the plurality of possible sequences are included in the plan provided by the
compiler together with the selection conditions. Alternatively or additionally, the EM 204
replacing the directive accesses a segment library in in-memory database 120 to retrieve the
selected operator sequence.

In some embodiments of the invention, a directive that represents a plurality of
operator sequences is used when compiler 200 cannot determine which sequence is more
optimal. Alternatively or additionally, different sequences are generated for different
optimization goals, for example throughput and response time. During execution, for exémple,
based on the load on the executing EM 204 and/or the importance of the query, the sequence
with the desired optimization goal is selected.

In some embodiments of the invention, a directive that represents a plurality of

operator sequences may be used for an entire query. That is, a plurality of plans are generated

32

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
for the query and the selection of which plan is to be used is performed at the beginning of the
execution.

Although in the above description the replacement of the non-executable directive is
performed by an EM 204, in some embodiments of the invention, the replacement is
performed by dispatcher 206. For example, when a directive represents an entire plan the
replacement may be performed by dispatcher 206. Alternatively or additionally, when the
replacement is performed according to the importance of the query, the replacement may be
performed by dispatcher 206.

Coloring a plan

Referring in more detail to coloring (354) an execution plan (preparing an execution
code segment), in some embodiments of the invention, coloring the execution plan comprises
determining for each operator statement of the execution plan which execution machine (EM)
204 is to perform the command. Optionally, dispatcher 206 also adds flow statements to the
colored plan. The flow statements optionally instruct the EMs 204 executing the colored plan
when to transfer the plan to a different EM 204 for execution and/or what data to transfer to
the other EM 204.

Fig. 5 is a schematic illustration of an exemplary execution plan 400, in accordance
with an embodiment of the present invention. Execution plan 400 is optionally in the form of a
tree that comprises a plurality of internal nodes 404 and leaves 402, which represent operator
statements of the execution plan. Each leaf 402 represents a unitary statement which operates
on base verticals and does not need to wait for results from other statements. Each of internal
nodes 404 represents a binary statement or a unitary statement which operates on intermediate
results generated by a different statement (represented by another internal node 404 or by a
leaf 402). A binary statement operating only on base verticals is optionally represented by a
pair of leaves 402 which represent, respectively, the retrieval of the pair of base verticals, and
an internal node 404, which represents the binary statement.

In accordance with the above described embodiment in which each operator references
up to two verticals, execution plan 400 comprises a binary tree. For the clarity of the following
explanation, each of leaves 402 and internal nodes 404 is marked with a unique number
between 1-15 that identifies the statement represented by the internal node 404 or leaf 402. In
the following description, the term node is used to encompass both internal nodes 404 and

leaves 402.

33

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

Reference is also made to Fig. 6, which is a flowchart of acts performed by dispatcher
206 in coloring an execution plan, in accordance with an exemplary embodiment of the
invention. For each execution plan received (380), each of the leaves 402 of the execution
plan (e.g., 400) is assigned (386) to be performed by an EM 204 hosting the vertical
manipulated by the unitary operator. In some embodiments of the invention, dispatcher 206
performs the assignment (386) based on a map of the locations of the verticals, managed by
in-memory database 120. In the example of Fig. 6, leaves 1, 2, 6 and 8 are assigned to a first
executor machine 204A (designated by A in Fig. 5), leaves 4, 7 and 10 are assigned to an
executor machine 204B (designated by B) and leaf 5 is assigned to an executor 204C
(designated by C).

Optionally, each internal node 404 that all its children are assigned to the same EM
204, is assigned (388) to the same EM 204 as its children. In the example of Fig. 5, node 3 is
assigned to executor 204A.

The most popular EM 204, i.e., the EM to which the largest number of nodes are
assigned, is optionally determined. The determined EM 204 is then optionally removed (390)
from execution plan 400, by removing nodes assigned to the removed EM 204. In the example
of Fig. 6, the assigned nodes are nodes 1, 2, 3, 4, 5, 6, 7, 8 and 10. The EM 204 having the
largest number of assigned nodes is EM 204A, and therefore nodes 1, 2, 3, 6 and 8 are
removed from the tree of execution plan 400. It is noted that the nodes are removed only for
the purpose of the coloring process, as all the directives are performed.

In some embodiments of the invention, the stateinents of the removed nodes are
optionally organized (392) into a list for execution by the EM 204 to which they were
assigned. Optionally, the statements that do not depend on data from other EMs 204 are
organized in the list before statements that depend on data from other EMs 204. In some
embodiments of the invention, a migration flow statement is added before operator statements
that require data from other EMs 204. The migration flow statement instructs the EM 204
executing the plan to retrieve data it requires from the EM 204 that prepared the data. The
migration statement optionally identifies the EM 204 that prepared the data. In the example of
Fig. 6, the list of EM 204A includes nodes 1, 2, 3, 6 and 8, all of which represent statements
that do not require data from other EMs 204.

The assigning (388) of nodes 404, that all their children currently included in plan 400
are assigned to a single EM 204, to the EM of the children, is optionally repeated after the
removal (390) of the nodes of the most popular EM and organization (392) of the statements

34

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
into a list. This process of removal (390), list organization (392) and assigning (388) is

optionally repeated until all the nodes 404 of plan 400 are assigned to a specific EM 204. In
the example of Fig. 5, nodes 9 and 14 are assigned to EM 204B, due to the removal of leaf 8.
At this point, EM 204B is the most popular EM in plan 400. Therefore, nodes 4, 7, 9, 10 and
14 assigned to EM 204B are removed from the tree of plan 400. The statements of the
removed nodes are optionally organized (392) in the following order: 4, 7, 10, 9 and 14, as
statements 9 and 14 depend on data from EM 204A. A migration flow statement is optionally
added before the statement of node 9.

Responsive to the removal of the nodes assigned to EM 204B, the unassigned nodes in
plan 400, namely nodes 11, 12, 13 and 15, are assigned to EM 204C. The nodes assigned to
EM 204C are organized, for example, in the following order: 5, 11, 12, 13 and 15. Optionally,
migration flow statements are added before each of the statements of nodes 11, 12, 13 and 15.

The lists of each of the EMs 204 are optionally concatenated (394), to form the colored
plan.

The above described removal of the nodes assigned to the most popular EM 204,
causes the load of the execution plan to be distributed, as much as possible, between the
different EMs 204. In some embodiments of the invention, however, other methods are used
to determine which nodes are to be removed from the plan. In an exemplary embodiment of
the invention, dispatcher 206 randomly chooses an EM 204 whose assigned statements are
removed from the plan. Optionally, in randomly selecting the EM 204 whose nodes are
removed, more weight is given to EMs 204 having less processing resources, less total or
available memory, less communication resources and/or less of any other required resource.
Alternatively or additionally, the removed EM 204 is selected as the EM with the highest
processing load, the highest memory utilization or a combination thereof.

Alternatively to removing all the nodes of one of the EMs 204, for each node having
two children assigned to different EMs 204 one of the children nodes is removed. Optionally,
the determination of which child is removed, is performed for each node separately
irrespective of the determination for other nodes. In some embodiments of the invention, the
determination of which child node is to be removed for a specific parent node, is performed
based on the amount of data the parent node needs to receive from each child. Optionally, the
parent is assigned to the same EM 204 as the child from which the parent needs to receive the
most data. In some embodiments of the invention, the amount of data that needs to be received

from each child is estimated based on the number of columns that need to be received.

35

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

Alternatively or additionally, the amount of data that needs to be received is based on an
estimate of the number of rows to be received, for example based on an upper limit of the
number of rows in the referenced data. Such an upper limit may be derived, for example, from
the base table or base tables from which the data to be transferred is to be generated.

Optionally, when the amount of data transferred from each child is not known and/or
when the amount of data is substantially the same (e.g., up to a 5-10% difference) the selection
of the removed child is performed arbitrarily and/or based on other considerations. In some
embodiments of the invention, the removed child is selected based on the EM 204 to which it
is assigned. For example, the removed child may be selected as the child assigned to the EM
204 for which the larger number of nodes was removed.

Conditional migration flow

In some embodiments of the invention, instead of removing nodes so that parent nodes
will have only children assigned to one EM 204, nodes having children assigned to a plurality
of different EMs 204 are marked by dispatcher 206 as being assigned to any of the EMs 204 of
their children. During execution, the EM 204 actually to perform the statement of the node is
chosen based on the amount of data the statement needs to receive from each of the children
nodes and/or the load on the EMs 204. In some embodiments of the invention, such multiple
marking of nodes to be resolved during execution is performed for substantially all nodes
having children assigned to different EMs 204. Alternatively, only nodes for which dispatcher
206 could not get to a clear cut decision on the assignment, are marked as possibly assigned to
a plurality of EMs 204.

Optionally, during execution, when the EM 204 currently performing the colored plan
reaches a migration flow statement, the executing EM 204 determines which EM 204 is to
execute the following operator statement, based on the amounts of data referenced by the
statement. The migration flow statements are referred to in these embodiments as conditional
migration flow statements. The conditional migration flow statements are positioned in the
colored plans after the operator statements which generate the data used in the conditional
migration.

In some embodiments of the invention, the determination of which of the marked EMs
204 is to be used, is performed by determining the amount of data that needs to be received
from each EM 204 related to the statement and selecting the EM 204 from which the most

data is to be received. Alternatively or additionally, the determination is performed

36

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
additionally based on the EM 204 to which a brother node (i.e., a node having a common
parent node with the current node), if such brother node exists, is assigned.

If the determining EM 204 is to execute the operator statement after the migration flow
statement, the EM 204 retrieves the data required for performing the statement from the other
EM 204. If, on the other hand, a different EM 204 is to perform the statement, the colored plan
is transferred to the other EM 204, along with the data it needs in order to execute the
statement. Optionally, retrieving and/or transferring the data includes generating a copy of the
data in the intermediate memory area of the receiving EM 204. Optionally, after a vertical is
copied the copy of the vertical in the EM 204 from which the data was copied is deleted.

In an exemplary embodiment of the invention, the EM 204 to execute the statement of
a multi-EM marked node is selected as is now described with reference to Fig. 7.

Fig. 7 is a schematic illustration of a portion of an execution plan, useful in explaining
the selection of an EM 204 to execute a statement, in accordance with an embodiment of the
present invention. A node 420 is marked as to be resolved by either of EMs 204A or 204B. A
first child node 422 of node 420 is assigned to EM 204A and a second child node 424 is
assigned to EM 204B. A brother node 426 is assigned (in Fig. 7) to one of the EMs 204 which
may optionally be used to execute the statement of node 420, for example, EM 204A. It is
noted that the brother node may have been originally assigned to a specific EM 204 by
compiler 200 or the EM to which it is assigned was previously selected during the current
execution of the colored plan.

In some embodiments of the invention, in selecting an EM 204 to resolve a statement
of a multi-EM marked node 420, it is determined whether the brother node 426 is assigned to
a specific one of the EMs 204, which node 420 is marked as possibly resolved thereby. If the
brother node 426 is not assigned to a specific EM 204 or is assigned to an EM 204 which is
not marked as optional for resolving the statement of node 420, the determination of the EM
to resolve the statement of node 420 is performed, as described above, without relation to
brother node 426. If, however, the brother node 426 is assigned to one of the EMs 204 marked
as optional for resolving the statement of node 420, the amount of data received by node 420
from each of its children (X,Y) is determined, in addition to an estimate of the amount of data
provided by node 420 (W) and brother node 426 (Z) to their parent node 428. The amount of
data (W) provided by node 420 to parent node 428 is optionally estimated base on the amount

of data (X,Y) received from its children nodes, using any estimation method known in the art.

37

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
The amount of data which will need to be transferred between EMs 204 for both of
nodes 420 and 428, for each of the possible EMs 204 which may execute the statement of
node 420 (e.g., listed in the conditional migration command), is optionally determined. The
EM 204 that requires the least transfer of data is optionally selected. In the example of Fig. 7,
EM 204A is selected for node 420, if Y < X + min (W, Z).

Colored plan cache

In some embodiments of the invention, dispatcher 206 manages a cache of colored
plans. Colored plans from the dispatcher cache rﬂay be used as long as the locations of the
verticals manipulated by the plan did not change between memory units 210. Optionally, when
a vertical is removed from memory units 210 or the location of a vertical is moved from one
memory unit 210 to another, dispatcher 206 removes from the dispatcher cache, colored plans
relating to the vertical. Alternatively or additionally, each plan in the dispatcher cache and/or
each location map of data in in-memory database 120 is associated with a time-stamp. Before
using a colored plan from the dispatcher cache, dispatcher 206 checks that the time-stamp of
the location map is older than the time-stamp of the plan.

Optionally, if a colored plan includes one or more nodes marked with a plurality of
EMs 204, dispatcher 206 attempts to assign the node to a specific EM 204 based on the sizes
of the data referenced by the non-assigned operator statements. Alternatively or additionally,
after the colored plan is executed, the EMs 204 that executed the statements are planted into
the colored plan for its next execution. In some embodiments of the invention, the assigning of
statements to a specific EM 204 is performed based on data from a plurality (e.g., 3-5) of
executions. Optionally, the assigning is performed only if the same EM 204 was selected in all
the executions of the colored plan, or in a great majority of the executions.

Use of coloring sets

In some embodiments of the invention, as described below, copies of a single vertical
may be hosted by a plurality of EMs 204. In some of these embodiments, dispatcher 206
receives a list (referred to herein as a coloring set) of the EMs 204 to be used for each of the
duplicated verticals together with the compiled plan. An exemplary method of generating the
coloring set by resource governor 212 is described hereinbelow. Alternatively or additionally,
the coloring set lists the EM 204 to be used for some or all of the verticals hosted by only a
single EM 204, for example in order not to require that the dispatcher 206 consult in-memory

database 120.

38

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

In some embodiments of the invention, an execution plan is associated with a plurality
of alternative coloring sets. Dispatcher 206 optionally selects one of the coloring sets which
has a lowest execution cost. For each coloring set, dispatcher 206 optionally calculates the
products of the costs of the operator statements of the plan and the load on the respective EMs
204, which are to perform the operator statements according to the coloring set. Optionally,
the products are calculated only for operator statements that reference data in at least one of
the coloring sets. The execution cost for each coloring set is optionally calculated as the sum

of the calculated products, i.e., coloring set load =% {load (EM)*cost(statement)}.

Alternatively or additionally to receiving coloring sets, dispatcher 206 performs the
tasks of generating the coloring set, described herein below, before coloring the plan.

Referring in more detail to determining a cost for each operator statement, in some
embodiments of the invention, the cost is determined by compiler 200 and provided to
dispatcher 206 with the execution plan. Alternatively, the cost is determined by dispatcher
206. Further alternatively, the cost is not used at all by dispatcher 206 and selection of one of a
plurality of coloring sets is performed arbitrarily, randomly and/or using any other simple
method. Using this alternative simplifies the operation of dispatcher 206 although at the
possible cost of achieving a less optimal colored plan.

In some embodiments of the invention, the complexity of dispatcher 206, and hence
the optimality of the colored plans, may be adjusted by a system manager according to the
specific needs of the system and/or based on overall optimality tests. Alternatively or
additionally, the complexity of dispatcher 206 is dynamically adjusted responsive to the
respective loads on EMs 204 and dispatcher 206.

Determining cost of operator statement

In some embodiments of the invention, the cost of an operator statement is equal to the
processing power required by the operator statement. Optionally, the required processing
power is a function of the complexity of the operator of the statement. For example, sort
operators may have a higher required processing power than join operators. Alternatively or
additionally, the required processing power of an operator statement is a function of the size of
the verticals manipulated by the statement and/or the complexity of the predicate list and/or
projection list of the statement.

