97043035 A2 A1 0O 0 O O 0O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘f | [I

) IO O O OO O

International Bureau

(43) International Publication Date
2 April 2009 (02.04.2009)

(10) International Publication Number

WO 2009/043035 A2

(51) International Patent Classification:
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/US2008/078171

(22) International Filing Date:
29 September 2008 (29.09.2008)

English
English

(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

60/976,311 28 September 2007 (28.09.2007) US
60/976,269 28 September 2007 (28.09.2007) US
60/976,308 28 September 2007 (28.09.2007) US
60/976,339 28 September 2007 (28.09.2007) US
60/976,275 28 September 2007 (28.09.2007) US
60/976,304 28 September 2007 (28.09.2007) US

(71) Applicant (for all designated States except US): XCE-
RION AB [SE/US]; 2003 Western Avenue, Suite 500,
Seattle, WA 98121 (US).

(72) Inventor; and

60/976,249 28 September 2007 (28.09.2007) US (75) Inventor/Applicant (for US only): ARTHURSSON,
60/976,222 28 September 2007 (28.09.2007) US Daniel [SE/SE]; 2003 Western Avenue, Suite 500, Seattle,
60/976,216 28 September 2007 (28.09.2007) US WA 98121 (US).
60/976,246 28 September 2007 (28.09.2007) US) S, Clint. 1. Chri , N
60/976,281 28 September 2007 (28.09.2007) Us (™4 A,ge;t' FE}EKE ’Clgnﬁ’ Js € lszn_senoc"ms“’”;’ nson
60/976,252 28 September 2007 (28.09.2007) US Kindness Pllc, §42° th Avenue, Suite 2800, Seattle, WA
60/976,258 28 September 2007 (28.09.2007) US 98101-2347 (US).
60/976,325 28 September 2007 (28.09.2007) US (81) Designated States (unless otherwise indicated, for every
60/976,301 28 September 2007 (28.09.2007) US kind of national protection available): AE, AG, AL, AM,
60/976,292 28 September 2007 (28.09.2007) US AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
60/976,312 28 September 2007 (28.09.2007) US CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
60/976,283 28 September 2007 (28.09.2007) US EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
60/976,320 28 September 2007 (28.09.2007) US IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
60/976,327 28 September 2007 (28.09.2007) US LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
60/976,266 28 September 2007 (28.09.2007) US MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
[Continued on next page]
(54) Title: NETWORK OPERATING SYSTEM
206 202
. -
SERVER-SIDE DATA CENTER 222
(ENTERPRISE)
220 e
206
R
204
CLIENT 214
SERVER-SIDE ,.\316
Ez;l;‘_ﬁf;};lzk’ INTERNET DATA CENTER
208
CHENT - CLIENT ,\2/12 WEB SERVICE /\jls
)

CLIENT

Fig.2.

(57) Abstract: Generally described, the present invention is directed to a network operating system that provides more effective
& ways of leveraging the connectivity of computer networks. In one embodiment, an XML virtual machine is implemented that accepts
& high-level application code written in an XML programming language as input. Functionality is provided to interpret or translate
the application code written in an XML programming language into code that is suitable for execution across computer platforms.
Moreover, the XML virtual machine supports the Model View Controller (MVC) design paradigm that facilitates true data abstraction
from applications to a common data model. Multi-instance applications, with each instance potentially supporting multiple views,

may be created and executed.

WO 2009/043035 A2

RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, 17,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

NETWORK OPERATING SYSTEM

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of the following: Provisional Application
No. 60/976,216, filed September 28, 2007; Provisional Application No. 60/976,222, filed
September 28, 2007; Provisional Application No. 60/976,246, filed September 28, 2007;
Provisional Application No. 60/976,249, filed September 28, 2007; Provisional
Application No. 60/976,252, filed September 28, 2007; Provisional Application
No. 60/976,258, filed September 28, 2007; Provisional Application No. 60/976,266, filed
September 28, 2007; Provisional Application No. 60/976,269, filed September 28, 2007;
Provisional Application No. 60/976,275, filed September 28, 2007; Provisional
Application No. 60/976,281, filed September 28, 2007; Provisional Application
No. 60/976,283, filed September 28, 2007; Provisional Application No. 60/976,292, filed
September 28, 2007; Provisional Application No. 60/976,301, filed September 28, 2007;
Provisional Application No. 60/976,304, filed September 28, 2007; Provisional
Application No. 60/976,308, filed September 28, 2007; Provisional Application
No. 60/976,311, filed September 28, 2007; Provisional Application No. 60/976,312, filed
September 28, 2007; Provisional Application No. 60/976,320, filed September 28, 2007;
Provisional Application No. 60/976,325, filed September 28, 2007; Provisional
Application No. 60/976,327, filed September 28, 2007; and Provisional Application
No. 60/976,339, filed September 28, 2007, all of which are incorporated herein by
reference.

BACKGROUND

Computer networks configured to exchange data according to common protocols,
such as the Internet Protocol ("IP"), are increasingly used to perform a variety of tasks
between remote systems and users. The connectivity available from computer networks
has led organizations and others to seek solutions that facilitate participation in
collaborative processes. In this regard, many existing Web sites, network portals, and
distributed applications allow users to share data and collaborate in various ways. To
further support collaboration, resources are increasingly being made available as a service
of the network. Generally described, a service refers to software and hardware that are
made accessible from the network separate from any underlying technologies.

Accordingly, a network service is frequently described as being "loosely coupled” to the

-1-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

operating system, programming languages, and hardware components on which the
service is implemented. As a result, network services may be combined to create
distributed applications even though different underlying technologies are utilized.

The term "cloud" computing is frequently used to describe the trend toward an
increasing number of services being made available from the network. As network
bandwidth and connectivity increases, the applications and economic incentives of cloud
computing will only continue to expand. However, existing systems utilize
machine-centric operating systems to manage communications over the network and
facilitate collaboration. In this regard, the core design of machine-centric operating
systems was established prior to the development of computer networks, such as the
Internet. As a result, existing systems are unable to provide a generalized collaboration
environment where network communications are readily integrated into applications and
other aspects of the user experience. Instead, developing applications that facilitate
sharing and participation in collaborative processes remains arduous and ultimately too
difficult or expensive for most users and/or organizations. Therefore, a need exists for a
network operating system that provides more effective ways of leveraging the
connectivity of computer networks.

SUMMARY

Generally described, the present invention is directed to a network operating
system that provides more effective ways of leveraging the connectivity of computer
networks. In one embodiment, an XML virtual machine is implemented that accepts
high-level application code written in an XML programming language as input.
Functionality is provided to interpret or translate the application code written in an XML
programming language into code that is suitable for execution across computer platforms.
Moreover, the XML virtual machine supports the Model View Controller (MVC) design
paradigm that facilitates true data abstraction from applications to a common data model.
Multi-instance applications, with each instance potentially supporting multiple views,
may be created and executed.

DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will
become more readily appreciated as the same become better understood by reference to
the following detailed description, when taken in conjunction with the accompanying

drawings, wherein:

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

FIGURE 1 is an exemplary pictorial depiction of a networking environment that
includes a server-side data center and a plurality of client computers suitable for
illustrating aspects of the present invention;

FIGURE 2 is an exemplary pictorial depiction of a networking environment that
includes a server-side data center and a plurality of client computers suitable for
illustrating aspects of the present invention;

FIGURE 3 is a block diagram depicting an exemplary hardware architecture of a
computing device suitable for implementing aspects of the present invention;

FIGURES 4A-C are block diagrams of exemplary platform environments in
which the present invention may be implemented;

FIGURES 5A-B are exemplary pictorial depiction of a networking environment
that includes a server-side data center and a plurality of client computers suitable for
illustrating aspects of the present invention;

FIGURES 6A-B depict exemplary process and Ul XML documents associated
with an application suitable to illustrate aspects of the present invention;

FIGURES 7A-C depicts an exemplary graphical display that visually depicts
graphical elements of the application described semantically in FIGURES 6A-B;

FIGURES 8A-B are pictorial depictions of components suitable to illustrate
aspects of the invention;

FIGURE 9 is a block diagram with exemplary managers configured to implement
aspects of the present invention;

FIGURES 10A-C are diagrams illustrating an exemplary application initiation
routine that performs processing to open an application package in accordance with one
embodiment of the present invention;

FIGURE 11 is an exemplary flow diagram that illustrates a routine for opening
and initiating execution of logic defined in an application's process code;

FIGURES 12A-B depict an exemplary flow diagram that illustrates an execute
method configured to cause operations in a process step to be executed;

FIGURE 13 is a diagram of an open handling routine that opens an XML
document in accordance with one embodiment of the present invention;

FIGURES 14A-14B are diagrams depicting the interactions between objects that

are suitable for illustrating aspects of the present invention;

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

FIGURE 15 depicts an exemplary flow diagram that illustrates an action handling
routine that implements functionality in accordance with one embodiment of the present
invention;

FIGURE 16 is a diagram of an bind handling routine that binds an object to the
data model in accordance with one embodiment of the present invention;

FIGURES 17A-B are diagrams depicting a trigger activation routine that causes
application code to be executed in response to a trigger being activated in accordance
with one embodiment of the present invention;

FIGURE 18 is a diagram of a decision handling routine configured to perform an
evaluation direct the flow of application execution based on the evaluation;

FIGURE 19 is a diagram of a change handling routine that depicts the logic for
implementing a change operation in accordance with one embodiment of the present
invention;

FIGURE 20A-C are diagrams depicting a data update routine that implements
logic for modifying the contents of the data model in accordance with one embodiment of
the present invention;

FIGURE 21 is a diagram of a set rule routine that depicts the logic for setting a
components rules in the data model in accordance with one embodiment of the present
invention;

FIGURE 22 is a diagram of a notify listeners routine that notifies objects of a data
update in accordance with one embodiment of the present invention;

FIGURE 23 is a diagram of a rendering routine that causes an applications view to
be rendered in accordance with one embodiment of the present invention;

FIGURE 24 illustrates a block diagram suitable for describing the ways in which
applications interact with a variety of exemplary data sources in accordance with one
embodiment of the present invention;

FIGURE 25 illustrates a block diagram suitable for describing an XML file
system provided by the present invention.

FIGURE 26 illustrates a message server configured to enable synchronization of
data across the network in accordance with one embodiment of the present invention;

FIGURE 27 illustrates additional aspects of the message server in accordance

with another embodiments of the present invention;

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

FIGURES 28A-28D illustrate an exemplary method for retrieving a file from a
file system provided by the present invention;

FIGURE 28E illustrates an excerpt of an exemplary file that is suitable for
illustrating aspects of the present invention;

FIGURE 29 illustrates a method configured to retrieve a list of files in accordance
with one embodiment of the present invention;

FIGURES 30A-30C illustrate a method that creates a file within the XML file
system in accordance with another embodiment of the present invention;

FIGURES 31A-31E illustrate a method that opens an existing file within the XML
file system in accordance with another embodiment of the present invention;

FIGURE 32 illustrates a method that initiates startup of the network operating
system on a client computer in accordance with one embodiment of the present invention;

FIGURE 33 illustrates a method for mounting a network operating system group
in accordance with another embodiment of the present invention;

FIGURE 34A illustrates a method that transitions a client computer from an
online state to an offline state in accordance with one embodiment of the present
invention;

FIGURE 34B illustrates an exemplary pictorial depictions of a plurality of drives
that may be used for network collaboration in accordance with another embodiment of
the present invention;

FIGURE 35 illustrates a method of transitioning a client computer back to an
online state when the client computer has been operating in an offline state in accordance
with another embodiment of the present invention;

FIGURE 36 illustrates a method of handling a request to create a new file in a
way that facilitates enhanced network communications in accordance with another
embodiment of the present invention;

FIGURE 37 illustrates a shared data file utilized with a chat application that is
suitable for describing additional aspects of the present invention;

FIGURE 38 illustrates the relationships between components and the data model
utilized by a chat application in accordance with another embodiment of the present
invention;

FIGURE 39 illustrates the updating of a shared data file used to facilitate a chat

conversation in accordance with another embodiment of the present invention;

-5-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

FIGURE 40 illustrates an exemplary set of communications performed in a chat
conversation in accordance with another embodiment of the present invention;

FIGURE 41 illustrates the use a shared data file in performing collaborative
communications between multiple clients;

FIGURE 42 depicts the user interface of an exemplary application suitable for
illustrating additional aspects of the present invention; and

FIGURE 43 depicts the user interface of an exemplary application suitable for
illustrating additional aspects of the present invention.

DETAILED DESCRIPTION

Generally described, aspects of the present invention are directed to a network
operating system that facilitates the development of Internet-scale cloud computing. In
an actual embodiment, the network operating system described herein utilizes the XML
(eXtensible Markup Language) as a general-purpose language to represent data.
Accordingly, the examples provided below may describe functionality of the network
operating system with reference to XML structured data and documents. In this regard,
many benefits and synergies are achieved by using XML in this context. However, those
skilled in the art and others will recognize that the invention may be implemented using
other underlying technologies, or combinations of technologies, than described herein
without departing from the scope of the claimed subject matter. Moreover, the
illustrative examples and descriptions provided below are not intended to be exhaustive
or to limit the invention to the precise forms disclosed. Similarly, any steps described
below may be interchangeable with other steps or combinations of steps in order to
achieve the same result.

Referring to FIGURE 1, the following is intended to provide an overview of a
networking environment 100 that may be used to implement aspects of the present
invention. As illustrated in FIGURE 1, the networking environment 100 includes the
server-side data center 102 that is associated with the servers 104. The networking
environment 100 also includes a plurality of client computing devices associated with the
user 112 including the mobile phone 106, the desktop computer 108, and the thin
client 110. In this regard, the server-side data center 102 is configured to communicate
with the mobile phone 106, the desktop computer 108, and the thin client 110 via the
network 114, which may be implemented as a local area network ("LAN"), wireless

network, wide area network ("WAN"), such as the Internet, and the like. As known to

-6-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

those skilled in the art and others, the computing devices illustrated in FIGURE 1 may be
configured to exchange files, commands, and other types of data over the network 114.
However, since protocols for network communication, such as TCP/IP, are well known to
those skilled in the art, those protocols will not be described here.

In existing systems, application programs that are available on one type of
computing device may be incompatible with other types of devices. This incompatibility
creates a variety of problems. For example, on a general-purpose desktop computer a
user may employ a particular application to access e-mail messages. On the other hand,
in order to access e-mail on a limited resource device, such as a mobile phone, another
program with different features and interfaces may be required. This incompatibility is
not conducive to providing a common user experience and minimizing the amount of
knowledge and skill required by users. Moreover, excessive development time is spent
creating applications for different types of devices even though many applications
implement similar or identical functionality.

Aspects of the invention may be applied in a number of different contexts of
which the following is only an example. In one embodiment, a user's applications and
data are accessible from any type of computing device that is enabled for the network
operating system. As illustrated in FIGURE 1, the user 112 may connect to the
network 114 from the mobile phone 106, desktop computer 108, or thin client 110. In
response, the server-side data center 102 delivers network operating system services to
the appropriate device. More specifically, a client-side component of the network
operating system and user applications may be delivered and built each time the user
connects to the network. Applications execute locally at the appropriate client computing
device and not on the servers 104. User data may be cached on a client computing
device, but will persist to storage maintained by the server-side data center 102.
Accordingly, communications between the client computing devices 106-110 and the
server-side data center 102 are principally performed to obtain documents and update
data. In instances when a client goes off-line, the client-side component of the network
operating system causes data updates to be cached locally. These updates may be
transmitted to the server-side data center 102 and synchronized with any other changes
when a network connection is re-established.

In one embodiment, the network operating system may provide a common

experience across each of a user's computing devices. In this regard, a common desktop

-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

application is delivered and built on disparate types of computing devices. From the
common desktop, all of a user's application programs and data may be accessed. For
example, a single e-mail program enabled for the network operating system may be
accessed by the user 112 from any of the client computing devices 106-110. Since user
data is available from the server-side data center 102 and applications are delivered as a
service, the same applications (e.g., email program) and data (e.g., e-mail messages) are
available regardless of which computing device is being used.

The services provided by the network operating system to a client computing
device may be customized depending on user preferences and other variables. In this
regard, configuration data is maintained that defines how or whether certain network
operating system services will be provided. For example, a user may establish
preferences to have different sets of application programs or data available depending on
the computing device being used. By way of another example, a user may connect to the
network 114 from any number of access points including an insecure wireless connection.
In this instance, security attributes may be established so that certain services and/or data
are inaccessible because of the insecure nature of the network connection. As will be
appreciated by those skilled in the art and others, the examples provided above represent
only some of the ways in which the network operating system services may be
customized using the present invention.

For the sake of convenience, FIGURE 1 illustrates the server-side data center 102,
server computers 104, mobile phone 106, desktop computer 108, and thin client 110, that
are usable in the networking environment 100 in which complementary tasks may be
performed by remote computing devices linked together through the network 114.
However, the invention may be practiced using other types of client computing devices
such as, but not limited to laptop computers, tablet computers, personal digital assistants
(PDAs), hybrid/embedded devices, set-top boxes, media centers, and the like. Moreover,
those skilled in the art and others will recognize that the invention may be implemented
in different network configurations and the example depicted in FIGURE 1 should be
construed as exemplary.

Now with reference to FIGURE 2, another networking environment 200 that may
be used to illustrate additional aspects of invention will be described. As depicted in
FIGURE 2, the server-side data center 202 may be coupled to a private network such as

the enterprise network 204. In this instance, additional network operating system services

-8-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

are provided to the clients 206, 208, and 210 directly over the enterprise network 204.
However the network operating system is still provided and managed from the server-side
data center 216, the enterprise server-side data center 202 is only providing additional
services. Moreover, the same additional services may be provided to clients outside the
enterprise network 204. In this example, the server-side data center 202 provides
network services to the client 212 over the Internet 214. Similar to the description
provided above, the clients 206-212 may be any computing device (mobile phone,
desktop computer, thin client, etc.) enabled for the network operating system. In yet
another embodiment, the networked operating system may be provided directly by the
enterprise server-side data center 202 together with its additional services and may or
may not (depending on security configurations) allow access to the external server-side
data center 216 outside the enterprise network 204.

The network operating system is configured to facilitate the participation in
collaborative processes. One aspect of the present invention is an XML file system that
serves as a network repository capable of storing any type of data including XML
documents, executables, binaries, multimedia, etc. The XML file system may be
implemented at the server-side data center 202 or 216 to manage physical storage and
data access. In addition to conventional file system functions, the XML file system
allows various types of collaboration spaces to be defined. In an exemplary embodiment,
the types of collaboration spaces supported include communities, groups, friends, as well
as subsets within existing collaboration spaces (e.g., sub-communities, sub-groups, etc.).
A root folder in the XML file system serves as a repository for each community, group,
or other collaboration space that is created. Moreover, folders and files may be created in
the XML file system that are associated with individual users. In another embodiment,
collaboration between different users may be dynamically enabled without users sharing
a collaboration space in the XML file system. As described in further detail below,
messaging services are provided that allow users to generate and accept requests to
establish a collaboration session in real-time. As such, users may establish new
relationships through dynamically created collaboration sessions even though an existing
collaboration space is not defined.

A login prompt may be used to obtain user credentials when a client-side
component of the network operating system begins executing. To facilitate transparent

access, each folder associated with the user may be mapped from the XML file system as

9.

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

a virtual drive on the client. For example, if a user is a member of a particular group, the
group folder will appear as a virtual drive on the client. In one embodiment, a folder in
the XML file system includes XML structured data that defines the shared resources of a
collaboration space. These shared resources may include, but are not limited to,
applications, data documents, access and security settings, user lists, statistics, calendar,
and the like. The XML file system may also in one embodiment act as a repository and
database substitute for one or more applications executing on the networked operating
system environment. As described in further detail below, data maintained in the
collaborative and distributed database may be automatically synchronized through
transaction management provided by the present invention. By building applications
utilizing this type of collaborative and distributed database, applications inherit the
characteristics of the database and may readily share data.

Since the XML file system follows an application programming interface (API),
other embodiments of the server-side data center 202 are possible. In the regard, other
XML web services may be provided from the XML file system are desirable in cases
where abstractions on top of legacy applications and databases within the enterprise is
needed to be able to provide a new application or integrate multiple applications
executing on the networked operating system environment. The customized
implementations of the XML file system may choose the level of functionality to support.
For example, the support for synchronizing transactions may be omitted in one level of
support.

In addition to managing data access, the XML file system provides an integrated
framework for creating and customizing associations between users in a way that
facilitates collaboration by synchronizing data and coordinating transactional control of
data updates. For example, an application along with any associated user data may be
shared by a group of users (e.g., friends). Both the functionality of the shared application
and associated user data may be represented in XML documents maintained in the group
or user folder, along with other resources. The XML file system provides a way for each
user to access the shared application and associated user data. In this way, the shared
application may be delivered and built on multiple clients with each group member
manipulating data from the same group or user folder.

As mentioned previously, clients outside the enterprise network 204 (i.e.,

client 212) may obtain services from the server-side data center 202. By way of example,

-10-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

an employee or other user may be provided with access to enterprise resources when
outside the enterprise network 204. Accordingly, the client 212 may be a home
computer, mobile phone, etc. that accesses the server-side data center 202 over the
Internet 214. In this regard, those skilled in the art and others recognize that the
networking environment 200 may include additional networks than those illustrated in
FIGURE 2 and the exemplary configuration in FIGURE 2 may be reconfigured in many
ways to deliver both the network operating system and additional XML file systems in
other ways. For example, the network access point for the client 212 may originate from
a local area network, wireless network, wide area network, etc. which may also be true
for the server-side data centers 202 and 216.

In another embodiment, clients may obtain different types of services from the
enterprise server-side data center 202 depending on one or more variables. Instead of
providing the same network services to each client, network services may be configured
depending on the location of the client's network access point. For example,
clients 206-210 that connect directly to the enterprise network 204 may be provided with
additional customized services specific to the enterprise. Qutside the enterprise
network 204, external services may be delivered to the client 212 (such as a customer,
supplier, employee, or other user related to the enterprise) from the server-side data
center 202. To facilitate the secure delivery of customized network services, resources
may be allocated by the server-side data center 202 for managing different types of
clients. In the embodiment depicted in FIGURE 2, the server-side data center 202
includes the hard drive 220 that is allocated to provide customized services to the
clients 206-210 inside the network. On the other hand, the hard drive 222 may be
allocated to provide the more generalized services to clients outside the enterprise
network, such as client 212. In still other embodiments, the services that are provided to
a client may depend on other variables such as the user credentials, settings information,
type of client, and the like.

In one aspect, the network operating system provides a more generalized
framework for facilitating real-time "business-to-business" collaboration. A collaboration
space may be created that allows different enterprises to access resources from a common
data store. In the example depicted in FIGURE 2, the client 212 may be associated with a
partner enterprise to the enterprise that maintains the server-side data center 202. In this

regard, the clients illustrated in FIGURE 2 may be operated by users or software agents

-11-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

that interact with the server-side data center 202. When operated by software agents,
aspects of the invention are effectively creating an EDI (Electronic Data Interchange)
relationship in which users associated with the enterprise or individually automatically
share resources utilizing the XML file system. EDI services may also be provided by the
publicly available server-data center 216, depending on security requirements. A group
folder may be created in the XML file system that stores the shared resources of the
partnership and/or defines the business rules of the EDI. Similar to the description
provided above, the group folder may be mapped as a virtual drive on the client 212,
thereby providing transparent access to shared resources outside the enterprise
network 204. Significantly, the shared application may be delivered as XML structured
data from the server-side data center 202 to the clients 206-212. Each of the
clients 206-212 builds and executes the application locally, reporting data updates back to
the shared folder or each users private folders in the XML file system. In one
embodiment, the server-side data center 202 is configured to manage data update
coordination so that multiple clients may access and update the same documents
simultaneously. This coordination may also be performed by the server-side data
center 216 if the data is stored in its XML file system.

In one aspect, the network operating system allows the clients 206-212 transparent
access to external network services. Using an Application Programming Interface (API),
a communicator may be created that abstracts the data handling functions for interacting
with any (internal or external) network service. By way of example, developers can
create communicators that access network servers hosting XML Web services, REST
services, XML resources, RSS or Atom feeds, text, csv text, HTML (Hypertext Markup
Language) based Web sites, among others. Referring to FIGURE 2, an instance of a
communicator or "channel" may be instantiated by the client 212 in order to interact with
the Web service 218. In this example, network operating system services are accessible
on a public network (i.e., the Internet 214) to the client 212 using the server-side data
center 216 as a proxy. Moreover, the Web service 218 is accessible to the
clients 206-210 using a communicator even though network operating services are being
provided from a private network (e.g., the enterprise network 204). In this instance, the
server-side data center 216 serves as the proxy that manages communications between the
clients 206-210 and the Web service 218. Accordingly, clients may use communicators

to abstract data handling functions when accessing network services. This aspect of the

-12-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

invention simplifies application development since developers are not required to
repetitively write code for managing communications between a client and network
service.

While FIGURE 2 illustrates an enterprise network 204, those skilled in the art and
others will recognize that this is merely exemplary. Instead, the present invention may
facilitate data synchronization and collaboration in other types of network environments.
Accordingly, the description provided with reference to FIGURE 2 is equally applicable
to local area networks maintained by homes and small business as well as wide area
networks such as the Internet. Moreover, the examples provided above are made with
reference to a server-side data center 202 that provides distinct network services to each
client 206-212. However, the server-side data center 202 may be configured to provide
network services that complement the resources or services of another device or network.
For example, a small business may maintain a network drive for all clients connected to a
local area network. The server-side data center 202 may provide data storage services to
complement the public network drive at the server-side data center 216 by providing
additional storage or allowing backup in the event that a public network device
experiences a failure. By way of another example, a home network may utilize a media
center computer to provide each local client access to digital media. To complement the
storage of the media center computer, a virtual drive may be provided by the server-side
data center 202 to all devices connected to the home network. In this regard the virtual
drive may be configured to allocate the actual storage of data between the media center
computer and the server-side data center 202 based on user preferences or other
configuration variables.

Now with reference to FIGURE 3, an exemplary hardware architecture of a
computing device 300 will be described. While FIGURE 3 is described with reference to
a computing device that is implemented as a client on the network, the description below
is applicable to servers and other devices that may be used to implement the present
invention. Moreover, those skilled in the art and others will recognize that the computing
device 300 may be any one of any number of currently available or yet to be developed
devices. In its most basic configuration, the computing device 300 includes at least one
central processing unit ("CPU") 302 and a system memory 304 connected by a
communication bus 306. Depending on the exact configuration and type of device, the

system memory 304 may be volatile or nonvolatile memory, such as read only memory

13-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

("ROM"), random access memory ("RAM"), EEPROM, flash memory, or similar
memory technology. Those skilled in the art and others will recognize that system
memory 304 typically stores data and/or program modules that are immediately
accessible to and/or currently being operated on by the CPU 302. In this regard, the
CPU 302 serves as the computational center of the computing device 300 by supporting
the execution of instructions.

As further illustrated in FIGURE 3, the computing device 300 includes a network
interface 310 comprising one or more components for communicating with other devices
over the network. As described in further detail below, the present invention may access
basic services that utilize the network interface 310 to perform communications using
common network protocols. In the exemplary embodiment depicted in FIGURE 3, the
computing device 300 also includes a storage medium 308. However, as described in
further detail below with reference to FIGURE 4A, network operating system services
may be accessed using a computing device that does not include means for persisting data
to a local storage medium. Therefore, the storage medium 308 depicted in FIGURE 3 is
represented with a dashed line to indicate that the storage medium 308 is optional. In any
event, the storage medium 308 may be volatile or nonvolatile, removable or
nonremovable, implemented using any technology capable of storing information such as,
but not limited to, a hard drive, solid state drive, CD-ROM, DVD, or other disk storage,
magnetic cassettes, magnetic tape, magnetic disk storage, and the like.

As used herein, the term "computer readable media" includes volatile and
non-volatile and removable and non-removable media implemented in any method or
technology capable of storing information, such as computer-readable instructions, data
structures, program modules, or other data. In this regard, the system memory 304 and
storage medium 308 depicted in FIGURE 3 are merely examples of computer readable
media.

Suitable implementations of computing devices that include a CPU 302, system
memory 304, communication bus 306, storage medium 308, and network interface 310
are known and commercially available. For ease of illustration and because it is not
important for an understanding of the claimed subject matter, FIGURE 3 does not show
some of the typical components of many computing devices. In this regard, the
computing device 300 will typically include input devices, such as a keyboard, mouse,

microphone, touch input device, etc. Similarly, the computing device 300 may also

-14-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

include output devices such as a display, speakers, printer, etc. Since all these devices are
well known in the art, they are not described here.

Now with reference to FIGURES 4A-4C, exemplary platform environments in
which the present invention may be implemented will be described. In this regard,
FIGURES 4A-4C illustrate the hierarchical relationships between platform layers of the
computing device 300 (FIGURE 3). More specifically, the platform layers of the
computing device 300 illustrated in FIGURES 4A-B include a hardware platform 402 on
the bottom layer, a machine operating system 404 in the middle layer, and an application
platform 406 on the top layer. Of course, those skilled in the art will appreciate that the
platform layers of the computing device 300 depicted in FIGURES 4A-4C are merely
exemplary.

Since an exemplary hardware platform 402 of the computing device 300 is
described above with reference to FIGURE 3, additional description of these components
will not be provided here. However, as illustrated in FIGURES 4A-4B, the computing
device 300 may include a machine operating system 404. In this regard, the machine
operating system 404 may be from any of the family of general-purpose operating
systems configured to utilize generic hardware such as Microsoft® operating systems,
Apple® operating systems, UNIX® operating systems, Linux® operating system,
Nokia® Symbian, Google® Android, etc. Also, the machine operating system 404 may
be an operating system configured for specialized computing devices that use non-generic
hardware such as thin clients, mobile phones, mainframes, supercomputers, and the like.
Moreover, the machine operating system 404 may be an operating system designed to
satisfy certain configuration parameters such as real-time operating systems, embedded
operating systems, etc.

One purpose of machine operating systems is to abstract the details of accessing
and otherwise utilizing hardware resources. Accordingly, machine operating systems
almost all perform basic system tasks, such as managing I/O (input and output) with
hardware components, memory management, task scheduling, etc. In this regard,
machine operating systems typically offer services to application programs through an
API. Providing services through an API relieves application developers from having to
manage the implementation details of accessing or otherwise utilizing an underlying
computer platform. Significantly, aspects of the present invention use the machine

operating system 404 only for basic services that are available from all modern computer

-15-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

platforms. In this regard, services may be utilized for interfacing with networking
hardware and establishing a network connection to communicate using TCP/IP protocols.

In the embodiment depicted in FIGURE 4A, the computing device 300 includes a
Web browser 408 that operates at the top layer of the application platform 406. As
mentioned previously, a client-side component 410 of the network operating system may
be delivered and built on the computing device 300. In the embodiment depicted in
FIGURE 4A, the client-side component 410 is configured to operate within the context of
the Web browser 408. In this regard, the Web browser 408 may be any number of
browser applications configured to communicate with remote devices using TCP/IP
network communication protocols including, but not limited to, Mozilla Firefox®,
Microsoft's Internet Explorer®, and the like.

In the embodiment depicted in FIGURE 4A, the client-side component 410 does
not directly interact with the machine operating system 404. Instead, basic services used
by the client-side component 410 are accessed from the Web browser 408. Those skilled
in the art and others will recognize that HTTP is a higher-level protocol than TCP/IP that,
among other things, allows network resources to be requested/received using a Uniform
Resource Locator ("URL"). Typically, Web browsers generate HTTP requests in order to
obtain Web pages formatted in a markup language such as the Hypertext Markup
Language (HTML), eXtensible Markup Language (XML) or formatted using JSON
("Java Script Object Notation") and/or JavaScript. In one embodiment, the Web
browser 408 is used by the client-side component 410 of the network operating system to
perform network communications using HTTP and for rendering graphical elements that
are represented in HTML among other graphical representation technologies available
from Web browsers.

In the embodiment depicted in FIGURE 4B, the client-side component 410 of the
network operating system directly accesses the services of the machine operating
system 404 without using a Web browser. Aspects of the present invention allow
applications to be delivered and built on disparate types of computing devices. However,
Web browsers are typically configured to display graphical elements according to a
pre-determined page size and/or layout. Thus, a general-purpose Web browser may not
be well-suited for rendering graphical elements on every type of computing device in
which the present invention may be implemented. For example, using a Web browser to

render graphical elements on a small form factor computing device may be problematic.

-16-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

In this regard, the pre-determined page size and/or layout anticipated by the Web browser
may be too large or otherwise inappropriate given the available form factor. As
illustrated in FIGURE 4B, the client-side component 410 of the network operating system
may be implemented as a stand-alone application, or even as a machine operating system.
In this instance, the client-side component 410 is configured to perform graphical
rendering in a way that is appropriate given the form factor of the computing device 300
without using a Web browser. Moreover, in this embodiment, basic services for
performing network communications are obtained directly from the machine operating
system 404 or built into the client-side component 410.

In the embodiment depicted in FIGURE 4C, the computing device 300 does not
include a traditional machine operating system. Instead, basic services for interacting
with the hardware platform 402 are built into the client-side component 410. In this
embodiment, the client-side component410 implements basic system tasks for
performing memory management, task scheduling, and the like. By building these types
of basic machine services into the client-side component 410, aspects of the present
invention may be readily customized and deployed for use with particular hardware
platforms. In other words, the client-side component 410 may be configured to be
independent from the services offered by providers of machine operating systems.

As mentioned above, the client-side component 410 may be delivered as a
network service and built each time a user connects to the network. As illustrated in
FIGURES 4A-4C, the client-side component 410 is suitable for being implemented as a
stand-alone application, a machine operating system, or within the context of a Web
browser. In all of these embodiments, the server-side data center 202 or 216 may provide
application logic to the client-side component410 as a service of the network.
Accordingly, a limited resource computing device that does not have a storage medium
(e.g., hard drive, CD-ROM, DVD, etc.) may be used to access network operating system
services provided by the present invention. In this regard, the client-side component 410
and other network operating system data may be cached in system memory (ROM, RAM,
etc.) without persisting to a local storage medium. As such, applications enabled for the
network operating system do not need to be "installed" on the computing device 300 as
applications may be delivered as a service.

Now with reference to FIGURES 5A-5B, a description of how a common data

model may be used to deliver network operating system services in accordance with the

-17-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

present invention is provided. The network operating system supports the Model View
Controller (MVC) design paradigm by separating application components into different
layers, namely, a model, view, and controller. In an actual embodiment, XML documents
are the "model" or common data format in which information is represented in the
network operating system environment. Utilizing a common data model (e.g., the XML
document) in this context results in many benefits, as will be clear in the description that
follows.