In an exemplary embodiment of the invention, the required processing power of an
operator is a function of the number of memory accesses it performs, assuming that the cost of
calculations are negligible. For example, required processing power of a scan operator is equal

39

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
to the number of rows (N) scanned. The required processing power of a nested join is
optionally N1 * N2, where N1 and N2 are the row numbers of the joined tables. The required
processing power of a cache sensitive array (CSA) look-up operator is, for example,
Log2N/Log2(M+1), where N is the number of rows in the referenced vertical and M is the
number of keys held in a single cache line (e.g., M =4).

Collection of statistics by splitter

In some embodiments of the invention, splitter 112 keeps track of the queries passing
through the splitter in order to provide resource governor 212 with information on the types of
queries handled by database access system 100. Optionally, for each query, splitter 112 keeps
track of the number of times the query was received during a predefined time period, i.e., the
popularity of the query. In some embodiments of the invention, for each query, splitter 112
keeps track of the response time of the query i.e., the time until an answer to the query was
received, from accelerator 110 and/or from database server 104. Splitter 112 optionally keeps
track of the average response time over the last predefined time period. In some embodiments
of the invention, splitter 112 also keeps track of the sizes of the results of the queries.

In some embodiments of the invention, splitter 112 periodically transmits queries that
can be resolved by accelerator 110, to database server 104, in order to determine the response
time of database server 104 relative to the response time of accelerator 110. Optionally, each
query is transmitted at least once every predetermined interval (e.g., 5-10 minutes) to database
server 104, even if the query is familiar to accelerator 110. In some embodiments of the
invention, splitter 112 stores in the list of familiar queries, the last time the response time of
database server 104 was determined for each of the queries in order to facilitate the timely
transmission of queries to database server 104.

Resource governor operation

Fig. 8 is a flowchart of acts performed by resource governor (RG) 212, in accordance
with an embodiment of the present invention. Resource governor 212 optionally continuously
receives (500) statistics on the queries handled by system 100, from splitter 112 and/or from
elements of accelerator 110. For example, resource governor 212 may receive information on
resources consumed by the plans they execute from EMs 204. At predetermined time points,
RG 212 forms (502) a roster of recently received query statistics to be used in determining the
data contents to be loaded into memory units 210.

The roster of queries is optionally grouped (504) into a plurality of clusters of related

queries. A score, representative of the worth of handling the queries of the cluster by

40

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
accelerator 110, is optionally assigned (506) to each of the clusters. A cluster with a best score
is optionally selected (508). In some embodiments of the invention, resource governor 212
determines (515) how the tables referenced by queries of the selected cluster are to be
decomposed into verticals. Resource governor 212 optionally determines (514) which indices
are to be created for the database portions accessed by the queries of the selected cluster.
Optionally, the indices are selected after the decomposition of the verticals. In some
embodiments of the invention, each index is selected for a specific vertical. Alternatively, the
indices are selected for specific columns. In some embodiments of the invention, a single
vertical may have a plurality of indices for different columns of the vertical.

In some embodiments of the invention, the queries of the selected cluster are passed
(510) to compiler 200 for compilation, optionally only if not previously compiled.

The resources required for handling the commands of the selected cluster by
accelerator 110 are optionally estimated (519). If (516) accelerator 110 has resources beyond
those required for already selected clusters, the scores of the other clusters are optionally
corrected (518) responsive to the selection of the recently selected cluster and a non-selected
cluster with a best score is selected (508). The above described acts (515, 514, 519) are
optionally repeated for the additional selected cluster. When (516) clusters that utilize
substantially all the available resources of accelerator 110 were selected, resource governor
212 optionally determines (522) the placement of the verticals and indices of the selected
clusters in in-memory database 120, i.e., in which of memory units 210 each of the verticals
and indices is to be positioned. In some embodiments of the invention, the placement
determination (522) is performed after the compilation of all the selected queries is completed.

Thereafter, accelerator 110 updates (524) the contents of in-memory database 120
according to the determination. In addition, the list of familiar queries in splitter 112 is
updated (526).

The roster

Referring in more detail to forming (502) the roster of queries, in some embodiments
of the invention, the roster includes queries collected between the point in time at which the
roster is formed and the previous point in time at which a roster was formed. Alternatively, the
roster includes queries taken into account in previous rosters. In some embodiments of the
invention, queries taken into account in forming previous rosters are given less weight than

queries collected after the formation of the previous roster. In an exemplary embodiment of

41

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
the invention, query occurrences appearing in previous rosters are counted as appearing half
the times they actually were received by splitter 112.

In some embodiments of the invention, substantially all the queries received during the
period used in forming the roster are included in the roster. Alternatively, only queries relating
to predetermined portions of the database, received from predetermined users and/or having at
least a predetermined importance level are taken into account in forming the roster. Further
alternatively or additionally, the roster is set to include up to a predetermined number of
queries. When the number of received queries exceeds the predetermined number, queries are
excluded arbitrarily and/or according to any of the above mentioned criteria. In some
embodiments of the invention, only queries which have at least a predetermined popularity
(i.e., were received at least a predetermined number of times) are included in the roster.
Optionally, queries familiar to accelerator 110 are not excluded from the roster or are given
preference to being included in the roster.

In some embodiments of the invention, the roster includes an indication of the
popularity of each query and whether the query is currently familiar to accelerator 110.
Optionally, the roster includes response times of the queries (as described above with
reference to collection of statistics by the splitter) and/or resource requirements of the queries.
The resource requirements of the queries optionally include the memory required for the base
tables manipulated by the queries, the amount of memory required for intermediate results
and/or the processing power required for resolving the queries. Alternatively or additionally,
some or all of the above listed accompanying data is determined separately and/or at a later
time, by resource governor 212.

Optionally, for each query, a query access needs (QAN) data structure, that
summarizes data on the base columns referenced by the query, is prepared. The QAN
optionally lists, for each referenced data column, the access type (as described in detail below)
used by the query to access the column.

Clustering

Referring in more detail to grouping (504) the queries of the roster into clusters, in
some embodiments of the invention, the queries are clustered according to the columns and/or
tables to which the queries relate, such that queries in the same cluster relate generally to the
same or similar columns and/or tables and optionally use same or similar indices.

Optionally, each cluster includes queries that relate to verticals which occupy up to a

maximal memory size. In some embodiments of the invention, the maximal memory size is

42

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

such that all the verticals referenced by queries of the cluster can fit into a single memory unit
210. Alternatively or additionally, each cluster includes queries that together require up to a
predetermined maximal processing power. Further alternatively or additionally, each cluster
includes queries with up to a maximal required communication capacity.

The communication requirements of a cluster are optionally determined as a sum of the
communication requirements of the queries of the cluster. Optionally, the communication
requirements are measured in terms of bytes per second (bps). In an exemplary embodiment of
the invention, the communication requirements of a query are equal to an estimate of the size
of the query results (in bytes) times the number of times per second the query is expected to be
received by accelerator 110.

In some embodiments of the invention, each query is included in only a single cluster
so that queries are not handled twice or more by resource governor 212. Alternatively, some
queries are included in a plurality of clusters, and when a cluster to which the query belongs is
selected, the query is removed from the other clusters.

In some embodiments of the invention, a distance function d(ql,q2) between queries
ql and g2, which provides a value indicative of the suitability of the queries to be in the same
cluster, is defined. The distance function d(ql,q2), for example, is linked to the number of
verticals referenced by both the queries ql and g2 and/or to the total number of verticals
referenced by only one of the queries. Optionally, the distance function is also a function of
the access type used by the queries to the verticals referenced by both the queries. Giving
weight in the distance function to the access type makes the distance between queries expected
to use same indices smaller, as the indices are linked to the access types. In some
embodiments of the invention, the distance function gives a first weight to queries accessing a
common column with different access types and a second, higher, weight to queries accessing
the common column with the same access type. Optionally, the distance between any two
access types (e.g., lookup, range, order, grouping, string matching, equi-join) is substantially
the same. Alternatively, groups of access types which are similar (referred to hereinbelow as
primary access types) are defined and the distance between access types of different primary
access types is larger than the distance between different access types within a single primary
access type. The distance between different access types within a single primary access type
may be low but still existent or may be zero, as in most cases queries of the same primary

access type will use the same index.

43

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

In some embodiments of the invention, the distance function, for a specific column,
takes into account the column groups in which the column is referenced by each of the
queries. For example, two queries that access a specific column as part of a same group of
columns are considered closer, with respect to the specific column, than two queries that
reference the specific column as part of different groups (e.g., one query references the
specific column alone while the other query references the specific column along with other
columns).

In an exemplary embodiment of the invention, each of the queries for which the
distance is calculated (q1 and q2) is represented by a vector of the sizes (e.g., number of rows)
of the searched and projected columns accessed by the query. The distance function is
calculated as a vector distance between the vectors, such that columns accessed by both
queries do not contribute to the distance, and columns accessed by a single query contribute
their size. Optionally, the square vector distance is used. Alternatively or additionally, any
other vector distance is used, such as the absolute value distance.

Alternatively to the vectors having an element for each column accessed, the vectors
have an element for each pair formed of (1) a column accessed by the query represented by the
vector and (2) the access type used by the query to access the column. In some embodiments
of the invention, instead of each vector element receiving the size of the column represented
by the vector element, a fixed value is given for each existent column.

In some embodiments of the invention, instead of having a vector element for each
column accessed by the query (or for each column and access type), vector elements are given
to each group of one or more columns accessed by a fragment of the query. That is, a group of
columns accessed together are optionally related to separately (e.g., have a separate vector
element) from each of the columns separately.

In an exemplary embodiment of the invention, the distance function d(ql,q2) is a
weighted function of a data distance function data(ql,q2) and an access distance function
access(ql,q2), for example as in:

d(q1,q2) = data(q1,q2) + w * access(q1,q2)
in which w is a weight smaller than 1, so that the access distance is less dominant than the
data distance. The data distance function is optionally equal to the space required for all the
data accessed by only one of ql or q2 (referred to herein as xor(q/,q2)) divided by the space
required to store all the data accessed by at least one of q1 and q2 (i.e., union(ql,q2)). In some .

embodiments of the invention, xor(q1,q2) is calculated according to

44

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
xor = union(ql,q2) - and(ql,q2),

where and(q1,q2) is the space required by data accessed by both q1 and q2.

In calculating the function access(ql,q2), each pair of a column and access type to the
column is considered separately. A total access(ql,q2) function is optionally equal to the sum
of the storage space of the columns accessed by at least one of ql and g2 in which each
column is counted for each access type used by at least one of ql and g2 in accessing the
column. A common_access(q1l,q2) function is equal to the sum of the storage space of each
column accessed using the same access type by both ql and q2, the space of each column
being added once for each access type used by both ql and g2 in accessing the column.
Optionally, access(ql,q2) is give by:

access(q1,q2) = [total access(ql,q2) - common_access(ql,q2)] / total access(ql,q2)

In some embodiments of the invention, the appearance of columns in projection
portions of queries is not taken into account in calculating access(ql,q2), as columns
appearing only in projections do not necessarily need to be cached.

Exemplary methods for grouping the queries into clusters are described hereinbelow
with reference to Fig. 12.

Cluster and query score

Referring in more detail to assigning (506) a score to each of the clusters, in some
embodiments of the invention, the cluster score is a function of a resource score, a
contribution score and/or a proximity score. The resource score optionally represents the
resources required to resolve the queries of the cluster and the contribution score optionally
represents the expected acceleration if the cluster is cached. The proximity score optionally
represents the resources required to prepare the accelerator for handling queries of the cluster,
given the current content of the accelerator memory.

Resource score

The resource score is optionally a function of the amount of memory required for
resolving the queries of the cluster. Assuming, without loss of generality, that the highest
score is considered the best score, the score of a cluster optionally increases as the memory
requirements of the queries of the cluster decrease. Having accelerator 110 handle queries with
low memory requirements generally allows the accelerator to handle a larger number of
queries.

Alternatively or additionally, the resource score is a function of the processing power

required by the queries of the cluster. Optionally, the processing power required for a query is

45

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
calculated as the sum of the processing powers required by the operator statements of the plan
of the query. Optionally, as the processing power requirements of the queries of the cluster
decrease, the score of the cluster increases. Having accelerator 110 handle queries with low
processing power requirements allows the accelerator to handle a larger number of queries.
Alternatively, a higher score is given to clusters which have higher processing requirements so
that accelerator 110 takes over from database server 104 queries with heavy processing
requirements. Further alternatively, a higher score is given to clusters whose queries require
processing power matching the memory resources required by the queries. In this alternative,
the processing power of the queries is matched to the memory resources of the queries in order
to maximize the utilization of the resources of accelerator 110.

Further alternatively or additionally, the resource score is a function of the stability of
the verticals referenced by the cluster, i.e., the rate at which the data in the vertical needs to be
refreshed. In some embodiments of the invention, a higher score is given to clusters which
relate to relatively stable verticals, so that the amount of resources required to handle updating
the cached copies of the verticals in in-memory database 120 is relatively low. Optionally, the
stability level of verticals is determined based on the number of update commands, which
relate to the table, passing through application server 106. Alternatively or additionally, the
stability level of tables is determined based on the number of times back end unit 114 receives
update notifications from database server 104, for the table.

Optionally, back end unit 114 keeps track of the stability of one or more tables not
currently cached by in-memory database 120, in order to determine their stability level. In
some embodiments of the invention, back end unit 114 keeps track of the stability of all the
tables in storage disk 102, in order to have full stability data. Alternatively, back end unit 114
keeps track only of the stability of tables cached in accelerator 110, in order to limit the
processing power required by back end unit 114. In some embodiments of the invention, back
end unit 114 keeps track of the stability of a portion of the database not cached by accelerator
110, the size of which is determined as a compromise between achieving accurate data and
requiring minimal resources from back end unit 114. Optionally, the portions for which back
end unit 114 monitors stability include portions previously cached, portions referenced by
clusters having a relatively high score but not selected, preconfigured portions and/or portions
determined by any other method, to have a relatively high chance to be cached.

In some embodiments of the invention, the stability level of a vertical gives equal

weight to deletion, insertion and updates of rows of the vertical. Alternatively, different

46

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
weight is given to deletion, insertion and update occurrences according to the specific
resources required to handle these update occurrences.

Contribution score

In some embodiments of the invention, the contribution score is a function of the
difference between the response time of database server 104 and of accelerator 110, for the
queries of the cluster. Optionally, higher scores are given to queries for which accelerator 110
has a faster response time than database server 104. Alternatively or additionally, the
contribution score is a function of the popularity of the queries of the cluster. Optionally, a
higher score is given to queries that are more popular in the query roster. In an exemplary
embodiment of the invention, the contribution score is proportional to the popularity of the
query multiplied by the difference between the accelerator response time and the response
time of database server 104.

In some embodiments of the invention, the contribution score is a function of the
importance of the queries (e.g., the QoS of the queries) of the cluster.

The most recent response times recorded by splitter 112, for database server 104 and
accelerator 110, are optionally used in determining the contribution score. Alternatively, an
average response time determined for a plurality of measurements is used. The average is
optionally determined for queries passing through splitter 112 over a predetermined time
and/or for up to a maximal number of queries.

In some embodiments of the invention, response times recorded for identical queries
are used. Alternatively, for each query, the response times recorded for substantially identical
queries (e.g., queries different in only constants) are used. Further alternatively or additionally,
the response times recorded for similar queries (e.g., relating to the same data tables, having
substantially the same length, having the same conditions), are used.

In some embodiments of the invention, when a response time for a query is available
only for database server 104, the response time is compared to an expected and/or average
response time for the query. The contribution score is optionally determined according to the
difference between the measured response time and the expected and/or average response time.

Proximity score

In some embodiments of the invention, the proximity score is a function of the number
of queries in the cluster not already handled by the accelerator. Alternatively or additionally,
the proximity score is a function of the number and/or sizes of data columns referenced by

queries of the cluster that are not in in-memory database 120. Optionally, a higher score is

47

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
given to clusters that include queries that are already currently handled by accelerator 110.
Further alternatively or additionally, the proximity score is a function of the number of indices
that were already built for data referenced by the queries of the cluster. Further alternatively or
additionally, the proximity score is a function of the cost of compiling the query if not yet
compiled.

Optionally, after start-up, before a large number of queries were accumulated, low
weight, or even no weight, is given to the proximity score, in the cluster score. This low
weight prevents accelerator 110 from locking onto a data group which achieves a local
maximum in the optimality of accelerator 110, rather than striving for a global maximum.
Alternatively or additionally, periodically (for example once every 40-60 determinations), a
score giving low weight to the proximity score is used, in order to prevent accelerator 110
from settling in a local optimum which is not optimal globally.

Score determination

Optionally, each query is assigned a score and the cluster score is calculated as the sum
of the scores of the queries included in the cluster. Alternatively, the scores are calculated
directly for the clusters.

It is noted that, in some embodiments of the invention, the score is determined for at
least some of the clusters before the queries of the cluster are compiled, for example for
queries not currently familiar to accelerator 110. Additionally, other information required for
determining the scores may be missing for some of the queries. In some of these
embodiments, the score determination is optionally performed using measures which do not
require compilation of the queries for their determination, for example the popularity of the
query. Alternatively, the score determination uses measures that require compilation of the
queries for their actual determination, but for non-compiled queries an estimate of the measure
is used. For example, a predetermined value may be used as the estimate. Further alternatively,
at least some of the queries are compiled before they are selected, in order that information
from the compilation can be used in determining their score.

In an exemplary embodiment of the invention, the score is provided in time units. For
example, the proximity score optionally states a time required to prepare for a new query
and/or the contribution score states a time expected to be saved for the accelerated queries.

In an exemplary embodiment of the invention, the cluster score is given as:

48

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

(O_P(i) * A(i)) - update(C)

ieC

score(C) = memory(C)

in which C is the cluster, score(C) is the cluster score, i runs over the queries of C, P(i) is the
popularity of query i, A is the difference between the response time of database server 104 and
accelerator 110 for query i, update(C) is the cost of accepting a new query and memory(C) is
the amount of memory required for the cluster. Optionally, update(C) is zero for queries
already familiar to accelerator 110.

In an exemplary embodiment of the invention, update(C) is given by:

update(C) = z up_ freq(j) * up_ cost(j) + Load_ cost(j)
jeC

in which j runs over the columns referenced by C, up_freq(j) is the average rate at which
column j is updated, up_cost(j) is the time required to update a value in column j and
Load_cost(j) is the cost of loading column j into in-memory database 120. Optionally,
verticals j already selected by previously selected clusters are not included in the calculation of
update(C).

In some embodiments of the invention in which the score determination for non-
compiled queries uses estimated values for one or more measures used in determining the
score, the assigned score is revisited after the compilation in order to evaluate the estimation.
Optionally, the method of estimation is dynamically adjusted according to the evaluation of
the estimation.

In some embodiments of the invention, a query may have a plurality of compiled plans.
In these embodiments, separate scores are optionally determined for each plan. Optionally, the
score of the query is the average or the maximum of the scores of the plans of the queries.
Alternatively or additionally, the plan used is selected according to the mode of operation of
accelerator 110 and the score given is of the selected plan.

Comparing different scores

In some embodiments of the invention, resource governor 212 determines a plurality of
different scores using different score functions for the clusters. Optionally, according to the
relation between the different score sets, a score set to be used in selecting clusters is chosen.
In an exemplary embodiment of the invention, two score sets are generated, one according to a
function which takes the proximity into account and the other according to a function that

does not take the proximity into account. If the difference between the scores with and without

49

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

the proximity attribute is relatively small, the score with the proximity attribute is used in
order to take advantage of the familiarity of accelerator 110 to some of the data.

If, however, the difference between the scores is relatively large, the proximity score
may be forcing accelerator 110 into a non-optimal local maximum. Optionally, therefore, the
score which does not take proximity into account is used. Alternatively, a predetermined
number of tables and/or verticals, which would be removed from in-memory database 120 if
the score which disregards proximity were used, are determined to be removed from in-
memory database 120, in order to force accelerator 110 to leave the local maximum. In other
embodiments of the invention, a predetermined percentage of the tables and/or verticals which
would be removed according to the score that disregards proximity, are determined to be
removed from in-memory database 120. The score which takes proximity into account is
optionally recalculated, taking into account that the verticals and/or tables to be removed from
in-memory database 120 are being removed. The results of this score are then used in selecting
clusters and determining which verticals are to be loaded into accelerator 110.

In some embodiments of the invention, the calculation of the plurality of scores is
performed each time resource governor 212 performs the method of Fig. 8. Alternatively, the
calculation of the plurality of scores is performed periodically, for example, every 5-10 times
the method of Fig. 8 is performed. Thus, the processing power required for producing the
score sets is reduced, while still preventing a long term settling in a local maximum.

Alternatively to assigning scores to clusters and accordingly deciding which queries
are to be cached, each query is assigned a separate score and the queries with the highest
scores are selected for handling by the accelerator. Thereafter, the selected queries are
optionally clustered. In this alternative, the most important queries are selected for
acceleration, although possibly at the cost of efficiency in selecting the queries, as the relation
of different queries to the same data is not directly taken into account. Indirectly, however,
queries relating to the same data would generally receive similar scores, as many of the score
factors would have similar values for queries relating, at least partially, to the same data.

Referring in more detail to correcting (518) the scores of the non-selected clusters, in
some embodiments of the invention, the scores are corrected under the assumption that the
database portions required for resolving the selected queries are already in the memory. Thus,
queries that use data verticals and/or indices which appear in a selected cluster are given a

higher score than they were assigned earlier.

50

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

In some embodiments of the invention, if a cluster has a score greater than the score of
a previously selected cluster, according to the above equation, the score of the cluster is set
equal to the score of the previously selected cluster or to a value smaller thereof, so that the
scores of the selected clusters decrease (or do not increase) with the order of selection. This is
optionally performed when the cluster score is used for tasks other than the selection of
clusters, for example for determining the amount of memory is used for indices of the cluster.
In some embodiments of the invention, the scores of the specific queries of the clusters are not
changed.

Vertical partitioning

Referring in more detail to determining (515) the partitioning of tables into verticals, in
some embodiments of the invention, the tables are partitioned as much as possible. That is,
unless specifically required, as is now described, each column is stored in a separate vertical in
in-memory database 120. The use of smaller verticals, generally allows faster processing of
the verticals.

Multi-column verticals are optionally generated when the cluster includes a query that
has conditions on multiple columns of a table. For such queries, resource governor 212
optionally determines that all the columns referenced by the condition of the query are
included in a single vertical. Alternatively or additionally, columns that are not included in
conditions of any of the queries of the clusters but are included in projections (if they are not
referenced at all they are not cached), are iﬁcluded with at least one other column in a single
vertical. Further alternatively or additionally, when a composite key is used to reference a
table, all the columns referenced in the composite key are included in a single vertical.

In some embodiments of the invention, verticals that are not identical do not include
common columns. That is, no partially overlapping verticals are created, in order to conserve
memory space. In these embodiments, large verticals may be required, for example, when two
different queries require a first column to be in the same vertical as second and third columns,
respectively.

Alternatively, when expected to achieve more optimal operation, partially overlapping
verticals are created, for example, when a table is expected to be sorted according to different
composite keys. Further alternatively or additionally, small columns that are accessed by
relatively popular queries are duplicated, for example once alone and once with other
columns. Further alternatively or additionally, a column is included in a plurality of verticals

to prevent a vertical width (i.e., the accumulated sizes of the data types of the columns

51

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
included in the vertical) from exceeding a predetermined width. The predetermined width may
include, for example, a largest width that allows efficient use of the cache.

In some embodiments of the invention, the vertical decomposition attempts to
decompose tables in the same manner as used for the data currently cached by accelerator 110.
Optionally, in determining whether to combine columns into a single vertical and/or whether
to include a column in more than one vertical, weight is given to the form in which the
columns are currently cached in in-memory database 120, if the columns are already cached.

An exemplary method for determining which columns should be cached in more than
one vertical is now described with reference to Fig. 9. Other methods will be evident to those
skilled in the art.

Fig. 9 is a flowchart of acts performed in vertical decomposition of tables referenced
by a cluster, in accordance with an embodiment of the present invention. The queries of the
cluster are optionally scanned for queries that perform a single operation on groups of a
plurality of columns of a table. The groups of columns referenced by these queries are
optionally listed (530) in a group of candidate multi-column verticals (CV) per table. In some
embodiments of the invention, only groups of columns referenced by queries having together
at least a predetermined query score (e.g., as a sum of their query scores, or as a maximum of
their scores) are included in the group of candidate multi-column verticals (CV). Such
columns are referred to herein as high importance columns, while columns referenced by
queries with a combined low score are referred to as low importance columns. In these
embodiments, queries referencing low importance columns are optionally removed from the
cluster, so as not to require the caching of a multi-column vertical with a low importance
score.

The candidate multi-column verticals in CV belonging to the table are optionally
examined (532) for columns included in a plurality of candidate verticals, referred to herein as
common columns. Optionally, the CVs are grouped according to the tables to which they
belong and the examination is performed for each table separately, as all the columns of a
vertical belong to a single table.

For each pair of CVs having a common column, which is not marked (in both CVs) to
be duplicated, resource governor 212 optionally determines a duplication score of the common
column, which score is indicative of the importance of caching the common column twice.
Optionally, if (534) the duplication score is above a predetermined threshold, the common

column is marked (535) to be duplicated in both the CVs. If (534) the duplication score is
52

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
beneath the predetermined threshold, the pair of candidate verticals are combined (536) into a
single CV. Alternatively or additionally, if the columns of one of the candidate verticals has a
low importance score, the low importance candidate vertical is removed from consideration.
The queries that require the low importance multi-column candidate vertical which is removed
from consideration, are removed from the cluster.

The determination of whether there are common columns is optionally repeated until
(533) all the common columns of candidate verticals in the list are marked as being
duplicated. The resultant set of candidate verticals, together with single column verticals for
verticals not in the set, is optionally the result of the vertical decomposition.

In some embodiments of the invention, for each table processed, if the key column of
the table is not referenced by any of the queries of the cluster, a vertical of the key column is
also indicated to be created (although it itself is not needed). The creation of the key column
vertical along with verticals of other columns of the table, in the same cluster, allows for high
chances that the key column vertical will be cached in the same memory unit 210 with the
other columns of the table, as verticals of a single cluster are generally cached in the same
memory unit 210. The caching of the key column vertical with the other columns of the same
table in the same memory unit simplifies the updating of the contents of the verticals when
there are changes in the table on disk 102. Alternatively, to caching the key column of all
tables along with other columns of the table, the key column is cached although it is not
needed by the queries of the cluster, only when the table has a relatively low stability rating
(i.e., it is frequently refreshed).

In some embodiments of the invention, the examination (532) of the candidate multi-

" column verticals for columns included in a plurality of candidate verticals, is performed by

repeatedly selecting a first candidate vertical of the table and finding a second candidate
vertical, of the same table, that has at least one common column with the first candidate
vertical. If (533) such a second candidate vertical is not found, the first candidate vertical is
marked final and is not compared to other candidate verticals.

Referring in more detail to the duplication score of a column, in some embodiments of
the invention, the duplication score is a function of the width and/or length (i.e., number of
rows) of the column, such that larger columns have a lower chance to be duplicated.
Alternatively or additionally, the duplication score depends on a column score, which
represents the popularity of queries that reference the column. The duplication score

optionally increases as the column score increases. In some embodiments of the invention, the

53

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
column score is a sum of the scores of queries referencing the column. Alternatively or
additionally, the column score is the same as described below with reference to the index
selection. Further alternatively or additionally, the duplication score depends on the types of
indices available for the column and/or on the access types of queries that access the column.
Optionally, columns that are accessed by inequality operators receive higher scores, as the
importance of not having long lines, due to the combining of candidate columns, is greater. In
an exemplary embodiment of the invention, columns that are not accessed by at least one
inequality operator receive a zero duplication score, so as to save the memory area assigned to
duplication for inequality operators which may serially review the rows of the columns.
Alternatively or additionally, when the columns of the first and second candidate verticals are
accessed only in projections, the duplication score is low or zero.

In some embodiments of the invention, the duplication score of a column common to
first and second verticals is a function of the combined width of a vertical combined from the
first and second candidate verticals. Optionally, if the combined width is lower than the cache
line length of one or more of EMs 204 the duplication score is given a low value, as the
combination of the verticals does not impede the processing speed.

In some embodiments of the invention, different EMs 204 have different cache line
lengths. Optionally, in these embodiments the combined width of the first and second verticals
is compared to the lowest cache line length of any of EMs 204, so that a column that receives
a low duplication score due to the combined width being low, will fit to the cache line length
of any EM 204 assigned to handle the verticals. Alternatively or additionally, the effect of the
combined width of the first and second candidate verticals on the duplication score is in the
form of a step function, in which the steps follow the cache line lengths of EMs 204.
Optionally, the effect on the duplication score depends on the chances that the combined
vertical will enjoy the advantage of being smaller than the cache line length, if the candidate
column is processed arbitrarily by any of EMs 204.

In some embodiments of the invention, an amount of duplication space for duplication
of verticals for the cluster is determined. If the columns already selected for duplication, with
regard to the current cluster, utilize substantially all the duplication space, the candidate
verticals are combined regardless of the duplication score. Alternatively, the predetermined
threshold value, to which the duplication score is compared, is a function of the available
space. Optionally, as the available space decreases, the threshold value is raised. Alternatively

or additionally, the threshold value is a function of the available space, normalized by the
54

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
amount of remaining data of the cluster to be processed. In some embodiments of the
invention, the amount of space utilized for duplication is allowed to go beyond the determined
available space, if the common column has a relatively high duplication score.

In some embodiments of the invention, the amount of duplication space is a
predetermined percentage of the space required for the data of the cluster. Alternatively or
additionally, the amount of duplication space increases with the cluster score.

Alternatively to repeatedly finding common columns for pairs of candidate verticals
and determining whether to combine the pair of verticals immediately, all the common
columns are determined together and assigned scores. The verticals with the lowest
duplication scores are then combined, according to the memory constraints.

Yertical memory storage type

In some embodiments of the invention, in determining (515) the verticals to be cached,
resource governor 212 also determines the storage method of the vertical in in-memory
database 120. In an exemplary embodiment of the invention, two methods are used for storing
verticals, namely spaced and simple. Spaced verticals include empty rows distributed
throughout the vertical, in order to allow adding rows to the vertical without moving a large
number of rows and without losing any sorted attribute of the vertical. Optionally, the spaced
verticals are divided into pages which are easily transferred. In some embodiments of the
invention, the empty rows distributed throughout the spaced verticals are located at the end of
some or all of the pages. Rows of simple verticals are optionally loaded consecutively into the
memory, such that in reviewing the elements of the vertical there is no need to check that the
elements are valid, i.e., are not empty rows.

Optionally, the determination of which type of vertical is used is performed according
to the stability of the vertical's data, i.e., according to the expected rate of change of values in
the vertical. In some embodiments of the invention, verticals of tables that are not sorted are
always simple, as added values can be appended at their end and removed values can be
replaced by values from the end.

In some embodiments of the invention, for each base table, one of the verticals is
assigned to be a clustering vertical of the base table. Generally, the clustering vertical includes
the column(s) serving as the primary key of the table, as is known in the art. It is noted that the

clustering vertical may include a single data column or a plurality of data columns.