The networking environment 500 depicted in FIGURES 5A-5B includes the
server-side data center 502 that is communicatively connected to each of the clients 504
and 506 via the network 508. As described above, the client-side component of the
network operating system may be dynamically delivered to each of the clients 504
and 506 from the server-side data center 502 or be locally installed on either of the
clients 504 and 506. In either instance, the client-side component of the network
operating system provides an XML virtual machine 510 that interprets or causes XML
structured applications to be executed on the clients 504 and 506. When delivered as a
service, aspects of the present invention cause the network operating system to "boot" by
delivering a process XML document from the server-side data center 502. In this regard,
the process XML document provides the logic that describes a startup-sequence for the
clients 504 and 506. As described in further detail below, this process XML document
will be executed within the XML virtual machine 510. The startup-sequence typically
instantiates and manipulates a set of objects within the XML virtual machine 510 so that
other applications may be executed.

As mentioned above, XML may serve as the "model" or common format in which
application logic and other data is represented in the network operating system
environment, but other models, data formats, and structuring of data may also be utilized
to implement the invention. In one embodiment, XML programming languages that
allow applications to be designed at a very high level of abstraction are provided. Those
skilled in the art and others will recognize that XML is a highly structured, transferable,
and transformable language. As such, representing application logic at a high abstraction
level as XML structured data is memory efficient and results in compact applications.
Specifically, a platform is provided for executing an application's logic represented in one
or more well-formed XML documents. Application functionality is separated according

to the MVC design paradigm thereby eliminating repetitive tasks performed by traditional

-18-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

systems. Accordingly, transmission of application code from the server-side data
center 502 to the clients 504 and 506 consumes a small amount of bandwidth when
compared to existing systems. Moreover, execution of the application logic using the
present invention, either eliminates or greatly reduces the bandwidth consumed, since
application logic is executed using the XML virtual machine 510. Interactions that would
have otherwise been handled by performing a server "round-trip" is handled directly on
the clients 504 or 506 without having to request or otherwise rely on network
communications with the server-side data center 502.

One aspect of the present invention is an XML virtual machine 510 that provides
the clients 504 and 506 a platform and application programming interface (API) for
executing and developing applications. In this regard, high-level application code written
in an XML programming language is accepted as input and executed locally on the
clients 504 and 506 by the XML virtual machine 510. Functionality is provided to
interpret or translate the high-level application code into interpretable code, byte code, or
other lower-level language that is suitable for execution on any platform. In this regard,
the XML virtual machine 510 abstracts the underlying computer platform and network
resources so that applications may be executed in the same way on any type of computing
device. Accordingly, the XML virtual machine 510 is completely platform and hardware
independent and can be implemented using any number of currently available, or yet to
be developed, programming technologies, such as, but not limited to, Microsoft NET®,
Java, C, C++, HTML, JavaScript, AJAX, Adobe® Flash, Microsoft® SilverLight, and the
like.

Now with reference to FIGURE 5B, additional aspects of how the common data
model is used to provide network operating system services will be described. The
networking environment 500 illustrated in FIGURE 5B includes the same components
described above with reference to FIGURE SA. In addition, an XML file system 512 that
provides storage and other network services is depicted on the server-side data
center 502. Accordingly, data maintained in the XML file system 512 may be accessed
by the clients 504 and 506 when network operating system services are being provided.
In one aspect, the present invention implements a client-side cache 514 for managing the
storage of documents and other run-time data on the clients 504 and 506. As illustrated
in FIGURE 5B, data stored in the client-side cache 514 is readily accessible to the XML

virtual machine 510. In one embodiment, the client-side cache 514 enables the XML

-19-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

virtual machine 510 to continue executing applications even if the network connection is
temporarily unavailable or if a client 504 or 506 goes offline. By way of example,
applications executing on the clients 504 and 506 may continue to operate offline when a
user is on a bus, train or airplane and other instances when a network connection is
unavailable. As described in further detail below, data changes performed on the
clients 504 or 506 will be synchronized to the XML file system 512 residing on the
server-side data center 512 when the network connection is re-established.

As mentioned previously, the present invention provides programming languages
that allow developers to create applications at a very high level of abstraction. In an
actual embodiment, these programming languages include a process XML language, a
user interface ("UI") XML language, and an application package XML language.
Application code written in these programming languages is suitable to be represented as
XML structured data and stored in XML documents. In the example illustrated in
FIGURE 5B, the process XML document 516, user interface XML document 518, and
application package XML document 520 contain application code written in these
programming languages, respectively. Accordingly, an application may be defined in one
or more XML documents maintained at the server-side data center 502. Moreover, an
application will typically utilize data documents such as the data XML document 522
also maintained at the server-side data center 502. These XML documents 516-522 may
be accessed by the clients 504 and 506 on demand so that applications may be executed
using the XML virtual machine 510.

In one embodiment, the Ul XML language is used to define an application's
"view" in the MVC design paradigm. In this regard, markup languages were originally
developed to describe the layout of Web pages in a way that allowed the pages to be
rendered by a Web browser. The structured nature of markup languages allowed the
appearance of Web pages to be modified without affecting the implementation of the
Web browser or other related technologies. In this regard, the Ul XML language defines
the appearance and behavior of an application user interface in accordance with a schema
that complies with XML syntax. Using the Ul XML language, developers may create
applications with the same graphical elements (i.e., menus, toolbars, drop-down boxes,
and the like) that exist in common desktop applications. Since the user interface logic
does not depend or describe its implementation in a way that is specific to a particular

client, the Ul XML language is suitable for developing user interfaces that work across

220-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

different platforms. Moreover, user interfaces and behavior described in the UI XML
language describe these elements in accordance with the XML syntax at a higher-level of
abstraction in accordance with the MVC design paradigm. Accordingly, user interfaces
and behavior described in the Ul XML language may be readily transformed or otherwise
modified without impacting other systems. This ability to transform the UI XML
language allows an application's functionality to be customized based on one or more
variables. For example, a transform may be defined to reduce or eliminate certain aspects
of application functionality depending on the type of device being utilized. By way of
another example, a transform may be defined on the UI XML language to remove or
restrict certain functionality depending on user access credentials or for localizing
applications for different languages and/or markets.

In one embodiment, the process XML language is used to define the "controller"
component of an application in the MVC design paradigm. In this regard, the process
XML language allows developers to describe the logic of an application in a set of
process steps. Each process step contains one or more operations that are approximately
equivalent to instructions and/or method calls in a traditional programming languages. In
the MVC design paradigm, the process XML language is used as the controller or glue
between the user interface ("View") logic and the XML data ("Model"). Accordingly,
aspects of the invention enable application logic to be described using the process XML
language at a higher abstraction level than traditional programming languages. In this
regard, the user interface logic ("View") is completely separated from the process XML
logic ("Controller"). As a result, the data handling functions that comprise the majority
of application code in existing systems is automatically handled by the present invention.
Specifically, using the process XML language, intelligent data bindings may be defined
between the view logic and the data model. When executing applications, the I/O (input
and output) or data, both to the data model cached locally and to the remote file system
and any remote listeners is automatically handled by the network operating system. Since
developers do not provide data handling logic, the applications created using the process
XML language are frequently developed more quickly and include less application code
than traditional applications. As described in further detail below, the process XML
language provides other advantages for creating and distributing applications in a

networking environment, than described with reference to FIGURE 5A.

21-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

In addition to the languages described above, an application package XML
language is also provided. The application package XML language allows developers to
describe the resources utilized by an application. In this regard, the UI and process XML
documents that define an application's functionality may be identified in an application
package. Logic in the application package allows developers to package and distribute an
application's resources to clients in a controlled and secure manner. Moreover, the use of
an application package allows multiple instances of the application to be created in a way
that enables the XML virtual machine 510 to ensure intra-application security.

In one aspect, the present invention provides improved methods for distributing
applications and software updates in a networking environment. Using existing systems,
an application is typically distributed in an executable format that, when executed,
"installs" the application on a computing device. An executable typically represents
application logic as machine instructions that are specific to a particular computing
platform. As such, an executable is a memory-intensive representation of an application
that consumes a relatively large amount of bandwidth when distributed in a networking
environment. Accordingly, complex and resource-intensive systems are required to
distribute and install applications using executables.

Improved methods for distributing applications and software updates over the
network are integrated into the network operating system. An application enabled for the
network operating system is not "installed" on a client computing device using an
executable. Instead, the present invention allows application logic to be represented
entirely in XML structured data. When a client establishes a network connection, an
application as represented in one or more XML documents, may be obtained
automatically from a service provider, which may provide the XML documents from a
local/private server or any Web server on the Internet. Accordingly, an integrated
framework is provided for distributing applications to clients over the network. In
addition, updates such as "patches" and more recent versions of an application may also
propagate automatically to clients. In this regard, since application logic is represented in
XML documents that are distributed automatically as a network service, any
modifications to the XML documents will also propagate to clients as a network service.
In the network operating system environment application logic may be synchronized
across the network the same was as any other data. Since the XML virtual machine 510

and XML file system 512 are configured to synchronize data and coordinate changes

22-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

through transaction handling, changes to applications may be performed in real-time and
in a collaborative manner. For example, an application maintained in a shared folder may
be opened and executed on the client 504. Concurrently, a user associated with the
client 506 could modify the application logic and have the changes automatically
propagated to the client 504. The changes to application logic would be implemented in
real-time and therefore be readily observed on the client 504 as the changes occur.

As described above with reference to FIGURES 5A-5B, an XML representation
of an application is distributed by a service provider and executed on the client using the
XML virtual machine. As a result, clients may continue to execute applications "off-line"
without requiring runtime processing from the server-side. In this instance, XML
documents representing one or more applications are cached in memory on the client.
The XML virtual machine may access these cached XML documents to continue
executing applications without having a network connection. Moreover, data updates that
occur off-line are also cached and transmitted to the server-side when a network
connection is re-established.

Significantly, the present invention provides network operating system services
without requiring virtualization of computer resources. In this regard, a number of
technologies for virtualizing computer resources are being used to provide network
services, such as "cloud" storage. Generally described, these virtualization technologies
abstract computer resources that are typically associated with a server away from
underlying platforms. The abstracted resources are typically encapsulated in a platform
independent interface suitable to be accessed from the network. In this regard, the
computer resources that may be abstracted include applications, hardware, desktops,
machine operating systems, and the like. However, complex systems are required to
abstract and encapsulate computer resources in this way. For example, a virtualization
layer that simulates a servers underlying hardware and has at least some impact on
performance may be required. Moreover, these virtualization technologies promote a
server-centric model that shifts the location where resources are implemented and
executed to the server-side. The increased processing and other demands placed on
servers may not scale when network services are provided to an ever-increasing number
of users. Accordingly, using virtualization technologies to implement a network service
may require a consolidated data center in which an oversupply of servers are needed to

ensure that the service is available on demand. Moreover, virtualization technologies

23-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

consume more bandwidth and result in a slower user experience since application logic is
executed on a remote server and not directly on the client. This will also result in
applications being unavailable when the network connection goes down or the client goes
"off-line."

Implementing a network service without virtualizing computer resources provides
numerous advantages. In this regard, a more-scalable architecture is provided that allows
network services to be accessed by an ever-increasing number of users. By using the
XML virtual machine to execute applications on the client-side, processing and other
resources from clients are more fully utilized. This implementation provides a more-
scalable architecture because a natural correspondence exists between the number of
users accessing a network service, bandwidth usage, processing power, and other
resources that are available from the client-side to execute application logic. In addition
to being more-scalable, executing applications on the client using the XML virtual
machine allows application functionality to be readily accessed by users while "off-line."
When the client goes "off-line," applications and user data represented in one or more
XML documents may be stored in a client-side cache. Accordingly, all of an
application's logic is available and may be executed using data in the cache, regardless of
whether an active network connection exists. However, an application may not access
network resources while "off-line" and may need to reestablish a network connection to
implement all of the application's functionality. In contrast, the "off-line" functionality
provided when a network service is implemented using virtualization technologies is
more limited. In this regard, some existing network services implement an "oftf-line"
mode where users may continue to interact with an application used to access a network
service. However, to provide this functionality, an executable or other lower-level
representation of an application is distributed and installed on the client. When the user is
"off-line," this lower-level representation of the application is executed locally.
However, installing applications on the client to provide this "off-line" functionality may
not be feasible or convenient. For example, a limited resource computing device may not
have sufficient storage to "install" an executable or other lower-level representation of an
application. More generally, the functionality available on a client without an active
network connection is limited to those applications that have been installed locally.

However, a client may not have sufficient computing resources (storage, memory,

24-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

bandwidth, etc.) to install each desired application using an executable or other low-level
representation of the application.

In one aspect, the present invention implements improved methods for accessing
network services over mobile, wireless, or unstable networks. Those skilled in the art
will recognize that mobile or wireless networks are less reliable and
bandwidth-constrained when compared to wired networks. Providing programming
languages that represent application logic as XML structured data and an XML virtual
machine 510 configured to automatically perform repetitive data handling functions
results in highly compact and memory efficient applications. In this regard, applications
are able to share the functionality of the XML virtual machine 510 and reuse objects
when implementing application logic. As a result, distributing applications enabled for
the network operating system consumes a fraction of the bandwidth when compared to
existing application distribution systems. Moreover, the present invention allows XML
representations of applications to be maintained in a client-side cache and executed
locally using the XML virtual machine 510. Since application logic and data may be
cached locally, a continuous network connection may not be necessary. Instead, the
present invention is well-suited to providing access to network services over wireless
networks in which network connectivity may be intermittent. = Moreover, since
applications are executed locally, more reliable network services with a certain guarantee
of service may be provided. For example, the present invention is also well-suited for
providing enterprise class applications as a service of the network such as the Internet. In
this regard, those skilled in the art and others will recognize that enterprise class
applications may need to be accessible within the enterprise even if the network
connection is temporarily unavailable or the quality of the Internet connection affects
access to the network. The invention described herein solves this problem.

CLIENT-SIDE COMPONENT OF THE NETWORK OPERATING SYSTEM

Those skilled in the art and others will recognize that XML is an extensible
language that provides a foundation for the creation of additional languages. An XML
document has a hierarchical tree structure, where the root of the tree identifies the
document and other nodes in the document are descendents of the root. Nodes of the tree
may contain document content, as well as data that defines the structure of the content. In
addition to the syntax imposed by XML, elements and their associated attributes may be

defined to establish other semantic constraints on the structure and content of an XML

05-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

document. In one embodiment, the present invention implements schemas or
vocabularies that apply additional semantic constraints over those imposed by XML.
Using the XML languages provided by the present invention, developers represent an
application's logic semantically in accordance with the MVC design paradigm.

The MVC design paradigm was originally implemented in the Smalltalk
programming language and has since been used in other engineering contexts. Those
skilled in the art and others will recognize that the MVC design paradigm is merely
descriptive of a general architectural paradigm for separating functionality into layers.
As such, the MVC design paradigm is implemented in various contexts to eliminate
dependencies and support platform independence. By way of example, existing systems
used to store HTML data, gather dynamic Web page content, and render a Web page are
frequently described as adhering to the MVC design paradigm. Moreover, development
environments used to create Web applications may separate functionality into layers
according to the MVC design paradigm. In this context, the graphical user interface of
the Web application is separated from a data model to support more modular application
development. However, these existing systems implement functionality and utilize an
underlying data model that is more domain-specific than the present invention.

Unlike existing systems, aspects of the present invention allow any type of
application to be created in accordance with the MVC design paradigm. In other words,
separation of the user interface from logic and the underlying data model is not limited to
Web applications, Web pages, and the like. Multi-instance applications, with each
instance potentially supporting multiple views, may be created and executed in the
network operating system environment. Moreover, these application instances each
manipulate data from a common data model. Since developers do not have to provide
program logic for setting and accessing data from the data model and managing
synchronization and data exchange between the user interface ("View") and data model,
application development is greatly simplified.

Now with reference to FIGURES 6A-B, exemplary process and UI XML
documents that may be used to illustrate aspects of the present invention will be
described. FIGURE 6A depicts an exemplary process XML document 600
("MyTasks.xml") that provides a semantic description of the controller logic for a
"MyTasks" application. As illustrated in FIGURE 6A, the MyTasks.xml document 600
includes a trigger 602 defined in the "<trigger>" XML element. This trigger 602

26-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

maintains a set of attributes including the view, component, event, and step attributes.
Moreover, application logic written in the process XML language may define a sequence
of process steps. In this example, the MyTasks.xml document 600 includes a plurality of
process steps 604-610 delineated by the "<step>" XML elements. As depicted in
FIGURE 6A, two attributes are associated with each of the process steps 604-610
including a number attribute ("id") and a name attribute. Within each process step, at
least one operation is defined. By way of example, the process step 604 associated with
the name attribute "Initialize Application” includes three operations 612-616 that are
delineated by the "<operation>" XML elements.

FIGURE 6B depicts an excerpt from a Ul XML document ("MyTasks_gui.xml")
that provides a semantic description of exemplary "view" logic for the MyTasks
application. As illustrated in FIGURE 6B, the MyTasks_gui.xml document 650 includes
two button components 652 and 654 delineated by the "<button>" XML elements. Each
button element maintains a set of attributes including the name, text, and width attributes.
Moreover, the MyTasks_gui.xml document 650 includes two input components 656
and 658 delineated by the "<input>" XML elements. In this example, the input
components 656 and 658 maintain a set of attributes that include the name, width, and
height attributes.

Upon launching an application, aspects of the invention that serve as the XML
virtual machine may begin interpreting the MyTasks.xml document 600. In one
embodiment, application logic is interpreted one statement at a time, rather than being
compiled in its entirety before execution. However, application code written in the XML
languages provided by the present invention may be compiled into executable code or
byte code in alternative embodiments. In this example, the MyTasks.xml document 600
defines a trigger 602 that identifies a process step 606 in the application that will be
executed in response to activation of the trigger. Initially, when the XML virtual machine
begins interpreting the MyTasks.xml document 600 in an illustrative embodiment, the
trigger 602 is registered so that flow may be directed to the appropriate process step 606
in response to the activation of the trigger.

In the MyTasks.xml document 600 depicted in FIGURE 6A, the application
defines a default process step 604 with the name attribute "Initialize Application" where
flow of control is directed once any triggers in the application have been registered. The

operation 612 with the name attribute "open" and the wvalue attribute

27-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

"apps/mytasks_gui.xml" is the first operation in the Initialize Application process
step 604 that will be executed. Execution of the Open operation 612 will cause the view
of the application as represented in the MyTasks_gui.xml document 650 to be interpreted
and rendered on a computer display. In this example, the application's view includes the
components 652-658 defined semantically in the MyTasks_gui.xml document 650. Once
the MyTasks gui.xml document 650 has been opened, execution will proceed to the
operation 614 with the name attribute "action" and the value attribute "#MyTasks."
Generally described, execution of the Action operation 614 will cause the button
component 654 to be hidden from view once the MyTasks_gui.xml document 650 has
been opened.

With reference now to FIGURES 7A-C, an exemplary graphical display 700
associated with the MyTasks application will be described. Specifically, the graphical
display 700 depicted in FIGURE 7A includes the Buttonl component 702 and the
Button2 component 704 that correspond to the button components 652-654 described
semantically in the MyTasks_gui.xml document 650. @ Moreover, the graphical
display 700 includes the Input3 component 706 and Input4 component 708 that
correspond to the semantic description of the input components 656-658, respectively. In
this regard, the graphical display 700 in FIGURE 7A represents a visual depiction of the
MyTasks gui.xml document 650. As mentioned above, the process logic in the
MyTasks.xml document 600 causes the Button2 component 704 to be hidden when the
MyTasks application is launched. Accordingly, the Button2 component 704 is depicted
in FIGURE 7A with a dashed line to indicate that the Button2 component 704 is not
initially visible to the user subsequent to execution of the Action operation 614.

Generally described, the exemplary MyTasks application is configured to display
a list of task descriptions that are stored in a "data/tasks.xml" document. More
specifically, task descriptions will be displayed in the Input3 component 706 by default
when the application is launched. In one aspect, a user may modify the task list by
directly interacting with the Input3 component 706 and changing entries of task
descriptions. In another aspect, the user may input a new task description into the Input4
component 708 and activate the trigger 602 by selecting the Buttonl component 702. If
valid input is received, the new task description is added to the "data/tasks.xml"
document and automatically displayed by the Input3 component 706. Conversely, if the

user merely selects the Buttonl component 702 without providing any input into the

8-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

Input4 component 708, the Button2 component 704 is displayed with text requesting that
the user provide a valid task description.

With reference again to FIGURE 6A, the operation 616 with the name attribute
"bind" and the value attribute "data/tasks.xml" is the next operation in the Initialize
Application process step 604 that will be executed. Generally described, execution of the
Bind operation 616 will cause the Input3 component 706 to become a data binding
component that displays a list of task descriptions. Specifically, the logic provided in the
Bind operation 616 and its associated component element 618, binds the Input3
component 706 to a list of task descriptions represented in the "data/tasks.xml" document.
In this example, a task is defined within the "data/tasks.xml" document as an element that
maintains an associated description attribute. The logic provided by the component
element 618 selects the "/tasks/task/@description” attribute of the task element for
display in the Input3 component 706. As depicted in FIGURE 6A, the Bind
operation 616 is the last operation in the Initialize Application process step 604 that is
executed.

With reference now to FIGURE 7B, the state of the graphical display 700
subsequent to execution of the Bind operation 616 will be described. In this regard,
FIGURE 7B depicts the same button and input components 702-708 described above
with reference to FIGURE 7A. However, after execution of the Bind operation 616, a set
of task descriptions is displayed by the Input3 component 706. Specifically, the Input3
component 706 is bound to description attributes of task elements defined in the
"data/tasks.xml" document. Accordingly, after the Bind operation 616 is executed, the
values assigned to these task descriptions, as represented in the data model (e.g.,
document object 710), are displayed in the Input3 component 706.

Upon execution of the Initialize Application process step 604, execution of
application logic represented in the MyTasks.xml document 600 does not resume until
the activation of a trigger. In this example, the MyTasks application defines a trigger 602
that directs the flow of execution to process step "2" when the Buttonl component 702
experiences a "select" event. Accordingly, the trigger 602 directs the flow of execution to
the process step 606 entitled "Press Button" in response to the Buttonl component 702
being selected. In this example, the operation 620 with the name attribute "decision" and
the value attribute "#MyTasks#input4" is the operation in the Press Button process

step 606 that will be executed. Generally described, the decision operation 620 performs

29

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

a test to determine whether any text was entered into the Input4 component 708 when the
Buttonl component 702 was selected. The logic within the "<when>" XML element 622
directs the flow of execution to process step 608 if text was entered into the Input4
component 708 when the Buttonl component 702 was selected. Conversely, the decision
operation 620 causes the flow of execution to proceed to process step 610 if text was not
entered in the Input4 component 708 upon the occurrence of the trigger.

In the example when text is entered into Input4 component 708, the flow of
execution proceeds to the "Add Task" process step 608. Accordingly, the operation 624
with the name attribute "change" and the value attribute "data/tasks.xml" is the next
operation that would be executed. The change operation 624 will cause a new task
element with the appropriate description attribute to be added to the "data/tasks.xml"
document. In this regard, the "<store>" XML element 626 within the change
operation 624 provides logic that causes the text entered in the Input4 component 708 to
be stored in the description attribute of the new task.

With reference now to FIGURE 7C, the state of the graphical display 700
subsequent to the entry of a new task and the selection of the Buttonl component 702 is
depicted. Accordingly, FIGURE 7C includes the same components 702-708 as described
above with reference to FIGURES 7A-B. In this example, the user entered the text
"purchase airline tickets" into the text area provided by the Input4 component 708. The
change operation 624 described above would add the value of this task description to the
"data/tasks.xml" document utilizing the corresponding document object 710. Since the
Input3 component 706 is bound to a selection of description attributes affected by the
change operation 624, the list of tasks displayed by the Input3 component 706 is updated
automatically in the document object 710. In other words, developers do not have to
provide application code for handling the synchronization and exchange of data between
the Input3 component 706 and the data model.

In one aspect, the user may input a new task description into the Input4
component 708 and update the task list by selecting the Buttonl component 702.
Moreover, a user may modify the task descriptions by directly interacting with entries
that are displayed in the Input3 component 706. By way of example, the user may delete
the "update presentation” task description currently being displayed by the Input3
component 706. Since a data binding is defined, the deletion would automatically

propagate to the "data/tasks.xml" document. In this regard, one or more components

-30-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

and/or local or remote applications may be data listeners to the task descriptions
represented in the "data/tasks.xml" document. Each of the local data listeners would be
notified and updated by the document object 710 in response to the "update presentation”
task being deleted. Significantly, the deletion of the task would propagate to the
underlying data model and then to any data listeners over the network without a
developer being required to provide application code for handling the data update.

With reference again to FIGURE 6A, if text is not entered into Input4
component 708 when the Buttonl component 702 is selected, the flow of execution
proceeds to the "Show Button" process step 610. Accordingly, the operation 628 with the
name attribute "action" and the value attribute "#MyTasks" is the next operation that
would be executed. Generally described, execution of this Action operation 628 will
cause the Button2 component 704 that was initially hidden (FIGURE 7A) to be displayed.
As represented in the MyTasks_gui.xml document 650, the Button2 component 704
would display a text string requesting that the user provide a valid task description.

As will be appreciated by those skilled in the art and others, the MyTasks
application described with reference to FIGURES 6A-7C is a highly simplified example
of one application that may be used illustrate aspects of the present invention. Additional
applications may be created and executed in the network operating system environment.
Accordingly, the examples and description made with reference to the MyTasks
application herein should be construed as exemplary.

Programming languages used to develop modern applications (C++, Java™,
Python™, etc.) have user interface components created and maintained in the process
logic of the application. In other words, a developer explicitly provides the logic to
create and set data on user interface components. Moreover, developers provide code in
the application's process logic to listen for events and otherwise monitor data changes that
affect the application's user interface. These event listeners cause data changes to be
persisted between the user interface of an application and a domain-specific data
structure. However, the input/output between an application's user interface to the data
structure is not standardized. Accordingly, presentation of data on the application's user
interface is tightly coupled to how the data is represented in the data structure. As a
result, modifications to the user interface or the data structure may affect other aspects of

the application.

31-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

The network operating system provides an automated communication path
between the user interface and an underlying data model to support execution of
applications that adhere to the MVC design paradigm. In this regard, developers may
define a binding between a user interface component (sometimes referred to as a control
or widget in other programming environment languages) and the underlying data model.
Data updates to the underlying data model and coordination of data changes that affect
components are managed by the present invention, thereby simplifying application
development. As the description of the MyTasks application illustrates, if data
represented in an underlying data document changes, any data bound components
listening for changes are automatically updated. @ More specifically, the bind
operation 616 in the MyTasks application provides the application logic for binding the
Input3 component 706 to a set of data represented in the data model. Accordingly, the
deletion of the "update presentation” task from the underlying data XML document is
automatically propagated to listening components, including applications and
components that are listening to the same document over the network. Moreover, data
bindings facilitate exchange and synchronization of data between user interface
components both locally and among remote clients over the network. By way of
example, the change operation 624 in the MyTasks application provides the application
logic that updates the underlying data document with text entered into the Input4
component 708. In this regard, the Input3 component 706 is listening for changes to the
underlying data document. The visual display of the Input3 component 706 is updated
when text is entered into the Input4 component 708 and the trigger 602 is activated. In
this example, the combination of data binding and the change operation 624 enables the
synchronized exchange of data between user interface components.

As described above, a binding provides an automated communication path
between a user interface component and the underlying data model. In one aspect, the
present invention allows binding to be shared and/or transferred between user interface
components. This aspect of the present invention is represented in FIGURES §A-B,
which depict components 800 and 850 that are configured to display different visual
representations of a user's file system folders. Specifically, FIGURE 8A depicts a
component 800 that is configured to display the user's folders in a tree structure. If the
user generates input requesting that the folders be displayed as a list, the data binding of

the component 800 to the underlying data may be transferred to the component 850,

-32-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

which will also transfer the state of the component 800. This example illustrates that the
present invention eliminates dependencies between the representation and processing of
data from the configuration of the data model. Moreover, the transfer and sharing of data
bindings not only provides an automated communication path between application layers
in accordance with the MVC design paradigm, but also provides an enhanced platform
for developing applications.

The present invention provides a set of user interface components (i.e., buttons,
input boxes, drop-down boxes, display panels, and the like). To facilitate application
development, a standard framework allows applications to be built from related user
interface components. In this regard, user interface components may inherit properties
from a parent component utilizing the Ul XML language and therefore be combined to
express more complex user interface elements. As a result, an application may include a
set of related components organized in a hierarchical structure in which each component
is aware of a related component. Alternatively, a single user interface component may be
defined that represents the entire view of an application. In addition, a component API
(Application Programming Interface) is provided that allows developers to create new
user interface components for use with the present invention.

In one aspect, the present invention supports the development of process-oriented
applications using the process XML language. In this regard, each process step in the
MyTasks.xml document 600 represents part of the process execution flow. Operations
within a process step may define a state change in the application being executed.
Communications between processes are supported through the controlled access to data
that describes the runtime state of an application and through the utilization of messaging
ports. Developers may reference views, components, and other runtime variables with
expressions that utilize globally-named objects. In this regard, an expression language or
common way of referencing and manipulating objects is provided. Generally described,
the expression and process XML languages collectively abstract the complexities of
executing multi-instance applications. Instead, developers may create an application as
though the application would only exist in a single instance of execution. As the
MyTasks.xml document 600 illustrates (FIGURE 6A), expressions are structured to be
compatible with XML syntax and may be delimited or tagged for use within other
programming languages. When an expression is evaluated, the XML virtual machine

performs the work of identifying, merging, and otherwise manipulating the requested data

-33-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

in accordance with the received expression. As a result, globally-named objects may be
utilized by developers in application code even though multiple runtime instances of the
application are being executed.

The present invention provides a client-side component that is implemented in a
plurality of "classes" from which "objects" may be instantiated. In other words, the
client-side component may be implemented using a programming language such as
JavaScript that utilizes object-oriented programming features. Alternatively, the
invention may be implemented using non-object oriented languages such as the C
programming language or any other language in which structures may be represented as
objects. As will be understood by those skilled in the art, objects created from a class
typically include methods that encapsulate or hide the algorithms that implement the
object's functionality. Instead of exposing these implementation details, objects provide
interfaces by which other modules may access their functionality as an abstraction.
Accordingly, functionality that implements the XML virtual machine in accordance with
one embodiment of the present invention occurs in the context of objects that utilize
object-orientation and inheritance.

As mentioned previously, the client-side component serves as an XML virtual
machine that executes applications written in languages that adhere to the XML syntax.
In an actual embodiment, the XML virtual machine is configured to execute application
code described semantically in a process modeling language (e.g., the process XML
language), user interface modeling language (e.g., the Ul XML language) and an
application package modeling language (e.g., the application package XML language).
Significantly, the XML virtual machine may be extended to understand additional XML
languages or XML-based applications to provide functionality not described herein.
Moreover, it should be well understood that instead of executing programming logic
using the XML languages described herein, other embodiments are possible. For
example, a JavaScript API or libraries could be used to build applications implement the
same functionality. Accordingly, the utilization of XML-based languages is merely
exemplary and the present invention could be implemented using traditional
programming languages.

At any given time, an application being interpreted by the XML virtual machine
may be understood as being in a particular state of execution. The process XML

language allows developers to define the conditions for transitioning between states.

-34-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

Among other things, the XML virtual machine implements functionality for managing the
state transitions by (1) defining a set of runtime variables/objects that describe the state of
an executing application; (2) implementing logic that drives when a transition in the
application state will occur, and (3) providing low-level constructs that implement the
appropriate change in the application state.

Now with reference to FIGURE 9, aspects of the client-side component and the
classes and objects that implement the XML virtual machine will be described. The
client-side component includes a plurality of "managers" or objects that will typically be
instantiated at start-up of the client-side component of the network operating system and
remain active throughout a user session. As mentioned previously, objects provided by
the client-side component in accordance with an illustrative embodiment utilize object
orientation and inheritance. In this regard, a system context object 902 may be
instantiated that serves as a placeholder where managers and other objects are embedded
at runtime. Accordingly, the system context object 902 may be used to instantiate the
managers depicted in FIGURE O including the application manager 904, process
manager 906, view manager 908, transaction manager 910, document manager 912, and
event manager 914.

Each manager typically performs a specific task that is exposed through the
interface accessible from the system context object 902. Accordingly, other objects
implemented by the present invention may call and utilize a manager's functionality to
perform the desired task. For example, the process manager 906 may be called to
instantiate a process object in preparation of executing an application's process code. In
another aspect, managers allow the controlled instantiation and communication between
objects that provides the foundation for intra-application and intra-process security.
While the description herein may be provided with reference to particular managers and
the associated objects that a manager holds, those skilled in the art and others will
recognize that the encapsulation of functionality into a particular type of manager is
exemplary. In other embodiments, the functionality described herein with relation to
particular managers and their corresponding objects may be performed without being
encapsulated or may be encapsulated in a different way than described. Moreover,
object-oriented programming languages and features described herein are merely
illustrative, as other tools may be utilized without departing from the scope of the claimed

subject matter.

-35-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

As depicted in FIGURE 9, the client-side component includes an application
manager 904 that provides logic for managing the lifecycle of an application. In this
regard, functions are exposed by the application manager 904 for creating, opening, and
terminating applications. An application may be represented internally as an application
object that "registers” with the application manager 904. When an application is
scheduled for execution, the application manager 904 may be called to create a
corresponding application object. Accordingly, the application manager 904 creates and
holds references to all active applications in the system.

As mentioned previously, attributes of one or more applications may be described
semantically by developers in an application package using the application package XML
language. The attributes described in the application package include references to
resources and system settings that are utilized by a particular application to execute.
Resources identified in the application package will typically include the XML
documents that provide the semantic description of an application's view and process
logic. In one aspect, the application manager 904 is configured to extract information
from the appropriate application package and obtain the identified resources when an
application is scheduled to execute. Alternatively, any XML data resource, including Ul
and process XML documents, may be directly embedded into an application package. In
another aspect, functionality that allows applications to continue executing when the
client goes "off-line" is implemented by the application manager 904. In this regard, the
appropriate application package may be referenced by the application manager 904 to
identify the resources utilized by a corresponding application. Then, any resources that
have not yet been cached locally are identified and obtained from the appropriate service
provider.