Encoding

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

In some embodiments of the invention, in addition to determining the partition of
tables, resource governor 212 optionally determines whether it is advantageous to encode any
of the .columns in the tables referenced by the queries of the selected cluster. Optionally,
columns that carry relatively large size fields and have a relatively small number of possible
values or have a relatively small number of actually used values, are encoded, in order to save
memory space. In some embodiments of the invention, the encoding includes correlating to
each value of the column, an integer value, which is used to represent the value in accelerator
110. Optionally, all the operations performed by accelerator 110 are performed on the encoded
integer values. Output interface 222 optionally replaces the encoded integer values with the
original values. It is noted that in some cases the encoding also achieves more efficient access
to the encoded columns.
Sorting |

In some embodiments of the invention, resource governor 212 also determines whether
it would be advantageous to sort the cached table in accordance with a specific key. For
example, if a table not sorted in storage disk 102 (or sorted according to a different key) is
accessed by a plurality of queries that require and/or take advantage of a specific sorting, the
table is determined to be sorted accordingly before it is cached into in-memory database 120.
Optionally, the sorting is performed only if the cost of sorting the table is lower than the
expected advantage from the sorting. Alternatively or additionally, the table is sorted
according to the key which is expected to provide the largest saving during execution,
regardless of the sorting cost, for example if the sorting is performed by a separate pre-
processing processor. Optionally, the determination of whether to perform the sorting is
performed based on the load on the preprocessing processor that performs the sort, for
example back end 114.

Optionally, the same row order is used in all the verticals of a single table. In some
embodiments of the invention, if it is determined that sorting a table according to a plurality of

keys would be advantageous, the table is sorted according to one of the keys and indices are

generated for the remaining keys. Optionally, the table itself is sorted according to the key that

is expected to be most advantageous. In some embodiments of the invention, a plurality of
copies of the table sorted according to different keys are cached into in-memory database 120.
Alternatively or additionally, the table is not sorted at all, and indices are used instead of
sorting. This alternative is optionally used when the space utilization of the memory is

relatively low, while the processing resources of the preprocessing unit are relatively scarce.

56

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
Alternatively or additionally, this alternative is used for important columns instead of, or in
addition to, caching the column twice.

Selecting indices

Referring in more detail to determining (514) indices which are to be created for the
queries of the selected cluster, in some embodiments of the invention, resource governor 212
determines the amount of storage memory available for indices and creates indices according
to an importance order, until the memory available for indices is exhausted.

In some embodiments of the invention, each cluster is assigned a maximal amount of
memory for indices, optionally as a function of the number of queries in the cluster, their
types, their QoS priority, the cluster score and/or the amount of base memory (number of rows
and/or columns) the queries reference. Optionally, clusters with a higher cluster score are
given a larger amount of memory for indices. In an exemplary embodiment of the invention,
the amount of memory assigned for indices of a cluster is equal to the product of the memory
space required for the base data accessed by the cluster, the cluster score and a coefficient
which brings the memory for indices to a predetermined percentage of the total memory of
base data accessed by the cluster.

Alternatively, a fixed amount of memory is assigned for indices of all the clusters. The
available memory for indices of a specific cluster is optionally determined, in this alternative,
as the remaining memory for indices after the creation of the indices of the higher score
clusters.

In some embodiments of the invention, the memory amount for indices is revisited
after the amount of memory used for base tables in each memory unit 210 is determined. At
that time point, indices are added or removed as required. Optionally, during the determining
(514) of the indices to be created for each cluster, resource governor 212 determines one or
more possible indices which are to be created if during the revisiting of the amount of data for
indices it is determined that there is additional room for indices. Optionally, the possible
indices are ordered according to their priority.

In some embodiments of the invention, in determining the importance of indices,
greater weight is given to indices already existing in in-memory database 120. In some
embodiments of the invention, the importance of an index is determined according to the
frequency of queries that take advantage of the index, in the roster of queries. Alternatively or
additionally, the importance of an index depends on the extent to which the index reduces the

processing power required in order to carry out the query.

57

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
In some embodiments of the invention, the advantage of an index for a specific query

and data column is determined based on the access type performed by the query in accessing
the data column. Optionally, the access types are grouped in primary access type (pat) groups
for the simplicity of the index determination procedure. In an exemplary embodiment of the
invention, the access types include lookup (equality), range (using inequalities), order,
grouping, string matching and equi-join. In this embodiment, the primary access types may
include, for example, order (including range, order and string-matching), lookup (including
lookup and equi-join) and grouping (including grouping). In an exemplary embodiment of the
invention, a merge-join access type belongs to both the order and look-up primary access
types.

An exemplary method for selecting indices is now described with reference to Fig. 10.
It is noted, however, that the method of Fig. 10 is brought by way of example, and other
methods may be used to select the indices to be created, in accordance with the present
invention.

Fig. 10 is a flowchart of acts performed in determining which indices are to be used for
a cluster of queries, in accordance with an embodiment of the present invention. For each table
column group (cg) referenced by the cluster and for each possible access type (at), resource
governor 212 determines (550) a column-access score representative of the importance of
having an index for that access type, for the column group. The column-access score for a pair
(cg, at) is optionally equal to a sum of query scores of the queries in the cluster that reference
the column group (cg) using the access type (at). Optionally, the query scores used are the
scores described above with regard to assigning cluster scores. Alternatively, any other query
score may be used.

In some embodiments of the invention, for each column group (cg), resource governor
212 calculates (552) a column-group (cg) score, for example as the sum of the column-access
scores of all the different access types of the column, that have an access score above a
threshold value. Similarly, in some embodiments of the invention, all the following acts relate
only to access types that have an access score above the threshold. The relation only to access
scores above the threshold prevents wasting resources on low importance column access
types. Alternatively, the sum and/or following acts relate to all the access scores, even those
having a low value.

The access scores of all columns are optionally compared to the same threshold.

Alternatively, the threshold used for a specific column group (cg) is a function of the stability
58

10

15

20

WO 03/071447 PCT/1IL03/00137
of the table including the column group, so that indices are created for column groups of
relatively stable tables, as the indices may loose their validity due to changes in the table.
Optionally, the threshold for each table (T) is given by a fixed threshold value divided by a
stability factor of the form:

stabilityFactor(T) = 1 — (average number of updates for T / total number of rows of T).

In some embodiments of the invention, column groups are repeatedly selected (554)
according to their scores, and indices are selected for creation as is now described, until the
memory for indices of the cluster is exhausted (568).

For each primary access type (pat), a required-"pat"-score, which represents the
popularity of accessing the selected column group using the primary access type, is calculated
(556) for the selected column group. Optionally, the required-"pat"-score is calculated as the
sum of the column-access scores of the access types belonging to the primary access type
group. In some embodiments of the invention, one or more access types, such as the merge-
join access type, belong to a plurality of primary access type groups. In these embodiments,
the scores of access types belonging to a plurality of groups are optionally added with a
weighted sum to the respective groups. Optionally, the weights of the access type in all the
primary access type groups total to 1.

In addition, for each primary access type, a next-"pat"-score, which represents the
importance of indices already determined to be created (e.g., for previous clusters) for
accessing the selected column group using the primary access type, is optionally calculated
(560). A comparison of the next-"pat"-score and the required-"pat"-score for each primary
access type is optionally used in determining which indices are to be created for the column

group, if at all, as described below.

59

10

15

20

25

WO 03/071447 PCT/IL03/00137

Optionally, in‘calculating (560) the next-"pat"-score, for each index elected to be
created for the column group, the queries that reference the column for which the index was
created are determined, together with the access type used by each of these queries in
accessing the column. The next-"pat"-score is optionally calculated (560) as a weighted sum
of the query scores of the determined queries that use the primary access type for which the
next-"pat"-score is determined. The weights of the sum optionally represent the usefulness of
the index for the primary access type. In an exemplary embodiment of the invention, the

weights used are:

tree index hash index sorted index
order pat 1 0 1
lookup pat 75 1 5
grouping pat 75 75 1

Alternatively, for tree indices, the weight of queries that use the equi-join access type
1s lower than for other queries of the lookup primary access type, e.g., 0.5.

If (562) the next-"pat"-score is greater than the required-"pat"-score, or there is not a
substantial difference therebetween, for each primary access type, no additional indices are
required for the column group. Therefore, a next column group is optionally selected (554)
and the above determination of whether additional indices are required is repeated for the next
column group. If (562) the next-"pat"-score is substantially smaller than the required-"pat"-
score, for one or more of the primary access types, resource governor 212 determines whether
(563) a suitable index for closing the gap between next-"pat"-score and required-"pat"-score,
already exists (was created in previous sessions of resource governor 212), but was not already
elected. If (563) there is such an existing index for the column group, the existing index best
suited for closing the gap is elected (564), the next-"pat" score is updated (559) accordingly
and the comparison (562) of the next-"pat"-score and the required-"pat"-score is optionally
repeated. If (563), however, there is no suitable existing index, an index is determined (561) to
be created for the column, the next-"pat" score is updated (559) accordingly and the
comparison (562) of the next-"pat"-score and the required-"pat"-score is repeated.
Alternatively, only a single index is selected to be created for each column, and once an index

was elected (564 or 561) a next column group is considered.

60

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

The memory required for the indices determined to be created (including indices
already existent in in-memory database 120) is optionally reduced (566) from the amount of
memory available for indices of the cluster. If (568) there remains memory for an additional
index, the selection of indices is continued.

Optionally, in determining whether (568) there remains available memory for indices,
the index memory is considered full if the total memory of the selected indices is within a
predetermined margin from the amount of memory available for indices. Alternatively or
additionally, when the index memory is nearly full, resource governor 212 selects an index
which closely fills the index memory, even if there are indices with higher scores than the
selected index.

The type of index to be created is optionally determined (561) as the index which best
fills in the gap between the next-"pat"-score and the required-"pat"-score for each of the
primary access types. Optionally, an index type score is determined for each index type and an
index of the index type with a best score is selected.

In some embodiments of the invention, the index actually selected for the index type is
determined according to the column size of the column group for which the index is
generated. Optionally, the selection of the index depends on the width of the column group. In
some embodiments of the invention, for columns in which each row has a small fixed-length
width, such that each row can fit in its entirety to a cache of EMs 204, or EM 204 can
otherwise take advantage of the width of the column group, a cache sensitive (CS) index,
which takes into advantage the width of the column group, is used. In an exemplary
embodiment, for EMs 204 with current cache technology, column groups are considered
having a small fixed line-length if they have a width of up to 64 bits.

Optionally, for column groups having a width fitting into a small fixed-length, the CS
hash index is selected for the hash index type and the sorted index is selected for the sorted
index type. The CSB tree index is optionally selected for the tree index type, for columns that
have a relatively high update rate (volatile verticals) and the cache sensitive array (CSA) index
is optionally selected for the tree index type for columns having a low update rate (stable
verticals), or which are not expected to be updated at all.

Optionally, for column groups having a large fixed-length, the open hash index is
selected for the hash index type, the sorted index is selected for the sorted index type, and the

B+ tree index is selected for the tree index type. Optionally, for columns having a variable

61

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
length, the open hash index is selected for the hash index type, the sorted pointers index is
selected for the sorted index type, and the B+ tree index is selected for the tree index type.

Alternatively, the number of types of indices is limited, for example, in order to
simplify accelerator 110. For example, the open hash index may be used for all hash index
types instead of using the CS-hash index in some cases and/or the sorted pointer index-may be
used instead of the B-+tree index.

In some embodiments of the invention, when a column group is determined to be
accessed only using indices created for the column group, the column group itself is not
cached into in-memory database 120. Optionally, precedence is given to creating indices that
will make the caching of a column unnecessary. Optionally, the access type score for such
column groups is adjusted according to the gain in not caching the column itself.

Alternatively to assigning a plurality of indices to column groups with high scores
before low score column groups receive indices, only a single index (e.g., an index for an
access method with a best score) is selected for each selected column group. Only if there is
available memory space after all the column groups that have at least one access type with a
score above the threshold, received an index, is a second round of assigning indices to the
column groups performed.

Compilation

Referring in more detail to compiling the queries, it is noted that queries familiar to
accelerator 110 were already compiled previously and therefore, in some embodiments of the
invention, these queries are not provided to compiler 200 for compilation again. Alternatively
or additionally, after a predetermined time and/or if the current plan achieves low
performance, an additional compilation is performed in an attempt to generate a better plan.

Optionally, compiled execution plans are kept in plan depository 202 as long as the
data they relate to is cached in in-memory database 120. Alternatively or additionally, old
execution plans, e.g., plans prepared before at least a predetermined amount of time, and/or
plans prepared under different memory occupancy conditions, are discarded from plan
depository 202, so that their queries are recompiled.

Further alternatively or additionally, at least some compiled execution plans are kept in
plan depository 202 even after some or all the data to which they relate is removed from in-
memory database 120. In some embodiments of the invention, in accordance with this
alternative, execution plans are removed from plan depository 202 only when there is no room

in the instruction cache for new execution plans, which need to be stored therein.

62

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

Optionally, when a new execution plan needs to be written to plan depository 202 and
there is no available room therein, the execution plan with the least chances to be used in the
near future is overwritten. Optionally, the chances of an execution plan to be used are
determined according to the percentage of verticals referenced by the plan, which are not
currently in in-memory database 120. Alternatively or additionally, the determination is
performed based on the popularity of the query, the importance of the query and/or any other
relevant attribute. It is noted that in accordance with some embodiments of the present
invention, old execution plans may be used even when the data to which they relate changed
places in in-memory database 120, as the compilation is independent of the location of the
data in the memory.

In some embodiments of the invention, in which compiled plans are not necessarily
discarded when the data they reference is removed from in-memory database 120, resource
governor 212 verifies that the plan is valid, before using a plan from plan depository 202.
Optionally, verifying that the plan is valid includes checking that all the verticals and/or
indices the plan references are stored in in-memory database 120. Optionally, if one or more of
the verticals and/or indices are not available, the compiled plan is discarded. Alternatively or
additionally, if possible, the plan is adjusted to operate with other indices and/or other vertical
partitioning.

In some embodiments of the invention, the compilation of the selected queries is
performed after the selection (514) of indices for the cluster and/or the partitioning (515) of
tables into verticals. The compilation is optionally performed based on the available indices
and verticals. In some embodiments of the invention, the compilation is performed before the
following acts in Fig. 8, so that the compiled execution plans may be used in estimating (519)
the resources required in order to handle the queries of the cluster. Alternatively, the
compilation is performed in parallel to the acts of resource governor 212. Optionally, in this
alternative, responsive to selecting a cluster of queries, resource governor 212 passes to
compiler 200 the queries of the cluster for compiling, and continues in performing its tasks. In
some embodiments of the invention, resource governor 212 skips, when possible, some of the
tasks which require results from the compilation and performs other tasks (e.g., selection of a
next cluster) until the results of the compilation are received. Alternatively or additionally,
when resource governor 212 reaches act 522, it waits for the results of the compilation from

compiler 200.

63

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
In some embodiments of the invention, after each query is compiled, the resultant plan
is evaluated to ensure that the resources required by the plan are not too costly. Optionally, if
the resources required are too costly, the query is rejected (i.e., is determined not to be handled
by accelerator 110). In some embodiments of the invention, queries requiring more than a
predetermined amount of processing power and/or communication resources are considered
too costly.

Determining required resources of cluster

Referring in more detail to estimating (519) the resources required for handling the
queries of the selected cluster, in some embodiments of the invention, the determined
resources include the memory space required in order to store the base verticals accessed by
the queries of the selected cluster and the indices created for those base verticals. Optionally,
for verticals and indices currently in in-memory database 120, the memory resources required
are received from the in-memory database. For verticals not currently in in-memory database
120, in-memory database 120 optionally references an internally managed meta-data table,
which lists for each table of the database, the number of rows it has, the types of columns it
has and/or the minimum and maximum values. Alternatively or additionally, the
determination is performed by querying back end unit 114 and/or by estimating. The size of
indices not yet created are optionally estimated using formulas known in the art, for example
based on the number of columns in the vertical for which the index is created, the data type of
the columns and the created index type.

In some embodiments of the invention, as described above, accelerator 110 includes a
secondary memory unit in which some of the cached data may be stored. Optionally, data that
may be stored in the secondary memory is not counted in determining the available memory.
For example, verticals only included in projection lists may be stored in the secondary
memory substantially without affecting the acceleration benefit of accelerator 110. Such
verticals are optionally not counted in determining the available memory as they may be stored
in the secondary memory.

In some embodiments of the invention, the determined resources include the memory
space required to store intermediate results and/or final results. The memory for intermediate
results optionally also includes memory required for storing base verticals copied from one
memory unit 210 to another for a specific query. Optionally, the required intermediate
memory of a query plan is estimated based on results from previous executions of the plan.

Optionally, accelerator 110 records for each plan a peak intermediate memory space it

64

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
required. In some embodiments of the invention, the recording of the peak intermediate
memory is performed according to the specific constant values of the executed plan.
Alternatively or additionally, an average peak intermediate memory value is taken for all the
executed plans of the same query type (e.g., regardless of constants).

In some embodiments of the invention, the estimation of the intermediate memory
required is performed according to the size of the results of the query and/or the number of
times data is moved between memory units 210.

Further alternatively or additionally, the determined resources include the processing
power required to handle the queries of the selected cluster and/or an average processing
power required to handle a query of the selected cluster. Methods for estimating the
processing power of a plan were described hereinabove.

Further alternatively or additionally, the determined resources include the
communication resources required to handle the queries of the selected cluster.

Optionally, the estimation of the required resources determined for the cluster score is
used also for act (519) and the determination is not repeated. In some embodiments of the
invention, if the determination for the cluster score for a query was performed before the
indices for the query were selected, the determination is adjusted according to the results of
the index selection and vertical determination.

Verification that cluster meets constraints

In some embodiments of the invention, the estimated required resources are compared
to predetermined maximal values to determine whether the cluster meets predetermined
cluster constraints. Optionally, the comparison is performed for the intermediate memory, the
communication requirements and/or the processing load, as the clustering was performed
while taking into account only the base memory required.

If the intermediate memory required by the cluster is beyond an allowed amount, the
cluster is optionally broken into smaller clusters, as described hereinbelow with reference to
the generation of the clusters. The amount of memory allowed for intermediate processing is
optionally a predetermined amount which is the same for all clusters.

In some embodiments of the invention, the predetermined amount of intermediate
memory allowed to a single query depends on the maximal number of queries allowed to be
handled concurrently on an EM 204 (referred to herein as Conc_thread) and the amounts of
intermediate memory required by the queries of the cluster requiring the most intermediate

memory. Optionally, the sum of the estimated intermediate memory resources required by

65

10

15

20

25

30

WO 03/071447) PCT/1IL03/00137
Conc_thread queries of the cluster requiring the highest intermediate memory resources must
be lower than the total memory assigned for intermediate data in EMs 204. In some
embodiments of the invention, the amount of the intermediate memory resources is multiplied
by a fudge factor, e.g., between 0.6-0.8, which adds some leniency to the cluster size at the
price of a higher chance that the intermediate memory will be exhausted. Optionally, if the
intermediate memory is exhausted during operation, one of the plans being performed by the
EM 204 is stalled until the intermediate memory is freed for its continued operation.

Alternatively, the amount of memory allowed for intermediate data of a cluster
depends on the amount of memory required for the base verticals and indices of the cluster. In
an exemplary embodiment of the invention, the total base and intermediate data is required to
be beneath a predetermined value. Alternatively, the amount of intermediate data allowed to a
cluster increases with the actual base memory accessed by the cluster, as usually clusters with
larger base verticals require more intermediate memory.

In some embodiments of the invention, the processing power and/or communication
needs estimated for the cluster is compared to a predetermined maximal value (or values)
allowed for a cluster, for example the processing power and/or maximal communication
capacity of EMs 204. If the processing power and/or communication needs exceeds the
predetermined value, the cluster is optionally broken up. Alternatively or additionally, one or
more queries are removed from the cluster, and marked unfamiliar, in order to reduce the
processing load. In some embodiments of the invention, queries with the lowest score values
are removed. Alternatively or additionally, queries that have highest processing power and/or
communication requirements are removed. Optionally, the data required only by the removed
queries is released from in-memory database 120, or is not loaded into the memory.

It is noted that the comparison of the cluster-required resources to maximal values may
be performed at other stages, for example after the compilation is completed.

Referring in more detail to determining whether (516) accelerator 110 has resources
beyond those required for already selected clusters, in some embodiments of the invention,
resource governor 212 is configured with the maximal memory resources of in-memory
database 120. The sum of the memory resources required by all the selected clusters is
optionally compared to the maximal memory resources of in-memory database 120 to
determine whether another cluster is to be selected. In some embodiments of the invention, the

maximal memory resources configured into resource governor 212 are lower than the actual

66

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
size of in-memory database 120 by a safety margin, that lowers the chances that during
operation, the memory requirements will exceed the available memory.

In some embodiments of the invention, in determining whether there are enough
memory resources, the base memory resources and the intermediate memory resources are
considered together. Alternatively, the base memory resources and the intermediate memory
resources are compared separately to respective maximal values configured for each of them.
This alternative may be advantageous for cases in which the quality of the estimations of the
intermediate data and the base memory are different.

In some embodiments of the invention, clusters already determined to be cached are
considered for a second (duplicate) caching. A second caching is useful when the number of
times the queries of the cluster are expected to be received is very high. If a cluster is
duplicated, more than one EM 204 may execute similar queries. Optionally, in allowing for a
second selection of a cluster, after a cluster is selected it is not removed from consideration,
but rather its score is reduced.

Alternatively or additionally, for each cluster, resource governor 212 determines in
how many EMs 204 the data of the cluster is to be cached (if cached in more than one EM 204
the data is duplicated). Optionally, the determination is performed before the resources
required by the cluster are estimated (519) and the required resources reflect the number of
EMs 204 in which the data of the query is cached. In some embodiments of the invention, the
number of EMs 204 in which the data is stored increases with the expected processing
resources and/or communication needs of the queries of the cluster and decreases with the
memory the data of the cluster requires. In an exemplary embodiment of the present invention,
the number of EMs 204 caching a cluster c is determined as:

num_of_machines [c] = max (1, |[load(c) + cload(c)]/ mem(c) * k|)
in which load(c) is a normalized measure of the processing power required by the queries of
the cluster, cload(c) is a normalized measure of the communication needs of the queries of the
cluster, mem(c) is a normalized measure of the memory required by the data of the cluster and
k is a suitable constant. The processing power is optionally normalized by the maximal
processing power of any of EMs 204. The communication load is optionally normalized by a
maximal communication capacity of any of EMs 204. The required memory is optionally
normalized by the minimal memory size of memory units 210.

In some embodiments of the invention, a cluster is considered too large due to

processing power requirements if there are only fewer than num_of machines [c] EMs 204

67

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
that have lo(c) / num_of machines [c] available processing power. Optionally, if a cluster is
considered too large due to load it is partitioned into a plurality of clusters and/or queries of
the cluster are removed from the roster, for example, as described below with reference to Fig.
12.

In some embodiments of the invention, each selected cluster is required to have at least
a minimal cluster score. That is, if none of the candidate clusters have a high enough score, no
additional clusters are selected, so that the resources of the accelerator can be better utilized
for the queries of the selected clusters. Optionally, the minimal cluster score increases as the
available memory space of accelerator 110 decreases, so that it is harder for a low score cluster
to be selected when there is less room in the accelerator. Alternatively or additionally, the
minimal cluster score increases with the expected processing power load of the already
selected clusters. Further alternatively or additionally, when the score difference between the
most recently selected cluster and the next cluster on line is very large, the selection process is
terminated.

In some embodiments of the invention, if available memory remains after completing
the selection of clusters, resource governor 212 revisits the indices determination, allowing
creation of additional indices in the available memory. Alternatively or additionally, when the
available resources are slightly short in order to select an additional cluster with a high score,
resource governor 212 revisits the indices determination, reducing the number of indices
allowed to one or more of the selected clusters, in order to make room for the additional
cluster. Optionally, in determining (514) the indices, resource governor 212 prepares a list of
indices ordered according to their priority. In some embodiments of the invention, the list
includes one or more indices at stand-by. When resource governor revisits the index
determination it simply adds or removes one or more indices from the list of the cluster.

In some embodiments of the invention, in determining (514) the indices, each index is
given a global score of importance comparable to indices of other clusters. In the revisiting
process, if a cluster has a selected index with a lower score than a stand-by index of a different
cluster, the index selection is changed.

In some embodiments of the invention, after queries are compiled, the estimations of
their cost (i.e., required processing power and/or time) are compared to more accurate data
available from the compilation. If, in view of the more accurate data, the query would not have
been selected, the query is marked rejected. The data required only for rejected queries is

removed from the memory and splitter 112 is optionally notified that the queries are rejected.

68

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
Alternatively, only queries that would not have been selected in view of the more accurate
data, by a predetermined margin, are rejected. In this alternative, processing resources are not
wasted on rejecting queries that the mistake in their selection is small.

Alternatively or additionally, if in view of the more accurate cost estimates there is
room for more queries, the queries collected by splitter 112, but not included in the roster, are
revisited. Queries that relate to data determined to be cached by in-memory database 120 are
optionally compiled and added to the queries to be considered familiar. The addition of
queries not included in the roster is optionally performed according to the amount of
processing resources available. By revisiting the queries not included in the roster, the number
of queries being compiled, not according to the decision making of the method of Fig. 8, is
reduced. Optionally, the queries not included in the roster are compiled only when compiler
200 has free resources and the data placement determination does not wait for the compilation
of these queries. Alternatively or additionally, at least some of the queries not included in the
roster are added to the queries, which were related to in the data placement.

Data placement

Referring in more detail to determining (522) in which of memory units 210 each of
the cached portions of the database is to be positioned, in some embodiments of the invention,
all the verticals referenced by a selected cluster are positioned in a single memory unit 210.
Optionally, when a vertical is referenced by queries of two or more different clusters, the
vertical is replicated in each of the memory units 210 hosting data of a cluster referencing the
vertical. Alternatively or additionally, all the verticals referenced by a selected cluster are
positioned in a single memory unit 210, except those verticals already positioned in a different
memory unit 210.

In some embodiments of the invention, the positioning of the data in machines 204 is
determined in a manner that distributes the processing and/or communication load between the
machines as evenly as possible, based on the statistics of the query roster. Optionally, the
verticals loaded into a single memory unit 210 are such that the processing power and/or
communication needs required to resolve the executable queries that manipulate the loaded
verticals, according to the query distribution in the roster, does not exceed the processing
power and/or communication capability of the machine 204 of the memory unit 210.
Alternatively or additionally, splitter 112 keeps track of the amount of queries passed to
accelerator 110. When the load on one or more of the EMs 204 is expected to be very high,

69

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
splitter 112 passes familiar queries which would be passed to that EM 204 to database server
104,

In some embodiments of the invention, volatile (i.e., non-stable) verticals of a single
table are optionally positioned in a single memory unit 210, if possible, in order to simplify
the updating of the verticals when necessary. Optionally, the importance given to placing
volatile verticals of a single table in the same memory unit 210, is a function of the stability of
the table.

In some embodiments of the invention, the determination (522) of the positions of the
database portions is performed after the compilation of clusters is completed. Optionally, in
these embodiments, the values of the resource measures used in positioning the database
portions in memory units 120 are values determined the compilation of the queries.
Alternatively, the determination of the positioning of the database portions of each cluster is
performed after the selection of the cluster, before, or in parallel to, the compilation of the
queries of the cluster. In this alternative, the positioning is performed based on estimates of
the resources required for the database portions, optionally the same estimates used in
selecting the clusters.

Fig. 11 is a flowchart of acts performed in determining (522) in which of memory units
210 each of the portions of the database is to be positioned, in accordance with an exemplary
embodiment of the present invention. The determination of the placement of the cached
portions of the database optionally starts with (580) a listing of the current éontents of each of
memory units 210 and a list of the selected clusters. In some embodiments of the invention,
base verticals, in memory units 210, that are not referenced by the selected clusters are marked
(582) to be removed from the in-memory database 120. Optionally, the available memory in
each memory unit 210, after removing the marked verticals, is determined (584). A pair of a
cluster and a memory unit 210 that have a largest amount of common data is optionally chosen
(586).

If (588) the available memory in the memory unit 210 of the chosen pair is sufficient
for all the verticals referenced by the cluster of the chosen pair, the verticals referenced by the
chosen cluster are assigned (592) to the chosen memory unit 210. If (588), however, the
available memory is not sufficient, verticals of one or more other clustérs, with lower cluster
scores, are marked (590) to be removed from the memory unit 210, in order to make room for
the verticals of the chosen cluster. In some embodiments of the invention, if it is not possible

to remove from the memory unit one or more verticals which provide sufficient space for

70

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
storing the data of the chosen cluster, the chosen cluster is skipped and a different pair of
cluster and memory unit is chosen (586).

The choosing (586) of a pair of cluster and memory unit 210 is optionally repeated,
until all the verticals referenced by the selected clusters are assigned to memory units.

Referring in more detail to choosing (586) a pair of a cluster and a memory unit 210, in
some embodiments of the invention, in choosing the pair, it is verified that room in the chosen
memory unit 210 is available or can be made available, for example by removing data
accessed by clusters having a lower cluster score, for the verticals of the chosen cluster.
Otherwise, the pair of cluster and memory unit are not chosen and a pair for which sufficient
memory is available is optionally chosen, even if the pair has a lower amount of common data.

In some embodiments of the invention, the choosing of a pair of a cluster and a
memory unit 120 is performed by determining for each combination of a cluster and a memory
unit 120, the size of the verticals and indices currently stored in the memory unit which are
referenced by at least one of the queries of the cluster. Optionally, if two or more cluster and
memory unit combinations have substantially the same size of their common verticals and
indices, the cluster with the higher cluster score is chosen.

Optionally, if one or more clusters remain that cannot have their data stored in a single
memory unit 210, an attempt is made to break these clusters into smaller clusters. If one or
more clusters cannot be broken up efficiently (i.e., without having queries closer to each other
than to other queries in their cluster being in different clusters), the data of these clusters is
distributed between a plurality of memory units. In some embodiments of the invention, for a
cluster whose data is to be distributed between memory units 210, the resource governor 212
determines which data referenced by the cluster is expected to be used the least, and this data
is placed in a separate memory unit 210. Optionally, if the difference between the available
space for data of the cluster and the volume of the data referenced by the cluster is relatively
small, resource governor 212 cancels one or more of the indices of the data of the cluster, in
order that the data fit in the available memory space.

Alternatively or additionally, one or more of the selected clusters or some of the
queries of the one or more selected clusters are rejected and the data they require is not loaded
into in-memory database 120. Optionally, whether the data of a cluster will be distributed
between a plurality of memory units 210 or one or more queries will be rejected, is determined
according to the average processing load expected for the selected clusters. When the expected

load is relatively high, the number of rejected queries is optionally accordingly large. On the

71

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
other hand, when the expected load is relatively low, the number of rejected queries is low, or
even no queries are rejected. Alternatively or additionally, whether the data of a cluster will be
distributed between a plurality of memory units 210 or one or more queries will be rejected, is
determined according to the number of memory units 210 which are needed to store the data
of the cluster. If the data of the cluster needs to be stored in more than a predetermined
number of memory units 210, queries of the cluster are optionally rejected.