The process manager 906 depicted in FIGURE 9 is responsible for creating and
holding internal process objects that are used to execute process steps in an application.
As mentioned above, application logic written in the process XML language may define a
sequence of process steps that each include one or more operations. A process object
created and held by the process manager 906 is responsible for looping through and
causing one or more low-level constructs or operation handlers to be called. Unlike
traditional platforms, the conceptual foundation of the network operating system is based
on process-oriented operations that model low-level constructs. Higher-level constructs

that, for example, model workflows, product lifecycle management, user collaboration,

-36-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

and the like, are constructed from these low-level constructs. By way of example, the set
of operation handlers provided by the present invention that models low-level constructs
includes, but is not limited to, an open operation handler, bind operation handler, change
operation handler, decision operation handler, and the like. Moreover, an operation API
is provided that allows developers to define additional operation handlers. In this way,
the XML virtual machine may be extended to support and execute additional low-level
constructs. On the other hand, the operations that may be used in an application are
limited to those operations either created in accordance with the operation APIs or
provided by the present invention. As a result, the ability of users to create malware or
otherwise implement malicious functionality is severely restricted since only a limited
and well-defined set of operations are available to execute application logic. On one
hand, since there are only a limited number of ways to manipulate an XML document, a
relatively small number of operations need to be provided. Since XML is a very general
language, any application or domain may be described utilizing the language.
Accordingly, the process XML language and its corresponding operations provided by
the present invention is capable of describing any type of process logic and may be used
to describe any type of application.

In accordance with one embodiment, an instance object is provided by the present
invention that tracks the "runtime state" of an executing application or instance. Those
skilled in the art and others will recognize that the runtime state of an executing
application constantly evolves as logic is executed. An instance object tracks and
otherwise manages the runtime state of an executing application and supplies context to
other objects used to implement the XML virtual machine. Accordingly, instance objects
couple operational meaning to the execution of processes and their associated operations.
As a result, even though the runtime state of an application instance is constantly
changing, operation handlers are provided with data that accounts for these changes. In
this way, the present invention supports dynamic execution of application logic using
process objects that are stateless. In other words, even though multiple instances of an
application may exist, only a single version of the application code is necessary, thereby
saving memory.

As depicted in FIGUREO, the client-side component includes a view
manager 908 that is responsible for tracking the "views" or user interfaces associated with

an executing application. Methods are provided by the view manager 908 for creating an

-37-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

internal view object which is used to render and update an application's user interface. In
accordance with the MVC design paradigm, the user interface of an application may be
described semantically using the UI XML language. Accordingly, the relationships
between components and other graphical attributes of the application's complete user
interface may be represented in a Ul XML document. View objects instantiated and held
by the view manager 908 are utilized in rendering user interfaces that are described
semantically in a Ul XML document. In one embodiment, the rendering of the user
interface may be performed through a series of XML transformations. However, those
skilled in the art and others will recognize that a user interface may be rendered without
performing XML transformations and the description provided above should be construed
as exemplary. In any event, the view manager 908 is configured to create view objects
and holds reference to all active views in the system.

As depicted in FIGURE 9, the client-side component includes a document
manager 912 that is responsible for instantiating and holding reference to document
objects. As mentioned previously, XML documents are the data model that serves as a
common data source in the network operating system environment. Even application
logic, system settings, application states, and the like are represented in XML documents.
In one aspect, the document manager 912 is responsible for causing documents to be
loaded or cached in memory on a client computer. Accordingly, the document
manager 912 may interact with other managers, such as the communication manager
(described below), to obtain documents. Documents may be obtained from a remote
network location using a communication channel or a channel can be established to
access documents maintained on a local hard drive or other non-volatile memory on a
client computer. In another aspect, the document manager 912 serves as a client-side
cache tracking each document that is loaded into memory on a client computer. When a
document is obtained locally, an internal document object that provides a structured
object-oriented representation of the document may be instantiated. In this regard, the
document manager 912 holds references to all document objects in the system and
exposes methods for creating, retrieving, saving, and renaming XML documents, among
others.

The event manager 914 visually depicted in FIGURE 9 serves as a trigger event
bus allowing aspects of the XML virtual machine to execute application logic in response

to the activation of a trigger. On one hand, a process object may utilize a notifier object

-38-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

to register a trigger as a listener with the event manager 914. Other objects within the
system such as component objects often register themselves directly as listeners to the
event manager 914. Among other things, the notifier object receives and stores data that
identifies the process step in an application that will be executed in response to the trigger
being activated. Moreover, data provided by a notifier object associates the trigger with
an originating object (i.e., often a view or component object) where the trigger activation
will originate. On the other hand, the event manager 914 allows objects (i.e., view or
component objects) to push or otherwise notify registered listeners when a trigger is
activated. In this example, the component object will notify and pass data to the event
manager 914. In response, the event manager 914 will perform a look-up to identify
listeners for the activated event. Then, the appropriate notifier or other listening objects
may be alerted and provided with data that allows application execution to proceed to the
appropriate process step. As described in further detail below, separate application
instances may each use the same set of triggers and notifier objects. Providing an event
manager 914 and associated systems that are configured to re-use the same resources in
this way both increases performance and minimizes the memory used.

As used herein, a "trigger" refers to the occurrence of a defined triggering event
that will cause application code to be executed. Accordingly, in the exemplary process
XML document 600 described above with reference to FIGURE 6A, the activation of a
trigger 602 causes a particular process step defined in the application code to be executed.
In contrast to existing systems, triggers implemented by the present invention are not
normally activated upon the occurrence of a data update. In other words, other than
specifying operations such as a data binding, developers are not required to provide logic
for managing input and output from an application user interface to the data model.
Instead, data updates are managed by the present invention by a separate data update
notification event bus and do not correspond to the activation of a trigger. As described
in further detail below, aspects of the present invention provides a separate event bus
implemented in the document object that automatically handles propagation of data
update events to components and other objects.

The transaction manager 910 also depicted in FIGURE 9 provides an interface for
creating and propagating transactions used to update the contents of an XML document.
Accordingly, when a change to the data model will be performed, this will result in a

transaction. In this regard, a transaction represents a relative change and may be

-30-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

represented as an XML data fragment that contains data used to implement or reverse a
change to the data model. For example, in the MyTasks application described above with
reference to FIGURE 6A, the change operation 624 that adds a task to an underlying data
XML document may result in the creation of a transaction. The data update reflected in a
transaction may be persisted to the data model as well as to any remote listeners. In one
embodiment, the transaction manager 910 includes identification and time stamping data
when a transaction is created that may be used to "rollback” the data update represented
in the transaction as well as identify the order in which transactions are generated.

Now with reference to FIGURE 10A, an application initiation routine 1000 will
be described that performs processing to open an application package. The application
initiation routine 1000 may be performed in response to a user generating a command to
launch an application. As mentioned previously, aspects of the present invention may
provide a desktop environment in which users launch applications through the selection
of a menu item, icon, and the like. In response to receiving this type of command, a data
type recognizer within the system context object 902 may be passed a URL that identifies
the location of a document associated with an application package, XML document, or
binary file. As described in further detail below, the data type recognizer is utilized in
numerous ways to identify and associate actions with particular types of documents. In
any event, the application initiation routine 1000 may be performed when the data type
recognizer determines that a document that corresponds to an application package
(e.g., application package XML document) is being opened.

In the application initiation routine 1000 depicted in FIGURE 10A, the
application manager 904 is utilized to instantiate an application object at block 1002.
Multiple application objects that each represent a different application may be
instantiated and held by the application manager 904. On this iteration through the
application initiation routine 1000, a first application object may be instantiated that, for
example, represents a word processing program. On a different iteration through the
application initiation routine 1000, a second application object that represents a different
program (e.g., an e-mail program) may be instantiated. By controlling the instantiation
and access to application objects, process logic associated with one application is unable
to access the internal objects (e.g., view objects, instance object, process object, etc.) that
are associated with a different application. Accordingly, when executing the process

logic of the word processing program, a view object associated with the e-mail

-40-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

application package is inaccessible. As described in further detail below, the use of the
application manager 904 to instantiate and hold application objects is part of a larger
framework provided by the present invention that insures both intra-application and
intra-process security.

At block 1004, the resources of an application being opened as specified in a
corresponding application package are obtained. Logic in an application package formed
in accordance with the present invention provides the overall blueprint of the resources
and settings of an application. Accordingly, an application package XML document may
identify process and UI XML documents associated with an application, as well as other
application resources such as images, data documents, XSLT documents, among others.
Resources utilized by an application, including the application package XML document
itself, may be cached in memory on the client or obtained from a service provider
utilizing a communication channel (described below). In addition to resource and
settings management, the application package XML language allows developers to
configure application packages in more advanced ways. By way of example only,
conditional logic in an application package XML document may be used to implement a
more fault-tolerant network service in which resources can be obtained from a failover
network location. In the event that a primary network location is unavailable, the
application package can identify alternative network locations where the resources may
be obtained. However, this is just one example of the way the present invention allows
developers to configure an application package using the package XML language.

As further illustrated in FIGURE 10A, at decision block 1006, the application
initiation routine 1000 determines whether additional runtime instance(s) of the
application is permitted. The application package XML language allows developers to
establish configurations to limit the number of application instances that may be created.
Accordingly, the determination made at block 1006 may be dependent on configurations
defined in an application package XML document. If the determination is made, at
block 1006, that an additional instance is not permitted, then the application initiation
routine 1000 proceeds to block 1008 where the command to launch an application that
does not allow an additional instance is handled. In this regard, handling the command at
block 1008 may include refreshing an existing runtime instance of the application. In
addition or alternatively, handling the command may include informing the user through

a dialogue that an additional instance of the application is not permitted. Then, upon

41-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

handling the command, the application initiation routine 1000 proceeds to block 1014,
where it terminates.

On the other hand, if a determination is made at block 1006 that an additional
instance of the application is permitted, the application initiation routine 1000 proceeds to
block 1010. At block 1010, an instance object is instantiated that tracks and manages the
runtime state of the application being launched. When process and view objects are
created, aspects of the present invention associate these objects with their corresponding
instance. The instance object instantiated at block 1010 maintains structures for tracking
process and view objects, aliases, and other runtime variables. Accordingly, process and
view objects associated with this application instance will be known to the instance
object. Through the controlled instantiation and referencing of objects, a localized
relationship hierarchy may be established that delimits the boundary of an application
instance. As described in further detail below, this framework associates process and
view objects with a corresponding instance and delimits access to these objects from
outside the localized relationship hierarchy.

The context provided by the instance object instantiated at block 1010 allows
functionality to be implemented relative to an application's runtime state. In one aspect,
the instance object instantiates and holds a local expression engine for evaluating
expressions encountered in application code being interpreted. A process object may
utilize a corresponding instance object and a local expression engine that the instance
holds to evaluate expressions. Moreover, the instance object instantiated at block 1010
may be supplied when executing operations in order to couple operational meaning to the
execution of process logic.

As further illustrated in FIGURE 10A, at block 1012, the application object
instantiated at block 1002 is utilized to open and initiate execution of an application's
process and view logic. Routines for opening and initiating execution of logic in process
and Ul XML documents are described below and will not be provided here.
Significantly, each time an application associated with an application package is
launched, a new instance object will be supplied to track the runtime state of the
application. For example, an application object that represents a word processing
program will supply a different instance object each time an instance of the word
processing application is launched. By utilizing the application object in this way,

aspects of the present invention are able to control access to objects that are associated

42-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

with an executing application. Then, the application initiation routine 1000 proceeds to
block 1014, where it terminates.

Now with reference to FIGURE 10B, the utilization of application objects to
encapsulate applications and provide intra-application security will be described in
additional detail. When an application from an application package is launched, the
application manager 904 instantiates an application object that provides an encapsulated
representation of the application. As illustrated in FIGURE 10B, the application
manager 904 may instantiate the Application Object A 1030, Application Object B 1032,
and Application Object Nth 1034. In one embodiment, an application object is utilized to
instantiate and hold one or more instance objects. In the example depicted in
FIGURE 10B, the Application Object A 1030 may instantiate and hold the Instance
Object A1 1036, Instance Object A2 1038, and Instance Object A-Nth 1040. Similarly,
the Application Object B 1032 may instantiate and hold the Instance Object B1 1042 and
the Instance Object B-Nth 1044. In this regard, a unidirectional solid arrow between
objects depicted in FIGURE 10B indicates that the source object where the arrow
originates holds the destination object identified by the arrow pointer. Accordingly, the
solid arrow from the application manager 904 to the application objects 1030-1034
indicates that these objects are held by application manager 904. From the illustration in
FIGURE 10B, the relationship between the application manager 904, application
objects 1030-1034, and their corresponding instance objects 1036-1044 is apparent.

The relationship between objects depicted in FIGURE 10B illustrate how the
present invention is able to ensure intra-application security. Access to application
objects is controlled by the application manager 904 which exposes methods for creating,
opening, and terminating applications. When an application object is instantiated, the
application manager 904 isolates the application object into a separate memory space. By
preventing application objects from sharing a memory space, code from one application
may not be injected into or otherwise affect the memory space allocated to a different
application. Moreover, an application object provides an encapsulated representation of
an application in which internal data associated with the application may be hidden. All
of the functionality of the application and access to internal data is controlled through the
creation of exposed methods. By isolating and encapsulating applications in this way, the
internal objects (e.g., view objects, instance object, process object, etc.) associated with

one application are rendered inaccessible to a different application. Accordingly, when

43-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

executing code utilizing the Application Object A 1030, internal objects associated with
the Application Object B 1032 may not be accessed. Even though the internal data of an
application may not be accessed, data may be shared utilizing the underlying data model.
Accordingly, if a user has sufficient access rights, a document may be shared by multiple
applications. In other words, the intra-application security framework provided by the
present invention does not prevent the authorized sharing of data between applications
using the underlying data model.

Now with reference to FIGURE 10C, the utilization of instance objects to
implement a localized relationship hierarchy will be described in additional detail. By
defining a localized relationship hierarchy, aspects of the present invention allow
multi-instance applications to be securely executed. The illustration in FIGURE 10C
includes the application object 1050 and instance object 1052. In addition, FIGURE 10C
depicts a process object 1054, view object 1056, component object 1058, and a dialog
object 1060 that are instantiated when an application's process and Ul XML documents
are opened. In one embodiment, the application object 1050 supplies the instance
object 1052 when initiating execution of an application. The dashed unidirectional
arrows originating from the application object 1050 to the view object 1056 and process
object 1054 indicate that these objects were created within the localized relationship
hierarchy that is specific to the supplied instance object 1052. In this regard, the instance
object 1052 maintains a MiniView manager 1062 and a MiniProcess manager 1064.
When an application's process XML document is opened, the instance object 1052 is
provided with a reference to the resulting process object 1054 that is tracked using the
MiniProcess manager 1064. Similarly, the view object 1056 that results when an
application view is opened is supplied to the instance object 1052 and held by the
MiniView manager 1062. Accordingly, the updates to the MiniProcess manager 1064
and MiniView manager 1062 allow the instance object 1052 to track and identify objects
that are associated with a particular application instance.

Throughout the code that describes the logic of an application, developers may
utilize globally-named objects to define the application's logic. These globally-named
objects may be referenced in accordance with an expression language provided by the
present invention. However, global names assigned to objects in application code may
reference runtime objects that belong to different instances. For example, the following

expression may be used in application code to reference the view object 1056:

-44-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

"#MyTasks." In addition, the following expression may be used to reference a
component object (e.g., Button) that is created within the context of the aforementioned
view object 1056: "#MyTasks#buttonl." To avoid ambiguity and enforce security,
aspects of the present invention implement functionality that allows globally-named
objects encountered in application code to be evaluated relative to the appropriate
instance. In this regard, the evaluation of globally-named objects is performed without
creating duplicate process or Ul XML documents. Instead, an application's process and
UI documents are shared and used to build the runtime objects for multiple application
instances. As will be clear in the description that follows, the implementation of a
localized relationship hierarchy provides a basis for identifying and/or supplying the
appropriate instance when expressions are evaluated and accessing the appropriate view
object within the instance.

In the example depicted in FIGURE 10C, a bidirectional arrow is depicted
between the instance object 1052 and the view object 1056. On one hand, the
bidirectional arrow indicates that the instance object 1052 is aware that the view
object 1056 is associated with this particular application instance. =~ Upon being
instantiated, the view object 1056 may be supplied to the instance object 1052 and held
by the MiniView manager 1062. On the other hand, an identifier for the instance
object 1052 is supplied when an application view is created so that the view object 1056
is aware of its associated instance. As a result, the appropriate instance may be identified
when input is received that will cause a data update or application logic to be executed.
For example, the component object 1058 may be instantiated when the view object 1056
is used to open an application view. Since the component object 1058 is created within
the context of an application view, it may communicate with the view object 1056. As a
result, the component object 1058 may identify the appropriate instance object 1052
when, for example, a user provides input that will cause application code to be executed.

In the example depicted in FIGURE 10C, a unidirectional arrow is depicted
between the instance object 1052 and the process object 1054. In one embodiment, the
process steps in an application are executed using the process object 1052. Through the
utilization and updating of the MiniProcess manager 1064, the instance object 1052 is
aware of its associated process object 1054. However, process objects provided by the
present invention are stateless between execution of process steps. As a result, process

objects are supplied with the context from a single instance object 1052. In other words,

-45-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

the process object 1052 is not aware of an associated instance object 1052 between
execution of process steps. However, the process object 1054 may utilize the services of
an expression engine (described below) that is held by a supplied instance object 1052.
The localized relationship hierarchy depicted in FIGURE 10C and the associated
description illustrates how the present invention is able to ensure intra-process security
while still supporting multi-instance applications. When iterating through the operations
in a process step, the process object 1054 may only be supplied context from one instance
object 1052. This framework in which relationships are established, so that the process
object 1054 1is supplied context from a single instance object 1052, allows a strict
separation between objects associated with different instances. Accordingly, when
executing application code, the process object 1054 is not able to access objects that are
in the localized relationship hierarchy of a different instance.

Aspects of the present invention are able to create sub-instances within a localized
relationship hierarchy established by a parent instance. In this embodiment, the
sub-instance and its resulting sub-view object and sub-process objects are created within a
localized relationship hierarchy of the parent instance. The localized relationship
hierarchy delineated by the sub-instance is visible to objects created within the
relationship hierarchy of the parent instance. However, runtime objects that are created
within the sub-instance are not aware of objects associated with the parent instance or
other sub-instances. This ability to nest sub-instances within a parent instance offers
great flexibility to application developers in building more modular code as well as the
ability to utilize different scopes.

Now with reference to FIGURE 11, a process initiation routine 1100 for opening
and initiating execution of logic defined in an application's process code will be
described. The process initiation routine 1100 may be performed when a call to open a
document that contains process logic is generated. In one embodiment, calls to open a
file may be issued to the data type recognizer that receives a URL from a calling object.
The URL passed to the data type recognizer may correspond to any type of document
including, but not limited to, an application package XML document, process XML
document, or Ul XML document. When opening a document that contains process logic,
the data type recognizer may cause particular actions to be performed that facilitate

application execution. In the exemplary embodiment depicted in FIGURE 11, the data

-46-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

type recognizer determines that the supplied document is a process XML document and
causes actions that are specific to this file type to be performed.

The process initiation routine 1100 depicted in FIGURE 11 illustrates two
exemplary circumstances in which a process XML document may be opened. However,
the examples provided below should be construed as exemplary as process XML
documents may be opened in other circumstances without departing from the scope of the
claimed subject matter. As illustrated in FIGURE 11, the process initiation routine 1100
begins either at block 1102 or block 1104. In an exemplary embodiment, the
routine 1100 begins at block 1102 where the data type recognizer receives a call to open a
process XML document that is associated with an application package. In this
embodiment, an application object supplies a previously created instance object in the
call received at block 1102. As described in further detail below, the process initiation
routine 1100 will instantiate a process object in anticipation of executing process steps
defined in the process XML document. A reference to this process object may later be
provided to the corresponding instance that is supplied in the call received at block 1102.

In an alternative embodiment, the process initiation routine 1100 begins at
block 1104 where the data type recognizer receives a call to open a process XML
document that represents a stand-alone application. Applications are not required to be
associated with an application package. In this embodiment, the data type recognizer
does not receive a supplied instance at block 1104 in the call to open the process XML
document. Applications that are configured to be stand-alone in this way do not support
multiple instances of execution and allow applications to share at least some memory
space.

At block 1106, processing is performed by the data type recognizer to identify the
file-type of the document that will be opened. In this example, the analysis performed by
the data type recognizer will determine that the document associated with the received
call is a process XML document. As mentioned previously, the data type recognizer may
associate actions with a particular file type. Upon encountering a request to open a
process XML document, the data type recognizer is configured to call the process
manager 906, at block 1108, indicating that request to open a process XML document has
been received.

At decision block 1110, logic within the process manager 906 determines whether

a process object for this process XML document is cached in memory. In one aspect, the

47-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

process initiation routine 1100 is responsible for instantiating a new process object when
an application is initially launched. Once instantiated, logic is implemented by the
process initiation routine 1100 that enables the newly instantiated process object to
execute a process step. Since the process object is stateless, it may be reused. As such,
the same process object may be used to execute application code from the same instance
of an application package or other processes embedded in the process XML document.
Accordingly, the process object instantiated when an application is launched may be
cached in memory by the process manager 906. If the process manager 906 previously
instantiated a process object for this application that is still in memory, the result of the
test performed at block 1110 is "yes," and the process initiation routine 1100 proceeds to
block 1120, described in further detail below. Conversely, if a determination is made that
a new process object will be instantiated, the process initiation routine 1100 proceeds to
block 1112. Before the new process object is instantiated, the process XML document
being opened should be available locally. To this end, the process manager 904 generates
a call that is routed through the document manager 912 to obtain the appropriate process
XML document at block 1112.

At block 1114, a determination is made regarding whether the process XML
document being requested by the process manager 904 is loaded into memory of the
client computing device. As mentioned previously, the document manager 912 serves as
a client-side cache, tracking each document that is loaded in memory on the client. If a
determination is made that the process XML document being opened is referenced in the
client-side cache maintained by the document manager 912, then the process initiation
routine 1100 proceeds to block 1118, described in further detail below. Conversely, if the
requested process XML document is not loaded in the client-side cache, the process
initiation routine 1100 proceeds to block 1116, where the document manager 912 causes
the requested process XML document to be obtained from a service provider. More
specifically, at block 1116, the document manager 912 utilizes the communication
manager (described below) to request that the appropriate process XML document be
obtained from a network location identified by a supplied URL.

Once the process XML document is available from the client-side cache, a new
process object is instantiated at block 1118. Specifically, logic within the process
manager 904 is utilized to instantiate a new process object in anticipation of executing

application code. Then, the new process object is registered at block 1120 as a listener on

48-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

its corresponding process XML document. As described in further detail below, by
registering as a listener on a document in the data model, an object may be notified and
take certain action when a specified data update to the document is performed.

At block 1122, notifier objects are instantiated for each trigger in the application.
Specifically, parsing may be performed to identify the trigger elements defined in the
process XML document being opened. By way of example, the MyTasks application
defines a trigger 602 (FIGURE 6A) that would result in a notifier object being
instantiated at block 1122. Triggers may be defined as elements in a process XML
document with each trigger including the view, component, event, and step attributes.
The value assigned to the view and component attributes identifies the application view
and/or component where the trigger will be activated. Similarly, the value assigned to the
event attribute identifies the type of event that will activate the trigger. Moreover, the
value assigned to the step attribute identifies the process step in the application's process
code where execution will be directed in response to the trigger. For each trigger in an
application, logic within the process manager 906 instantiates a notifier object and caches
data in the notifier object that may be subsequently used to execute a particular process
step.

As further illustrated in FIGURE 11, each trigger defined in an application is
registered with the event manager 914 at block 1124. In one embodiment, the event
manager 914 maintains an internal hash data structure that associates a set of trigger data
with listening notifier objects. Accordingly, triggers may be registered by updating the
hash data structure maintained by the event manager 914. As described in further detail
below, the event manager 914 notifies the appropriate listening objects and notifier
objects when an event that matches a registered event for a component and event type
occurs.

As further illustrated at FIGURE 11, a determination is made at block 1126
regarding whether a new instance will be instantiated. When opening a process XML
document, the instance may be supplied. Specifically, the application initiation
routine 1000 described above may instantiate and supply the instance when opening a
process XML document. Also, instances may be supplied in other circumstances in order
to support modular application development and for different processes to share context.
In these embodiments, a new instance will not be instantiated, and the process initiation

routine 1100 proceeds to block 1130, described in further detail below. Conversely, if an

-49-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

instance object was not supplied, the process initiation routine 1100 proceeds to
block 1128, where an instance object is instantiated. Specifically, logic within the
process manager 906 generates a call to instantiate the new instance object at block 1128.

At block 1130, a call to execute a process step defined in a process XML
document is generated. In an actual embodiment, a process object is configured to cause
a process step to be executed based on two received parameters: (1) a supplied instance
representing the runtime state of an application; and (2) the identifier of the process step
that will be executed. In this regard, the instance that is supplied to the process object
may be created within the context of an application package or a stand-alone application.
In either embodiment, the process initiation routine 1100 is configured to provide a
process object with parameters that allow the process object to be re-used for multiple
instances in executing each process step defined in the process XML document. Then,
the process initiation routine 1100 proceeds to block 1132, where it terminates.

When a process step will be executed, flow of control is directed to an execute
method encoded within a process object. Generally described, the execute method loops
through and causes each operation defined in a process step to be executed. In other
words, the execute method is the interface to the process operations developed in
accordance with the process operation API. As such, the execute method could be called
by the process initiation routine 1100 in order to execute process step "1" defined in the
MyTasks application. In response, the execute method would perform processing that
causes the Open, Bind, and Action operations 612-616 within this process step 604 to be
executed.

Now, with reference to FIGURES 12A-B, an execute method 1200 will be
described that is configured to cause operations in a process step to be executed. As
illustrated in FIGURE 12A, the execute method 1200 begins at block 1202 where a new
operation within a process step is identified. In one embodiment, operations within a
process step are typically identified and executed sequentially. Upon encountering a new
operation, an expression provided in the value attribute of the operation is selected for
evaluation at block 1203. For example, in the MyTasks application described above, the
MyTasks document 600 (FIGURE 6A) defines an Initialize Application process step 604.
Within this process step 604, the first operation is an Open operation 612 having a value
attribute "apps/mytasks_gui.xml." On this iteration through the execute method 1200, the

expression "apps/mytasks_gui.xml" would be selected for evaluation at block 1203.

-50-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

The descriptions made with reference to FIGURE 12 provides examples in which
operations within a process step are executed sequentially. However, aspects of the
present invention support asynchronous execution of operations so that each operation in
a process step may not be executed sequentially. For example, if a first operation
requested a resource that is only available from a remote network location, other
operations (that are not dependent on the results of the first operation) may be executed
while the resource is obtained asynchronously.

As further illustrated in FIGURE 12A, the expression selected for evaluation at
block 1203 is evaluated into an XBind at block 1204. As used herein, an XBind is a data
type that comprises a URL, base path (e.g., an XPath expression that references an XML
fragment within the document identified by the specified URL), and a selection (e.g., a
plurality of XPath expressions). In the exemplary Open operation 612 defined in the
MyTasks application, the "apps/mytasks_gui.xml" expression would be evaluated into the

following XBind, at block 1204:

URL = apps/mytasks_gui.xml
Base path =/

Selection =

The URL of this XBind references the UI XML document that provides the
semantic description of the application's user interface. While the examples provided
herein utilize a URL as the format for identifying resources this should be construed as
exemplary. Any system that is capable of uniquely identifying a resource may be
implemented in conjunction with the present invention. As described in further detail
below, the network operating system provides protocols and abstractions for accessing an
XML file system, databases, and XML web services using URLs. However, it is
contemplated that other protocols could be used to identify resource locations other than
URLs. The base path of the above XBind is "/" which references the root element of the
UI XML document identified in the URL. When opening an application view, the base
path could reference a fragment within a UI XML document. In this instance, the
semantic description of the view logic is not associated with the root node of the UT XML
document. Accordingly, the XBind for this variation would include a base path

referencing the node that corresponds to the view logic. The selection for this exemplary

-51-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

XBind is "null" as it does not contain data. Once the expression has been evaluated, the
execute method 1200 proceeds to block 1206, described in further detail below.

With reference now to FIGURE 12B, an interchange that occurs when an
expression is evaluated will be described. The illustration in FIGURE 12B includes a set
of objects that include the instance object 1250, the process object 1252, and the view
object 1254. Similar to the description provided above with reference to FIGURE 10C,
the dashed arrows depicted in FIGURE 12B indicate that the process and view
objects 1252-1254 were previously associated with the localized relationship hierarchy
that is specific to the instance object 1250. Within the execute method 1200, the process
object 1252 may utilize the instance object 1250 to evaluate an encountered expression.
Since the instance object 1250 is supplied when execution of a process step is initiated,
the process object 1252 may utilize the instance object 1250 within the process step in
order to have the expression evaluated by the expression engine 1260.

In one embodiment, the present invention implements an expression engine 1260
configured to evaluate expressions within the context provided by the instance.
Specifically, functionality encapsulated in the expression engine 1260 may be used within
the context of the instance object 1250 to evaluate the expression 1262 into the
XBind 1264, XML formatted data, or plain text. Once evaluated, the XBind 1264
identified by the expression engine 1260 may be passed from the instance object 1250 to
the process object 1252. By utilizing the instance object 1250 to instantiate and hold the
local expression engine 1260, evaluation of expressions is readily performed relative to
the context supplied by the instance or any sub-instance. Among other things, utilizing a
local expression engine 1260 in this way allows instance and scope handling to be
performed within a multiple chained scope depth. Accordingly, expressions may be
evaluated differently, depending on the application instance that is executing, and
developers are not required to account for the complexity of managing multiple instances
or scopes. Additional descriptions of the functionalities implemented within the
expression engine 1260 and the types of expressions that may be evaluated by the present
invention will be described in further detail below. In this regard, the expression
engine 1260 may be used to evaluate multiple expressions defined within an operation.
Each of these expressions within the operation is evaluated before an operation handler is

called, as described in further detail below.

-32-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

With reference again to FIGURE 12A, the execute method 1200 initiates
execution of the appropriate operation handler at block 1206. As mentioned previously, a
plurality of operation handlers are provided by the present invention. Each operation
handler implements functionality specific to the type of operation that may be
encountered. Accordingly, if the current operation is an open operation, then the execute
method 1200 calls an open operation handler at block 1206. However, other operation
handlers are implemented (Bind, Decision, Action, Change, etc.) that may be called
within the execute method 1200. Accordingly, the execute method 1200 is configured to
pass arguments that are appropriate for the particular operation handler being called using
a well-defined process operation APIs, which will be discussed in the examples below.
However, each operation handler is supplied with at least instance and process objects
and an evaluated XBind when called.

At decision block 1208, the execute method 1200 determines whether additional
operations in a process step will be executed. Accordingly, if all of the operations in the
current process step were not previously executed, the execute method 1200 proceeds
back to block 1202, and blocks 1202-1208 repeat until each operation has been executed.
Significantly, a process step may include a statement that directs the flow of application
execution. For example, a "call" statement may be defined as a statement in a process
step that directs the flow of execution to a different process step once all of the operations
in the current process step have been executed. More generally, a "call" operation is
provided that allows developers to direct the flow of execution between operations of one
process step to a different process step. When a "call" operation is defined, flow proceeds
to the new process step and, upon completion, returns to a location within the originating
process step. In an actual embodiment, asynchronous calls, time delay calls and time
repeated interval calls may be generated using the "call" operation. Then, once all of the
operations have been executed, the execute method 1200 proceeds to block 1210, where
it terminates.

As mentioned above, the execute method 1200 initiates execution of particular
operation handlers when interpreting application logic. With continuing reference to the
MyTasks application described above, the functionality implemented by particular
operation handlers will be described. Since an operation handler implements a state
change, all data that an operation handler utilizes is supplied. Moreover, aspects of the

present invention are configured so that operation handlers do not return data. As such,

-53-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

operation handlers may be implemented as stand-alone functions that are supplied with
everything used to execute without returning data. Accordingly, process operations in an
application may be executed locally. However, since operation handlers are stand-alone
functions, they may be provided as a Web service, from a server-side data center.

Now with reference to FIGURE 13, an exemplary open handling routine 1300 that
utilizes an open operation handler will be described. In the exemplary MyTasks
application described above (FIGURE 6A), the application defines an Open
operation 612 having a value attribute that may be evaluated to an XBind within the
execute method 1200 (FIGURE 12A). Accordingly, an open operation handler may be
called to execute the open operation 612. In one embodiment, arguments may be passed
in the call to the open operation handler that include a previously evaluated XBind and
the appropriate instance and process objects.

As illustrated in FIGURE 13, at block 1302, the data type recognizer is called
within the open operation handler to open a document. As mentioned above, a previously
evaluated XBind may point to a document or fragment (node) within a document that is
being opened. Among other things, the open operation handler passes this previously
evaluated XBind that identifies the document being opened in the call to the data type
recognizer. Upon receiving the call, the data type recognizer performs processing at
block 1304 to identify the file type of the document referenced in the received XBind. In
the exemplary MyTasks application, the XBind passed to the data type recognizer
references the document entitled "MyTasks gui.xml." In this example, the data type
recognizer would identify the file type as being an UI XML document. As mentioned
previously, logic is provided within the data type recognizer that associates actions with
particular file types. An exemplary set of actions initiated when the data type recognizer
is utilized to open a Ul XML document are described below.

At block 1306 of the open handling routine 1300, the data type recognizer passes
a command to the view manager 908 indicating that a request to open an UI XML
document has been received. Specifically, the view manager 908 is called to create a
view object that will be used to render a new user interface or application view. As
mentioned previously, the user interface of an application may be described semantically
in an Ul XML document (e.g., "MyTasks_gui.xml"). In this regard, multiple view

objects may be associated with each application instance. Accordingly, in the call to the

-534-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

view manager 908, the identifier of the appropriate instance and the Ul XML document
that describes the new view may be supplied by the data type recognizer.

As further illustrated in FIGURE 13 at block 1308, execution of logic that
provides the semantic description of a new application view is initiated. As mentioned
previously, the view manager 908 is responsible for instantiating a view object and
performing tasks that allow an application view described in a Ul XML document to be
rendered. To render a new application view, component and dialog objects are
instantiated utilizing a view object. As described in further detail below with reference to
FIGURE 23, these objects provided by the present invention implement functionality that
allow graphical elements described semantically in a Ul XML document to be rendered
on a computer display. Then, the open handling routine 1300 proceeds to block 1310,
where it terminates.

Now with reference to FIGURES 14A-14B, the utilization of a data type
recognizer in opening process and Ul XML documents will be described in additional
detail. The illustration in FIGURE 14A depicts the process object 1400, open operation
handler 1402, data type recognizer 1404, instance object 1406, view manager 908, and
the view object 1408 that interact when an UI XML document is opened. Accordingly,
the block diagram depicted in FIGURE 14A may correspond to the objects that are
utilized by the open operation handling routine 1300 described above with reference to
FIGURE 13. The opening of an application view may be initiated by the process
object 1400, which calls the open operation handler 1402 to open a particular document
identified by an evaluated XBind. Upon receiving the call, the open operation
handler 1402 utilizes the data-type recognizer 1404 to identify a file type and cause the
appropriate actions to be performed. In the embodiment when a Ul XML document is
passed from the open operation handler 1402 to the data type recognizer 1404, actions are
defined that facilitate opening and initiating execution of an application's view logic.
Moreover, the data type recognizer 1404 is utilized to associate the resulting view
object 1408 with the appropriate instance object 1406.