Alternatively to choosing pairs of clusters and memory units 120 according to the
absolute amount of common memory, the pair with the highest percentage of data already
stored in the memory unit 120, is chosen. Further alternatively or additionally, the clusters are
chosen according to their cluster score, and for each cluster, a memory unit 120 with a highest
common memory with the cluster, is chosen to host the cluster. Further alternatively or
additionally, the clusters are chosen according to the amount of data they reference, such that
the cluster with the largest amount of data is assigned to a memory unit 120 before clusters
referencing lower amounts of data. In some embodiments of the invention, the cluster to be
handled next is determined based on a weighted sum of scores given according to a plurality
of the above mentioned considerations.

Referring in more detail to assigning (592) verticals to the selected memory unit, in
some embodiments of the invention, those verticals already stored in other memory units 210
are marked to be removed from their old memory units 210.

Referring in more detail to marking (590) verticals of one or more other clusters to be
removed from the memory unit 210, the verticals marked to be removed are optionally those
which belong to a cluster having a lowest correlation (i.e., a cluster whose queries relate the
least to the verticals accessed by the current cluster) to the memory unit 210. Alternatively or
additionally, the verticals marked to be removed are selected according to their size so that
they substantially precisely provide the required space. Further alternatively or additionally, no
specific verticals are marked to be removed, but rather the available space of the memory unit
210 is marked as being in deficit. In selecting consequent pairs, the deficit in the available
space of the memory unit 210 is taken into account. That is, verticals of clusters assigned to
other memory units 210 will be marked to be removed from the memory unit 210, thus
leveling the available space of the memory unit 210 with the data assigned to the memory unit.

In some embodiments of the invention, the verticals assigned to each of the memory
units 210 are reviewed in order to make sure that two copies of the same vertical are not

placed in the same memory unit 210, for different clusters. If such verticals are found, one of

72

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
the copies is eliminated. Alternatively or additionally, when verticals are placed into EMs 204,
it is verified that the queries to be handled by each EM 204 do not exhaust the resources (e.g.,
processing power, communication capacity) of the EM.

Generating coloring sets

In some embodiments of the invention, in determining (522) the positioning of the
verticals, resource governor 212 generates coloring sets, as defined above with reference to
Fig. 5, for some or all of the queries in the selected clusters.

In some embodiments of the invention, generating the coloring sets for a query
comprises determining all the verticals referenced by the query. For each vertical referenced
by the query, all the memory units 210 hosting a copy of the vertical are determined. One or
more minimal groups of memory units 210 (i.e., including the smallest number of memory
units 210 possible), which host all the verticals required by the query, are determined. For one
or more of the determined minimal groups of memory units 210, a mapping of verticals to the
memory units of the group is determined, to form respective coloring sets. In some
embodiments of the invention, coloring sets are generated for each determined minimal group
of memory units 210, so that the selection by dispatcher 206 of an optimal coloring set uses a
largest span of possibilities. Alternatively or additionally, the number of coloring sets is
limited to a predetermined maximal number (e.g., 5-10), in order to limit the resources spent
on the optimization.

In the method of Fig. 8, the determination of which verticals (515) and indices (514)
are to be created for a cluster, is performed only after a cluster is selected. Thus, processing
resources are not wasted on clusters not selected. Alternatively, the selection of verticals and
indices is performed for all the clusters, before the selection of clusters. Thus, the information
generated during determination of verticals and indices of the queries of the roster can be used
in better estimating the parameters of the scores of the clusters.

Referring in more detail to updating (524) the contents of in-memory database 120
according to the determination, in some embodiments of the invention, implementing the
changes is commenced after completing the determining (522) of the positioning of the
portions. Alternatively, implementing the changes is commenced at a predetermined time after
the previous implementation of changes was performed.

In some embodiments of the invention, implementing the changes is performed
gradually (e.g., for each EM 204 separately) while allowing accelerator 110 to continue its

operation throughout the implementation of the changes (e.g., those EMs 204 not currently

73

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
being changed). Optionally, the changes are implemented sequentially in the memory units
210. In some embodiments of the invention, a first memory unit 210 is selected for
implementing the changes. The queries to be affected by the changes in the selected memory
unit 210 are marked as unfamiliar and splitter 112 is notified accordingly. Optionally, queries
that are affected by the changes only temporarily are marked as frozen, until the data they
require is reinstalled in one or more other memory units 210. The data in the selected memory
unit 210 that is not to be moved to any other memory unit 210 is discarded. Data to be
removed to other memory units 210 is optionally transferred to a temporary storage unit, for
example a secondary disk, for retrieval by other memory units 210.

Thereafter, the data to be imported to the selected memory unit 210 is loaded into the
memory unit. Data imported from other memory units 210 is discarded from these memory
units, unless the data was indicated as being cached twice. In some embodiments of the
invention, the data is erased only when the storage space occupied by the data is required for
other data. Optionally, the discarding of the data is performed only after the update in memory
unit 210 is complete. The indices required to be created for memory unit 210 are created by in-
memory database 120 and stored in the memory database. The queries that can be handled by
memory unit 210 in view of the changes are then marked as familiar and splitter 112 is
notified accordingly.

The above implementation process is optionally repeated for each of memory units 210
until the update of accelerator 110 is completed. In some embodiments of the invention,
memory units 210 are selected according to the amount of data they discard completely (not
transferred to other memory units 210) and the amount of data they retrieve from other
memory units 210, such that the selected memory units require the least temporary memory
space.

Alternatively or additionally, the implementation of the changes is performed
intermittently for different memory units 210, in a manner which minimizes the required
temporary memory. Optionally, queries not supported by accelerator 110 according to the new
decisions are marked unfamiliar and their data is removed from the memory units 210.
Thereafter, data is moved between memory units 210 according to the available memory in the
memory units 210. In some embodiments of the invention, the order in which the update is
performed (e.g., which data is cached first and which later) is determined together with the

determination of the placement of the data in the memory units 210.

Clustering
74

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

Fig. 12 is a flowchart of acts performed during a clustering procedure, in accordance
with an embodiment of the present invention. An arbitrary query is selected (600) as a hub for
a first cluster. A query with a farthest distance from the first hub, e.g., not relating to any
common tables, is optionally selected (602) as a second hub for a second cluster. Each of the
remaining queries is then assigned (604) to the cluster whose hub is closest to the query.

An average hub radius (R) is calculated (606) as half the distance between the hubs. If
(608) there exists in one of the clusters a query whose distance from the hub of the cluster is
greater than the average hub radius R, a query in the cluster, optionally the query which is
farthest from the hub, is selected (610) as an additional hub for an additional cluster. All the
queries, in any of the other hubs, which are closer to the additional hub than to the hub of the
cluster to which they belong are re-assigned (612) to the additional cluster.

The average hub radius R is recalculated as half the average distance between all the
hubs (hy), e.g., R=% Zd (h;,hj) , where n is the number of clusters. Steps 608, 610 and 612

i#j
are optionally repeated for the new value of R, until there are no queries whose distance from
the hub of their cluster is greater than R.

For each of the resultant clusters, resource governor 212 estimates (614) the memory,
processing and/or communication requirements of the cluster. If (616) the memory, processing
and/or communication requirements of a cluster C are greater than a predetermined maximal
allowed value for clusters, the queries of cluster C are partitioned (618) into a plurality of
clusters.

Referring in more detail to selecting (600) a hub for the first cluster, alternatively to
selecting an arbitrary query, a most popular query, or a highly popular query, is selected.
Further alternatively or additionally, a query which references a relatively small amount of
data is selected such that the hub is relatively distinct and will gather a relatively small amount
of queries around it. Alternatively, a query which references a relatively large amount of data
is selected in order to form a relatively large cluster for the initial two cluster distribution.
Further alternatively, a query already familiar to accelerator 110 is selected, such that the first
cluster centers around a query already familiar to accelerator 110.

In an exemplary embodiment of the invention, a weight function of queries is defined
as a function of the popularity of the query and the access needs of the query. The weight

function optionally represents the importance of the access needs of the query. In some

75

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
embodiments of the invention, the hub for the first cluster is selected as the query with the
heaviest weight.

Referring in more detail to selecting (602) a second hub or selecting an additional hub
(610), optionally, if a plurality of queries are at a same farthest distance from the first hub, a
highly popular query, a query which references a specific amount of data, a query of a certain
operand, a heaviest query and/or a query of any other specific attribute is selected.
Alternatively or additionally, a heaviest query whose distance exceeds the average hub radius,
is selected.

Referring in more detail to estimating (614) the memory requirements of the clusters,
in some embodiments of the invention, the estimated memory requirements include only the
memory required for base columns. Alternatively, the estimated memory includes also the
memory required for indices of the base columns and/or memory required for intermediate
results. Optionally, resource governor 212 determines, for each cluster, the data columns
referenced by the queries of the cluster. For those data columns already in in-memory database
120, the required memory for the columns is received precisely from in-memory database 120.
For other data columns, an estimate of their size is optionally received generated by in-
memory database 120.

Optionally, the memory required for indices and/or the required intermediate memory
is estimated as a predetermined percent of the memory of the base columns. Alternatively or
additionally, the memory for indices and/or for intermediate results is estimated according to
the number of columns referenced by the queries of the cluster and/or the types of operations
performed by the queries of the cluster. Further alternatively or additionally, the memory
requirements are estimated according to any of the methods described above.

Referring in more detail to partitioning (618) a large cluster into smaller clusters,
optionally the partitioning is achieved by performing the acts 600-612 on the large cluster.
Optionally, in partitioning, a smaller distance than the radius is used in determining (608)
whether to generate another hub. For example, a fraction of the average radius may be used,
e.g., 60-80%. Alternatively or additionally, for example when acts 600-612 do not succeed to
partition the cluster, the size of the cluster is reduced by removing some of its queries from the
roster. The queries removed from the roster may include, for example, queries which relate to
large amounts of data and/or low importance queries. Alternatively or additionally, the
removed queries include queries that relate to data needed by only few queries, such that by

removing only few queries from the roster the data they require does not need to be cached.

76

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
Further alternatively or additionally, the cluster is partitioned arbitrarily into two or

more clusters by selecting two queries farthest from each other as hubs and assigning each of
the other queries to the closest hub. Further alternatively or additionally, for example when the
partitioning (618) is required due to the cost of the queries, the data of the cluster is cached
twice.

In some embodiments of the invention, instead of using the above method which may
frequently change the clustering of the queries familiar to accelerator 110, a method which
attempts to keep previously determined clusters is used.

In an exemplary embodiment of the present invention, in determining the clusters, the
clusters currently used by accelerator 110 are used as a starting point. From each cluster, the
queries not in the new roster are removed. If the hub was removed, a different hub is selected
for the cluster. Thereafter, the unassigned new queries in the roster are assigned to the clusters
according to the distances from the hubs, for example as described above with reference to
Fig. 12. Alternatively, all the queries in the new roster, which are not hubs, are reassigned to
the new set of hubs.

In some embodiments of the invention, when all the queries of a cluster are not in the
new roster the cluster is canceled. Alternatively or additionally, when a cluster has fewer than
a predetermined number of claims, relates to fewer than a predetermined number of columns
and/or lost more than a predetermined percentage of its queries and/or its data, the cluster is
deleted. The queries of the deleted clusters are then optionally assigned to other queries along
with the new queries in the cluster.

In some embodiments of the invention, when a hub is removed from a cluster, the
replacement hub is selected as the query closest to the removed hub. Alternatively, the
replacement hub is chosen as the heaviest hub in a proximity of the removed hub, for example
within the radius of the hub as calculated for its old query members, before or after removing
the queries not in the new roster. Further alternatively or additionally, the new hub is chosen
based on any other compromise between selecting a high weight and selecting a close query.

Optionally, the method of Fig. 12 from act 606 and on, is applied to the resultant
clusters in order to refine the clusters and/or break up large clusters. Alternatively, only the
acts 614, 616 and 618 are performed, in order to limit the changes of the clusters only to cases
when the changes (e.g., partitioning of a cluster into two) have a significant effect.

In some embodiments of the invention, the method of Fig. 12 is used at start up and/or

during a warm up period, while a method which uses previous clusters is used at other times.

77

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
Alternatively or additionally, the method of Fig. 12 is used periodically, for example every 50
determination sessions of resource governor 212, so as to allow for changes in the state of
accelerator 110, without the attempt of proximity keeping accelerator 110 in a local
maximum.

In some embodiments of the invention, compiler 200 generates a plurality of compiled
plans for at least some of the queries. For example, one plan may be generated to optimize
throughput while another plan is generated so as to optimize response time. The determination
of which plan is used is optionally performed responsive to an accelerator mode. Optionally,
when system 100 is loaded, throughput mode is used to reduce the load, while when system
100 is relatively not loaded, response time mode is used to provide faster response times.

Alternatively or additionally, different plans may be used for different constant values
of the query and/or for different query priorities.

Although in the above description, for simplicity of the description, only a single
splitter 112 was mentioned, in some embodiments of the invention, accelerator 110 may
operate with a plurality of splitters. The roster is optionally generated by combining the data
from different splitters. In some embodiments of the invention, different splitters are assigned
different importance priorities and the queries from different splitters are given different
importance scores.

In some embodiments of the invention, accelerator 110 manages predetermined plans
for resolving concurrently batches of popular queries of specific characteristics. Optionally,
queries that can be resolved by one of these batch plans are accumulated, by dispatcher 206,
for a predetermined time (e.g., 0.1-0.5 seconds). Thereafter, all the accumulated queries are
resolved together in a single running of the batch plan. Optionally, high importance queries of
types that can be handled by batch plans are handled separately in order to achieve fast
response times for these plans.

In some embodiments of the invention, splitter 112, and/or an intermediate
preprocessor between splitter 112 and dispatcher 206, break up some or all of the familiar
queries into query fragments that, at least some of which, can be easily handled in batch
processing. Those query fragments that can be resolved by batch plans and the remaining
fragments are resolved as described above for regular queries. The results of the query
fragments are then combined, for example, by a posi-processor. The resolving of query
fragments in batches achieves a much higher throughput of queries as the data may be

reviewed once for a plurality of queries. The fragmentation is optionally performed using any

78

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
of the methods described in PCT application PCT/IL02/00135 or in Israel patent application
145,040, filed August 21, 2001, the disclosures of which documents is incorporated herein by
reference.

As described above, in some embodiments of the invention, in addition to determining
which data is to be cached, the resource governor determines indices not included in the
database which are to be created by the accelerator. In other embodiments of the invention, the
accelerator only caches indices already available from the accelerated database. In still other
embodiments of the invention, the determination of data to be created by the accelerator may
optionally include data types other than indices, such as table views, as described, for example
in U.S. patent applications 2002/0077997 and 2001/0013030 to Colby, et al., the disclosures of
which are incorporated herein by reference.

In some embodiments of the invention, for each popular query determined to be cached
by the accelerator, the resource governor determines portions of the query (referred to herein
as predicates) that repeat in many queries. The repeating of the queries in this regard is
optionally complete, e.g., predicates which are the same except for relation to different
constants are considered different predicates. Optionally, predicates depending on
intermediate results (which are not themselves views) are not considered in determining
predicates for preparing views.

Alternatively or additionally, the determined predicates are ones that require relatively
high amounts of processing (e.g., computing, communication and/or memory) resources.
Optionally, the resource governor then determines for which of the determined predicates to
prepare a view and/or to define them as requiring a view such that during execution of a first
query requiring the view, the view is generated and stored for further use by other queries. In
some embodiments of the invention, views are created for all the predicates determined to be
suitable for creating views. Alternatively, a predetermined amount of memory is assigned for
views and views are created in an amount filling the predetermined amount of memory for
views. Alternatively or additionally, the number of views created is determined according to
the amount of processing resources available for creating the views. In some embodiments of
the invention, views not created before query resolution due to lack of preparation processing
resources are indicated to be created during query resolution. Alternatively, views are created
only when there are sufficient resources to create the view before the processing.

In some embodiments of the invention, each predicate is given a view score

representing the advantage in preparing a view for the predicate. The predicate score is

79

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
optionally a function of the popularity of the queries including the predicate and the saving in
processing resources by preparing a view for the predicate. Optionally, views are created for
predicates having a score above a predetermined threshold. Alternatively or additionally,
views are created for a predetermined number of predicates, provided they have at least a
given score.

For each predicate determined to be created, the resource governor optionally
determines the structure of the vertical including the view. The structure of each created view
is optionally determined according to the table columns required with the column(s) of the
view in the projections of the predicates for which the view is created.

In some embodiments of the invention, the determination of which views are to be
created is performed before the selection of indices to be created, such that the created views
participate in the selection of indices to be created. Optionally, when an index is determined to
be created for a view table, the index and table are generated in a minimal number of passes
over the base tables from which the view is generated. In some embodiments of the invention,
the index score given to views reflects the savings in generating the index together with the
view.

Alternatively or additionally, if there are constant-based filters that filter rows from the
result of the predicate, an index is created for the view. The type of index is optionally
selected according to rules described above regarding index selection.

For example, for the query:

select "FromProjectID" ,"ProjectID" ,"ProjectName",

"ToProjectID" ,"DefaultMember"

from "InterProjectSubmitt" ,"Project” where "ProjectID" ="ToProjectID"

and "FromProjectID" = ?? ;
a pre-calculated view including all rows from both tables that satisfy ProjectID = ToProjectID
is created. In addition, a hash index for the condition: FromProjectID = ?? that points into the
pre-calculated view is optionally created.

The resource governor optionally notifies the compiler on the available views. The
compiler optionally checks the queries being compiled whether the compiled version can use
an available view. If an available view may be used, the compiler optionally determines
whether it is worthwhile to use the pre-calculated view and accordingly compiles the query.
Alternatively, the information on the pre-calculated views that can be used instead of

performing one or more predicates of the query, is transferred to dispatcher 206, which

80

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
optionally determines whether the view is to be used, for example based on the EM 204 in
which the view is stored.

In some embodiments of the invention, the views are stored with the predicate
according to which they are created, for refresh purposes. Optionally, each time a refresh is
initiated for any of the base tables from which the view was created, the view is refreshed,
using the predicate of the view. Alternatively, view tables are refreshed at a lower rate than
regular tables. It is noted, however, that in most cases the cost of refresh of views is of the
same order as of base vertical refresh.

In an exemplary embodiment of the invention, the refresh process for views of the join
predicate includes:

1. for inserts to a base table — the predicate that constructs the view is applied to

the inserted row and the result (if any) is added to the view table.

2. for updates of a base table — the predicate that constructs the view is optionally

applied to the base-table row that is affected by the update.

3. for a delete in a base table — the predicate is applied to the deleted row values

and if there is a row in the view that matches the deleted row — this row is

removed from the view.

In an exemplary embodiment of the invention, the refresh process for views of the
group-by predicate includes:

1. Inmsert — the predicate is applied to the inserted row, if its values match one of

the view rows, the column that keeps the aggregate will be updated with the

value from the new row. It is noted that the base table is optionally not involved

in this operation at least for count, sum, average, min and max aggregators.

2. Update — the view is rebuilt. Alternatively, the refresh mechanism keeps track

of old values of the table for update purposes.

3. Delete — the view is rebuilt. Alternatively, the refresh mechanism determines

whether the deleted row was an only row in the group, in which case the group

is deleted, while otherwise the aggregation is updated.

In an exemplary embodiment of the invention, for join predicates, the pre-calculated
view is built in the following way: for each peer (or triplet or quadruple or more) of rows that
satisfies the join condition there is an entry in the view that contains the columns that
participate in this join, columns that are needed for projection and columns that are needed for
additional filtering.

81

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137

For example, for the following query:

Select t1.c3, t2.c7, t3.c8 from t1, t2, t3 where tl.cl = t2.c3 and t2.c4 = t3.c5 and t2.c11 = 80;
a view may be created for the predicate: tl.cl = t2.c3 and t2.c4 = t3.c5. The view will
optionally include the columns: tl.c3, t2.c7, t3.c8, tl.cl, t2.c3, t2.c4, t3.c5. The view will
optionally be built by executing the predicate and taking all rows that fit the join predicate. In
some embodiments of the invention, an index is created for the view on the t2.c11 column.

Optionally, every time when a new query that contains the predicate that could be
satisfied by the created view is received by the accelerator, the compiler evaluates if the best
way to resolve the query is use of the view (e.g., based on cost) and if so, the compiler will use
the view instead of base tables.

Optionally, the pre-calculated view for a join predicate won’t be created if the result
view is a Cartesian product of tables. Alternatively or additionally, the pre-calculated view is
created if the join includes a key and a foreign key comparison.

In some embodiments of the invention, views are optionally generated for group-by
predicates used for aggregations (sum, average, count). Views are optionally calculated and
stored for further use if there is an expectation to receive a sufficient number of queries
gaining from using the view.

Referring for example to the query:

Select a.name, a.aid, p.name, p.pid, sum(qty) from orders o, products p, agents a
where o0.pid = p.pid and o.aid = a.aid and o.cid in (‘c002’,’c003)
Group by a.aid, a.name, p.pid, p.name;

In the pre-calculation stage, a first view that satisfies the predicate o.pid = p.pid and
o.aid = a.aid is optionally created, with the columns a.name, a.aid, p.name, p.pid and o.cid (this
view may be discarded if there is a low expectation for queries directly using it). Then, the
resource governor optionally performs the grouping and calculates the prescribed sum. A view
that contains a.name, a.aid, p.name, p.pid, o.cid and sum(qty) is then optionally created.
Optionally, the filtering predicate “o.cid in” creates an index (we don’t use constants for view
creation) to this view.

When the query is received by the accelerator, the index is used to find all view rows
that match the filter and then the columns a.name, a.aid, p.name, p.pid and sum from these
rows are returned to the user.

In some embodiments of the invention, if the group by clause has a “having”

component with a constant (e.g. having sum(qty) > 1000), the resource governor does not

82

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
create the pre-calculated view. Alternatively, the RG evaluates from queries arriving, if this
constant value remains the same for a substantial number of queries from the same type or is
changing from query to query. If the value remains the same, the pre-calculated view is
optionally created.

In some embodiments of the invention, pre-calculated views are created for the order-
by predicate, when the order-by predicate appears in queries in conjunction with other specific
predicates (e.g., join, group by). Optionally, if the queries contain an order by clause, the pre-
calculated view is held in a sorted form.

It will be appreciated that the above described methods may be varied in many ways,
including, performing a plurality of steps concurrently, changing the order of steps and
changing the exact implementation used. For example, the vertical decomposition may be
performed before the index selection instead of after and/or the compilation of queries may be
performed before the index selection and/or the vertical decomposition. In addition, some of
the acts, for example in the method of Fig. 8, may be repeated or revisited in view of
additional information from other acts. It should also be appreciated that the above described
description of methods and apparatus are to be interpreted as including apparatus for carrying
out the methods and methods of using the apparatus. Headers placed in the summary and/or in
the detailed description are used only for the convenience of the reader and in no way limit the
scope of the invention.

The present invention has been described using non-limiting detailed descriptions of
embodiments thereof that are provided by way of example and are not intended to limit the
scope of the invention. For example, many different scores than those described above may be
used in selecting queries. It should be understood that features and/or steps described with
respect to one embodiment may be used with other embodiments and that not all embodiments
of the invention have all of the features and/or steps shown in a particular figure or described
with respect to one of the embodiments. Variations of embodiments described will occur to
persons of the art. It will be appreciated that not all the aspects of the invention need be
implemented together and that an accelerator and/or database system may be improved by
implementing one or several of the aspects, even without implementing others of the aspects.

It is noted that some of the above described embodiments may describe the best mode
contemplated by the inventors and therefore may include structure, acts or details of structures
and acts that may not be essential to the invention and which are described as examples.

Structure and acts described herein are replaceable by equivalents which perform the same

83

WO 03/071447 PCT/IL03/00137
function, even if the structure or acts are different, as known in the art. Therefore, the scope of
the invention is limited only by the elements and limitations as used in the claims. When used
in the following claims, the terms "comprise", "include", "have" and their conjugates mean

"including but not limited to".

84

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
CLAIMS

1. A database server accelerator, comprising:

a plurality of query execution machines, adapted to resolve database queries;

a plurality of respective memory units, adapted to cache data from the database, each
memory unit being accessible only by its respective execution machine; and

a data-manager adapted to determine the data to be cached in each of the plurality of

memory units.

2. An accelerator according to claim 1, wherein the plurality of execution machines are

included in a single casing.

3. An accelerator according to claim 1, comprising a query dispatcher adapted to provide

queries to the plurality of query execution machines.

4. An accelerator according to claim 3, wherein the query dispatcher is adapted to provide
at least some of the queries to a plurality of execution machines which jointly resolve the at

least some queries.

5. An accelerator according to claim 3, wherein the query dispatcher is adapted to select
one or more query machines to perform a query, at least partially according to the data referred

to by the query and the data stored in the memory units.

6. An accelerator according to claim 1, wherein at least one of the execution machines

comprises a plurality of processors.

7. An accelerator according to claim 6, wherein each of the plurality of processors of a
specific execution machine can access all the address space of the respective memory unit of

the execution machine.

8. An accelerator according to claim 6, wherein at least one of the processors of a specific
execution machine can access only a portion of the address space of the respective memory

unit of the execution machine.

85

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

9. An accelerator according to claim 1, wherein at least two of the execution machines

have different processing powers.

10. An accelerator according to claim 1, wherein all the execution machines have the same

processing power.

11. An accelerator according to claim 1, wherein at least two of the memory units have

different storage space.

12. An accelerator according to claim 1, wherein all the memory units have the same

storage space.

13. An accelerator according to claim 1, wherein at least two of the execution machines are

adapted to resolve different types of queries.

14. An accelerator according to claim 1, wherein the data-manager is adapted to have each

memory unit cache only data not stored in any of the other memory units.

15. An accelerator according to claim 1, wherein the data-manager is adapted to have at

least two memory units store at least one common data portion.

16. An accelerator according to claim 15, wherein the data-manager is adapted to have at

least two memory units cache the same data.

17. An accelerator according to claim 1, comprising a compiler adapted to convert queries
provided to a plurality of the execution machines into operator statements executable by the

machines.
18. An accelerator according to claim 1, wherein the data-manager is adapted to determine

the data to be cached according to a roster of queries recently received by a system including

the accelerator.

86

10

15

20

25

30

WO 03/071447 PCT/1IL03/00137
19. An accelerator according to claim 18, wherein the data-manager is adapted to
determine the data to be cached based on the response times of the accelerator and at least one

database server to at least one of the queries of the roster.

20. An accelerator according to claim 1, wherein the data-manager is adapted to repeatedly

determine periodically the data to be cached in each of the plurality of memory units.

21. A method of preparing a database command for execution by a multi-executor database
server, comprising:

receiving a high level database command,;

retrieving, from an execution plan cache, an execution plan including one or more
executable operator statements, corresponding to the received database command, the
execution plan not defining which executor is to execute each of the operator statements; and

converting the execution plan into an operational plan that, for each of the operator
statements, states a group of one or more executors from which an executor which is to

execute the statement is to be selected.

22. A method according to claim 21, wherein converting the execution plan into an
operational plan comprises converting into an operational plan that states for each of the

operator statements a single executor which is to execute the statement.

23. A method according to claim 21, wherein converting the execution plan into an
operational plan comprises converting using a method adapted to minimize the number of

executors used in handling the command.

24. A method according to claim 21, wherein for each statement, the group of one or more
executors includes all the executors stated for other statements of the plan that generate data

required by the statement.

25. A database server, comprising:
a plurality of database execution machines;
a plurality of memory units, associated respectively with the execution machines,

adapted to store data of a database; and

87

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
a resource governor adapted to periodically determine which portions of the database

are to be stored in each of the memory units.

26. A database server according to claim 25, wherein the resource governor is adapted to

determine a transfer of a database portion from a first memory unit to a second memory unit.

27. A database server according to claim 25, wherein the resource governor is adapted to
determine which portions of the database are to be stored in each of the memory units

responsive to a roster of queries recently received by a system including the database server.

28. A database server according to claim 27, wherein the resource govemor is adapted to
group the queries of the roster into clusters and to determine the portions of the database to be
stored in each of the memory units in a manner which preferentially places data referenced by

queries of a single cluster in the same memory unit.

29. A database server, comprising:

at least one memory unit adapted to store data of a database;

a resource governor adapted to periodically determine which indices should be created
for which portions of the database stored in the memory unit; and

an index creating unit adapted to automatically create the indices determined by the

resource governor, responsive to the periodic determination.

30. A database server according to claim 29, wherein the resource governor is adapted to
determine the indices that should be created at least partially according to a roster of queries

recently directed to a system including the database server.

31. A database server according to claim 30, wherein the resource governor is adapted to
organize the queries of the roster into clusters, to assign importance scores to the clusters and
to determine the indices to be created for one or more of the clusters at least partially according

to an order of the scores of the clusters.

32. A database server according to claim 31, wherein for one or more of the clusters, the

resource governor is adapted to determine for one or more columns referenced by queries of

88

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
the cluster, access types most commonly used in accessing the columns and to select one or

more indices for the column at least partially according to the determined access types.

33. A method of resolving a database command, comprising:

receiving a high level database command,

retrieving an execution plan corresponding to the received database command, the
execution plan including at least one non-executable replaceable directive representing a group
of a plurality of different sequences of one or more directives, which perform the same task;
and

replacing the non-executable replaceable directive by one of the sequences of the

group.

34. A method according to claim 33, wherein receiving the high level database command

comprises receiving an SQL command.

35. A method according to claim 33, wherein replacing the non-executable directive
comprises selecting one of the sequences of the group to replace the non-executable directive,
at least partially according to at least one parameter of data generated by the at least one of the

directives of the plan executed before the replacement.

36. A method according to claim 35, wherein the at least one parameter comprises a

number of rows of in the generated data.

37. A method according to claim 33, wherein replacing the non-executable directive
comprises selecting one of the sequences of the group to replace the non-executable directive,
depending on one or both of a time utilized so far to execute the plan or an expected time

remaining until completion of the plan.
38. A method according to claim 33, wherein replacing the non-executable directive

comprises selecting one of the sequences of the group to replace the non-executable directive,

depending on at least one state parameter of an execution machine executing the plan.

89

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
39. A method according to claim 38, wherein the at least one state parameter comprises a

work load of the execution machine.

40. A method according to claim 38, wherein the at least one state parameter comprises a

number of queries waiting to be executed by the machine.

41. A method according to claim 38, wherein the at least one state parameter comprises an

amount of available memory in the machine.

42. A method according to claim 33, wherein replacing the non-executable directive

comprises replacing after executing at least one of the directives of the plan.

43. A method according to claim 33, wherein replacing the non-executable directive
comprises replacing by a processor which is to execute the segment replacing the non-

executable directive.

44. A method according to claim 33, wherein replacing the non-executable directive

comprises replacing by an executor which did not generate the execution plan.

45. A method according to claim 33, wherein each of the sequences of one or more

directives comprises a single directive.

46. A method according to claim 33, wherein at least one of the sequences of one or more

directives comprises a plurality of directives.