In the example depicted in FIGURE 14A, the view manager 908 is called by the
data type recognizer 1404 when a call to open a Ul XML document is received. In order
to open and execute logic in an Ul XML document, the view manager 908 instantiates
and supplies the view object 1408 an identifier of the instance object 1406 and an XBind
referencing the appropriate Ul XML document. By passing data in this way, the view

-55-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

object 1408 becomes aware of its associated instance. Once the view object 1408 is
instantiated, execution of logic that provides the semantic description of the new
application view is initiated utilizing functionality that is similar to the process initiation
routine 1100 (FIGURE 11) described above. Specifically, the view manager 908 may
cause the appropriate Ul XML to be loaded into the client-side cache. Then, the view
object 1408 may be instantiated and used to render an application's user interface
components and dialogs. However, unlike processes, multiple view objects may be
instantiated and associated with the same instance.

In an actual embodiment, aspects of the present invention support lazy loading
and/or rendering of an applications' UI logic. To this end, XLinks implemented in
accordance with a standard defined by the World Wide Web Consortium may be utilized
to perform lazy loading and/or rendering of one or more Ul XML documents. Those
skilled in the art and others will recognize that an XLink may be included in an XML
document that describes a link between different XML resources. Unlike traditional
HTML-based hyperlinks that provide meaning to users in linking Web pages, XLinks are
more readily interpreted by software systems and computers. Significantly, XLinks may
contain logic that defines the conditions that will activate the XLink as well as the actions
to be taken upon the activation. As a result, XLinks are well-suited for performing
on-demand and/or lazy rendering of an applications Ul logic. Instead of loading all of an
applications' Ul logic when an the application is launched, XLinks may be defined for
linking to the appropriate XML resource on demand. For example, in the exemplary
MyTasks application described above, the Button2 component 704 is "hidden" after all of
the applications' user interface logic is loaded and rendered. Equivalent functionality and
improved performance may be achieved by using an XLink to load and/or render the UI
logic of the Button2 component 704 when needed. In this example, the user interface
logic associated with the Button2 component 704 in the MyTasks_gui.xml document 650
may include an XLink that references a local or remote resource (e.g., another Ul XML
document) that defines the relevant user interface logic. When dictated by application
logic, this XLink may be used to load and/or render the UI logic corresponding to the
Button2 component 704.

Once the open operation handler 1402 completes, the resulting view object 1408
is returned to the data type recognizer 1404. Then, the data type recognizer 1404

associates the view object 1408 with the appropriate instance. Specifically, when a new

-56-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

application view is created, the data type recognizer 1404 passes the resulting view
object 1408 to the instance object 1406. In response, the MiniView manager 1412 is
updated, thereby associating the view object 1408 with a corresponding instance. A more
complex name is assigned to the view object 1408 within the View manager 908 than is
allocated to the same object by the MiniView manager 1412. Specifically, the name
assigned to the view object 1408 within the View manager 908 includes the identifier of
the corresponding instance object 1406. As described in further detail below, by
implementing a system for naming objects in this way, the same view may be
differentiated between multiple application instances. By controlling the passing of data
in this way, aspects of the present invention implement localized relationship hierarchies
that delimit the bounds of an application instance.

Now with reference to FIGURE 14B, the utilization of the data type
recognizer 1404 in opening a process XML document will be described in additional
detail. Similar to FIGURE 14A, the illustration in FIGURE 14B depicts the process
object 1400, data type recognizer 1404, instance object 1406, as well as the process
manager 906. Accordingly, the block diagram depicted in FIGURE 14B may correspond
to the objects utilized by the process initialization routine 1100 (FIGURE 11). When a
process XML document is opened, the data type recognizer 1404 is utilized either in the
context of an application package or stand-alone application to identify the file type of the
document. In this example, the data type recognizer 1404 defines actions that facilitate
opening and initiating execution of logic described in the process XML document.
Specifically, flow of execution proceeds from the data type recognizer 1404 to the
process manager 906 which instantiates the process object 1400. Once a process XML
document has been opened, a reference to the resulting process object 1400 may be
returned to the data type recognizer 1404. Then, the data type recognizer 1404 supplies
the instance object 1406 with a reference to the resulting process object 1400. In
response, the MiniProcess manager 1414 is updated, thereby associating the process
object 1400 with a corresponding instance.

With reference to FIGURES 15A-B, an action operation that provides an example
regarding the use of the MiniView manager in facilitating process execution will be
described. Once the Open operation 612 in the MyTasks application has been executed,
flow of execution proceeds to the Action operation 614 (FIGURE 6A). In this regard, an
action handling routine 1500 will be described with reference to FIGURES 15A-B which

-37-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

illustrates both the logic as well as the interactions between objects involved in
implementing the routine 1500.

As illustrated in FIGURE 15A, the expression represented in the value attribute of
the Action operation 614 is evaluated into an XBind, at block 1502. In the exemplary
MyTasks application, the Action operation 614 contains a value attribute of "#MyTasks"
which would be evaluated into an XBind at block 1502. With specific reference now to
FIGURE 15B, functionality encapsulated in the expression engine 1550 may be used by
the instance object 1552 to evaluate the "#MyTasks" expression into an XBind. In this
example, the expression engine 1550 is configured to perform a lookup in the MiniView
manager 1554 for the view object that is named "MyTasks." When a new application
view is created, the resulting view object is passed to a corresponding instance which
updates the MiniView manager 1554 accordingly. In this regard, the MyTasks view
object is assigned a straightforward name within the MiniView manager 1554 held by the
instance than the more complex identifier used for the views in the global View Manager
908. The more complex name is not needed within the instance, since the complex name
is used to differentiate the views belonging to different instances and applications. This
information is something the instance and its MiniView Manager 1554 already knows,
since the MiniView Manager 1554 holds its own views. By providing this architecture,
the expression engine 1550, with the assistance of the MiniView Manager 1554, is able to
differentiate between views that are associated with different instances and applications.
Therefore, in the exemplary MyTasks application, the MiniView manager 1554 would
include a view object named "MyTasks." The view object would also include a reference
for the instance in which this view object is associated. In evaluating the "#MyTasks"
expression, the expression engine 1550 would identify the MyTasks view object 1558 as
the source or "emitter" of the operation. Specifically, the MyTasks view object 1558
associated with the instance object 1552 is identified as the emitter and not a "MyTasks"
view object associated with a different instance. Since the expression engine 1550
evaluates expressions relative to the instance, the correct MyTasks view object 1558 that
was the source of the event is identified utilizing the MiniView manager 1554.

In this example, the XBind returned to the process object 1556 would include the
URL referencing the MyTasks_gui.xml document 650 and the MyTasks view
object 1558. An indicator would be included with the XBind that the MyTasks view

object 1558 is the emitter or source of the operation being executed. In cases when the

-58-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

lookup in the MiniView manager 1554 does not identify a match to the object referenced
in the expression, the expression engine 1550 is configured to perform a lookup in the
view manager 908 to obtain the relevant view object.

At block 1504 of the routine 1500, the process object 1556 initiates execution of
the action operation handler 1560. In the exemplary MyTasks application, the XBind
previously evaluated using the expression engine 1550 and the emitting MyTasks view
object 1558 are passed by the process object 1556 to the Action operation handler 1560.
Then, at block 1506, the action operation handler 1560 causes the method, as specified in
the applications process logic, to be performed. In this example, the Action
operation 614 in the MyTasks application defines the following "<component>" XML

element that identifies the method and target of the action to be performed:

<component name="button2" action="hide" value=""></component>

By defining this element, the application code is directing that the component named
"button2" be hidden. In one aspect, view objects are encoded with generic methods for
performing state manipulations on their associated user interface components including,
but not limited to, enable, disable, hide, and show methods, etc. Since the MyTasks view
object 1558 is passed to the action operation handler 1560, these generic methods may be
called directly on the object 1558. In this example, the action operation handler calls the
"hide" method on the MyTasks view object 1558 and identifies the Button2
component 1562 as the target component that will be hidden. Then, the action handling
routine 1500 proceeds to block 1508, where it terminates.

Now with reference to FIGURE 16, the implementation of a bind operation
handler will be described in additional detail. = Once the Open and Action
operations 612-614 in the MyTasks application has been executed, flow of execution
proceeds to the Bind operation 616 (FIGURE 6A). As illustrated in FIGURE 16, the
expression represented in the value attribute of the Bind operation 616 is evaluated into
an XBind and returned to the appropriate process object, at block 1602. Similar to the
description provided above, the process object utilizes an expression engine that is local
to the instance to evaluate the provided expression. In the exemplary Bind operation 616,
the "data/tasks.xml" expression would be evaluated into the following XBind, at

block 1602:

-50-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

URL = data/tasks.xml
Base path =/

Selection =

The URL of this XBind references the data document that stores task descriptions.
Moreover, the base path references the root node of the data document corresponding to
the URL and the selection aspect of this exemplary XBind is null.

At block 1604 of the bind handling routine 1600, the process object being utilized
to execute the current process step initiates execution of a bind operation handler. In the
call, the bind operation handler receives a previously evaluated XBind and the
appropriate process and instance objects. As mentioned previously, developers are able
to create operation handlers in accordance with the process operation APIs that define
function call parameters and the XML semantic structure that may exist within the body
of the operation. In this example, the Bind operation 616 (FIGURE 6A) defines the

following "<component>" XML element 618:

<component view ="MyTasks" name= "input3" select="/tasks/task/@description">

Accordingly, the bind operation handler (called at block 1604) is responsible for
interpreting this logic to bind a particular component to a fragment within an XML
document. More generally, each operation handler is responsible for interpreting the
logic defined in the child elements of the operation element. In this regard, the process
operation APIs allow developers to define the XML syntax in the body of the operation
so that the logic executed within an operation handler may be configured as needed.

At block 1605, the view object corresponding to the component that will be bound
to the underlying XML document is identified and returned to the bind operation handler.
In this example, the component element 618 interpreted by the bind operation handler
identifies the "Input3" component as being created within the context of the "MyTasks"
view object. Since the appropriate instance object is supplied to the bind operation
handler, the correct view object may readily be identified. Specifically, a lookup in the
MiniView manager 1554 of the instance is performed and the "MyTasks" view object is

returned directly to the bind operation handler.

-60-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

As illustrated in FIGURE 16, a translated XBind is created within the bind
operation handler at block 1606. The XBind that is passed into the bind operation
handler identifies a document ("data/tasks.xml") that stores content utilized by the
MyTasks application. However, only a subset of the data in the identified XML
document will be bound to the Input3 component. Accordingly, the binding performed
by the bind operation 616 in this example is configured to narrow the binding of the
Input3 component to a fragment of the data in the "data/tasks.xml" document identified
by an XPath expression. Specifically, the select attribute in the component element 618
includes an XPath expression that qualifies the expression in the value attribute of the
bind operation 616. In this example, the XPath expression identifies the appropriate
fragment within the XML document that is used to qualify the incoming XBind to the

bind operation handler and create the following translated XBind:

URL = data/tasks.xml
Base path = /tasks/task/@description

Selection =

The aforementioned translated XBind could be written in shorthand notation as
"data/tasks.xml#/tasks/task/@description.”" In this regard, the URL of the translated
XBind references the XML document in the data model that stores the relevant task
descriptions. Within the XML document identified by the URL, the base path references
the task element and its corresponding description attribute. As described in further detail
below, an XBind may also include a "Selection" that provides additional features in
referencing fragments in the data model.

At block 1608 of the bind handling routine 1600, the set data function provided by
the appropriate user interface component is called. In this example, the Input3
component is the subject of the Bind operation 616 and will be bound to a list of task
descriptions. The component APIs may be used to define certain methods for setting data
on a particular component. In one embodiment, the Input3 component may include a set
data method that is called at block 1608. Significantly, the appropriate component may
be identified based on the view object and the reference to the component name received

at block 1604 when the bind operation handler was called.

61-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

When called, the set data method will typically perform administrative functions
and error handling to ensure that a component is not already bound to an XML document
in the data model. Then, at block 1612, the Input3 component that is the subject of the
bind operation 616 is added as an update listener to the "data/tasks.xml" document. As
mentioned previously, the present invention provides a structured object-oriented
representation of the XML document in the form of a document object. In one
embodiment, document objects serve as a wrapper to DOM ("Document Object Model")
objects utilized by a Web browser and an XML parser. In this regard, enhanced features
are encoded within the document object provided by the invention that includes the
ability to add any objects that exist within the network operating system environment as
listeners for updates made to the data model. By way of example only, the objects that
may be data update listeners includes, but is not limited to, processes, views, components,
communication channels, etc. At block 1612, a call is made to add the Input3 component
as an update listener to the object that corresponds to the "data/tasks.xml" document. In
this regard, each document object maintains a list of listeners that will be notified in
response to a data update. By issuing the call to add update listeners at block 1612, the
Input3 component will become one of potentially many data update listeners on the same
document object.

At decision block 1614, a determination is made regarding whether the
component being added as an update listener to a document utilizes rules. In one aspect,
the present invention supports functionality that allows rules to be associated with a data
binding component. In this regard, a rule handler may be included in the data model that
defines how components and other objects will interpret their data binding. As described
in further detail below, rules allow generic components to interpret, learn, and take
appropriate action depending on the content in the data model. Accordingly, any XML
semantics or languages having different elements, attributes, and hierarchies may
understand and/or be bound to the same type of generic component. In other words,
components that use rules do not need to be created specifically for a certain data model.
Instead, rules enable a generic set of components to be used with any type of underlying
data and therefore facilitates true data abstraction in the MVC design paradigm. The
component does not need to understand the structure of the underlying data model and
may use rules to interpret content to achieve the desired functionality. When establishing

a binding with a component that utilizes rules, functionality is implemented for setting

-62-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

and/or updating a rule handler so that rules may be applied. In the call to add a
component as an update listener, a flag may be included to indicate whether the
component is a rule user. Accordingly, if the received flag indicates that the component
is not a rule user, the result of the test performed at block 1614 is "no" and the bind
handling routine 1600 proceeds to block 1618, described in further detail below.
Conversely, if the received flag indicates that the component is a rule user, the result of
the test is "yes" and the bind handling routine proceeds to block 1616. At block 1616, a
set rule routine 1600 is performed that applies and merges rules of a data binding
component to a rule handler maintained in the data model. In this regard, the logic
implemented by the set rule routine is described in further detail below with reference to
FIGURE 21.

At block 1618 of the bind handling routine 1600, a call is generated to update the
user interface of the component that is the subject of the bind operation. Methods defined
in accordance with the component APIs may be used in performing an update of a user
interface. Specifically, the component APIs have developers provide logic that is used to
implement an "Update()" method for a component. In this regard, logic that may be
implemented within the "Update()" method is described in further detail below with
reference to FIGURE 22. In this example, the "Update()" method associated with the
Input3 component will result in task descriptions maintained in the data model being
displayed. Then, the bind handling routine 1600 proceeds to block 1620, where it
terminates. Once the Bind operation 616 completes execution, the new data binding
component will be notified of updates effecting the data model ("data/tasks.xml").

In the exemplary MyTasks application (FIGURE 6A), the Bind operation 616 is
the last operation in the Initialize Application process step 604 that is executed. Upon
execution of the Bind operation 616, processing of the MyTasks application remains idle
until the occurrence of a trigger. In this regard, a trigger activation routine 1700 is
described below with reference to FIGURE 17. However, prior to discussing the
utilization of triggers, a description of functionality implemented by the expression
engine provided by the present invention will be described in additional detail.

In existing platforms, developers are provided with the same programming tools
for both querying data and defining an application's computational logic. In this regard,
programming languages that are imperative in nature will eventually cause all of an

application's logic to be represented as a sequence of ordered statements. While the

-63-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

ordered nature of imperative programming tools is well-suited for implementing
computational logic, the data querying capabilities of imperative languages are less
robust. Instead, non-imperative language programming tools would be better-suited for
querying or otherwise accessing data. To this end, an expression language is provided
that allows developers to utilize non-imperative programming tools when performing I/O.
In this regard, expressions are structured to be compatible with XML syntax and
delimited for use within the XML-based programming languages provided by the present
invention. Specific examples are provided herein of how the process XML language is
readily able to utilize expressions. However, these examples should be construed as
exemplary, as expressions may be incorporated for use in other XML languages and also
evaluated and used directly from program code within objects.

Implementing a development platform configured to execute applications that
adhere to the MVC design paradigm provides challenges with regard to accessing data
that may evolve at runtime. In one embodiment, XBinds provide a standardized means
for referencing in-memory objects, documents, data subsets, etc. =~ As mentioned
previously, an XBind is a three-dimensional data type comprised of an URL, base path
(e.g., an XPath expression that may reference a fragment within an XML document or the
entire XML document), and a selection (e.g., a plurality of XPath expressions). As will
be clear from the examples described below, the XBind data type provides a standardized
way for objects that may evolve at runtime to communicate their state. As such, XBinds
allow different parts of a loosely coupled system to efficiently communicate their state
information in a standardized way. In this regard, XBinds provide a simple and
straightforward way of binding data to user interface components. Through the use of the
selections, the state of a component is capable of being described in an XBind which may
be provided as input into other systems. More generally, each object within the network
operating system environment can be queried at any time for an XBind that describes the
object's state. Accordingly, an XBind describing the state of an object, (e.g. component)
may be set on a different object to "clone" or transfer the components' state. In another
aspect, the XBind associated with an object may be synchronized over the network. As a
result, objects executing on remote computers may be updated using an XBind to
maintain synchronized states. This is one way in which aspects of the present invention

enable real-time collaboration over the network.

-64-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

In one embodiment, XPath evaluations may be applied by the expression engine.
Those skilled in the art and others will recognize that XPath is a standard of the World
Wide Web Consortium (W3C) that provides a language for identifying and selecting data
at a specified location in an XML document. Moreover, XPath establishes conventions
for formulating expressions that evaluate particular values. For example, the XPath
expression "/tasks/task/@description” is used in the MyTasks application that includes
the abbreviated syntax of the "@" symbol for selecting the attribute named "description."
This syntax complies with XPath conventions and is used to reference a subset of data in
an XML document that fulfills a particular select or match parameter.

The expression language provided by the present invention allows developers to
reference in-memory objects that may experience state changes at runtime. For example,
the "#MyTasks" and "#MyTask#input3" expressions reference different view and
component objects, respectively. Utilizing straightforward notation, developers are able
to distinguish between references to these in-memory objects and their data bindings. For
example, if a developer is accessing data bound to the "Input3" component instead of a
reference to the object itself, the "{#MyTasks#input3}" expression may be used. This
particular expression will evaluate to the value found within the XML document
referenced in the XBind associated with the Input3 that is within the MyTasks view.
Upon encountering an expression that contains curly brackets, the expression engine will
convert one or more XML nodes bound to the identified object into text or XML. In this
regard, view and component objects provided by the present invention are aware of their
data bindings and can always be queried for their XBind. By evaluating expressions
relative to an instance, the expression engine is able to identify the appropriate object and
a corresponding data binding in evaluating these types of expressions. Accordingly, the
expression language allows developers to reference both in-memory objects and their
data bindings using the same straightforward notation. Moreover, expressions may
reference external resources identified by a URL that will be obtained automatically using
a communication channel.

Unlike existing systems which utilize XPath for navigation and selection of data
within documents, aspects of the present invention allow in-memory objects and their
associated data to be referenced using XPath conventions. Assuming a component
named "Inputl” exists within an application view called "MyView," the following would

be a valid expression that is evaluated by the present invention:

-65-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

{#MyView#inputl#@name}

After a reference to a XML document, variable, or in-memory object, XPath conventions
are applied after the last "#" character in the expression relative to the components
XBind. When a relative XPath expression is encountered, the base path or selection
within the component will be merged with the supplied XPath as described with reference
to the bind handling routine 1600 (FIGURE 16). In the exemplary expression provided
above, the last "#" denotes that XPath expression (e.g., "@name") is relative so that this
XPath expression will be merged with the components’ XBind. However, XPath
expressions evaluated by the present invention may also be absolute. In evaluating an
absolute XPath expression denoted with the "/" starting character, aspects of the present
invention will ignore any base path or selection of the components’' XBind. Aspects of the
present invention utilize XPath conventions in other ways than those described above.
Additional examples of the use of XPath conventions, as well as other types of
expressions that may be evaluated by the present invention, may be found in the
commonly assigned U.S. Provisional Patent Application No. 60/976,339, entitled
"Network-Based Operating System," filed September 28, 2007, the content of which is
expressly incorporated herein by reference.

In one embodiment, properties of an in-memory object may be accessed utilizing
the expression language. These properties may be accessed regardless of their data type

according to the following syntax:

#MyView.id

#MyView#inputl.name
Methods for performing actions on an in-memory object may also be called utilizing the
expression language. In this regard, in-memory objects provided by the present invention
may be encoded with methods. Utilizing the expression language, methods may be called
directly on these objects. For example, the following are types of expressions evaluated

by the present invention that would call a method on an object.

#MyView#maximize()
#MyView#inputl.clear()

-66-

10

15

20

25

31948PCT
WO 2009/043035 PCT/US2008/078171

Moreover, higher-order expressions that accept other expressions as arguments are
evaluated by the present invention. In other words, the expression language supports
recursive evaluation of expressions consistent with non-imperative programming

techniques as the following example illustrates:

MyView#{#MyView#inputl.getName()}

In this example, the name of the Inputl component is evaluated first in the inner
expression using the getName() method. The recursively evaluated expression
identifying the component name is then provided as a parameter of the outer expression.
This is just one example of the way in which non-imperative programming tools are
integrated and used in conjunction with the XML programming languages provided by
the present invention.

Within the network operating system environment, process steps and associated
operations may be performed in response to the occurrence of a trigger. In other words,
the execution of process steps may be event driven. Accordingly, when the MyTasks.xml
document 600 is opened, the trigger 602 is registered so that flow may be directed to the
appropriate process step when the trigger is activated. A trigger activation routine 1700
will be described with reference to FIGURES 17A-B which illustrate both the flow and
interactions between objects utilized to implement the routine 1700. As mentioned

previously, the MyTasks.xml document 600 defines the following trigger 602.

<trigger view = "MyTasks" component = "buttonl" event = "select" step = "2">

The trigger activation routine 1700 depicted in FIGURE 17 assumes that a user selected
the Buttonl component identified within this trigger element, thereby activating the
trigger 602 at block 1702.

In response to the trigger being activated, the component object where the trigger
occurred passes a notify listeners call to the event manager 914, at block 1704. In the
call, the appropriate component object provides a set of event data and directs the event
manager 914 to notify all event listeners that registered a notifier object or other object
matching the supplied data. With specific reference to FIGURE 17B, the Buttonl

component object 1750 associated with the MyTasks view object 1752 would pass a

-67-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

notify listeners call to the event manager 914 at block 1704. In the call, an expression
identifying the component where the trigger event originated (e.g., "#MyTasks#button1")
as well as the event type (e.g., "select") is supplied.

At block 1706, the event manager 914 alerts one or more listening objects to the
activation of the event. Specifically, the event manager 914 performs a lookup in which
the event data passed from the Buttonl component object 1750 is matched to data
previously provided when the event listener was registered. In this regard, the process
initiation routine 1100 (FIGURE 11) provides a description of how objects may register
an event listener in the event manager 914. In one embodiment, each trigger encountered
in a process XML document will cause a corresponding notifier object as an event
listener to be pre-cached in memory when an application is initially launched. The
notifier object is pre-cached in memory upon the initial launch of the application in
anticipation that one or more application instances will cause the trigger to be activated.
The pre-cached notifier object is associated with a view name, component name, and
event type, which collectively serve as a unique key in performing the lookup at block
1706. In other words, only when a component within a specified view experiences the
type of event identified in the trigger will a corresponding notifier object be notified of
the event activation. As such, only a single notifier object will register in the event
manager 914 for a trigger defined in a process XML document regardless of the number
of application instances that are executing. Even though multiple instances of an
application exist, this architecture allows the same notifier object to be reused by each of
the application instances. Additionally, this architecture allows the event manager 914 to
more efficiently iterate and notify listeners since only a single trigger registers an event
listener in the form of a notifier object that is then shared by multiple applications
instances. In other words, the performance of the lookup performed at block 914 is not
dependent on the number of application instances that are executing.

At block 1708 of the trigger activation routine 1700, the appropriate instance that
is associated with the activated event (trigger) is identified. When alerted of the occurrence
of an event, arguments are passed to the event manager 914 that are used to identify the
appropriate listening object and the affected instance. In this example, the expression
identifying the Button] component object 1750 is supplied to the event manager 914 and
may be utilized to identify the appropriate instance through accessing the components

view object that holds a reference to the instance it belongs to. As mentioned previously,

-68-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

when opening an application view, a reference to the instance is supplied to the resulting
view object. Accordingly, the MyTasks view object 1754 is aware of its associated
instance object 1758. Since component objects are created within the context of a view,
the Buttonl component object 1750 may utilize the MyTasks view object 1754 to identify
the appropriate instance, at block 1708. Once the appropriate instance is known, the
instance object 1758 is supplied to the execute method in the process object.

The architecture depicted in FIGURE 17B and the description provided above
illustrates how the present invention is able to support stateless execution of process steps
in a system that supports event-driven execution of application logic. As mentioned
previously, a single process XML document is utilized to execute multiple applications
instances. In this regard, a process object may be repetitively re-used by different
application instances thereby providing an efficient platform for executing applications.
Even though only a single notifier object 1756 is pre-cached for each trigger in an
application, the present invention allows the appropriate instance to be supplied to the
process object 1700. In this regard, the notifier object 1756 is activated when an event
matching a unique key comprising the view, component, and event type is received by the
event manager 914. Moreover, the event manager 914 is able to identify and provide the
appropriate instance object 1758 to the notifier object 1758 utilizing the supplied
component, view or event listening object. At block 1712 of the trigger activation
routine 1700, a call to execute a process step in an application is generated. As mentioned
previously, the process step that will be executed is cached in the notifier object 1756 or
known by the event listening object. Accordingly, once the appropriate instance is
supplied, the notifier object 1756 may call the execute method (FIGURE 12) at block
1712 supplying (1) the instance object 1758 that represents the current runtime state of the
application, and (2) the process step (e.g., "2") in the application’s process logic that will
be executed. Then, the trigger activation routine 1700 proceeds to block 1714, where it
terminates. Other event listening objects may also call a process object step or directly
execute its own custom code.

When the trigger in the MyTasks application is activated, flow of execution
proceeds to the Decision operation 620. Generally described, the logic within the decision
operation 620 performs a test to determine whether any text was entered into the Input4
component when the trigger 602 was activated. In this regard, a decision handling

routine 1800 that implements the Decision operation 620 will be described with reference

-69-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

to FIGURE 18. As illustrated in FIGURE 18, the decision handling routine 1800 begins
at block 1802 where an expression is passed to the expression engine for evaluation. In
this example, the Decision operation 620 contains a value attribute of
"#MyTasks#input4" which would be passed to the expression engine for evaluation at
block 1802. As mentioned previously, developers may utilize the expression language
provided by the present invention to reference in-memory objects. Specifically, the
"#MyTask#inputd" expression selected and passed to the expression engine for
evaluation at block 1802 references a component object that may experience state
changes as an application executes.

At decision block 1804, a determination is made regarding whether the expression
being evaluated references a component that is associated with a data binding. In some
instances, a data binding may be defined in which data input and/or displayed by the
component is automatically propagated between the component and the data model. On
the other hand, a component may be "atomic" or not associated with an existing data
binding. When evaluating expressions that reference atomic components, the expression
engine implements functionality that allows data input/output from the component or
other data affecting the state of the component to be accessed within the logic of an
operation handler. By implementing this functionality, the expression engine allows this
data to always be accessible using XML-based expressions.

To make the determination regarding whether a component is associated with a
data binding at block 1804, the expression engine may identify the component object
named "Input4" using the instance. As mentioned previously, component objects
provided by the present invention are aware of their data bindings. Accordingly, once the
appropriate component object is identified, the expression engine may readily determine
whether the component is atomic or associated with a data binding. If the result of the
test performed indicates the component referenced in the expression is not associated
with a data binding, then the decision handling routine 1800 proceeds to block 1808,
described in further detail below. Conversely, if the result of the test performed at
block 1804 indicates that the expression references a component associated with a data
binding, then the decision handling routine 1800 proceeds to block 1806.

If block 1806 is reached, the component referenced in an encountered expression
is associated with a data binding. In this instance, the expression is evaluated without

creating a temporary XBind to account for the non-existence of a data binding. More

-70-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

specifically, the expression engine would evaluate the "#MyTasks#input4" expression at
block 1806 and request the XBind from the Input4 component. In this example, the
XBind returned by the expression engine would provide the operation handler with
everything needed to execute.

In one embodiment, developers may provide XML semantic descriptions to
access data and otherwise perform I/O. However, an expression may actually request
data that is only available from an in-memory object implemented in a scripting language
(e.g., Java Script). Accordingly, even though a component is not associated with a
binding, the present invention allows expressions to operate and access data associated
with the component using its corresponding in-memory object. For example, the decision
operation 620 in the MyTasks application includes the following "<when>" XML

element 622.

<when test= "text() =" " step ="3"/>

<otherwise step="4"/>
The when element 622 includes the XPath expression "text()" which applies XPath
evaluation conventions to request text entered into the Input4 component. Since the
component is atomic, the requested data is not available using an existing data binding.
Instead, the present invention evaluates XML-based expressions and allows data to be
accessed even though the requested data is not currently maintained in the data model.
Instead, a temporary XBind is created for the object (e.g., component) that references a
fragment within a system-provided state document. As described in further detail below,
the system-provided state XML document may contain all of the state information of the
relevant component.

At block 1808 of the decision handling routine 1800, the requested data is
obtained from an in-memory object associated with an atomic component. Logic
implemented within an operation handler may utilize data that involves the state of an
atomic component. For example, if block 1808 of the decision handling routine 1800 is
reached, the Input4 component is an atomic component that is not associated with a data
binding. Accordingly, the XPath expression "text()" within the body of the decision
operation 620 requests data involving the state of the component that is not bound to a
known document in the data model. To properly evaluate this type of expression, the

requested data should be available from the data model. In this regard, the expression

71-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

engine is able to query the Input4 component for the relevant data since the XBind
requested in the expression does not exist.

In one embodiment, each time an atomic component is referenced in an
expression being evaluated, a system-provided state XML document is updated with the
current state of the component. As described in further detail below, a temporary XBind
may then be created that points to the appropriate fragment within the system-provided
state XML document where the requested data may be obtained. Alternatively, the state
of every component in the system (regardless of whether the component is atomic or
associated with a data binding) may constantly be propagated to a system-provided state
XML document utilizing the functionality encapsulated in a State Manager. In this
instance, the requested data would already be available from the data model and would be
accessible using a translated XBind, as described below. Significantly, this embodiment
facilitates synchronization of an application's state across multiple client computers.
Moreover, by automatically propagating state information to the data model in this way,
the state of an application may readily be restored if the application is closed and
subsequently opened.

At block 1810, a temporary XBind for accessing data obtained from an atomic
component is generated and returned to the appropriate process object. When an
application includes an operation that utilizes an atomic component, data may be obtained
directly from the component object and stored in the system-provided state document. A
translated XBind that is temporarily used to evaluate this expression is generated that
references the location in the state document where the requested data may be obtained.
In evaluating the "#MyTask#input4" expression, the expression engine may generate an

XBind that is similar to the following:

URL = #State

Base path = /states/state[@qid = #MyTasks#input4']

Selection =
The URL of this XBind references the system-provided state XML document allocated to
store component state information. Moreover, the base path points to the node within the
state document where the text entered into the Input4 component was stored, at
block 1808. Once evaluated, the temporary XBind is returned from the expression engine

to the appropriate process object. By storing state information and generating a

72-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

temporary XBind in this way, aspects of the present invention allow developers to utilize
XML-based expressions to reference components and their data regardless of whether the
component is associated with a data binding. More generally, all operation handlers that
access XML documents are also able to work with and reference atomic objects that are
not associated with a data binding. As the examples above illustrate, references to objects
(e.g., components) in expressions are evaluated into an XBind. As a result, aspects of the
invention allow components to bind to each other. When this type of binding is defined,
the second component effectively "clones"” the first component's XBind. In other words,
the second component is provided with synchronized XBinds from the first component.
Data binding between components are even possible when the target of the binding is an
atomic component. In this instance, the second component will be associated with an
XBind that references the system provided state document describing the state of the first
component. Since the first component is atomic, this will effectively create a master-
slave relationship between the two components.

As further illustrated in FIGURE 18, a decision operation handler is called at
block 1812 to perform the evaluation defined in the decision operation 606. In this
regard, parameters are passed in the call to the decision operation handler that may
include a temporary XBind if the operation involves an atomic component. In one
embodiment, developers are able to create operations in accordance with the operations
API that define function call parameters and the XML semantic structure that may exist
within the body of the operation. In the decision operation 620, elements are defined that
allow the flow of program execution to be directed based on the result of an evaluated
XPath expression. In this example, a string comparison is performed within the decision
operation handler to determine whether text was entered into the Input4 component.
Accordingly, the XPath expression (e.g., "text()") is evaluated within the decision
operation handler into text. In instances when the expression being evaluated references
data from an atomic component, the temporary XBind that is translated in order to
evaluate a particular expression is used to obtain the requested data. Specifically, the
XBind passed to the decision operation handler may include a reference to the
system-provided state document where state data previously extracted from the Input4
component is accessible.

Then, at block 1814, a call to execute the appropriate process step in the

application is generated. The result of the evaluation performed within the decision

73-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

operation handler determines whether to direct the flow of execution to either process
step 608 or 610. When the decision operation handler is called, an XBind as well as
process and instance objects are received. These received arguments allow the decision
operation handler to readily initiate execution of the next appropriate process step based
on the result of the evaluation. In this regard, the received arguments may be modified or
directly passed by the decision operation handler. Then, the decision handling
routine 1800 proceeds to block 1816, where it terminates.

As mentioned previously, the decision operation 620 causes the flow of execution
to proceed to process step 610 if text was not entered in the Input4 component upon the
occurrence of the trigger 602. The only operation in the process step 610 is the action
operation 628 which will cause a button component to be displayed. In this regard, the
action operation 628 may be executed using the action operation handler described above
with reference to FIGURES 15A-B. Accordingly, additional description of the
functionality implemented when program flow is directed to process step 610 will not be
described in further detail here.

When text is entered in the Input4 component upon the occurrence of the
trigger 602, execution of the MyTasks application proceeds to the process step 608. The
operation defined within the process step 608 is a change operation 624 that will cause
text input into a component to be added to an XML document. In this regard, an
exemplary change handling routine 1900 that implements the data update using a change
operation handler will be described with reference to FIGURE 19.

As illustrated in FIGURE 19, the change handling routine 1900 begins at
block 1902 where an expression evaluation is performed. Specifically, the
"data/tasks.xml" expression in the value attribute of the change operation 624 is evaluated
into an XBind at block 1902. In this example, the XBind that results from the evaluation
will consist of a URL and base path that references the root node of the "data/tasks.xml"
document.

As the description above illustrates, an expression in the value attribute of an
operation is evaluated into an XBind for each operation in an application. In one
embodiment, expressions within the body of an operation may be evaluated within the
logic implemented by an operator handler. Alternatively, expressions within the body of
an operation may be evaluated before the appropriate operation handler is called. While

both embodiments are supported, evaluation of expressions within the body of an

-74-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

operation in the logic of an operation handler is preferred since it is more efficient. In
this regard, the change operation 624 includes the following "<store>" XML

element 626:

<store type="append" select="/tasks/task/@description" value=
"{#MyTasks#input4 }"

The "{#MyTasks#input4}" expression within the store element 626 is evaluated into text
at block 1904. As mentioned previously, the expression engine provided by the present
invention allows developers to delimit expressions for evaluation using the curly bracket
notation. These expressions may be defined in attributes, between elements, and other
locations in application code. In this example, logic within the expression engine causes
the "{#MyTasks#input4}" expression to be evaluated into text.

In general, the change operation implemented by the present invention provides
developers with a raw data manipulation tool for performing all the necessary
modifications to the contents of an XML document. In this regard, a plurality of data
manipulation primitives are provided that are in essence consistent with the World Wide
Web Consortium's DOM standard. Moreover, aspects of the invention provide additional
data manipulation primitives that include the replaceText and delete children primitives.
Accordingly, the following exemplary primitives may be performed to modify the
contents of an XML document using the change operation provided by the present
invention: replace, replaceText, append, prepend, insert, remove, remove children, new,
and delete. Those skilled in the art and others will recognize that these supplied
primitives may be used and combined to perform all of the necessary modifications to the
data model. As described in further detail below, any change operation affecting the data
model will cause a transaction to be created within the transaction manager 910, that
describes the exact update that will be made.

At block 1906 of the change handling routine 1900, the change operation handler
is called by the appropriate process object. When block 1906 is reached, the process
object executing the current process is able to pass the previously evaluated XBind as
well as the appropriate instance and process objects to the change operation handler. As
described in further detail below, the change operation handler utilizes the received

arguments to modify the contents of an XML document.

-75-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

At decision block 1908 of the change handling routine 1900, a determination is
made regarding whether the change operation being executed defines a data transform.
The value attribute defined in the change operation 624 identifies the document that is the
subject of the change operation (e.g., "data/tasks.xml"). Within the store element 626, the
select attribute may contain an XPath expression (e.g., tasks/task/@description)
referencing a location within the specified XML document where the data modification
will be performed. Moreover, the select attribute may include an expression
(e.g., "{#MyTasks#input4}") that evaluates content that will be appended, replaced, or
included in the XML document. In one embodiment, aspects of the present invention
allow data to be transformed within the change operation before being appended,
replaced, or added to the data model. For example, the store element 626 could include a
transform attribute that references an XSLT (Extensible Stylesheet Language
Transformation) for performing a particular data transform. When this type of data
transform 1is defined, the result of the test performed at block 1908 is "yes" and the
routine 1900 proceeds to block 1910. However, the change operation 624 in the
exemplary MyTasks application does not include a transform attribute. In this instance,
the result of the test performed at block 1908 would be "no," and the routine 1900 would
proceed to block 1912, described in further detail below.

At block 1910, a data transform is applied based on logic defined within a change
operation. In an actual embodiment, the store element in a change operation may include
a transform attribute that references an XSLT document. Logic within the XSLT
document may be applied to transform data from a source format into a destination
format at block 1910. Traditionally, XSLT has been used to transform data to support the
dynamic creation and modifications of Web pages. In addition, XSLT is also used to
transform between XML business format languages and their corresponding structures as
part of Electronic Data Interchange (EDI) integration servers. However, these examples
are merely exemplary and XSLT is utilized in other instances. Moreover, other transform
languages could be used in conjunction with the present invention and the use of XSLT
should not be construed as limiting. In any event, those skilled in the art and others will
recognize that XSLT is an XML-based language for defining transforms between various
markup languages (XML, HTML, XHTML, etc.) as well as between XML schemas and
XML documents implementing different XML schemas or DTDs (Document Type
Definition). In this regard, an XSLT processor may be used by the change operation

-76-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

handler to apply the data transform, at block 1910. By supporting the dynamic
application of transforms in this way, an enhanced development platform is provided in
which applications are better equipped to exchange data, interact, and integrate/re-use
functionality.

A computer user will typically employ multiple applications such as e-mail, Web
browsers, calendar applications, word processors, media players, and the like. However,
the data formats and logic used by different applications are seldom compatible using
existing systems. For example, an e-mail program may allow users to define a "contact"
that is used to store and access information related to another user. On the other hand, a
calendaring application allows users to create and track meetings and appointments
involving other users, groups, etc. In response to reviewing a message from a contact
defined in the e-mail program, a user may want to automatically create a new meeting in
the calendaring application. However, supporting functionality that allows different
applications to interact in this way is not readily performed using existing systems.

The data transform applied at block 1910 occurs before the raw data manipulation
of the change operation is performed. By supporting this type of dynamic application of
data transforms, aspects of the present invention provide application developers better
opportunities to leverage functionality and data available from other applications. In the
example provided above, a data transform may be performed that readily allows an e-mail
and calendaring application to interact. For example, an XSLT transform may be defined
for converting a received e-mail and/or contact into a data item describing a new
appointment. In this regard, the transform may utilize the contact information, the
content of an e-mail message, and/or input from the user to establish the attributes of the
meeting. Within the change operation, this type of XSLT transform may be applied that
allows different applications to communicate even though different underlying schemas
and XML structures are used.

At block 1912 of the change handling routine 1900, a call to perform the specific
data update represented in the change operation is made to the appropriate URL object.
As described in further detail below, a URL object provided by the present invention
serves as a lightweight pointer that exposes methods for performing each of the different
types of data modification primitives (described above) that are supported by the change
operation handler. Accordingly, the change operation handler utilizes the received XBind

and logic within the change operation 626 to identify the appropriate URL object to call.

-77-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

It should be well understood that the utilization of a URL object is merely implemented
to obstruct the details of interaction with documents and the invention could readily be
implemented in other ways. Once the call to the URL object is made, flow of execution
proceeds to the data update routine 2000 described below with reference to FIGURE 20.
Then, the change handling routine 1900 proceeds to block 1914, where it terminates.

Now with reference to FIGURES 20A-C, a data update routine 2000 and the
interaction between objects used by the routine 2000 will be described. The data update
routine 2000 depicted in FIGURE 20 illustrates two instances beginning at blocks 2002
or 2004 where a data update is performed. In the embodiment when the data update
routine 2000 begins at block 2002, a URL object receives a call to perform a data update
within the context of a change operation handler 1250. As described above, an
application may include a change operation for modifying the contents of an XML
document. Accordingly, the change handling routine 1900 (FIGURE 19) may generate a
call to perform a data update on the specified URL object 1253 that is received at
block 2002.

When the routine 2000 begins at block 2004, a call to perform a data update on
the specified URL object 1253 originates from a user interface component. When a
binding is defined, a component becomes aware of the URL and XML document
associated with the binding. For example, the Input3 component in the MyTasks
application would receive a URL object corresponding to the "data/tasks.xml" document
when the Bind operation 616 is executed. As described in further detail below and in
accordance with one embodiment, a Web browser that utilizes the HTML DOM may be
employed to render a user interface. In this embodiment, component objects created in
the context of a corresponding view object cause various event listeners to be registered
on the HTML DOM utilized by the Web browser. A component may listen for events
affecting the HTML DOM that occur when, for example, a user provides input or
otherwise interacts with the user interface displayed by the Web Browser. With specific
reference to FIGURE 20B, the component 1252 interprets the received data and generates
a call to its URL object 1253 to cause a data update event to be implemented. For
example, when the "Update Presentation" task is deleted in the exemplary MyTasks
application, a URL object that corresponds to the "data/tasks.xml" document is created
and called to delete the task description from the data model. As described in further
detail below, the URL object 1253 will then communicate the data update to the

-78-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

transaction manager 910. In turn, the transaction manager 910 will propagate the data
update to the underlying XML document object that actually causes the data update to be
implemented. In addition to implementing the data update, the document object 1254
will cause the data update to be propagated to all the appropriate listening data update
objects. These listening objects are frequently components but may be other types of
objects. An XML document may be shared across remote computers that listen for
changes that occur to the XML document object. However, the data update to the local
document object 1254 maintained in client-side cache is implemented before the data
update is propagated to any remote listeners. In other words, the full network update is
performed subsequent to the data update being implemented locally.

At block 2006 of the data update routine 2000, the URL object 1253
corresponding to the document object 1254 that will be updated causes a new transaction
to be generated. In this regard, the transaction manager 910 is called, at block 2006,
which creates a new "transaction” or XML fragment that represents a relative change to
an XML document. In one embodiment, the transaction manager 910 includes
information in the XML fragment for both implementing and reversing the relative
change. Moreover, regardless of whether the data update originates from the context of a
component or the change operation handler, an XBind serialized into XML is included
with the transaction created at block 2006. As described in further detail below, the
transaction manager 910 causes the data update to be implemented both locally and
propagated to any remote listeners. In either instance, an XBind is supplied that identifies
the location in the data model where the data update will be performed and XML
formatted data that contains logic for reverting the requested data manipulation operation,
referred to herein as performing a "rollback."

At block 2008, the transaction manager 910 causes the data update to be
implemented locally. A transaction may represent a session that consists of multiple and
potentially different types of modifications to the data model. Accordingly, in a data
notification event, one or more update event objects are created that represent a unit in
which modifications to the data model are described. On the other hand, a transaction
fully describes one or more changes being made to the data model and logic for reverting
these changes. Moreover, in addition to sending out data notification events, document
objects provide methods for modifying the actual contents of an underlying XML

document as represented in update event objects. Specifically, each data manipulation

-79-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

primitive that may be performed on an XML document (replace, append, prepend, insert,
etc.) is implemented in corresponding methods provided by the URL object 1253, the
transaction manager 910, and the document object 1254.

As further illustrated in FIGURE 20 at block 2012, the transaction manager 910
calls the communication manager 1256 to propagate the transaction to any remote
listeners. In this regard, the communication manager 1256 allows applications to
instantiate channels that abstract communications with remote network services. Based
on the received XBind, the communication manager 1256 will identify the appropriate
communication channel for transmitting the transaction over the network, if any. As
described in further detail below, communication channels operate under different
protocols as defined by the URL standard. For example, the appropriate communication
channel may be identified in the protocol identified in the URL such as "http://," "xios://,"
or "database://." Using logic obtained according to communicator APIs, the data received
from the transaction manager 910 is translated into a format understood by a remote
network service. In this regard, systems and methods for performing network
communications using communication channels will be described in further detail below.
Significantly, logic for notifying and updating local data listeners is performed before,
and independently from, a corresponding transaction being transmitted over the network.
In one embodiment, the present invention is configured to propagate transactions over the
network asynchronously. As a result, execution of application logic locally is not
hindered by network latency or other delays that are inherent in network communications.
Then, once the transaction is provided to the appropriate channel, the data update
routine 2000 proceeds to block 2014, where it terminates.

Now with reference to FIGURE 20C, an exemplary networking environment
suitable for illustrating how transactions are propagated between remote clients will be
described. As mentioned previously, the transaction manager 910 causes transactions or
data fragments that represent a relative change to documents stored locally to be
propagated to any remote listeners. In the example depicted in FIGURE 20C, transactions
originating with clients 2080 and 2082 are continuously transmitted to the XML file
system 2084 maintained at a server-side data center. Specifically, each of the clients 2080
and 2082 propagate the transactions 2086-2088 and 2090-2092 to the actively shared
document 2093. Any data updates to the document objects 2094 or 2096 performed

-80-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

locally in the client-side cache 2098 are identified and propagated to the XML file system
2084 so that the clients 2080 and 2082 are able to share data in real time.

Now with reference to FIGURE 21, an additional description regarding how rules
are applied to provide more-intelligent components will be described. When bound to
data, any rules associated with a component are applied and allocated a unique
namespace in the data model. Generally described, rules allow generic components to
interpret, learn, and take appropriate action depending on the content in the data model.
In other words, a rule using component does not need to be created for specific data
models. In this regard, the bind handling routine 1600 described above (FIGURE 16)
may determine that a particular component utilizes rules. In this instance, the set rule
routine 2100 described with reference to FIGURE 21 may be called to apply and merge
rules associated with the data binding of a new component. In one embodiment, the
unique XML namespace of a component's rules are merged into the data model and
readily available to the components that are bound to the data model. In an alternative
embodiment, the rules associated with the component may be stored remotely and
accessible through Web services or additional XML documents.

As illustrated in FIGURE 21, the set rule routine 2100 begins at block 2102, and
at decision block 2104, a determination is made regarding whether a rule handler for the
appropriate document is defined. In this regard, rule handlers allow rules associated with
different components to be executed relative to the same data. Each rule-using
component bound to an XML document will provide logic (e.g., "rules") to a
corresponding rule handler maintained in the data model. Accordingly, if a component
that utilizes rules was previously bound to the relevant document, then a corresponding
rule handler will exist, and the routine 2100 proceeds to block 2108, described in further
detail below. In this regard, if multiple rule-using components are bound to the same
document, the same rule handler is used for all of these components. Conversely, if a
rule-using component was not previously bound to the relevant document, then the
routine 2100 proceeds to block 2106. As further illustrated in FIGURE 21 at block 2106,
a new rule handler is created for holding the rules of each component bound to the same
underlying data.

As mentioned previously, a set of generic components of the type used by modern
graphically-based applications is provided. By defining rules, generic components

provided by the present invention do not need to understand anything about the

81-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

underlying data model. In this regard, FIGURE 8A illustrates a tree component 8§00 that
visually depicts the hierarchy of folders in a file system and includes folder names, icons,
and the like. Rules may be defined that provide logic for populating a generic tree
component with content that is maintained in the data model. For example, aspects of the
present invention may describe the contents of a file system in a folders.xml document in
which each element in the document represents a different folder. Data associated with
particular folders such as an identifier, icon, and the like may be identified according to
attributes within a folder element. By way of example only, the following rules may be
defined to interpret content in the folders.xml document for display in the tree

component 800 depicted in FIGURE §A.

<tree name = "folder tree">
<rule match="folder" display="@1id"/>
<rule match="folder [@id ='email]" display="@id" icon=
"icons/mailicon.png"/>

</tree>

In this regard, the first rule element with the match attribute of "folder" and the display
attribute of "@id" would cause the contents of the "id" attribute in the folders.xml
document to be displayed as the folder name. Accordingly, the names allocated to folders
in the tree component 800 depicted in FIGURE 8A may be defined utilizing a rule. The
second rule element with the match attribute of "folder [@id ='email']" would cause the
folder that has the name attribute of "email" to be allocated a particular icon associated with
e-mail messages, as depicted in FIGURE 8A. It should be well understood that the rules
provided above are merely exemplary and only include a subset of the logic that would
actually be used to populate the content of the tree component §00. In the event that the
structure of the folders.xml document is modified, a component's rules may be readily
updated to account for the change. Moreover, rule-using components will be notified of
the changes in the same way as other data updates. Specifically, an event update object
may be created and used to notify the component of the changes utilizing the notify
listeners routine 2200 of the data update event notification bus described in further detail

below.

-82-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

With reference again to FIGURE 21, the rules of the component being bound to
the data model are applied at block 2108. Once a rule handler is created, a component
that is the subject of the bind operation provides its rules to the appropriate rule handler.
In this regard, a rule handler serves as an extension to the data model and manages the
rules of different data binding components that are bound to the same document. In one
embodiment, namespaces may be allocated in the data model that separate the
vocabularies of different rule using components or objects. By allocating and managing
component rules utilizing namespaces, the rule handler is able to execute all component
rules in a way that prevents collisions within the data model.

In applying new rules at block 2108, the rule handler is invoked and causes the
rules of each component bound to the relevant document to be executed. In other words,
the rules associated with potentially multiple data binding components are executed
relative to the current version of the data model. Then, once all of the rules have been
executed, the component that is the subject of the bind operation is made aware of its
corresponding assigned namespace by the rule handler. Specifically, the rule handler
passes a reference to the component associated with the new data binding that identifies
the namespace in the data model allocated to the components' rules.

At block 2110 of the set rule routine 2100, rules associated with a component that
is the subject of the bind operation are merged with the rules of other components.
Developers may define the semantic logic of a component's rules utilizing the
XML-based languages provided by the present invention. By way of example, a rule may
include XPath expressions, Ul XML logic references, elements that describe other
components, variables, aliases and other references to data outside the container of a rule
namespace. In this regard, data bindings of different components may have transitive
relationships by virtue of their associated application and rule logic. Accordingly, the
rules of different components working on the same underlying data are also maintained in
the data model. Once a component is made aware of its namespace, a call is generated to
set new data on the component. In this case, the call to set new data on the component
will cause the semantic logic of a component's rules to be included in the data model in a
namespace that is separate from the rules associated with other components.

At block 2112, a call is generated that causes a data update as reflected in the data
model to be propagated to any data update listeners. As mentioned previously, document

objects maintain a list of listeners that are notified in response to a data update. When

-83-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

new rules are added to the data model, as occurs at block 2010, the corresponding
listeners will be notified of the data update. In this regard, the logic for notifying listeners
of an update is described in further detail below with reference to FIGURE 22. Then, the
set rule routine 2100 proceeds to block 2114, where it terminates.

In the examples above, bindings were defined that caused a component to
automatically display content maintained in the data model. By using bindings in this
way, developers are freed from having to provide logic in application code for setting and
updating data on user interface components. However, the examples above are highly
simplified and only reflect one exemplary aspect of the present invention. In this regard,
bindings and their corresponding XBinds enable the implementation of more
sophisticated functionality.

In one embodiment, the present invention provides a standardized means for
objects to describe, store, and communicate their current state. By way of example,
FIGURE 8A illustrates a tree component 800 that allows a user to navigate and select
folders from a file system. A user selection may be described in an XBind, which
provides a standardized variable format in the network operating system environment. In
the example depicted in FIGURE 8A, the user made a series of selections to navigate to

the folder entitled "video_encoding." The state of the tree component 800 with regard to

the selection of this particular folder may be described in the following XBind:

URL: folders.xml
XPath: /

Selection: /folders/research/work/video_encoding/

The example provided above is simplified and used for illustrative purposes only. In an
actual embodiment, the XBind that describe the state of the tree component 800 would

actually be:

URL: folders.xml
XPath: /
Selection: /fs:folder/fs:folder[@name = 'research’]/fs:folder[@name =

‘work']/fs:folder[@name = 'videoencoding]

-84-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

All of the XBinds described herein may be used to reference data regardless of where the
data is stored. Accordingly if the underlying data was maintained at a network location,

the above selection could be described in the following XBind:

URL: http://www.networkdomain.com.folders.xml
Base path: /

Selection: /folders/research/work/video_encoding/

In any event, other objects will frequently use an XBind describing a user selection as the
basis for performing actions or otherwise implementing application functionality. As
illustrated in FIGURE 8B, the list component 8§50 displays file system data that may be
based on a user selection made from the tree component 800. For example, the list
component 850 could be configured to display documents (e.g., "whitepaper.txt,"
"testresults.xml,” and "blog.html") based on the folder selected in the tree
component 800. The XBind describing the selection is output to the shared data model
by the tree component 800. In turn, this XBind may be provided as input into other
listening objects (e.g., the list component 850). Accordingly, the input provided to one
object (i.e., the list component 850) is interleaved with output previously persisted to the
data model from a different object (i.e., the tree component 8§00). The implementation of
an XBind provides a generic variable format that enables this interleaving of I/O in which
values accessed from the data model depend on the values of previous I/O. In this regard,
the internal computational logic of objects that implement the XML virtual machine is
decoupled from their interactions with other objects and systems. In one aspect, XBinds
provide a standardized variable format that is used to model interactions and allow this
decoupling. XBinds provided by the present invention does not contain values to
requested data. Instead, XBinds reference locations where data can be obtained thereby
allowing different objects and systems to work with the same underlying data. In
addition, XBinds may also be transformed, merged, serialized for use an XML-based
system. As the description herein illustrates, XBinds serve as a carrier of object state
information utilizing the selection aspect of the XBind. Significantly, since XBinds
reference locations where object state information may be obtained, the state information
is communicated without altering or changing any of the referenced information or

objects.

-85-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

As a user navigates the file system, the tree component 800 may utilize all
dimensions of an XBind to describe a selection. For example, if the user were to select
both the "whitepaper.txt" and "testresults.xml" documents in the tree component 8§00, the

selection may be described in the following XBind.

URL: folders.xml
Base path: /folders/research/work/video_encoding/
Selection: /folders/research/work/video_encoding/document][@name =

'testresults.xml']
/folders/research/work/video_encoding//document[@name =

‘whitepaper.txt']

Again, the example above is used for illustrative purposes and does not represent an
actual embodiment of the present invention. The URL of this XBind references the
underlying XML document describing the file system, and the base path limits the
binding to the "video_encoding" folder. Moreover, the selection of this XBind includes
an array of XPath expressions that identify each document selected by the user. Similar
to the description provided above, this XBind may serve as the basis for other objects to
perform actions. By way of example, a user could generate an event to delete the selected
documents. The above XBind that describes the selection state of the tree component 800
would be provided as input into systems that implement the file deletion.

As indicated previously, components and other objects may be notified in
response to changes in the data model. Aspects of the present invention allow
components to register as listeners for data updates performed on a particular document.
When a data update occurs, each listener registered with the document object is notified
of the data update and may update their user interface accordingly. Now with reference
to FIGURE 22, a notify listeners routine 2200 that propagates data updates to listening
components will be described. While the notify listeners routine 2200 is described with
reference to listening component objects, this is merely exemplary as other objects may
be data update listeners.

As 1illustrated in FIGURE 22, the notify listeners routine 2200 begins at
block 2202 where a data update is performed on an XML document. As the examples

above 1illustrate, data updates to the data model may be performed in different

-86-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

circumstances. When interacting with a data binding component, a user may generate
input that is automatically persisted to the data model by the component. On the other
hand, a data update may be performed as a result of executing application logic defined in
a change operation. Moreover, objects that implement the XML virtual machine perform
data updates when using the shared data model and bindings as a communication
interface. For example, the semantic description of a component's rules are persisted to
the data model which allows different components to interpret the same underlying data.

At decision block 2204, a determination is made regarding whether the data
update was performed on a document with a corresponding rule handler. If a rule handler
is not defined because a rule-using component was not previously bound to the document,
the result of the test performed at block 2204 is "no" and the notify listeners routine 2200
proceeds to block 2208, described in further detail below. Conversely, if the relevant
document has a corresponding rule handler, the notify listeners routine 2200 proceeds to
block 2206.

At block 2206, the rule handler associated with the document that experienced a
data update is invoked. By invoking the rule handler, logic is implemented to ensure that
the rule namespace as understood by each data binding component is current and to
preserve the integrity of the data model. In this regard, the data update performed at
block 2002 may involve adding or otherwise modifying the logic in the rule handler. For
example, when a new data binding is defined, the set rule routine 2100 (FIGURE 21)
causes the rules of a new component associated with the data binding to be merged in the
data model with the rules of other components. Any listening component bound to the
same underlying document is notified within the notify listeners routine 2200 about the
data update to the rule handler.

In the set rule routine 2100 described above (FIGURE 21), the rule handler causes
all rules as reflected in the current version of the data model to be executed. Then, the
component associated with the new data binding is provided with current namespace
information regarding the component's corresponding rules in the data model. However,
since the addition of new rules may affect the bindings of other rule-using components,
an update notification is also provided to these rule-using components. Accordingly,
when invoked at block 2206, the rule handler causes all of the rules as reflected in the
current version of the data model to be executed. As a result, the rule handler is able to

provide current namespace information and up-to-date rules to any listening component

-87-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

that is a rule user. In turn, this new data is set on the component, thereby causing the data
update of the new rules to be reflected in the listening component's data binding.

Once the rule handler completes, the "Update()" method associated with a
listening component is called at block 2208. Since components are defined in accordance
with a set of component APIs, the logic performed within the "Update()" method is
configurable. In other words, each component will not implement the same logic within
its "Update()" method. Instead, developers may adopt this logic and create new
components that effectively extend the capabilities of the XML virtual machine.
Accordingly, the description provided below is made with reference to components
provided by the present invention and is merely representative of the logic that may be
implemented within the "Update()" method.

At decision block 2210, a determination is made regarding whether an initial data
update was performed at block 2202. In one embodiment, data updates are directed
through the transaction manager 910. One or more event update objects that represent an
atomic unit for implementing the data update may be created and subsequently supplied
in the call to the listening component's "Update()" method (received at block 2208). In
one embodiment, if an event update object is received in the call to the "Update()"
method, the data update is not an initial update, and the notify listeners routine 2200
proceeds to block 2214, described in further detail below. If an event update object is not
received in the call to the "Update()" method, then the routine 2200 determines that an
initial data update is being performed and proceeds to block 2212.

At block 2212, the user interface of the component is visually rendered using a
complete representation of the underlying data bound to the component. If block 2212 is
reached, an initial data update is being performed, and all of the data set on the
component should be reflected in the component's user interface. In this regard, a routine
that causes XML formatted data to be rendered in a component's user interface is
described in further detail below with reference to FIGURE 23. However, it should be
well understood that how the rendering is performed is at the discretion of the developer
and not dictated by the component APIs. As described in further detail below, rendering
may be performed using various technologies including, but not limited to, XSLT,
JavaScript, HTML, VML/SVG or Adobe™ Flash.

As mentioned previously, one or more event update objects may be provided

when a listening component's "Update()" method is called. As illustrated in FIGURE 22,

-88-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

a received event update object that represents an atomic unit of describing a data update
is selected for processing at block 2212. In one embodiment, logic is implemented that
causes the data update, as represented in one or more event update objects, to be reflected
in a listening component's user interface.

At decision block 2214, a determination is made regarding whether the selected
event update object represents a data update that affects the listening component. As
described previously, the component or operation where the data update originated
supplies an XBind that references the location in the data model affected by the data
update. This variable that describes the change being performed to the data model is
included in the event update objects that are propagated to each listening component. In
this regard, an XBind is also used to describe the binding of data to a listening
component's user interface. In one embodiment, the XBind describing the data binding of
the listening component may be compared to the supplied XBind describing the data
update. Utilization of a common variable format (e.g., XBind) allows a listening
component to perform a comparison and determine whether the user interface of the
component is affected by the data update. If the results of this comparison indicates that
the listening component is not affected by the data update, then the notify listeners
routine 2200 proceeds to block 2222, described in further detail below. Conversely, if the
data binding of the listening component's user interface is affected by the data update,
then the notify listeners routine 2200 proceeds to block 2216.

In one aspect, the present invention supports partial updates to the visual display
of a component's user interface. At decision block 2216, a determination is made
regarding whether a partial update may be performed by a listening component. In this
regard, if logic is provided within the listening component's "Update()" method that
supports partial updates, then the notify listeners routine 2200 proceeds to block 2220,
described in further detail below. Conversely, if the listening component does not
support partial updates, then the notify listeners routine 2200 proceeds to block 2218,
where the "Update()" method causes the component's user interface to be rendered based
on all of the data reflected in the components data binding. In this regard, a routine that
causes XML formatted to be rendered on a component's user interface is described in
further detail below with reference to FIGURE 23.

At block 2220 of the notify listeners routine 2200, a partial update to a

component's user interface is performed. When partial updates are supported, only the

-80-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

data in the components data binding that is affected by the data update is utilized to
perform the partial update. Using the supplied XBind this data may be identified and set
on the component, at block 2220. The "Update()" method of the component causes the
component's user interface to be rendered based on the partial update now reflected in the
components data binding.

At decision block 2222, a determination is made regarding whether any additional
updates will be reflected in the component's user interface. Accordingly, if any event
objects received in the call to the "Update()" method have not been previously selected,
the routine 2200 proceeds back to block 2212, and blocks 2212-2220 repeat until each
event update object has been selected and processed. Then, once all of the changes
represented in the data update are reflected in the components' user interface, the
routine 2200 proceeds to block 2224, where it terminates.

As mentioned previously with reference to FIGURES 4A-B, the network
operating system may be implemented on a client computer within the context of a Web
browser, as a stand-alone application or as a machine operating system. In this regard, a
rendering routine 2300 will be described with reference to FIGURE 23 that performs
processing to graphically render and initialize the components and dialogs of an
application. =~ While specific reference is made below to specific Web browser
technologies, it should be well understood that the present invention may be implemented
without utilizing a Web browser. Moreover, in alternative embodiments, the rendering
routine 2300 may be implemented differently to account for browser-specific variations.
Accordingly, the description provided below with reference to FIGURE 23 is merely
exemplary and may be performed differently on various platforms.

As illustrated in FIGURE 23, the rendering routine 2300 begins at block 2302,
where a view object is instantiated and called to render a new application view. As
mentioned previously, the data type recognizer provided by the present invention may
cause a new view object to be instantiated when an Ul XML document is opened. Then,
the view object generates a request to obtain a new dialog object at block 2304.
Generally described, a dialog serves as a frame for an application's components and
includes controls for minimizing, expanding, and manipulating the visual representation
of an application's view. In one embodiment, a dialog manager is provided that is
configured to recycle dialog objects, thereby reducing the amount of memory consumed.

Accordingly, if a previously created dialog object is no longer being utilized but still

-90-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

maintained in memory, then an existing dialog object will be reassigned to the new
application view.

At block 2306 of the rendering routine 2300, the view object is registered as a
listener on a corresponding view.xml document. Similar to user interface components, a
view object may register as a listener for data updates performed to the data model that
describes the view. As described in further detail below, the view.xml document in
which the view object registers as a listener will be updated when specified events that
originate from the Web browser occur. Typically, the events will be user generated when
input is provided or a user otherwise interacts with the system.

At block 2308 of the rendering routine 2300, an XML-based description of an
application's user interface is transformed or converted into an HTML-based
representation. As mentioned previously, the present invention allows developers to
semantically describe the visual representation of an application's view using the Ul XML
programming language. In this regard, the Ul XML programming language does not
have developers provide any computational or scripting logic. Instead, only abstract
descriptions of graphical elements and their relations are provided in an application's
UI XML document. In instances when a Web browser is utilized, an XSLT may be
defined for transforming Ul XML logic into HTML or other markup formats suitable for
rendering by a Web browser. Significantly, when the Ul XML logic is transformed at
block 2308, unique identifiers associated with an application's components are included in
the resulting HTML DOM document that is rendered by the Web browser. Once the
transformation is performed, a Web browser will cause the graphical elements associated
with an application's view to be rendered.

At block 2310, an object that contains the computational logic of a component is
instantiated and associated with a corresponding view object. In one embodiment, the
UI XML document that describes an application user interface logic is traversed. Each
component represented in the Ul XML document is selected and a corresponding
component object is instantiated. In one embodiment, the present invention provides a
separation between the computational logic of a component and its graphical
representation. In other words, the UI XML description of the component's visual
representation does not include any computational logic and may be transformed in
various ways and for different platforms without impacting the component's behavior. In

this regard, the component object instantiated at block 2310 encodes the component's

91-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

computational logic, which may be represented in a scripting programming language such
as JavaScript, SilverLight, or Adobe™ Flash. However, developers do not define the
component's behavior using the scripting language. Instead, developers define the
desired behavior of the component using the Ul XML language. If new components are
needed, developers may create the new component in accordance with the component
APIs. In this regard, each component object implements certain methods that are based
on information received in accordance with the component APIs. These methods include
an "Initialize()" method for setting data on the component and an "Update()" method for
performing updates to the component's user interface. Numerous methods not discussed
herein may be implemented by within components such as an "Unload()" for removing
the component when an application view is closed. However, so long as a basic methods
defined by the component APIs exist, a components can be implemented using any
available rendering technology. In other words, components are not required to render
their user interface using XSLT to HTML, even though that is the embodiment
principally described herein. Also, the rendering logic can be described with the
component using traditional programming logic.

At block 2312, the computational behavior of the component object instantiated at
block 2310 is initialized. #When the UI XML logic of the application's view is
transformed, identifiers associated one or more components are included in the resulting
HTML DOM document rendered by the Web browser. In initializing a component's
behavior at block 2312, the appropriate references related to the component in the
HTML DOM are identified by the view object using its view.xml document. By
interpreting the view.xml document, the view object is able to instantiate the component
objects corresponding to the generated HTML DOM and connect each component object
to a corresponding user interface. In this way, a component's computational behavior and
logic is invoked on the component's user interface. Once a component has been
associated with its respective user interface, the default states and/or values of the
component are set in accordance with the "Initialize()" method implemented in each
component utilizing the component APIs. When all the components represented in an
application's UI XML document have been initialized, the rendering routine 2300
proceeds to block 2314, where it terminates.

Generally described, the functionality performed by the rendering routine 2300

allows a view object to facilitate communications between XML-based applications and

-92-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

the HTML DOM utilized by a Web browser. In response to the occurrence of an event in
the Web browser, the affected component and the view object may be notified and, after
processing, propagate the event to the appropriate event listeners (e.g., triggers in a
process XML document or event listening objects). Once a binding is defined, the
graphical representation of a component in the Web browser may be changed when a
components corresponding "Update()" method is called, in a full or partial update, as
described above.

Significantly, the component APIs only require a component to implement a basic
set of computational logic. As a result, components may readily be configured to use
rendering technologies other than HTML and still be aware of data updates and able to
bind to data. In alternative embodiments, components may be initialized and rendered
using Adobe® Flash, Microsoft® SilverLight, Java® Applet, or any other rendering
technology capable of being called within the computational logic of the XML virtual
machine that executes each client-side components computational logic. Moreover, the
rendering routine 2300 described above may be performed in different ways when
implementing the present invention on different types of computing devices. When a
Web browser is not utilized, the user interface logic of an application may be rendered
without performing a transform between XML and HTML at block 2308. Instead,
graphical primitives may be provided that are suitable for being implemented and called
to render a component's user interface within the "Initialize()" and/or "Update()" methods
and built using traditional programming language like C, C++, Java or Microsoft®
SilverLight.

XI0S COMMUNICATION OVERVIEW

XIOS applications, which are written for the network operating system, use the
model-view-controller (MVC) model. To this end, XIOS applications interact primarily
with a data model, which is an abstraction of the contents of a data source. This layer of
abstraction between a XIOS application and the data source allows the XIOS application
to be insulated from changes made in the data source. In other words, changes in the data
source do not necessarily require changes in the XIOS application.