47. A method according to claim 33, comprising estimating an execution time of each of a
plurality of the sequences of the group and replacing the non-executable directive comprises

replacing by a sequence having a shortest execution time.
48. A method of caching data by a database server accelerator, comprising:

selecting queries to be handled by the accelerator; and

caching the data required to resolve the selected queries, responsive to the selection.

90

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
49. A method according to claim 48, wherein selecting the queries to be handled by the

accelerator comprises estimating, for a plurality of queries, the benefit to the queries from
handling the queries by the accelerator and selecting the queries to be handled by the

accelerator responsive to the estimation.

50. A method according to claim 49, wherein estimating the benefit to the queries
comprises estimating, for each of the plurality of queries, the difference between the handling
time of the query by the accelerator and the handling time of the query by at least one database

server.

51. A method according to claim 49, wherein determining which queries are to be handled
by the accelerator comprises assigning each of the queries an acceleration score and
determining the handled queries at least partially according to the scores, preferring queries

with higher scores to be handled by the accelerator.

52. A method according to claim 51, wherein determining the handled queries comprises
grouping the queries into clusters and determining one or more clusters of queries to be
handled.

53. A method according to claim 52, wherein grouping the queries into clusters comprises

grouping queries relating to the same data columns in same clusters.

54. A method according to claim 51, wherein better acceleration scores are given to queries

with higher QoS ratings.

55. A method according to claim 51, wherein the acceleration score increases with the

popularity of the query.

56. A method of determining a data organization of data of a database, comprising:
accumulating a roster of queries recently directed to the database;
grouping the queries of the roster into a plurality of clusters;

arranging the clusters in an order in which their data is to be handled; and

91

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

determining an organization for the data of queries of one or more clusters at least

partially according to the order from the arranging.

57. A method according to claim 56, wherein accumulating the roster of queries comprises

accumulating queries directed to the database in a recent predetermined time period.

58. A method according to claim 56, wherein accumulating the roster of queries comprises
accumulating queries which were recently directed to the database at least a predetermined

number of times.

59. A method according to claim 56, wherein grouping the queries into clusters comprises

grouping the queries at least partially according to the data portions they reference.

60. A method according to claim 56, comprising defining a query distance function which
provides a distance measure for pairs of queries and wherein grouping the queries into clusters
comprises grouping queries into clusters which each has a respective hub query, such that the
distance between each query and the hub of the cluster to which the query is assigned is shorter
than the distance to any other hub.

61. A method according to claim 60, wherein the value of the query distance function
depends on the number of data portions referenced by both the queries to which the function is

applied.

62. A method according to claim 60, wherein the value of the query distance function
depends on the sizes of data portions referenced by both the queries to which the function is

applied.

63. A method according to claim 60, wherein the value of the query distance function
depends on the similarity of the access types used by the queries to which the function is

applied in accessing data portions referenced by both the queries.

64. A method according to claim 60, wherein grouping the queries into clusters comprises
grouping such that each query is included in only a single cluster.

92

10

15

20

25

30

WO 03/071447 PCT/IL03/00137

65. A method according to claim 56, wherein grouping the queries into clusters comprises
grouping such that all the data portions referenced by queries of a single cluster can be hosted

by a single execution machine of a server of the database.

66. A method according to claim 56, wherein arranging the clusters comprises assigning

each cluster a score and organizing the clusters at least partially according to the score values.

67. A method according to claim 66, wherein the cluster score depends on resources

required in order to handle the queries of the cluster.

68. A method according to claim 66, wherein the cluster score depends on resources

required in order to organize the data required by the cluster.

69. A method according to claim 66, wherein the organization is performed for a database
accelerator and wherein the cluster score depends on an expected advantage from handling the
queries of the cluster by the accelerator as compared to handling by a database server

associated with the accelerator.

70. A method according to claim 56, wherein determining an organization for the data

comprises determining which indices are to be created.

71. A method according to claim 56, wherein determining an organization for the data

comprises determining which data portions are to be cached by an accelerator.

72. A method according to claim 56, wherein determining an organization for the data

comprises determining a partitioning of one or more data tables.
73. A method according to claim 56, wherein determining an organization for the data

comprises determining which data portions are to be hosted by each of a plurality of separate

execution machines.

93

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
74. A method of determining whether a query is to be handled by an accelerator,

comprising; -
determining whether the query can be resolved by the accelerator with its currently
cached data;
determining at least one additional attribute of the accelerator or the query; and
determining whether to handle the query by the accelerator, responsive to the at least

one additional attribute.

75. A method according to claim 74, wherein the at least one additional attribute comprises

a current load of the accelerator.

76. A method according to claim 74, wherein the at least one additional attribute comprises

an expected response time of the accelerator for the query.

77. A method according to claim 74, wherein the at least one additional attribute comprises

an expected response time of a database server accelerated by the accelerator, for the query.

78. A method according to claim 74, wherein the at least one additional attribute comprises

whether the accelerator has a compiled version of the query.

79. A database server, comprising;

at least one memdry unit adapted to store data of a database including tables, in
verticals including one or more columns of the table, at least one of the tables being stored in a
plurality of separate verticals; and

an execution machine adapted to resolve queries using the data in the at least one
memory unit, the execution machine adapted to always load into a processor of the machine

entire rows of verticals on which it operates.

80. A server according to claim 79, wherein the execution machine is not adapted to

execute directives that relate to a plurality of verticals of a single table.

94

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
81. A server according to claim 79, comprising a resource governor adapted to determine

which columns of a table are to be stored in the at least one memory unit in a single vertical, at

least partially according to directives expected to be performed by the execution machine.

82. A server according to claim 79, wherein the at least one memory unit is adapted to

store only a portion of at least one table.

83. A database server, comprising:

at least one memory unit adapted to store data of a database including tables, at least
one of the tables being stored in a plurality of separate sub-portions;

an execution machine adapted to resolve queries using the data in the at least one
memory unit; and

a resource governor adapted to determine the sub-groups in which the data to be stored
in the at least one memory unit are to be organized, at least partially according to the queries

expected to be received by the database server.

84. A server according to claim 83, wherein the execution machine is not adapted to

execute directives that relate to data in a plurality of sub-portions of a single table.

85. A database accelerator, comprising:

a memory adapted to store database data derived from an accelerated database;

one or more execution machines adapted to resolve database queries directed to the
accelerated database; and

a resource governor adapted to determine the contents of the memory, such that the
memory includes copies of portions of the accelerated database and data not included in the

same format in the accelerated database.

86. An accelerator according to claim 85, wherein the data not included in the same format

in the accelerated database comprises data sorted differently than in the accelerated database.

87. An accelerator according to claim 85, wherein the data not included in the same format

in the accelerated database comprises data not included at all in the accelerated database.

95

10

15

20

25

30

WO 03/071447 PCT/IL03/00137
88. An accelerator according to claim 85, wherein the data not included in the same format

in the accelerated database comprises an index not included in the accelerated database.

89. Anaccelerator according to claim 85, wherein the data not included in the same format

in the accelerated database comprises one or more views.

90. An accelerator according to claim 89, wherein the one or more views are selected

according to the popularity of queries directed to the database.

91. An accelerator according to claim 85, wherein the resource governor is adapted to
determine the contents of the memory, such that in at least some instances the memory
includes data not included in the accelerated database in the same format, together with all the

data used in generating the data not included in the accelerated database in the same format.

92. An accelerator according to claim 85, wherein the resource governor is adapted to
determine the contents of the memory, such that substantially always the memory includes data
not included in the accelerated database in the same format, together with all the data used in

generating the data not included in the accelerated database in the same format.

93. An accelerator according to claim 85, wherein the resource governor is adapted to
determine the contents of the memory, such that in at least some instances the memory
includes data not included in the accelerated database in the same format, but does not include

at least one portion of data used in generating the data not included in the accelerated database.

94. An accelerator according to claim 85, wherein the resource governor is adapted to
determine the contents of the memory, such that substantially always the memory includes data
not included in the accelerated database in the same format, but does not include at least one

portion of data used in generating the data not included in the accelerated database.

95. An accelerator according to claim 85, wherein the resource governor is adapted to

prepare a view not included in the database and an index for the view in a combined process.

96

PCT/IL03/00137

WO 03/071447

1/11

34

11—

¢0l

001

1014

0z}

40LVaI 1300V
TN SINS3y

mm<w§<g ~04INOD
011~

5
Y
YINTS | = | y3A3S NETER
Isvaviva [~ 108 - NOLLYOIddV am

¢ov\\\

¢l

SIRIAER]

///mo_

//wo_

PCT/IL03/00137
2/11

WO 03/071447

r T T T T T T e — — 7
0Lz 012 oLz
| 77 LN TN
ONA\A AJOWIN| | AJOWIN| [AJOWIN| |AMOWIN| [AOWIN| |AvOWN “
R I I D B R N
G0z 50z
A Wik
ndl | |[pdIfdD| | [AdD JOVANIINI
AE AE AE IE A3 IE 1ndLNO
J)
v0¢ Mom 0¢ //¢om NNN\\
SIINS3Y
HIHOLYASI Y
a [\
90¢]] A%

AYOLISOd3d
\\\\\ Ty SEREIC NN IR

oLl ¢0¢ 00¢
J

10S

WO 03/071447

PCT/IL03/00137

3/11

RECEIVE
COMMAND

300

f 302
301
COMMAND
ggﬁmﬁ% SUITABLE FOR

TO DATABASE

EXECUTION BY

SERVER ACCELERATOR
”?
(300 304
PROVIDE COMMAND
COMMAND TO FAMILIAR TO
ACCELERATOR ACCELERATOR
?

NO
/308

PROVIDE COMMAND TO
DATABASE SERVER

309 310
COMMAND oA
RELATES TO YES S
COMMAND TO
VAR COMPILER

l

312 |ADD COMMAND TO
N_| LIST OF FAMILIAR
COMMANDS

FI1G.3

WO 03/071447

4/11

RECEIVE 350
QUERY

FIND COMPILED
PLAN FOR QUERY

352
g

!

PREPARE EXECUTABLE | -

CODE S

EGMENT

354

]

358

EXECUT

E PLAN

N

V

V

PROVIDE FINAL
RESULTS TO

OUTPUT INTERFACE

360

FIG.4

PCT/IL03/00137

WO 03/071447

5/11

380 RECEIVE
EXECUTION PLAN

V

386
ASSIGN LEAVES
N TO EMs

V

ASSIGN NODES, THAT
388 ALL THEIR CHILDREN

A

N__| ARE ASSIGNED TO
THE SAME SPECIFIC
EM, TO THAT EM

|

390
REMOVE NODES
| ASSIGNED TO MOST
POPULAR EM
392 ’
ORGANIZE REMOVED
NODES IN LIST
g >
YES
3¢ [CONCATENATE
LISTS

FIG.6

PCT/IL03/00137

WO 03/071447 PCT/IL03/00137

6/11

FIG.7

WO 03/071447

PCT/IL03/00137

7/11

CORRECT
CLUSTER
SCORES

K518

CONTINUOUSLY RECEIVE STATISTICS ~—500
FORM ROSTER OF QUERIES ~—502
!
GROUP QUERIES INTO CLUSTERS —504
Y
ASSIGN SCORE TO EACH CLUSTER —506
SELECT CLUSTER WITH BEST SCORE —508
DETERMINE VERTICAL DECOMPOSITION 515
FOR SELECTED CLUSTER
DETERMINE INDICES TO BE CREATED 514
FOR SELECTED CLUSTER
]
PASS QUERIES OF SELECTED 510
CLUSTER TO COMPILER
Y
ESTIMATE RESOURCES REQUIRED 519
FOR SELECTED CLUSTER
516
ACCELERATOR
HAS AVAILABLE RESOURCES
?
NO
DETERMINE PLACEMENT OF 599
VERTICALS IN MEMORY UNITS
UPDATE IMDB CONTENTS —524
UPDATE LIST OF FAMILIAR QUERIES 508
IN_SPLITTER

FIG.8

WO 03/071447 PCT/IL03/00137

8/11

DETERMINE CANDIDATE 530
MULTI-COLUMN VERTICALS

Y
= EXAMINE VERTICALS FOR
- COMMON COLUMN

—0532

533

PAIR OF CV's
WITH COMMON COLUMN

NOT MARKED TO BE
(::f&::)
c5a (END

DUPLICATED
?

535
/‘

MARK COLUMN
TO BE DUPLICATED

DUPLICATION

SCORE OF COMMON

COLUMN ABOVE

THRESHOLD
?

COMBINE PAIR OF CV's

INTO SINGLE CV — 936

FI1G.9

WO 03/071447 PCT/IL03/00137

9/11

DETERMINE IMPORTANCE SCORE FOR
EACH COLUMN GROUP (CG) AND ACCESS TYPE [—550

\

CALCULATE CG SCORE ~—3552
|
- SELECT CG WITH HIGHEST SCORE —554
\
DETERMINE REQUIRED—"PAT"—SCORES 556
OF SELECTED COLUMN GROUP
DETERMINE NEXT—"PAT"-SCORES 560
OF SELECTED COLUMN GROUP

562

YES

NEXT SCORES > REQUIRED SCORES
?

IS THERE

EXISTING SUITABLE

INDEX
?

YES

Y

DETERMINE

564 | INDICATE EXISTING :
INDEX AS REQUIRED INDEX TYPE TO
| BE CREATED
559 UPDATE NEXT - 561

SCORES

V
UPDATE AVAILABLE
INDEX MEMORY

566—

IS THERE

ROOM FOR MORE

INDICES
?

YES

FIG.10

WO 03/071447 PCT/IL03/00137

10/11

GIVEN
1. CURRENT LISTING OF MEMORY CONTENTS 580
2. SELECTED CLUSTERS

%

MARK BASE VERTICALS IN MEMORY NOT
REFERENCED BY CLUSTERS TO BE REMOVED [—982

%

DETERMINE AVAILABLE MEMORY —584

#

CHOOSE CLUSTER AND MEMORY UNIT
WITH MOST COMMON DATA

—086

588

IS SPACE
IN SELECTED MEMORY UNIT
SUFFICIENT FOR ALL VERTICALS OF
SELECTED CLUSTER

YES

REPEAT
FOR ALL
SELECTED
CLUSTERS

REMOVE VERTICALS OF A DIFFERENT 590
CLUSTER FROM SELECTED MEMORY UNIT

%

ASSIGN VERTICALS OF SELECTED CLUSTER
TO SELECTED MEMORY UNIT

—592

FIG.11

PCT/IL03/00137

WO 03/071447

11/11

¢l9—

d4LSNTO TIVNOLLIQAY OL
d4LSA10 di3HL 40 9nH 3HL OL
NVHL 8NH TVNOILIAAY dIFHL OL
d3S010 SARINO TV NOISSY—3Y

SY31SN10 40 ALvdNd

v OINI ¥3ISNT0 NOIWLyvd [8!8

A

019

gnH TYNOILIAAY SV ¥31SN10 40
dNH WOY4 1SIHIEVA AY3IN0 LO3F T3S

d SNIAVY JOVYIAV
NVYHL 8NH WNOY4 ¥3HLdV4
A43IND SYH SY3LSNTY

809

(J3ININY313034d
NVHL d31V3IYO ¥3L1SNTO
40 INFW3YIND3Y

104N0S3d
919

SYALSNTO 40 SININIHINDIY

304N0SIY ILVWILST V19

d SNIavy dnNH JOVY3IAY J1VINDTIVO

—909

J

09—

gNH 1S3SO10 40 ¥31sSnid
OL S3IM3INO ONINIVWIY NOISSY

A

¢09—

d31SN10 ANOJ3S 40
aNH SV d31SN1O0 1Sdl4 40 anH
WNOY4 1SIHLIYV4 AY3INO 103T3S

A

009 —

d41SNT0 LSHI4 40
gNH SY AY3ND 10313S

¢l Ol

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