FIGURE 24 illustrates an overview of one embodiment of how XIOS
applications 2402 interact with a variety of exemplary data sources within this
framework. In MVC terms, the XIOS applications 2402 interact primarily with a data

model. In one embodiment of this architecture, the XIOS applications 2402 interact with

-03-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

data models for a variety of data sources by interacting with XML documents that
represent a data model of each data source. In another embodiment, XIOS
applications 2402 interact directly with a programming object exposing the data model as
described above. The description below primarily relates to an embodiment in which
XIOS applications 2402 interact with XML documents, but one skilled in the art will
recognize that other implementations of the MVC paradigm may be substituted.

The communication with a given data source is handled by the communication
manager 2412, which may be embedded in the system context object 902 (FIGURE 9) at
runtime. The communication manager 2412 manages a set of communicator instances,
each of which implements a communicator API2410. The communicator API 2410
exposes generic operations applicable to any given data source. For example, the
communicator API 2410 allows a XIOS application 2402 to load, modify, create, or
delete a document that represents connecting to a data source, modifying data stored in
the data source, creating new data in the data source, query or removing data from the
data source, and the like.

The communicator API 2410 is built around the idea that any data source can be
accessed using just a URL. A communicator implementing the communicator API 2410
enables access to its data via URLs, and returns XML documents that the XIOS
applications 2402 can manipulate as a data model. Using this simple methodology, a
XIOS application 2402 using the returned XML document does not require any
knowledge of a channel from which the document arrived, or the kind of underlying data
source from which it is created. Having a unified way of using, manipulating, and
creating data simplifies application development and implementation of the data
abstraction solution. XIOS applications 2402 may also easily change from one data
source to another and/or transform a data source.

The communication manager 2412 instantiates a given communicator, thereby
creating a channel, in response to receiving a request for a URL from a XIOS
application 2402. The name or type of the channel is provided as a URL protocol, and
the rest of the URL provides information to the channel. The channel then handles the
information in a channel-specific manner. For example, a web search channel may
accept a URL such as "websearch://example+search+terms”. The protocol "websearch”
can instruct the communication manager 2412 to pass the URL to the web search

channel, and the location "example+search+terms” can be used by the web search

-94-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

channel to build a search query to be submitted to a web search engine. As an example of
another channel, a message in an inbox of an IMAP folder store may be accessed in a
similar way via an IMAP channel when passed a URL such as
"imap://servername/user1/inbox/messagel".

In some cases, a simple URL will be passed to a function of the communicator
API 2410 as implemented by a particular communicator, such as a load function or a save
function. In other cases, an action URL may be passed to a communicator. Action URLs
may be used in a communicator when there is a need to provide additional functionality
apart from standard data reading/editing/writing/appending operations provided by the
communicator API 2410. The action URL can provide communicator-specific functions
that use either the underlying data model, other resources, or the underlying data model
along with other resources. One example could be an action URL that causes the
communicator to perform complicated processing of an underlying data model, thus
relieving the programmer from having to do this processing in program code. Another
example could be offering functionality based on data or functions outside of the
underlying data source. The format of an action URL is similar to that of any other URL
passed to the communicator API2410: "channel name://function(paraml,
param2, . . . param n)," where "channel name" determines the communicator to handle
the action URL, "function" is used by the communicator to determine what processing to
perform, and "paraml, param 2, ... param n" is a list of parameters to be passed to the
function. In one embodiment, a request for an action URL returns an XML document.

Three examples of data model documents, communicators, and data sources are
shown in FIGURE 24. One example is a data model document2404 and
communicator 2414 used for communicating with a web search service 2426, such as
Google, Yahoo!, MSN Live Search, and the like. A XIOS application 2402 requests from
the document manager 912 a web search model document 2404, which abstracts the
communication with the web search service 2426. The document manager 912 uses the
communicator API 2410 to communicate with the web search communicator 2414 as the
XIO0S application 2402 interacts with the web search model document 2404. In turn, the
web search communicator 2414 translates requests submitted through the communicator
API12410 into a format understood by a SOAP interface 2420 that exposes the
functionality of the web search service 2426. Thus, when a XIOS application 2402

requests a URL such as "websearch://example+search+terms” from the document

-05-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

manager 912, an XML document such as web search model document 2404 is returned
that represents the search results.

Another example shown in FIGURE 24 is an SQL model document 2406. As
with the web search model document 2404, the XIOS application 2402 manipulates an
SQL model document 2406. Changes to this document cause the document manager 912
to make calls through the communicator API 2410 to an SQL communicator 2416. The
SQL communicator 2416 translates the calls from the communicator API 2410 into a
format understood by an SQL web service 2422, The SQL web service 2422 is a front
end for an SQL API 2432, which allows access to an SQL database 2428.

As yet another example shown in FIGURE 24, XIOS applications 2402 may
request a document such as IMAP model document 2408. As a XIOS application 2402
manipulates the IMAP model document 2408, the document manager 912 communicates
with an IMAP communicator 2418 through the communicator API 2410. The IMAP
communicator 2418 translates requests from the communicator API12410 to a format
understood by an IMAP web service 2424. The IMAP web service 2424 is a front end
for a standard IMAP interface 2434 on an IMAP server 2430.

Each communicator instance, such as web search communicator 2414, SQL
communicator 2416, and IMAP communicator 2418, is hosted by the communication
manager 2412 of the client-side component 2400. The communication manager 2412 is
responsible for receiving requests from the document manager 912 that contain URLs,
and for instantiating the necessary communicator to form a channel in response to each
requests. For example, if the communication manager 2412 receives a request for a URL
beginning with imap://, the communication manager 2412 will instantiate an IMAP
communicator 2418 (if one is not currently instantiated) and pass the request to the IMAP
communicator 2418.

As depicted in FIGURE 24, each of the data sources—web service 2426, SQL
database 2428, and IMAP server 2430—is accessible through a web-based front end,
such as SOAP interface 2420, SQL web service 2422, and IMAP web service 2424,
When the client-side component 2400 communicates only with data sources accessible
through HTTP, the client-side component 2400 receives the benefit of being able to reuse
much existing communication functionality, such as functionality contained in standard
web browsers, proxy servers, firewalls, and the like. However, it may also be possible to

create a communicator that would not require an HTTP-enabled data source as a back

-06-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

end. For example, with an appropriate communicator, the IMAP web service 2424 or the
SQL web service 2422 could be removed, and the IMAP communicator 2418 and the
SQL communicator 2416 could then communicate directly with the IMAP interface 2434
or the SQL API 2432, respectively.

XIOS FILE SYSTEM — SERVER-SIDE COMPONENT

FIGURE 25 illustrates an overview of one embodiment of the XML file system
server-side component 2500. As in FIGURE 24, the client-side component 2400
comprises a data model, embodied in an XML-FS model document 2502, made available
to XIOS applications 2402 by the document manager 912. The document manager 912
communicates through the communicator API12410 with a XIOS communicator 2504
hosted by the communication manager 2412 as XIOS applications 2402 interact with the
XML-FS model document 2502. The XIOS communicator 2504, in turn, communicates
with the server-side component 2500. The server-side component 2500 comprises client
interface components 2506 and data storage components 2514.

The client interface components 2506 are the primary components with which the
XIOS communicator 2504 communicates. The XML web service 2510 (along with its
web-based HTTP front end 2508) and the transaction coordinator 2522 are the primary
ways the XIOS communicator 2504 communicates with the server-side component 2500.
The XML web service 2510 exposes functionality within the XML file system such as
file creation, file retrieval, file deletion, file search, and the like. The transaction
coordinator 2522, which will be discussed in more detail below, helps to coordinate
changes to files in the data storage 2514 when more than one client is currently accessing
the same file, and acts as a caching mechanism. The message server 2512, which will
also be discussed in more detail below, is used to notify the client-side component 2400,
via the XIOS communicator 2504, of changes in objects in the XML file system 2500 to
which the XIOS communicator 2504 has subscribed.

As shown in the diagram, communication between the XIOS communicator 2504
and the XML web service 2510 is bidirectional. In other words, the XIOS
communicator 2504 both sends information to, and receives information from, the XML
web service 2510. In contrast, the message server 2512 primarily pushes information to

the XIOS communicator 2504.

97-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

The data storage components 2514 comprise a file server 2516, an index
server 2518, and a folder database 2520. In one embodiment, the XML file system stores
file data in three separate parts. The raw data contained within the file is stored as a file
on the file server 2516. The filename, author, modification date, access control list
(ACL), and other common file information associated with each file is stored within the
folder database 2520. The folder database 2520 also stores the folder hierarchy within
which the files are organized, including ACLs for each folder and additional folder
metadata such as related icons, folder rendering type (for example, indicating the folder
contains pictures, and should therefore be rendered with picture thumbnails), and the like.
The index server 2518 stores additional metadata used to identify and locate files, such as
by searching the metadata using a full-text search.

While each of these components has been depicted as a separate component on a
single server in FIGURE 25, one skilled in the art will recognize that one or more of these
components may be hosted on separate physical hardware. Alternatively, one or more of
these components may be split into multiple components, be duplicated within a
server-side component 2500, or have their functionality combined into a single
component. For example, the XML web service 2510, the message server 2512, the
transaction coordinator 2522, the index server 2518, the file server 2516, and the folder
database 2520 may all be hosted on the same physical machine. As another example, the
folder database 2520 may be separated from the rest of the components as a stand-alone
SQL-based data store, or the file server2516 may be located on a specialized
high-capacity file storage system. Also, the XML file system may include only one
server-side component 2500, or may include many.

In one embodiment, the XIOS communicator 2504 may always communicate with
the same server-side component 2500. The server-side component 2500 will then use
information contained within the URL requested by the XIOS communicator 2504 to
determine the appropriate XML web service 2510, message server 2512, and so on to
service the request. The server-side component 2500 contacted by the XIOS
communicator 2504 may also forward the request to a more appropriate server-side
component 2500 altogether. In this way, the client-side component 2400 is insulated
from the complexity of any load balancing, redundancy, or scaling architecture

implemented by the server-side component 2500.

-08-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

FIGURE 26 illustrates one embodiment of some of the details of the content of
the message server 2512. The message server 2512 contains a subscription list for each
client using the XML file system. For example, FIGURE 26 illustrates two clients: client
one 2606 and client two 2608. Client one 2606 is associated with a client one
subscription list 2602, and client two 2608 is associated with a client two subscription
list 2604.

Each subscription list contains a list of objects stored by the server-side
components 2500 for which the client wishes to be notified when the object is updated.
The client one subscription list 2602 indicates that client one 2606 wishes to be notified
of changes to foo.doc (a file), bar.doc (also a file), changes to user 3's status, the group
one folder list, as well as other objects and information stored by the server-side
components 2500. The subscriptions to foo.doc and bar.doc will cause the message
server 2512 to update client one 2606 when either of these files are updated, deleted,
renamed, opened by another client, or changed in some other way. The entry concerning
user 3's status will cause client one 2606 to be updated when the status of user 3 changes,
such as user 3 going online or offline, user 3 indicating he is busy, user 3 entering an idle
state, and the like. The entry concerning the group one folder list will cause client
one 2606 to be updated when folders that belong to the group one are updated, deleted,
have items added to them, or are changed in some other way. The entries in the client
two subscription list 2604 are similar to the entries in the client one subscription list 2602
and would behave in a similar way, but would cause client two 2608 to be updated as
opposed to client one 2606. In one embodiment, notifications are sent by the message
server 2512 via long polling, but other suitable techniques for pushing information to
clients could be used instead.

When a client such as client one 2606 initially connects to the server-side
component 2500, client one 2606 may, through the XIOS communicator 2504, request to
have an object added to a subscription list. In one embodiment, the XIOS
communicator 2504 adds the document to its internal subscription list, and in response,
the document manager 912 (or another sub-component of the client-side
component 2400) issues the request to the XML web service 2510. The XIOS
communicator 2504 communicates with the XML web service 2510, which instructs the
message server 2512 to add the object to a subscription list for client one 2606. Since

client one 2606 had not been connected before, the message server 2512 creates a new

-00.-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

subscription list for client one, such as client one subscription list 2602. This list will be
identified by a key 2610. The key 2610 comprises a unique identifier, which is
preferably difficult to guess. This key 2610 is then transmitted back to client one 2606
via the XML web service 2510 and the XIOS communicator 2504 so that client one 2606
is aware of the key 2610. In one embodiment, the XML web service 2510 and the
message server 2512 simply work together to generate the key 2610, which is then
transmitted to client one 2606. In this embodiment, client one 2606 (as opposed to the
XML web service 2510) instructs the message server 2512 to add the object to the
subscription list for client one 2606.

As mentioned previously, a client such as client one 2606 will be authenticated by
the XML file system upon login to provide security. In one embodiment, this
authentication is not duplicated between the message server 2512 and client one 2606.
The difficult-to-guess nature of the key 2610 in this embodiment, in addition to the
previous authentication, should provide adequate security against third parties
eavesdropping on the client one subscription list 2602. A further advantage of using the
key 2610 to provide security for clients of the message server 2512, as opposed to a more
resource intensive authentication technique, is that it reduces the load on the message
server 2512.

FIGURE 27 illustrates another aspect of one embodiment of the operation of the
message server 2512. In this figure, the message server 2512 is depicted with three
subscription lists: client one subscription list 2602, client two subscription list 2604, and
client three subscription list 2702. In the course of operation of the XML web service,
the transaction coordinator 2522 is notified when changes occur to monitored objects.
The transaction coordinator 2522 then notifies the message server 2512 that the
notifications should be sent to all clients subscribed to that object.

One skilled in the art will recognize that, since the message server 2512 contains a
subscription list for each client using the XML web service, and each subscription list
contains an entry for each object that the associated client is listening to, the amount of
data stored on the message server 2512 and the number of notifications that must be sent
by the message server 2512 will grow very quickly with the number of clients connected
to the XML web service. One way to reduce the amount of work needed by the message
server 2512 is through the use of message chains 2704. A message chain 2704 is a linked

list that associates each subscription list listening to a given object. For example, in

-100-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

FIGURE 27, the message chain 2704 links each subscription list on the message
server 2512 that is listening to the object bar.doc. Through the use of this message
chain 2704, when the message server 2512 is notified that there is a change to bar.doc,
the message server 2512 simply has to traverse the linked list of the message chain 2704
first by notifying client one, then by notifying client two, then by notifying client three.
This removes the need for the message server 2512 to determine which of the multitude
of subscription lists contain references to bar.doc, thereby saving processing time and
increasing the efficiency of the message server 2512. While only one message
chain 2704 is depicted in FIGURE 27 for simplicity, it will be understood that there may
be one message chain associated with each object in the XML file system that is currently

being monitored by a client.

XIOS FILE SYSTEM — FILE OPERATIONS

As discussed above, the XML file system stores the information representing the
hierarchy of folders stored in the system in a folder database 2520. A XIOS
application 2402 may interact with the folder hierarchy via a folders.xml file retrieved by
the XIOS communicator 2504 from the XML web service 2510.

FIGURES 28A-28D illustrate one embodiment of an exemplary method 2800 for
retrieving a folders.xml file. From a start block 2802, the method 2800 proceeds to
block 2804, where a XIOS application 2402 creates a file request for a folders.xml file
and submits the file request to the document manager 912. In one embodiment, the
request comprises a folder identifier ("folder ID") that both uniquely identifies a folder
and provides information usable by the server-side component 2500 to indicate the
location of a folder database 2520 in which the folder information is stored. The
folders.xml file may contain information pertaining to the folder associated with the
folder ID, and also information associated with subfolders within that folder. The
folders.xml file may also contain additional metadata associated with each folder, as
described above. In one embodiment, the request submitted by the XIOS
application 2402 takes the form of a URL. In another embodiment, the XIOS
application 2402 may simply request the folders.xml file from the document
manager 912, which will form a URL representing the request.

In one embodiment, the document manager 912 may already have a cached copy

of the folders.xml file, in which case the document manager 912 will simply provide the

-101-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

cached copy of the document to the XIOS application 2402. However, the remainder of
this description assumes that no cached copy of the requested document exists within the
document manager 912. The method 2800 continues to block 2806, where the document
manager 912 obtains a XIOS communicator 2504 from the communication manager 2412
and passes the file request to the load function of the XIOS communicator 2504. The
method 2800 then proceeds to block 2808, where the XIOS communicator 2504 transmits
a request for the folders.xml file to the appropriate XML web service 2510 of the
server-side component 2500, the request comprising the folder ID. Next, at block 2810,
the server-side component authenticates the user, and routes the request to the XML web
service 2510. The method 2800 then proceeds to block 2812, where the XML web
service 2510 determines a folder database that hosts the folder tree associated with the
folder ID, based at least in part on the content of the folder ID. The method 2800 then
proceeds to a continuation terminal ("terminal A1").

From terminal A1 (FIGURE 28B), the method 2800 proceeds to block 2814,
where the XML web service 2510 queries the appropriate folder database 2520 to retrieve
information associated with the requested folder. This retrieved information may include
the folder access control list (ACL), and may also include additional folder metadata
information. Next, the method 2800 proceeds to a continuation terminal ("terminal B")
and then to block 2816, where the XML web service 2510 adds the folder information to
the folders.xml file. In one embodiment, the folder information added to the folders.xml
file does not include the folder ACL. Instead, the folders.xml implicitly indicates that the
requesting user has at least read access to every folder in the folders.xml file. More
detailed information concerning the ACLs of the folders may be obtained in this
embodiment via a separate request. Examples of some of the advantages of this
technique are that the size of the folders.xml file and the complexity of the processing
performed by the server-side component 2500 are kept to a minimum.

At this point, the folders.xml file being constructed by the XML web service 2510
contains information pertaining to only the folder identified by the folder ID. A request
for the folders.xml file for a given folder will also return information pertaining to the
subfolders of the requested folder. Since folder information for multiple folders — each
of which might have different associated permissions (and therefore different ACLs) —
will be returned to the client in a single folders.xml file, it is important that only

information about folders having matching ACLs is included in a given folders.xml file.

-102-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

To that end, the method 2800 proceeds to block 2818, where the XML web service 2510
queries the folder database 2520 to retrieve information associated with the immediate
subfolders of the folder identified by the folder ID, including a folder ID and an ACL of
each subfolder. Then, using the results of that query, the method 2800 proceeds to a FOR
loop, beginning with block 2820, and a continuation terminal ("terminal C") that indicates
the start of the FOR loop. From terminal C, the method 2800 proceeds to block 2822,
where the XML web service 2510 compares the ACL of the subfolder to the ACL of the
requested folder. The method 2800 then proceeds to another continuation
terminal ("terminal A2").

From terminal A2 (FIGURE 28C), the method 2800 continues to a decision
block 2824, where a test is performed to determine whether the ACL of the subfolder
matches the ACL of the requested folder. If the answer to the test at decision block 2824
is YES, the method 2800 returns to terminal B, adds the current subfolder to the
folders.xml file at block 2816, and the method 2800 recurses on any further subfolders of
the current subfolder. Otherwise, if the answer to the test at decision block 2824 is NO,
the method 2800 proceeds to block 2826, where the XML web service 2510 adds an
XLINK that references the subfolder to the folders.xml file, as opposed to any further
information concerning the subfolder. The method 2800 then proceeds to decision
block 2828, where a test is performed to determine whether there are any more
subfolders.

The use of an XLINK provides the client with enough information to request a
new folders.xml file containing the subfolder having a different ACL without exposing
information to the client that would require a separate permission check. This is
important because, as discussed above, the folders.xml file contains an implicit assertion
that the client has at least read access to each folder contained within it. If a subfolder
has a different ACL from the requested folder (e.g., if the subfolder is owned by a
different user, if the subfolder is shared in a different group, etc.), this implicit assertion
may not be true for the subfolder. The use of an XLINK allows minimal information
about the subfolder to be provided to the client while still maintaining the truth of this
implicit assertion.

If the answer to the test at decision block 2828 is YES, the method 2800 proceeds

to continuation terminal C, and the next subfolder is processed. Otherwise, if the answer

-103-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

to the test at decision block 2828 is NO, the method 2800 proceeds to another
continuation terminal ("terminal A3").

From terminal A3 (FIGURE 28D), the method 2800 proceeds to block 2830,
where the XML web service 2510 caches a copy of the complete folders.xml file to
expedite future requests for the same folder (assuming changes are not made to the folder
hierarchy between client requests, in which case the cached folders.xml file would be
regenerated). Next, at block 2832, the XML web service 2510 returns the complete
folders.xml file to the XIOS communicator 2504. The method 2800 then proceeds to
block 2834, where the XIOS communicator 2504 provides the folders.xml file to the
document manager 912. Next, at block 2836, the document manager 912 caches the
folders.xml file, and provides the folders.xml file to the XIOS application 2402. The
method 2800 then proceeds to a finish block 2836 and terminates.

FIGURE 28E illustrates one example of a folders.xml file 2840 produced by an
embodiment of the above-described method 2800. For the purposes of FIGURE 28E, it is
assumed that the XML file system 2500 stores a folder hierarchy, such as the folder
hierarchy depicted in the tree component 800 of FIGURE 8A, and a user has requested a
folders.xml file for the folder "RESEARCH." Also depicted in FIGURE 28E is a set of
line numbers 2842, included for ease of discussion.

As shown in FIGURE 28E, the method 2800 has created the folders.xml file 2840
in response to the request. Lines 1-4 of the file 2840 contain header information used to
identify an XML version and schema for the remainder of the document. The
method 2800 created an entry for the requested folder "RESEARCH" (at line 6), and then
enumerated the subfolders of the requested folder to add any further folders with a
matching ACL. In this case, the folders "PERSONAL," "WORK," and "LETTERS,"
shown in FIGURE 8A and at lines 7, 8, and 12 of the file 2840, respectively, were found
to have matching ACLs. The method also proceeded to add any subfolders of those
folders that also have matching ACLs. In this case, the folders "PERSONAL" and
"LETTERS" did not have any subfolders, but the folder "WORK" had two subfolders
with matching ACLs, "BROWSERS" and "VIDEO ENCODING," found at lines 9 and
10. For each folder, the method 2800 added limited metadata information to the
file 2840. In the embodiment illustrated here, the method 2800 added metadata including
a "name", an "id", and a "type" for each folder, but in other embodiments, either more or

less metadata may be added. Further, although the "id" elements are shown as integer

-104-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

values for the sake of simplicity, the "id" values may contain more complex information,
as discussed above, to indicate the folder database 2520 storing the folder information.
Alternatively, simple values such as the integer values may be used for the "id" elements,
and a lookup may be performed to determine the folder database 2520 storing the folder
information.

The method 2800 also created an entry for the folder "EMAIL," which does not
have an ACL that matches the ACL of the "RESEARCH" folder. The entry for the
"EMAIL" folder, shown from lines 13-19, contains minimal information about the folder,
only showing its "name" element. It also contains an XLINK that may be traversed by
the user to generate a new folders.xml file that contains the information for the "EMAIL"
folder (as well as any subfolders having an ACL matching the "EMAIL" folder ACL).

In one embodiment, the folders.xml file contains information concerning the
folder hierarchy, but not information about the individual files within the folders.
FIGURE 29 illustrates one embodiment of a method 2900 for retrieving a list of files in a
given folder when the folders.xml file does not contain file list information. From a start
block 2902, the method 2900 continues to block 2904, where a XIOS application 2402
creates a file list request and submits the file list request to the document manager 912,
the file list request comprising a folder ID of a specified folder. As described above, the
folder ID contains information indicating a folder database 2520 that stores information
about the contents of the specified folder. The file list request may also comprise further
options, such as filters for desired file types, sorting preferences, date range filters, and
the like. Next, the method 2900 continues to block 2906, where the document
manager 912 obtains a XIOS communicator 2504 from the communication
manager 2412, and passes the file list request to the XIOS communicator 2504. Next, at
block 2908, the XIOS communicator 2504 transmits the query to the appropriate XML
web service 2510 of the server-side component 2500. The method 2900 then continues to
block 2910, where the server-side component 2500 authenticates the user and routes the
request to the XML web service 2510, which checks the permissions on the requested
folder 2910. To check the permissions on the requested folder, the XML web
service 2510 may query the folder database 2520 to retrieve the ACL for the given parent
folder, and determine whether the ACL grants access to the authenticated user.

Once the user has been authenticated and the permissions have been verified, the

method 2900 proceeds to block 2912, where the XML web service 2510 determines an

-105-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

indexing server 2518 corresponding to the requested folder ID, and transmits a query to
the indexing server 2518. As discussed above, information contained within the folder
ID may be used by the XML web service 2510 to determine the corresponding indexing
server 2518. Next, at block 2914, the indexing server 2518 queries an index to retrieve a
file list for the requested folder, and processes the result with respect to the ACL of each
file in the list. In one embodiment, the index of the indexing server 2518 is a full-text
index of file information, and one of the indexed fields for each file contains the folder ID
of the parent folder. The processing of the result with respect to the ACL of each file in
the list ensures that only files for which the authenticated user has access are added to the
folder list. In one embodiment, this processing is omitted in order to conserve processing
time, and instead the user permissions are enforced when the user attempts to access one
of the files.

Next, at block 2916, the indexing server 2518 formats the list of files returned by
the index, along with limited file metadata retrieved from the index, as a feed in a suitable
format (e.g., ATOM, RSS, or other suitable format), and returns it to the client-side
component 2400. The limited file metadata may include such items as the last modified
date, the author, the file type, and the like. The method 2900 then continues to an end
block 2918 and terminates.

Since data is stored collaboratively in the XML file system and multiple clients
may be updating a given parent folder or creating the same file, the simple creation of a
file in the XML file system in some embodiments may include coordination between the
file-creating client and aspects of the server-side component 2500. FIGURES 30A-30C
illustrate one embodiment of a method 3000 for creating a file within the XML file
system. From a start block 3002, the method 3000 proceeds to block 3004, where a
XIOS application 2402 specifies a file name and a destination folder for the new file, and
initializes a raw file data content. Initializing the raw file data content may create a new,
empty file, or may insert existing content into the raw file data (such as when a user first
saves content which she has already started to create). Next, at block 3006, the XIOS
application 2402 submits a file creation request to the document manager 912, the file
creation request comprising the file name, the destination folder ID, and the raw file data
content. In one embodiment, at least part of this request is formatted as a URL. The
method 3000 then proceeds to block 3008, where the document manager 912 obtains a

XIOS communicator 2504 from the communication manager 2412, and passes the file

-106-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

creation request to the XIOS communicator 2504. Next, at block 3010, the XIOS
communicator 2504 transmits a request to create a new file to the XML web service 2510
of the server-side component 2500. The method 3000 then proceeds to block 3012,
where the server-side component 2500 authenticates the user, and routes the request to
the XML web service 2510.

Next, the method 3000 then proceeds to block 3014, where the XML web
service 2510 determines a folder database that hosts the destination folder, and checks
that the user has permission to create the file in the destination folder. As discussed
above, the folder ID of the destination folder contains information that allows the XML
web service 2510 to determine a folder database that contains information associated with
the destination folder. As also discussed above, the XML web service 2510 may ensure
that the user has permission to create the file by querying the folder database 2520 to
retrieve the ACL for the destination folder, and determining whether the ACL grants the
appropriate rights to the authenticated user. The method 3000 then proceeds to a
continuation terminal ("terminal A1").

From terminal A1 (FIGURE 30B), the method 3000 proceeds to block 3016,
where the XML web service 2510 checks if the specified destination folder is a special
folder. In one embodiment, there are two types of folders in the XML file system:
storage folders and special folders. A storage folder is much like a folder in a
conventional file system, in that it is primarily used to store files and other folders. A
special folder, in contrast, is used by the XML file system to abstract another form of
communication. This allows a XIOS application 2402 to interact with this other form of
communication in the same way it would interact with a file in storage, thus simplifying
application development. For example, a special folder may be designated as an e-mail
special folder, and creating a new file in the e-mail special folder would cause a piece of
e-mail to be sent. In one embodiment, there are two special folders for each user: an
incoming special folder, or "inbox," and an outgoing special folder, or "outbox." In other
embodiments, more or fewer special folders exist.

The method 3000 continues to a decision block 3018, where a test is performed to
determine whether the specified destination folder is a special folder. If the answer to the
test at decision block 3018 is YES, the method 3000 proceeds to block 3019, where the
request is transmitted to a server process associated with the special folder for further

processing. One example of an embodiment of such processing is discussed below with

-107-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

relation to the method 3600 illustrated in FIGURE 36, and the accompanying text. The
method 3000 then proceeds to a continuation terminal ("terminal B").

Although FIGURE 30B illustrates that a method such as method 3600 occurs
before the new file is created in the special folder, this need not necessarily be the case.
In one embodiment, the test performed at decision block 3018 may instead be performed
after the file has been created, such as after terminal B (FIGURE 30C). In such an
embodiment, a server process that monitors the special folder would operate on the file
created in the special folder, as opposed to operating directly on the request from the
client. The server process could be notified of the creation of the file by polling the
contents of the special folder. Alternatively, the server process could be notified of the
creation of the file by creating a subscription list associated with the process on the
message server, adding the special folder to the subscription list, and thereby receiving a
notification from the message server about the creation of the file, for example at
block 3030 of the method 3000.

If the answer to the test at decision block 3018 is NO, the method 3000 proceeds
to block 3020, where a file server 2516 allocates space for raw file data of the new file in
a storage location associated with the file server, and stores the initial raw file data at that
storage location. Next, at block 3022, a folder database 2520 creates an entry for the new
file in the folder database, the entry containing limited metadata associated with the file,
including the file name, date created, unique file ID, storage location, and the like. In one
embodiment, a file may have more than one file stream associated with a single file ID.
In that case, the file server 2516 allocates a separate space in the storage location for each
stream, and the metadata stored in the folder database 2520 associates the file ID with all
of the storage locations. The XML file system exposes all of the streams associated with
the file to the client through the available metadata of the file.

The method 3000 then proceeds to block 3024, where the folder database 2520
associates the new file with the specified destination folder. The association created
between the parent folder and the new file will allow the XML web service 2510 to query
the folder database 2520 and the index server 2518 using the folder ID to find the file
when searching for the files contained within the folder. The method 3000 then continues
to another continuation terminal ("terminal A2").

From terminal A2, (FIGURE 30C), the method 3000 continues to block 3026,

where the XML web service 2510 transmits metadata for the new file to an index

-108-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

server 2518. This metadata may be the same metadata stored by the folder database,
which is copied to the index server 2518 to facilitate fast full-text searching of the
metadata. The metadata transmitted to the index server 2518 may also include further
information beyond that stored in the folder database for which full-text indexing would
be beneficial, such as user- or application-specified properties, author information, user
comments, and the like. The metadata transmitted to the index server 2518 may also
include information extracted directly from one or more file streams associated with the
file.

Next, at block 3028, the XML web service 2510 transmits a notification to the
message server 2512 that the new file was created in the specified destination folder.
Alternatively, this notification may be sent by the folder database 2520 or the index
server 2518 upon detecting the association of the new file with the parent folder. The
method 3000 then proceeds to block 3030, where the message server 2512 transmits an
update notification to each client that has the specified destination folder in its
subscription list. Next, at block 3032, the client transmits a request to the message
server 2512 through the XML web service 2510 to add the new file to the subscription list
of the client, the request comprising the file ID. Next, at block 3034, the message
server 2512 adds the new file to the subscription list of the client. Then, the method 3000
proceeds to terminal B, and then to an end block 3036, where the method 3000
terminates.

FIGURES 31A-31E illustrate one embodiment of a method 3100 for opening
existing files within the XML file system. From a start block 3102, the method 3100
continues to a set of method steps 3104, defined between a continuation terminal
("terminal B") and an exit terminal ("terminal C"). The set of method steps 3104
describes a method of opening an existing file that is not being shared (in other words, a
file that is not currently opened by another client). From terminal B (FIGURE 31B), the
method 3100 proceeds to block 3110, where a XIOS application 2402 on a first client
requests a file from the document manager 912, the request comprising a file ID. In one
embodiment, the request is in the form of a URL. The request may comprise a file ID
that is incorporated into a newly generated URL, or the first client may already have
obtained a URL capable of addressing the file, such as a file URL included within a file
list. In one embodiment, the URL may not contain the file ID itself, but instead

comprises information from which the file ID may be derived.

-109-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

Next, at block3112, the document manager 912 obtains a XIOS
communicator 2504 from the communication manager 2412 and passes the file request to
the XIOS communicator 2504. The method 3100 then proceeds to block 3114, where
the XIOS communicator 2504 transmits a request for the file to an appropriate XML web
service 2510 of the server-side component 2506, the request comprising the file ID. As
described above, the request may be in the form of a URL which comprises the file ID, or
may instead comprise information from which the file ID may be derived. Next, at
block 3116, the server-side component 2506 authenticates the user, and routes the request
to the XML web service 2510.

In one embodiment, the file ID or the file URL contained within the request also
contains information indicating a file server 2516 on which the file resides, to help the
XML web service 2510 to determine an appropriate folder database 2520, file
server 2516, or transaction coordinator 2522 for obtaining the file. In another
embodiment, the request may also include the folder ID of the parent folder, and the
XML web service 2510 may determine the appropriate data storage servers for obtaining
the file based on information contained within in the folder ID. The number of different
servers that must be contacted for a single file request, and accordingly the amount of
information provided in the file ID or file URL, depends on how the database is
partitioned, and thereby the amount of scalability provided by the particular embodiment.

Next, at block 3117, the XML web service 2510 checks that the user of the first
client has permission to open the file, and submits the request for the file to an
appropriate transaction coordinator 2522. In one embodiment, the XML web
service 2510 checks the client permissions by retrieving the ACL for the file from an
appropriate folder database 2520, and by checking if the ACL allows the authenticated
user to access the file. Next, at block 3118, the transaction coordinator 2522 instructs a
message server 2512 to add the requested file to a subscription list of the first client. The
method 3100 then proceeds to block 3119, where the transaction coordinator 2522
determines if the file is currently shared. The method 3100 then proceeds to a
continuation terminal ("terminal B1").

From terminal B1 (FIGURE 31C) the method 3100 proceeds to decision
block 3120, where a test is performed to determine whether the file is currently shared. If
the answer to the test at decision block 3120 is YES, the method proceeds to a

continuation terminal ("terminal D1"). Otherwise, if the answer to the test at decision

-110-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

block 3120 is NO, the method 3100 proceeds to block 3122, where the transaction
coordinator 2522 queries an appropriate folder database 2520 to determine the file
server 2516 storing the raw file data. Next, at block 3124, the transaction
coordinator 2522 retrieves the raw file data from the appropriate file server 2516. Then,
at block 3126, the transaction coordinator 2522 returns the raw file data to the XML web
service 2510 with the shared flag set to FALSE. Next, at block 3128, the XML web
service 2510 returns the raw file data to the XIOS communicator 2504 of the first client
with a shared flag set to FALSE. The method 3100 then proceeds to block 3129, where
the XIOS communicator 2504 provides access to the raw file data to the document
manager 912, which in turn provides access to the raw file data to the XIOS
application 2402. The method 3100 then proceeds to another continuation terminal
("terminal C").

From terminal C (FIGURE 31A), the method 3100 proceeds to a set of method
steps 3106 defined between terminal D and terminal E, which describes a method of
opening an existing file that is being shared by another client. For the purposes of this
description, this set of method steps 3106 assumes that the set of method steps 3104 has
already been executed by the first client, and hence the requested file has already been
opened by the first client.

From terminal D (FIGURE 31D), the method 3100 proceeds to block 3130, where
a XIOS application 2402 on a second client transmits a file request to the server-side
component 2514 via the document manager 912 and XIOS communicator 2504, the file
request comprising the file ID. As discussed above, the request may be in the form of a
URL comprising the file ID, or may be in the form of a URL comprising information
from which the file ID may be derived. Since the individual actions that comprise the
actions at block 3130 were described in detail above, those more detailed descriptions
have been omitted here for brevity. Next, at block 3132, the server-side component 2514
authenticates the user of the second client, and routes the request to the XML web
service 2510. The method 3100 then proceeds to block 3134, where the XML web
service 2510 checks that the user of the second client has permission to open the file, and
submits the request for the file to an appropriate transaction coordinator 2522. The
method 3100 then proceeds to block 3136, where the transaction coordinator 2522
instructs the message server 2512 to add the file to a subscription list of the second client.

One skilled in the art will recognize the similarities between the method defined between

-111-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

blocks 3110-3116, and the corresponding blocks 3130-3136, as up to this point, there is
little difference between the method for opening a file that is shared and opening a file
that is not shared.

Next, at block 3138, the transaction coordinator 2522 determines that the
requested file is currently shared. At this point, the method for opening a file that is
shared diverges from the method for opening a file that is not shared. The method 3100
proceeds to terminal D1, and then to block 3140, where the transaction coordinator 2522
queries the folder database 2520 to determine the file server 2516 storing the raw file
data. Next, at block 3142, the transaction coordinator 2522 retrieves and caches a copy of
the raw file data from the appropriate file server 2516. Next, at block 3144, the
transaction coordinator 2522 instructs the message server 2512 to notify the first client
that the file is now shared. The method 3100 then proceeds to another continuation
terminal ("terminal D2").

From terminal D2 (FIGURE 31E), the method 3100 proceeds to block 3146,
where the transaction coordinator 2522 transmits the raw file data to the XML web
service 2510 with the shared flag set to TRUE. This will notify the XML web
service 2510 and the XIOS communicator 2504 to treat the raw file data differently than
if the file was not shared. Next, at block 3148, the XML web service 2510 returns the
raw file data to the second client with the shared flag set to TRUE. The method 3100
then proceeds to block 3150, where the message server 2512 notifies at least the first
client that the file is now shared. The method 3100 then proceeds to block 3152 where,
in response to receiving the notification that the file is now shared, the first client
transmits any previously uncommitted transactions to the XML web service 2510.

As discussed below, as changes are made to the file data model on the first client,
the transaction manager 910 of the first client may gather these changes without
immediately transmitting them to the XML web service 2510 for storage. This is
especially likely if the first client was operating in an offline mode, but it may also occur
due to high network latency, high processor load, and the like. When the first client
receives the notification that the file is now shared, the transaction manager 910 takes any
uncommitted transactions and transmits them to the XML web service 2510.

At block 3154 of the method 3100, the XML web service 2510, after receiving
these transactions, transmits the uncommitted transactions to the transaction

coordinator 2522, which commits the unsaved transactions to the cached version of the

-112-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

raw file data that is stored by the transaction coordinator 2522. These transactions will
eventually be committed to the raw file data on the file server 2516. In one embodiment,
the transactions will be committed when a client holding the file executes a save
command. In another embodiment, the changes will be committed after a certain time
period. In yet another embodiment, the changes will be committed after all client users of
the document have disconnected. Next, at block 3156, the transaction coordinator 2522
instructs the message server 2512 to notify all listening clients of the committed changes.
The method 3100 then proceeds to block 3158, where the first client and the second client
receive the notification of the committed changes from the message server. Next, the

method 3100 proceeds to terminal E and terminates.

NETWORK OPERATING SYSTEM CLIENT COMPONENT STARTUP

FIGURE 32A illustrates one embodiment of a method 3200 of starting a
client-side component 2400 of a network operating system. From a start block 3202, the
method 3200 proceeds to block 3204, where a boot loader of the client-side
component 2400 instantiates the system context object 902 (FIGURE 9) with its
associated managers and starts a communication channel to an XML file system 2500. In
some embodiments, the use of a boot loader is not required, since the XML virtual
machine is already contained in the client-side component 2400. For example, this would
be the case in embodiments where the client-side component 2400 is implemented
outside a Web browser as a stand-alone application, such as within a mobile device, on a
set-top box or thin client component. This would also be the case for embodiments implemented
as a machine operating system that does not require a host operating system for execution. The
network operating system can work by retrieving files, including the files that define the startup
process, over any network connection, including but not limited to using the HT'TP protocol over
the Internet. Even without the startup process described in method 3200, the network operating
system will operate, but any initial configuration will be driven by a user executing the
configuration steps manually.

Unlike traditional operating systems, some embodiments of the client-side
component 2400 may be hosted within another program, such as within an existing Web
browser. For those embodiments, particular settings concerning the startup sequence,
including which particular XML file system(s) 2500 to connect to or the communication

channel to start, may be determined by a location URL navigated to using the host

-113-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

program, HTTP query parameters, HTTP cookies, or other configuration parameters
associated with the client (such as IP, location, machine, browser ID, etc.). For example,
directing a Web browser to http://osl.icloud.com may cause the client-side
component 2400 to connect to a first XML file system 2500, and directing a Web browser
to http://os2.icloud.com may cause the client-side component 2400 to connect to a second
XML file system 2500 hosted in a different location from the first XML file system 2500.

In one embodiment, the client-side component 2400 may start a communication
channel to a data source other than (or in addition to) an XML file system 2500 during
the startup sequence, and may either connect to a remote data source or may access a
local data source. For example, one file system may be a global XIOS file system
provided through a service provider data center. Another file system connected to during
the startup sequence may be installed locally on an enterprise network. A third file
system connected to during the startup sequence may give access to a user's local hard
drive. FIGURE 32B illustrates several examples of data sources bound by the client-side
component 2400 during startup as drives. For instance, a drive of the local machine has
been bound as "Local Drive." Also, a folder in an XML file system 2500 has been bound
as "Shared Family Folder." As yet another example, the root folder for a group has been
bound as "Class of 1992 Reunion." Importantly, while each of these data sources is
stored in a different place and is accessed via differing techniques, the differences are
hidden from XIOS applications 2402, which would see each data source simply as an
accessible drive. While these examples are not exhaustive, they are intended to show that
the startup sequence may connect to one or more than one file system. Once a user is
authenticated the startup sequence may be continued with a user-specific startup sequence
that may include connections to additional file systems and the initialization of additional
channels.

Another difference between embodiments of the network operating system hosted
within another program and a traditional operating system is that operations performed
with respect to the host program may interrupt the execution of the client-side
component 2400. For example, after a user has successfully completed the startup
sequence and is logged in to the network operating system, the host program may
perform an operation to reload the client-side component 2400. In some embodiments,
the client-side component 2400 handles this situation by making the logged-in state of the

network operating system before reloading available to the client-side component 2400

114-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

after reloading to restore its state. To that end, at block 3206 (FIGURE 32A), the
client-side component 2400 checks whether a user is already logged in. The
method 3200 continues to a decision block 3208, where a test is performed to determine
whether the user is already logged in. If the answer to the test at decision block 3208 is
YES, the method 3200 proceeds to a continuation terminal ("terminal A"), thereby
skipping the login portion of the startup method.

If the answer to the test at decision block 3208 is NO, the method 3200 proceeds
to block 3210, where the client-side component 2400 opens a login application associated
with the communication channel. The particular login application to be launched may be
determined by the communication channel, but typically, a login application will securely
request credentials from the user, such as a user name and a password. Other
embodiments of the login procedure exist where the login information is requested before
the boot loading has started, and that login information is directly passed into the
communication channel for authentication without further user interaction. In
embodiments where there is no boot loader, the client-side component 2400 may pass the
login information directly into the communication channel for authentication. Variations
may also occur where the boot loader, after loading directly, will by itself ask for the
login information, and then pass the information on to the communication channel
without utilizing a separate login application. Next, at block 3212, the communication
channel processes the user credentials. The communication channel may process the user
credentials by transmitting them to an authentication service, or by processing them
locally.

The method 3200 then proceeds to terminal A. From terminal A, the
method 3200 proceeds to block 3214, where the communication channel provides the
user's settings.xml file to the client-side component 2400, which uses the settings.xml file
to perform a user-specific startup sequence and to mount all specified virtual drives. The
communication channel may obtain the settings.xml file from a remote data source,
obtain the settings.xml file from a local data source, or generate a default settings.xml file
based on communication channel-specific defaults. The settings.xml file contains a
collection of user-specific settings for configuration of the network operating system.
These settings may include, but are not limited to: a user name, an email address, settings
for various applications, a collection of virtual drives (communication channels) and

associated root folder IDs to be mounted upon startup (including groups, as discussed

-115-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

below), a list of friends, and a startup sequence. The startup sequence contained in the
settings.xml file specifies what programs the client-side component 2400 should launch
after a successful login, including which desktop manager, console, or start application to
open, if any. Next, the method proceeds to a finish block 3216 and terminates.

In some embodiments, the settings.xml file is more of a passive container of
metadata representing various items in the network operating system, and the startup
application plays a more central role in driving the startup sequence. For example, in one
embodiment, the startup application is executed, and then executes a second application,
such as a desktop application, to display a desktop to the user. Although this sequence
would be executed by the startup application in this embodiment, the startup application
may nevertheless determine which second application to execute by consulting the
settings.xml file.

NETWORK OPERATING SYSTEM GROUPS AND FRIENDS

In the network operating system, groups are used to quickly and efficiently enable
collaboration and file sharing between users. Unlike other systems, the creation of a new
group and the enabling of collaboration and file sharing in the network operating system
is very lightweight. For example, in one embodiment, a user need simply right-click to
create a new group, which will automatically create a common storage folder and allow
members of the group to exchange messages, create a new identity to interact with other
members of the group, and collaborate with one another in real time.

A group, upon creation, stores a collection of group information. This group
information includes a root folder ID, which acts as a reference to a storage location in an
XML file system 2500, as described above. The folders and files located at this storage
location will be accessible only to members of the group. As described above, upon
starting the client-side component 2400, a settings.xml file is obtained for the logged-in
user. This settings.xml file contains a collection of references to the groups of which the
user is a member. Those references can then be used by the client-side component 2400
to mount the group as if it was any other storage location or file system by providing a
reference to the desired group to the communication manager 2412 in order to launch the
appropriate communicator and communication channel.

FIGURE 33 illustrates one embodiment of a method 3300 for mounting a network
operating system group. From a start block 3302, the method 3300 proceeds to

block 3304, where the client-side component 2400 starts a communication channel for the

-116-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

group. Next, at block 3306, the communication channel processes user credentials
associated with a user. The communication channel may prompt the user for any
additional credentials specific to the group, such as a membership name and password, or
it may reuse the user login credentials for an easy single sign-on. Assuming the
communication channel was able to verify the user credentials, the method 3300 then
proceeds to block 3308, where the communication channel obtains the group folders.xml
file using a root folder ID obtained from a user settings.xml file. Next, at block 3310, the
client-side component 2400 adds a reference to the group folders.xml file to an existing
folders.xml file on the client. (The creation of the existing folders.xml file is discussed in
further detail above in relation to FIGURES 28A-28D, and at least one folders.xml file is
created via an embodiment of that process, or another process, during startup.) This
reference may represent a virtual channel to the communication manager XML
document, #CommunicationManager, which contains a list of all open communication
channels on the client. Next, at block 3312, the communication channel obtains an
autostart.xml file for the group, if one exists, and the client-side component 2400
executes the instructions or applications specified in the autostart.xml file. This
autostart.xml file allows a group administrator to specify common programs that will
always be executed by a group member upon logging in to the group, such as auditing
programs, welcome screens, common desktop configurations, a community representing
the group, and the like. Groups may also specify alternative startup sequences that users
may choose to have as their user startup sequence upon login to the system. The
method 3300 then proceeds to a finish block 3314 and terminates.

In some embodiments, the method 3300 may also be used to mount file storage
locations, as file storage locations have most of the same features of groups. File storage
locations lack the concept of having associations that are members of the file storage
location (as described above for groups), but the process for mounting the file storage
location and accessing the files within it are quite similar. File storage locations may
even include an autostart.xml file, as described above.

Either group functionality or file storage locations may also be used to implement
communities. A file storage location could be used for creating communities, with no
specific membership required. In other words, all users would automatically be members
of the community. Group functionality, on the other hand, could be used to create

membership-only communities.

-117-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

The group information described above may also include a collection of
memberships. A membership is an association between a user and a group, and
represents the fact that the user is a member of the group. Each membership may have an
associated name, which will be shown to other members of the group, thus creating a new
identity for the user when interacting within the group. Since the membership names
may be created by a user when joining a group, users may be able to join groups with
widely varying subject matter while keeping their privacy. For example, a group named
"Group One" might have a collection of memberships indicating that a user with the
username "Alice" and a user with the username "Bob" are both members of Group One.
The first membership, indicating that Alice is a member of Group One, may be the same
or similar to Alice's username, such as "AliceGroupOne." The second membership,
indicating that Bob is a member of Group One, may be different from Bob's username,
such as "AnonymousGroupMember." When Alice searches for other group members, she
is given access to the list of membership names, but not the associated user names.
Hence, she will see that "AnonymousGroupMember" is a member of the group, but she
will not know that "AnonymousGroupMember" is actually associated with "Bob."
Alternatively, members in a group may choose to make the associated user name public,
in which case, Alice would be able to tell that "AnonymousGroupMember" is associated
with "Bob."

The messaging services are capable of handling multiple identities of users in its
inter-user communication. This is also true for the friends handling of the system, in that
one user can have the same friend in his friends list as two different entries, without
knowing that it is actually the same person. The user would also receive different instant
messages from the two different entries without knowing that they are both sent by the

Same person.

TRANSITIONING BETWEEN ONLINE AND OFFLINE STATES

In some embodiments of the network operating system, the client-side
component 2400 is capable of working in both a normal, online state, and in an offline
state wherein the client-side component 2400 does not have access to any server-side
resources. One advantage of providing this functionality in the client-side

component 2400 is that it helps the client-side component 2400 seamlessly support a

-118-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

single application operating in both online and offline modes while minimizing the
amount of work required of the application developer to support both modes.

FIGURE 34 illustrates one embodiment of a method 3400 for transitioning the
client-side component 2400 of a first client from an online state to an offline state. This
method 3400 assumes that the client-side component 2400 of a first client has previously
started up and connected to an XML file system 2500 via a method such as method 3200.
From a start block 3402, the method 3400 proceeds to block 3404, where the client-side
component 2400 of the first client sets a status of the first client to an offline state by
sending a notification to the XML web service 2510 of the XML file system 2500. This
status can then be checked by other clients using the same XML web services to
determine that the first client is offline. Next, at block 3406, the XML web service 2510
instructs the message server 2512 to send a notification to all other clients subscribed to
the status of the first client that the first client is offline. Typically, the other clients
connected to the XML file system 2500 that are associated with the same group as the
first client will have added the first client to their subscription list on the message
server 2512. The notifications are sent out by the message server 2512 in essentially the
same way as notifications concerning file updates, which are described in more detail
above.

In order for the client-side component 2400 and the applications executed by the
client component 2400 to continue to function without having access to the XML file
system 2500, the client-side component 2400 must cache any necessary resources from
the XML file system 2500 on the first client. To this end, the method 3400 proceeds to
block 3408, where the application manager 904 of the first client downloads all
outstanding, not already downloaded resources indicated in an application package
associated with each instance currently being executed by the client-side
component 2400. An application developer may indicate in the application package
which resources should be cached by the client-side component 2400 to enable offline
use of the application. Alternatively, the client-side component 2400 may automatically
determine what resources should be cached by analyzing the references used by
components of the application package.

In some embodiments, the application manager 904 may perform additional,
optional steps for determining what resources should be cached on the first client. For

example, the method 3400 may proceed to block 3410, where the application

-119-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

manager 904 of the first client downloads any resources dynamically loaded by each
instance. These resources would not be referenced by the application package associated
with the instance, but would instead be determined by the instance while executing. The
method 3400 may then proceed to block 3412, where the application manager 904 of the
first client downloads resources associated with each open view file. As with the
dynamically loaded resources, each open view file may be associated with resources that
are not referenced by the application package. The method 3400 may also proceed to
block 3414, where the application manager 904 similarly downloads resources associated
with each process. One skilled in the art will recognize that since blocks 3410-3414 are
optional, one, more than one, or none of the blocks may be executed in embodiments of
the method 3400.

After resources are downloaded at block 3408 and zero or more of
blocks 3410-3414, the method 3400 then proceeds to block 3416, where the client-side
component 2400 of the first client sets a system flag that indicates the first client is
offline. This system flag may be used to change the behavior of both the client-side
component 2400 and the applications executed on the first client. For example, in one
embodiment, the method 3400 continues to block 3418, where the client-side
component 2400 of the first client queues subsequent file operations, and each channel of
the first client caches subsequent transactions describing modifications to files, instead of
immediately transmitting file operations and transactions to the XML file system 2500.
Since the client-side component 2400 queues file operations and caches transactions
while offline, it can appear to a user of the network operating system that no change has
taken place when the first client goes offline.

Applications executed by the client-side component 2400 may also change their
behavior based on the system flag, such as by disabling functionality that requires
network connectivity. The client-side component 2400 itself may change its behavior
further, such as by displaying an error message if a user of the first client tries to perform
an action that requires network connectivity. The method 3400 then proceeds to a finish
block 3420 and terminates.

FIGURE 35 illustrates one embodiment of a method 3500 of coming back online
when a first client has already executed a method, such as method 3400, and has been
operating in an offline state. From a start block 3502, the method 3500 proceeds to
block 3504, where the first client goes online, and the client-side component 2400 of the

-120-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

first client sends a notification of an online state to the XML web service 2510. The first
client may go online by establishing or re-establishing a connection to one of, but not
limited to, a local-area network, a wireless network, a dial-up network, and the like.
Alternatively, the first client may go online when a user indicates a desire to go online,
when the network connection has already been established. Next, at block 3506, the
XML web service 2510 instructs the message server 2512 to send a notification to all
clients subscribed to the status of the first client that the first client is online.

The method 3500 then proceeds to block 3508, where the transaction
manager 910 of the first client downloads any changes to documents cached on the first
client from the XML web service 2510. In one embodiment, these downloaded changes
are changes made to the documents in the XML file system 2500 by other clients while
the first client was offline. Next, at block 3510, the transaction manager 910 of the first
client resolves any conflicts between the cached documents and the downloaded changes.
In one embodiment, the transaction manager 910 merely detects that a conflict exists, and
prompts the user to manually resolve the conflict (by creating a new file to contain the
cached changes, to cancel the cached changes in favor of the downloaded changes, etc.).
In another embodiment, the transaction manager 910 executes an algorithm that decides
which changes should be retained and which should be discarded.

Next, at block 3512, the transaction manager 910 of the first client transmits any
queued file operations to the XML web service 2510. For example, if the user of the first
client attempted to create, delete, or rename any files in the XML file system 2500 while
offline, the file operations will be transmitted to the XML file system 2500 at this point.
In one embodiment, the XML file system 2500 will detect any conflicts with changes
made by other users (such as an attempt to rename a file that was previously deleted, etc.)
and respond appropriately.

The method 3500 then proceeds to block 3514, where the client-side
component 2400 of the first client contacts the message server 2512, through the XML
web service 2510, to re-add any monitored objects to the subscription list of the first
client. Next, at block 3516, the client-side component 2400 of the first client sets a
system flag that indicates the first client is online. In one embodiment, setting this system
flag returns the client-side component 2400 and the applications to their normal,
network-connected state of operation. The method 3500 then proceeds to a finish

block 3518 and terminates. At this point, the XML file system of the first client is then

-121-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

synchronized to the server-side component 2500 of the network operating system and is
online.
XML FILE SYSTEM SPECIAL FOLDERS

As discussed above, certain folders in the XML file system 2500 may be
designated as special folders. In one embodiment, an entry for a special folder is stored
in the folder database 2520 in the same way as an entry for a regular folder, but with a
flag set to indicate that the folder is a special folder. In one embodiment, the entry in the
folder database 2520 for the special folder also contains an indication of one of many
server process that handles requests to create files in the special folder. In another
embodiment, one server process handles all requests to create files in the special folder,
and determines how to handle the file based on the content of the file, such as a file type
of the file.

These special folders, instead of providing file storage, may serve as an
abstraction for some other data handling routine, such as asynchronous messaging
between users. One example of such asynchronous messaging would be the use of an
outbox folder for receiving and handling outgoing messages intended for other users.
The use of special folders for inter-user communication provides many advantages. For
example, it simplifies client application development. A XIOS application 2402 may
utilize the messaging protocol associated with the special folder by simply using familiar
file creation routines, and need not struggle with the underlying details of the
communication protocol. As another example, the use of special folders for inter-user
communication allows a XIOS application 2402 to leverage the group functionality
included in the XML file system 2500, as described above. Hence, a XIOS
application 2402 using special folders for messaging does not need to add extra code for
implementing security, group membership, friend lists, addressing, anonymity, or the
like, as it may simply rely on the underlying functionality of the XML file system 2500
for such features.

FIGURE 36 illustrates one embodiment of a method 3600 of handling a request to
create a new file in an outbox special folder. While such a request would look to a XIOS
application 2402 executing on a client as if it were a request to create a file, the server
will treat the request as a request to send a message to a second user. From a start
block 3602, the method 3600 proceeds to block 3604, where a server process associated

with an outbox folder of a first user receives a request to create a new file in the outbox

-122-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

special folder. Next, at block 3606, the server process extracts an address of an intended
recipient from the request. The method 3600 then proceeds to block 3608, where the
server process identifies a second user associated with the address of the intended
recipient.

The group and friend list functionality of the XML file system 2500 described
above allows multiple different types of addressing to identify the second user. For
example, the first user may address the message directly to a user name of the second
user. As another example, the first user may address the message to a membership name
that is associated with the second user. In this case, the anonymity of the second user
would be protected, but the first user would still be able to address messages to the
second user. As yet another example, the first user may address the message to an
address stored in the metadata associated with the second user, such as a phone number.
The server process will determine which type of addressing has been used, and will
identify the second user accordingly.

Next, at block 3610, the server process determines an inbox folder ID of the
second user. In one embodiment, this simply involves searching the folder database 2520
for an inbox folder associated with the second user. The method 3600 then proceeds to
block 3612, where, using the inbox folder ID, the server process creates a new file in an
inbox folder of the second user, the new file containing the data included in the request.
In embodiments where the file has been created in the special folder (as opposed to the
server process directly handling the file creation request), the server process simply
moves the new file from the outbox folder of the first user to the inbox folder of the
second user. Next, the method 3600 proceeds to an end block 3614 and terminates.
EXAMPLE APPLICATION — CHAT

As outlined above, one advantage of the network operating system is that the
features embedded in the network operating system make it possible to rapidly develop
reusable, scaleable, cross-platform, collaboration components that contain rich security
and anonymity functionality. One embodiment of an exemplary application that takes
advantage of many of these features is a chat application, described below.

FIGURE 37 illustrates, at a high level, one embodiment of a chat application 3700
and its corresponding shared data file 3710. Instead of devising and coding new
communication protocols and authentication schemes, the chat application 3700 performs

communication between participants in a chat conversation through the use of a shared

-123-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

data file 3710 residing in the XML file system 2500. The interface of the chat
application 3700 comprises four primary components: a host window component 3712, a
text display component 3702, a text entry component3704, and a button
component 3706. Upon the start of a chat conversation, the text display component 3702
is bound to the shared data file 3710 via a binding 3708, such that changes made to the
shared data file 3710 by any participant in the chat conversation will be reflected in the
text display component 3710 (this text is omitted from FIGURE 37 for clarity).

FIGURE 38 illustrates, at a high level, that the text display component 3702 and
the button component 3706 of one embodiment of a chat application 3700 are also bound
to the shared data file 3710. When a user inputs text into the text entry component 3704
and clicks the button component 3706, the change is made in the shared data file 3710.
This change will then be propagated to all components bound to the shared data file 3710,
including text display component 3702.

FIGURE 39 illustrates, at a high level, the updating of the shared data file 3710 in
a chat conversation between a chat application of a first user 3902 and a chat application
of a second user 3904. In this figure, the text display component 3702 of the chat
application of the first user 3902 and the text display component 3702 of the chat
application of the second user 3904 are bound to the shared data file 3710, and therefore
display the contents of the shared data file 3710. The first user has input text into the text
input component 3704, and has clicked the button component 3706. The button
component 3706 is associated with a trigger which, when the button component is
clicked, causes steps to execute that read the text from the text entry component 3704,
append the text 3906 to the shared data file 3710, and clear the text from the text entry
component 3704.

This procedure for updating the shared data file 3710 helps to show at least one
advantage of the network operating system, in that a developer must merely associate the
four components described above, and create the rule bound to the text entry component,
to enable this functionality. Behind the scenes, the network operating system will handle
numerous details of updating the shared data file 3710. For example, in one embodiment,
a cached copy of the shared data file 3710 is stored in the client-side cache maintained by
the document manager 912. A corresponding URL object receives the request to update
the shared data file 3710, which causes the transaction manager 910 to create a

transaction representing the changes. The transaction manager 910 propagates the

-124-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

transaction to remote listeners by causing the transaction to be submitted to the XML web
service 2510 via the XIOS communicator 2504 and the XIOS channel. The XML web
service 2510 notes that the file is shared, and forwards the submitted transaction to the
transaction coordinator 2522. The transaction coordinator 2522 then commits the
transaction, updating the shared data file 3710 within the XML file system 2500.

FIGURE 40 illustrates, at a high level, the transmission of the chat messages via
propagation of changes to the shared data file 3710 in one embodiment of the chat
application 3700. As described above, the text display component 3702 of both the chat
application of the first client 3902 and the chat application of the second client 3904 are
bound to the shared data file 3710. Hence, when the XML file system 2500 updates the
shared data file 3710, each of the bound components is notified of the changes and is
updated accordingly.

Advantageously, this allows the developer to have UI components that
automatically, through data update event propagation, always display the correct
information synchronized with the shared data file 3710, and thereby complete the chat
communication without writing any code, but instead by simply binding the component
to the shared data file 3710. As with the update of the shared data file 3710, the network
operating system handles numerous details of this transaction. For example, in one
embodiment, when the transaction coordinator 2522 commits the transaction, it instructs
the message server 2512 to notify each client that is subscribed to changes in the shared
data file 3710 that the shared data file 3710 has been updated. The message server 2512
sends those notifications to each client, which either extracts the updated information
from the notification or contacts the XML file system 2500 to obtain the latest version of
the file. In this regard, the transaction manager 910 of the first client will recognize that
the changes were submitted by the first client, and will not repetitively update its cached
version of the shared data file 3710. The transaction manager 910 of other clients will
cause the changes to be incorporated into their respective cached versions of the shared
data file 3710. As occurs with other data updates, any listening components will then be
notified that the file has been updated, including the text display components 3702 of the
chat application of the first client 3902 and the chat application of the second client 3904.
The text display components 3702 will then automatically be updated accordingly with
the added content 3906.

-125-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

FIGURE 41 illustrates an additional feature enabled by using a shared data
file 3710 for collaborative communication between clients. That is, as updates to a given
shared data file 3710 are propagated to any number of clients subscribing to the shared
data file 3710, no extra work is required to enable collaborative communication between
more than two participants. As illustrated in FIGURE 41, the conversation between the
first client 3902 and the second client 3904 can be joined by any number of other clients,
such as a third client 4102 and a fourth client 4104, without any further design changes.
Each client will bind to the shared data file 3710 and receive updates as described above.

The addition of contacts to a given user's chat friend list and the establishing of
individual chat sessions may also illustrate many features contained within the network
operating system. In one embodiment, a first user may only send or receive chat
messages from a second user who is a member of a friend list of the first user and who
has consented to chat communication with the first user. The friend list of the first user
may be stored in a document in the XML file system 2500, or may be stored and
transmitted as part of the settings.xml file. To add a second user to the friend list, the first
user must first search for the user. In one embodiment, to preserve anonymity of users
when belonging to a group, the first user will only be able to search membership names,
each of which is associated with a user and a group to which the first user belongs. In
one embodiment, the first user will also be able to search a global group, in which there is
an indication of the actual name of the user, but no connection to names found in groups.

In either case, the search will return to the first user an address associated with the
second user. The first user will then send a request to the address of the second user to
add the second user to the first user's friend list. In one embodiment, this is done using a
method similar to the method 3600 described above, wherein the first user creates a file in
the first user's outbox folder that constitutes the friend list request, which is then routed
and transferred to the second user's inbox folder by a server process. On the client of the
second user, the request is retrieved from the inbox of the second user, and a dialog is
displayed asking the second user whether or not she wishes to allow the first user to add
her to his friend list. When the second user responds, a message is sent back to the first
user in similar fashion to complete the addition of the second user to the friend list of the
first user, and the first user will then be able to start chat conversations with the second

user.

-126-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

For a first user to start a chat session with a second user, a similar process occurs.
The chat application of the first user creates a shared data file 3710, binds its text display
component 3702 to the shared data file 3710, and sends a request to the address of the
second user to begin a chat session. The request is delivered as described above. If the
second user accepts the request, a notification is sent to the chat application of the first
user, which then sends the document ID of the shared data file 3710 to the chat
application of the second user. The chat application of the second user binds its text
display component 3702 to the shared data file 3710, and the chat conversation may
proceed as described above.

Although these features are described with relation to chat, one skilled in the art
will recognize that other forms of server-mediated communication, such as message
boards, email, and the like, could be implemented utilizing shared data files. Also, shared
data files could be used to coordinate other forms of communication that do not require a
server for mediation. For example, a first user and a second user could use a shared data
file to negotiate bandwidth settings, encryption settings, and the like for peer-to-peer
communication, such as VOIP or video conferencing.

Further, although the description of chat above assumes that the chat application
is handling all messages that arrive in the inbox folder for the sake of simplicity, it is
possible that an additional component on the client manages incoming messages. In one
embodiment, a component on the client analyzes each message that appears in the inbox
folder, and determines an appropriate application for handling the message. The
component then launches the application and passes the message to the application for
further processing. In this way, incoming chat requests or buddy list requests could be
handled without having the chat application already running.

FIGURE 42 illustrates another advantage of the use of reusable components in
creating XIOS applications. The figure illustrates one embodiment of the network
operating system hosted within a web browser, and may also be representative of how the
network operating system may look in other embodiments, such as a stand-alone
application or a machine operating system implementation of the client-side
component 2400. Each of the boxes within the web browser represents a XIOS
application 2402 created with reusable components, such as an email component, a clock
component, a web search component, a group message component, and a weather report

component. The box in the lower right shows the reuse of the chat application

-127-

10

15

20

25

30

31948PCT
WO 2009/043035 PCT/US2008/078171

components within this web browser, as opposed to merely within a stand-alone chat
application. The use of reusable components allows rapid development of such
composite applications, as the components need not be rewritten to work within a
different context. Another advantage of being able to create composite applications is
that underlying data that feed the applications from data models may be merged from
multiple disparate sources, and hence enable applications to work from a composite of a
multitude of data sources.

EXAMPLE APPLICATION — REUNION

FIGURE 43 illustrates an example collaboration application easily created using
embodiments of the system. The Class of 1992 Reunion application is one example of
functionality that could be presented to members of a group. As described above with
respect to FIGURE 42, FIGURE 43 illustrates a collection of components that refer to
multiple data sources. What is illustrated by the Class of 1992 Reunion application is a
collection of components that could be launched as part of an autostart.xml file loaded
when binding a group folder. As shown above in FIGURE 32B, the Class of 1992
Reunion group folder may be bound by a client as a data source, in which case it would
be displayed as a drive within the user interface. When a user thereafter opens that data
source (or when the user first binds the data source), an autostart.xml document
associated with the group folder will cause the collection of components, such as the
Schedule of Events, the Map to Reunion Events, the Countdown to Reunion, etc., to be
displayed.

Along with the automatic display of these components, the group functionality
will also provide security. For example, only members of the group will be able to view
entries in the Photo Album, which may simply be a view of a folder stored within the
group folder hierarchy. The group functionality will also provide easy collaboration with
other members of the group, as shown in the Chat component of FIGURE 43, which
shows other online members of the group without first requiring the user to add the other
group members to a friend list.

While illustrative embodiments have been illustrated and described, it will be
appreciated that various changes can be made therein without departing from the spirit

and scope of the invention.

-128-

31948PCT
WO 2009/043035 PCT/US2008/078171

CLAIMS
The embodiments of the invention in which an exclusive property or privilege is

claimed are defined as follows:

1. A method for abstracting communications with network services,
comprising:

creating a communication channel configured to communicative over the network
in accordance with the requirements of a network service;

providing a generalized data model that implements a unified way of using,
manipulating, and creating data; and

in response to receiving a communicating from the network service, translating

content in the communication into the format of the generalized data model.

2. The method as recited in Claim 1, wherein a document in the data model
does not require any knowledge of the communication channel from which the document

was transmitted over the network.

3. Computer-implemented methods for abstracting communications with

network services as described and as illustrated herein.

-129-

PCT/US2008/078171

WO 2009/043035

1/62

AINHIID NIHL

001

S~w

1444

‘[

dHALNdNWOD
dOLYSAdd

NYOMIAN

aor

dHAINAD
VIVA HAIS-YIAYAS

ANOHd
TIIONW

J

901

444

PCT/US2008/078171

WO 2009/043035

81C

HIIAYAS dAM

JAINAD VIVA
AAIS-4AAIAS

414

1414

YAt

AINAHITD

LANYHAINT

AINAHITD

jl\

01¢

NYOMILAN
ASTYddYHINH

roc

(ASTAdYAINT)
YAINAD VIVA AAIS-4AAYAS

AINAHITD

f

80¢C

AINAHITD

00¢

PCT/US2008/078171

WO 2009/043035

3/62

HOVAAALINIT
NYOMIAN

¢

0r¢

90¢

S8 NOILVIINNWINWOD

AJOWINW

U

-

WHAAW
HOVYOLS

-5

80¢

<
1y

LINN
ONISSHAD0dd
TVIINAD

N

ao€

WHILSAS

N

o€

2

PCT/US2008/078171

WO 2009/043035

4/62

aor

ory

00¢

10 &1 |

WHOALYId HIVMAIVH

Pt

Vo

INANOdIWOD
AdIS-INATTD

aor

roy

907y

ory

00¢

‘gt 31

WHOALYId HIVMAIVH

WHILSAS
ONILVYAdO ANITHOVIN

A A

Y Yy

INIANOdNOD
AAIS-INATT)

WHOALYVId NOLLYII'lddV

Vst

aor

WHOALYId HIVMAIVH

-

roy

WHILSAS
ONILVYAdO ANITHOVIN

A A

Y Y
dASMOY LT d9M

p— INIANOdNOD
AAIS-INATTD

11

WHOALVId NOILLYIOI'lddV

PCT/US2008/078171

WO 2009/043035

5/62

AINAHITD

ANIHOVI
TVLLYIA
TWX

\

-~)

90§ 01§

00§

a0s

80§

VS 3L

NYOMIAN

]

AINAHITD

ANIHOVIW
TVLLYIA
TWX

/

JAINAD VIVA
AAIS-4AAIAS

(

01§

f

ros

PCT/US2008/078171

WO 2009/043035

6/62

‘gs 31y

INATTD INITTD
— wonin — T
AAIS-INITTD Ly AAIS-INATTD L
))]))
[(| s0f [(|
pIS 90S OIS vIS #OS 0IS
YAINTD VIVA AAIS-ITAYAS
WALSAS TTIT TWX
z0s” INTNAD0A INTNAD0d szmwmwwea INIHAS0
TWX TWX
] g voriotaay | | @ovadaint | | nx ssadoud
zIs qASN
[[[(
\ \ \ \

)

acs

)

0cs

)

81§

)

91§

WO 2009/043035 PCT/US2008/078171

7/62 600

1

MyTasks.xml

<process name="MyTasks Application" description="" author=
"Application Designer" created="" revised="">
<trigger view="MyTasks" component="buttonl" event="Select"
60}/f step="2"/>

<step nr="1" name="Initialize Application">
“— <operation name="open" value="apps/mytasks gui.xml">
</operation>
614 —"<operation name="action" value="#MyTasks">
<component name="button2" action="hide" wvalue="">

612

</component> 604
</operation>
6I6~</operation name="bind" value="data/tasks.xml">
61&//-<component view="MyTasks” name="input3" select=
"/tasks/task/@description"/></component>
</operation>
</step>
<step nr="2" name="Press Button">
62q,~<operation name="decision" value="MyTasks#inputd">
622 _<when test="text() = ''" step="3"/> 606
<otherwise step="4"/>
</operation>
</step>
<step nr="3" name="Add Task">
624\/‘<operation name="change" value="data/tasks.xml">
626—<Store type="replaceText" select="{#MyTasksi#inputd}" 608
value="/tasks/task/@description"></store>
</operation>
</step>
<step nr="4" name="Show Button">
628\/~<operation name="action" value="#MyTasks"> 610
<component name="button2" action="show" wvalue="">
</component>
</operation>

Fig.6A

WO 2009/043035 PCT/US2008/078171

8/62 650
MyTasks_ gui.xml
<view name="MyTasks" title="" author="Application Designer"
created="" revised="" height="500" width="600" opacity="100"
icon="icons/applications/16x16/document new.png" mode="" look=""

position="">
<toolbar name="toolBar3" position="top" dragable="true" tree-
expanded="true">
<buttonbox name="buttonBoxl" text="Button" icon="icons/
objects/24x24 /brushl.png">
</buttonbox>
<toolbar>
<panel type="flow" look="back" padding="5" height="100%"
width="100%" tree-expanded="true">
<tabstrip name="tabstrip4" width="100%" height="100%" tree-
expanded="true">
<panel name="tabl" type="flow" selected="true" title="Tab 1"
padding="5" height="100%" width="100%" icon="icons/objects/
16x16/brushl.png" tree-expanded="true">
652—<putton name="buttonl" text="ADD TASK" width="100"
default="true">
</button>
654\/~<button name="button2" text="ENTER VALID TASK” width="100">
</button>
input name="input4" width="140" height="20">
</input>
6‘/ﬂ<i?put name="input3" width="240" height="80">
</input>
</panel>
<panel name="tab2" type="flow" title="Tab 2" padding="5"
height="100%" width="100%" icon="icons/objects/16x16/
brushl.png">
</panel>
<panel name="tab3" type="flow" title="Tab 3" padding="5"
height="100%" width="100%" icon="icons/objects/16x16/
brushl.png">
</panel>
</tabstrip>
</panel>

658

65

Fig.6B

PCT/US2008/078171

WO 2009/043035

9/62

00

V. 31

0L |

/

DAY A1 4

NSV AI'TVA mqmy?\

] KN

]

SASV.L AN

™90,

PCT/US2008/078171

WO 2009/043035

10/62

— (. JXSYSVY/VIVP,,)
01L IDAr90 INTWNO0d

g/ 31

0L~

-

™

00

ONIANTE
I

NSVL AI'TVA YAINA —~—— |

-~
——— —_———

NOLLVINASAYd ALV dd(]
dASMOYL 3y 409 TIVINA

] [T

=

SASV.IL AN

™ 90,

PCT/US2008/078171

WO 2009/043035

11/62

— 1 Grmxsysvymop,,)
01, LOAr90 ININND0d

0L~

o AT

™~

=

00

ONIANTd
I

NSV.I AITVA dTINA \/7\

- -
—— ———

SLAIDIL ANITIIV ASVHIINd ——"]

SLAMNIIL ANTTIIV ASVHIYd
NOLLVINASHYd ALV dd(]
dASMOYL ‘Y 409 TIVINA

] [IRy

] =

SASV.L AN

™90,

PCT/US2008/078171

WO 2009/043035

‘g8

HSVI
93dN
ATAOONT TALH 5014]
N
o
AY
"~
NOILLVIAZA _
ILVY JO¥¥T TWX SIS ISILKO
[
% TAVII-S
% SIDIDVd
% IDVALLIY
%&M AONALVT IXL ATdVd ILIHM _A||_
o
= SQIOMATI AdAL TJNVN
o XIOE DNIAOINT OAdIA

058

008

TWIHD0T4| Q|

TAX'SLTNSTN ISTL KDY
IXL4AdVd ALTHM[]

ONIAOONT 03I T

HOYVASTY W\&nm

3 | K NN

HAIdd HOYVASHY

PCT/US2008/078171

WO 2009/043035

13/62

6514

P16 —

l6—

016—]

06

dTAOVNVIW INIAH

dAOVNVIW INAWNI0d

HTAOVNVIW NOLLIOVSNV YL

LIOACd0 IXHINOD WHILSAS

dAOVNVIN MHAIA

JAOVNVIW SSHO0dd

dAOVNVIW NOLLVII'lddV

—— 806

~906

706

WO 2009/043035

1000

PCT/US2008/078171

14/62

INSTANTIATE APPLICATION| 1002

OBJECT
OBTAIN RESOURCES 1004
SPECIFIED IN APPLICATION f~—
PACKAGE

ADDITIONAL

NG INSTANCE

'

HANDLE
COMMAND TO
OPEN
APPLICATION

PERMITTED
?

~— 1008
INSTANTIATE INSTANCE \/1 010
OBJECT
UTILIZE APPLICATION 1012

OBJECT TO OPEN PROCESS [——
AND UI XML DOCUMENTS

>

1014

Fig.10A.

PCT/US2008/078171

WO 2009/043035

15/62

PEOI —

[] .%~
MQN .rg 0401 ——— HIN-V LDAC4d0
AONVISNT |
HIN-G IDArdo Q€01 oV IDAr9o0
PROI1" gONVISNI | oonvisnr [
ror——— 19.10arg0 9507 —— 1v.I2argo
AINVISNI AONVISNT |
HIN LDArdo ZS0] g IDArdo 0£0] — V LOHrdo
NOILVOITddV NOILVOITddV NOILVOITddV
A A
ATOVNVIN
NOILVOITddV

4

r06

PCT/US2008/078171

WO 2009/043035

16/62

rso1

N

LIHArdo
SSHO0Yd

A

201 ‘51

9So1I 0901
IDArgdo LDArdo
ININOIINOD D0TVId
$901 2901
// \ IDArgo
MAIA (&/S
wwwwwwma ATOVNYIN I i
A MAIA INIW L i
o Pl |
e < - - |
S LDArdo P2 “
AINVISNIT |
2S0T—— |
|
|
|
|
|
|
............. IDArgo -
NOILVIITddV

WO 2009/043035

1100

17/62

PCT/US2008/078171

OPEN PROCESS XML 1104 | OPEN PROCESS XML
DOCUMENT WITHIN
1102 _| DOCUMENT WITHIN
CONTEXT OF e
PPLICATION CONTEXT OF STAND
PACKACE ALONE APPLICATION
k |
/ 1106
IDENTIFY FILE TYPE
‘ > /1120
1108
CALL PROCESS |/ REGISTER PROCESS AS
MANAGER LISTENER ON PROCESS
XML DOCUMENT
1110 l 122
YES INSTANTIATE
PROCESS OBJECT
CACHED NOTIFIER OBJECTS
> FOR EACH TRIGGER
NO 1124
1112)
GENERATE CALL |
REQUESTING PROCESS REGISTER TRIGGERS
XML DOCUMENT WITH EVENT
MANAGER
1126
YES

DOCUMENT

AVAILABLE FROM

CLIENT-SIDE

CACHE
9

YES

NO

1116
AN

INSTANTIATE
NEW INSTANCE
9

OBTAIN PROCESS XML
DOCUMENT

Y

1128

INSTANTIATE PROCESS
OBJECT

—

v

INSTANTIATE NEW
INSTANCE OBJECT

.

A J
GENERATE CALL TO
EXECUTE PROCESS

STEP

7730

PCT/US2008/078171

WO 2009/043035

18/62

LIJHArd0
SSHO0Yd

 ARIT

r9ci

09c1

N

ANIONH
NOISSTIdIXH

4

LIJHArCd0
HONVISNI

LIJHArd0
MHAIA

)

14114

0scI

VI St

oIrcI

é
dHINIIXH
Jd TTIM SNOILLV¥AdO
TVNOILIAay

801

dATANVH NOILV¥AdO

ALVIddOYddV TIVD O

)

dNIdX OINI

NOISSHAdIXH HLVYTVAH

90c1

A yocr

NOLLVYTVAH 404

NOISSHYdXH LIOHATAS |~

+

£0c1

AHAILLINAdIT [~

NOILVYAdO MHN

aoct

4/

00cI

WO 2009/043035

1300

19/62

DATA TYPE
RECOGNIZER
RECEIVES CALL TO
OPEN DOCUMENT

PCT/US2008/078171

— 1302

'

IDENTIFY FILE TYPE
OF DOCUMENT
REFERENCED IN
XBIND

___—1304

l

PASS COMMAND TO
VIEW MANAGER
BASED ON IDENTIFIED
FILE TYPE

~——1306

l

INITIATE EXECUTION
OF LOGIC TO OPEN
NEW APPLICATION

VIEW

~—— 1308

Fig.13.

PCT/US2008/078171

WO 2009/043035

20/62

ed

LIJHArd0
SSHO0Yd

A 4 vivi

N

VI S

4144

/

0¥l —|

dTOVNVIW
SSHO0Yd
INIW

JAOVNVYIN
MAIA INTW

LIOHArd0
HONVISNI

dATANVH
NOILVYAdO

NAdO
cor1 -

LIOArd0 MAIA

206 —~ 14AOVNYIW MAIA

YAZINDODAY
1 AdALVIVa

PCT/US2008/078171

WO 2009/043035

21/62

e

LIOHArd0
SST004d

vivi

N

IARIT

4144

/

906

90V] —

dAOVNVYIN
SST004d
INIIW

dAOVNVIN
MHAIA INIW

LIOAC4d0
HONVISNI

NOILVOI'lddV
ANO’IVANVLS

dAOVNVIN
SST004d

ATZINDOITY | —— 7071

AdAL VIVd

JOVIOVd
NOILVOI'lddV

PCT/US2008/078171

WO 2009/043035

22/62

www~k\

LIOACd0
SSI004d

"qST 31

INANOIWOD INOLINT [™N_ ;9¢;
IDArdo
MAIA awﬂnﬁm? AN gccr
JYTTANVH .
NOILVIAdO NOILDV 0951
ANIONT
NoissTaaxa[0551
A
YTADOVNV I
MAIN INIW [PSST
IDArdo
AINVISNT 881

VSISl

80S1 aNd

!

INANOdNWOD
NO dOHIAW WY0Addd

"N
9051

»

dATANVH
NOILVYAdO NOLLOV
A0 NOLLNIJAXA ALVILINI

—\
rosi

\

dNIdX OINI
NOISSHIIXH ALV TVAH

"\
2081

4/

0081

WO 2009/043035

1600

N

PCT/US2008/078171

23/62

EVALUATE EXPRESSION 1602
INTO XBIND

INITIATION EXECUTION 1604
OF BIND OPERATION [~
HANDLER

1605

RETURN VIEW OBJECT |—

'

1606

CREATE _
TRANSLATED XBIND
CALL 1608
SET DATA METHOD ON }—
COMPONENT
ADD COMPONENT AS 1612
UPDATE LISTENER ON }—/
DOCUMENT

NO

1614

IS THE
COMPONENT A

1618

C

UPDATE USER
INTERFACE OF
ORIGINATING
COMPONENT

RULE USER
?

1616
PERFORM SET p—

RULE ROUTINE

Fig.16.

PCT/US2008/078171

WO 2009/043035

24/62

4]
>

dTOVNVIW
INHAH

LIJHArd0
dHAIAILON

\

98L1

‘qL1°31]
(95.1
INANOIWOD
INOLING
09,1 /
SSAD0Ud MIIA
SYSVIAW
*® i /
IDArg0 csel
AINV.LSNIT

¢

8SL1

VLISl

PILI ANT

cIcr

80L1

90L1

roLl

aoc1

dALS SSHI204d ALNIDAXH
OL TTVD ALVYIANTO

4

LIHAL40 AINVISNI
ALVIddOYddV AALINAdT

4

NOILVALLDY ¥A99I4L A0
LIOACd0 YHIATILON LYHTV

4

JAOVNVIW INHAH
OL TTVD SYANHLSTT
dTOOINL AAILON SSVd

i

AHALVALLDYV YHODIY L

00,1

WO 2009/043035 PCT/US2008/078171

25/62
1800

\\ 1802

EXPRESSION PASSED TO)
EXPRESSION ENGINE FOR
EVALUATION

1804

COMPONENT

NO ASSOCIATED WITH
A DATA BINDING
1806~1\
EVALUATE 1808
EXPRESSION OBTAIN DATA FROM IN- | —
WITHOUT CREATING MEMORY OBJECT
TRANSLATED XBIND

l 1810

RETURN TRANSLATED /
XBIND TO PROCESS
OBJECT

Ll

Y

1812

GENERATE CALLTO | —/
EXECUTE PROCESS STEP

l 1814
CALL DECISION J

OPERATOR HANDLER TO
PERFORM EVALUATION

Fig.18.

WO 2009/043035

1900

N

26/62

EVALUATE EXPRESSION
INVALUE ATTRIBUTE

'

EVALUATE EXPRESSION
WITHIN OPERATION BODY

'

CALL CHANGE
OPERATION HANDLER

1908

YES TRANSFORM

1250 ¢

APPLY DATA
TRANSFORM

DEFINED
?

GENERATE CALL TO URL
OBJECT TO PERFORM
DATA UPDATE

Fig.19.

PCT/US2008/078171

1902

1904

1906

1912

PCT/US2008/078171

WO 2009/043035

‘0T 31

dTOVNVIW
NOLLVIINNWHNOD

— 98C1

016

27/62

LIOACd0
INANWNIO0d

—pSCI

@\ /O

dTAOVNVIN
NOLLDVSNVYL

INANOdINWOD

-

444

dHATANVH
NOLLVHAdO
IONVHD

r00c /N

V0T 51

aNd

r10c

croc

SYANALSTT ALOWHY
OL d4dLVOVdodd
STALYAdN vivd

»

[~
800C

HHOVI AdIS-INATT)
NI dANIVINIVIN
LIArd0 INANWND0d
ONISN ATTVOOT
AAINIAWATINWIT
STALYAdN VIvd

A

900C

d4dLVAID
STNOILDOVSNV YL MAN

L

a00c

_

0scI

-
000c \\

INANOdNWOD
NWONA dAATADAY
ALVadN viva
WHdO0AYAd OL TIVD

dATANVH
NOLLVYAdO ADNVHD
NWOHA AIATHIOAY
ALvVddn vivd
WHOAYAd OL TTVD

WO 2009/043035 PCT/US2008/078171

28/62

2093 2084
(/
N
2086 ACTIVELY SHARED |
DOCUMENT
\ /
TRANSACTION XML FILE SYSTEM 390
TRANSACTION
2092
2088 TRANSACTION /
TRANSACTION
910 910
k\ /)
TRANSACTION |4 | TRANSACTION
MANAGER MANAGER
DOCUMENT || || DOCUMENT
OBIECT | 2099 2096 ~| - OBIECT
CLIENT-SIDE CACHE -} _ 5598 2098 ~~ CLIENT-SIDE CACHE
CLIENT CLIENT

Fig.20C.

WO 2009/043035 PCT/US2008/078171

29/62

2100

2102

2104

RULE
HANDLER
DEFINED

YES

CREATE ANEW | 2106
RULE HANDLER
APPLYRULESIN | 2108
RULE HANDLER

'

MERGE NEW RULES | 2110
INTO RULE HANDLER

:

NOTIFY LISTENERS 2112
OF DATA UPDATE

Fig.21.

WO 2009/043035

30/62

PCT/US2008/078171

2200 DATA UPDATE IS ,~\3302
\\\\ PERFORMED
2204
RULE 2206
HANDLER YES //)
DEFINED L
2 INVOKE RULE HANDLER

NO

CALL “UPDATE()” METHOD OF
LISTENING COMPONENT

2212

MR

RENDER USER
INTERFACE BASED
ON COMPLETE

2210

YES INITIAL

UPDATE
9

NO

REPRESENTATION OF
UNDERLYING DATA

SELECT EVENT OBJECT

THE DATA
UPDATE AFFECT
LISTENING
COMPONENT,
9

2216

PARTIAL
UPDATE

NO

2218

UPPORTED
? 2220

YES (.)

PERFORM PARTIAL UPDATE TO
COMPONENTS USER INTERFACE

v

PERFORM A FULL
UPDATE OF
COMPONENTS
USER INTERFACE

ADDITIONAL
UPDATES TO BE

YES

REFLECTED IN USER
INTERFACE
9

2224

END NO

Fig.22,

WO 2009/043035 PCT/US2008/078171

31/62

2300

N

2302
VIEW OBJECT IS CALLED TO

RENDER APPLICATION VIEW

l 2304

OBTAIN DIALOG OBJECT t—/

Y

REGISTER VIEW OBJECT AS 4| 2306
LISTENER ON DOCUMENT

:

TRANSFORM XML USER 2308
INTERFACE LOGIC INTO |—
HTML

l 2310

INSTANTIATE COMPONENT }V—_/
OBJECT

INITIALIZE COMPUTATIONAL ,\Zilz

BEHAVIOR OF COMPONENT

Fig.23.

PCT/US2008/078171

WO 2009/043035

14344

~/

V4T |

IdV dOLVIININNINOD

S

AIAUAS 5 -
dVINI S | 5 Uwv
SEES JOLVIINNININOD
I%|Es dvIT
r
R |7 ~—
124 TErT NL@N 817¢
ISVAVIVA A "
108 2o
X > 2| 5= AOLVIINNININOD
N S=|5E 108
o an vy /V
gcre N&% 4 9IPC
AOIANYAS [
HOMVAS 4IM | 2
5w AOLVIINNININOD
=S A v HO¥VIS A”v
W < dam
™
5\7\ ﬁs& f\:&
ATOVNVIN
NOILVIINNININOD

00rc (\

¢

01vc

aore

>
INTWNND0Od
TIAON
dVIT

<

N\%S& S

w

INIWNNOO0d W_

TIAON &

108 =

N

N\ =

9077 nNu

INTANNO0d @
TIAON

HOVIS AM)
gim

N\%ww

ATOVNVIN
INTANDOd

.N.\N~ | 44

N\Na

WO 2009/043035

912

33/62

PCT/US2008/078171

2400

-
e~ 2502
[ae
E . f
=9 XML-FS
S 2 MODEL
S § DOCUMENT
) <\
. 2410%1 V4
E COMMUNICATOR API
< &
SRT)
S < 2504
gz
S S
§ XIO0S COMMUNICATOR
- AN
)
2412
2506
(
2508
“ HTTP 5
= 9 MESSAGE
5 i SERVER
2.4 XML
~ R
Sk WEB
< SERVICE {
/\
2510 2512
2522 [TRANSACTION COORDINATOR
. 2516 2518
E';’ / b
S
&= FILE INDEX
= SERVER SERVER FOLDER
< DATABASE
]
(
)

2514

Fig.23.

)

2500

WO 2009/043035 PCT/US2008/078171

34/62

(2512

MESSAGE SERVER

2610
CLIENT ONE 2602
SUBSCRIPTION LIST g

2606 <KEY>
f FO0.DOC

CLIENT ONE BAR.DOC
USER 3 STATUS
GROUP ONE FOLDER LIST

2612

CLIENT TWO 2604
SUBSCRIPTION LIST g

<KEY>
f 2608 BAR.DOC

GROUP TWO FOLDER LIST
< USER 3 STATUS

CLIENT TWO

Fig.26.

WO 2009/043035 PCT/US2008/078171

35/62

(2512

MESSAGE SERVER

2602
2522 CLIENT ONE
7 SUBSCRIPTION LIST
RANSACTIO FOO.DOC 2704
TRANSACTION
COORDINATOR - BAR.DOC
USER 3 STATUS

GROUP ONE FOLDER LIST

2604
CLIENT TWO
SUBSCRIPTION LIST 2704
BAR.DOC
GROUP TWO FOLDER LIST

USER 3 STATUS

2702

e

CLIENT THREE x

SUBSCRIPTION LIST
BAR.DOC

Fig.27.

WO 2009/043035 PCT/US2008/078171

36/62

2800
2802 f
START A METHOD OF
RETRIEVING A
FOLDERS.XML FILE
2804
<>

A XIOS APPLICATION CREATES A FILE REQUEST FOR A FOLDERS. XML
FILE AND SUBMITS THE FILE REQUEST TO THE DOCUMENT
MANAGER, THE FILE REQUEST COMPRISING A FOLDER ID

l S2806

THE DOCUMENT MANAGER OBTAINS A XIOS COMMUNICATOR
FROM THE COMMUNICATION MANAGER AND PASSES THE FILE
REQUEST TO THE LOAD FUNCTION OF THE XI0S COMMUNICATOR

l i2808

THE XIOS COMMUNICATOR TRANSMITS A REQUEST FOR THE
FOLDERS. XML FILE TO THE APPROPRIATE XML WEB SERVICE OF THE
SERVER-SIDE COMPONENT, THE REQUEST COMPRISING THE FOLDER ID

'

THE SERVER-SIDE COMPONENT
AUTHENTICATES THE USER, AND ROUTES
THE REQUEST TO THE XML WEB SERVICE

IRZSI 0

l J/\2812

THE XML WEB SERVICE DETERMINES A FOLDER DATABASE THAT
HOSTS THE FOLDER TREE ASSOCIATED WITH THE FOLDER ID,
BASED AT LEAST IN PART ON THE CONTENT OF THE FOLDER ID

Fig.28A.

WO 2009/043035 PCT/US2008/078171

37/62

‘[f\2800

f\2814

y

THE XML WEB SERVICE QUERIES THE APPROPRIATE FOLDER
DATABASE TO RETRIEVE INFORMATION ASSOCIATED WITH
THE REQUESTED FOLDER, INCLUDING THE FOLDER ACL

(8)

Jf\2816
THE XML WEB SERVICE ADDS

THE FOLDER INFORMATION
TO THE FOLDERS. XML FILE

i 2818

THE XML WEB SERVICE QUERIES THE FOLDER DATABASE TO Jﬁ\

RETRIEVE INFORMATION ASSOCIATED WITH THE SUBFOLDERS
OF THE FOLDER, INCLUDING AN ACL OF EACH SUBFOLDER

i 2820
FOR EACH jr\

SUBFOLDER OF
THE FOLDER

J/\2822

THE XML WEB SERVICE COMPARES

THE ACL OF THE SUBFOLDER TO THE
ACL OF THE REQUESTED FOLDER

Fig.28B.

WO 2009/043035

PCT/US2008/078171

38/62

—2800
A

THE ACL OF THE
SUBFOLDER MATCH THE

NO YES

REQUESTED FOLDER

Y

f 2826

THE XML WEB SERVICE ADDS AN XLINK

THAT REFERENCES THE SUBFOLDER TO
THE FOLDERS.XML FILE

NO YES

THERE ANY

MORE SUBFOLDERS
?

Fig.28C.

WO 2009/043035

PCT/US2008/078171

39/62

‘[f\2800

J[\2830

THE XML WEB SERVICE CACHES A COPY OF THE
COMPLETE FOLDERS. XML FILE TO EXPEDITE
FUTURE REQUESTS FOR THE SAME FOLDER

l 2832

THE XML WEB SERVICE RETURNS ‘/\
THE COMPLETE FOLDERS. XML

FILE TO THE XIOS COMMUNICATOR

l 2834

THE XIOS COMMUNICATOR Jﬁ\

PROVIDES THE FOLDERS. XML FILE
TO THE DOCUMENT MANAGER

l 2836

THE DOCUMENT MANAGER CACHES THE jﬂ\
FOLDERS. XML FILE, AND PROVIDES THE

FOLDERS. XML FILE TO THE XIOS APPLICATION

2838

FINISH

Fig.28D.

WO 2009/043035 PCT/US2008/078171

40/62

1([<?xml version="1.0" encoding="UTF-8"7>

2 | <!'DOCTYPE folder PUBLIC

3 “-//iCloud//DTD Folder 1.0//EN”

4 “http://www.icloud.com/DTDs/FolderList-1.0.dtd”>

5

6 | <folder name="RESEARCH” id="573" type="files”>

7 <folder name="PERSONAL” id=”308" type="files”/>

8 <folder name="WORK” id="1732" type="files”>

9 <folder name="BROWSERS” id=”9823" type="system” />
10 <folder name="VIDEO ENCODING” id=”238" type="files“ />
11 </folder>

12 <folder name="LETTERS” id=712412" type="documents” />
13 <folder

14 name="EMATIL"”
15 xmlns:xlink="http://www.w3.0rg/1999/x1ink”
16 xXlink: type="simple”
17 xlink:href="http://os.icloud.com/folder?id=213948"
18 xlink:title="EMAIL” />
19 | </folder>
20

Fig.28E.

WO 2009/043035 PCT/US2008/078171

41/62

2900
2902 [
START A METHOD OF
RETRIEVING A LIST OF FILES
IN A FOLDER

Y

2904
A XIOS APPLICATION CREATES A FILE LIST REQUEST AND Jﬁ\
SUBMITS THE FILE LIST REQUEST TO THE DOCUMENT
MANAGER, THE FILE LIST REQUEST COMPRISING A FOLDER ID

THE DOCUMENT MANAGER OBTAINS A XIOS COMMUNICATOR FROM
THE COMMUNICATION MANAGER, AND PASSES THE FILE LIST

REQUEST TO THE LOAD FUNCTION OF THE XIOS COMMUNICATOR

Y

THE XIOS COMMUNICATOR TRANSMITS THE FILE|/ 2908
LIST REQUEST TO THE APPROPRIATE XML WEB
SERVICE OF THE SERVER-SIDE COMPONENT

Y

2910
THE SERVER-SIDE COMPONENT AUTHENTICATES THE USER, Jﬁ\
AND ROUTES THE REQUEST TO THE XML WEB SERVICE,
WHICH CHECKS PERMISSIONS ON THE REQUESTED FOLDER

Y

2912

THE XML WEB SERVICE DETERMINES AN INDEXING jﬁ\
SERVER CORRESPONDING TO THE REQUESTED FOLDER
ID, AND TRANSMITS A QUERY TO THE INDEXING SERVER

Y

2914
]YIELLNH)EXHRK?SIH?VIH?(2LUZRIESZ4PVIAH)E)(]Y)lHETRLEWTZfl4[\
FILE LIST FOR THE REQUESTED FOLDER, AND PROCESSES

THE RESULT WITH RESPECT TO THE ACL OF EACH FILE

Y

2916

THE INDEXING SERVER FORMATS THE LIST OF FILES, ‘/ﬁ\
ALONG WITH LIMITED FILE METADATA, AS A FEED AND
RETURNS THE FEED TO THE CLIENT-SIDE COMPONENT

-

Fig.29.

2906

2918

WO 2009/043035 PCT/US2008/078171

42/62

3002 3000
START A METHOD FOR f
CREATING A FILE

l f3004

A XIOS APPLICATION ON A CLIENT SPECIFIES A FILE
NAME AND A DESTINATION FOLDER FOR THE NEW
FILE, AND INITIALIZES A RAW FILE DATA CONTENT

l §3 006

THE XIOS APPLICATION SUBMITS A FILE CREATION REQUEST TO THE
DOCUMENT MANAGER, THE FILE CREATION REQUEST COMPRISING THE FILE
NAME, THE DESTINATION FOLDER ID, AND THE RAW FILE DATA CONTENT

'

THE DOCUMENT MANAGER OBTAINS A XIOS COMMUNICATOR
FROM THE COMMUNICATION MANAGER, AND PASSES THE FILE || 3008
CREATION REQUEST TO THE XIOS COMMUNICATOR

'

f 3010
THE XIOS COMMUNICATOR TRANSMITS A
REQUEST TO CREATE A NEW FILE TO THE XML
WEB SERVICE OF THE SERVER-SIDE COMPONENT

l 3012

THE SERVER-SIDE COMPONENT f
AUTHENTICATES THE USER, AND ROUTES
THE REQUEST TO THE XML WEB SERVICE

l (3014

THE XML WEB SERVICE DETERMINES A FOLDER DATABASE THAT
HOSTS THE DESTINATION FOLDER, AND CHECKS THAT THE USER HAS
PERMISSION TO CREATE THE FILE IN THE DESTINATION FOLDER

Fig.30A.

WO 2009/043035 PCT/US2008/078171

43/62

—3000
l

jﬁ3 016
THE XML WEB SERVICE CHECKS |

IF THE SPECIFIED DESTINATION
FOLDER IS A SPECIAL FOLDER

THE SPECIFIED
DESTINATION FOLDER A

NO YES

SPECIAL FOLDER
?

v

PROCESS ASSOCIATED WITH THE SPECIAL
FOLDER FOR FURTHER PROCESSING

L

THE REQUEST IS TRANSMITTED TO A SERVER f3019

A FILE SERVER ALLOCATES SPACE FOR RAW FILE DATA OF f 3020
THE NEW FILE IN A STORAGE LOCATION ASSOCIATED WITH
THE FILE SERVER, AND STORES THE INITIAL RAW FILE DATA

v

A FOLDER DATABASE CREATES AN ENTRY FOR THE NEW|
FILE IN THE FOLDER DATABASE, AND STORES LIMITED
METADATA INFORMATION IN THE FOLDER DATABASE

f 3022

+ f3024

THE FOLDER DATABASE ASSOCIATES
THE NEW FILE WITH THE SPECIFIED
DESTINATION FOLDER

Fig.30B.

WO 2009/043035 PCT/US2008/078171

44/62

‘[f\3000

jf\3026

THE XML WEB SERVICE
TRANSMITS METADATA FOR THE
NEW FILE TO AN INDEX SERVER

l

3028
]YlEZXﬂdl;PVEI?SIH?VTCI?77{4F%SAIITSZ4AAM7TYFYIZ4TYIMV'Jﬁ\
TO THE MESSAGE SERVER THAT THE NEW FILE WAS
CREATED IN THE SPECIFIED DESTINATION FOLDER

l

3030
THE MESSAGE SERVER TRANSMITS AN UPDATE //\
NOTIFICATION TO EACH CLIENT THAT HAS THE SPECIFIED
DESTINATION FOLDER IN ITS SUBSCRIPTION LIST

l

3032
THE CLIENT TRANSMITS A REQUEST TO THE MESSAGE jﬁ\
SERVER TO ADD THE NEW FILE TO THE SUBSCRIPTION LIST
OF THE CLIENT, THE REQUEST COMPRISING THE FILE ID

l

3034
THEAH%SAGESERVERADDSTHE‘[\
NEW FILE TO THE SUBSCRIPTION

LIST OF THE CLIENT

FINISH

Fig.30C.

3036

WO 2009/043035 PCT/US2008/078171

45/62

‘{f\3100

3102

START A METHOD OF
OPENING EXISTING FILES

|

| |
| A METHOD OF OPENING AN EXISTING FILE |
| 'THAT IS NOT BEING SHARED IS EXECUTED |
| (FIGS. 31B-31C) |
| |
| |
| |

|

| |
| A METHOD OF OPENING AN EXISTING FILE |
| THATIS BEING SHARED IS EXECUTED |
| (FIGS. 31D-31E) |
| |
| |
| |

FINISH

Fig.31A.

WO 2009/043035

46/62

(8)

PCT/US2008/078171

[3100

A XIOS APPLICATION ON A FIRST CLIENT
REQUESTS A FILE FROM THE DOCUMENT
MANAGER, THE REQUEST COMPRISING A FILE ID

f3110

'

3112
THE DOCUMENT MANAGER OBTAINS A XIOS COMMUNICATOR f
FROM THE COMMUNICATION MANAGER AND PASSES THE FILE
REQUEST TO THE LOAD FUNCTION OF THE XI0S COMMUNICATOR

'

3114
THE XIOS COMMUNICATOR TRANSMITS A REQUEST FOR THE f
FILE TO AN APPROPRIATE XML WEB SERVICE OF THE SERVER-
SIDE COMPONENT, THE REQUEST COMPRISING THE FILE ID

'

THE SERVER-SIDE COMPONENT

AUTHENTICATES THE USER, AND ROUTES
THE REQUEST TO THE XML WEB SERVICE

f3116

'

3117

(

THE XML WEB SERVICE CHECKS THAT THE USER OF THE FIRST CLIENT
HAS PERMISSION TO OPEN THE FILE, AND SUBMITS THE REQUEST FOR
THE FILE TO AN APPROPRIATE TRANSACTION COORDINATOR

'

THE TRANSACTION COORDINATOR INSTRUCTS A
MESSAGE SERVER TO ADD THE REQUESTED FILE
TO A SUBSCRIPTION LIST OF THE FIRST CLIENT

3118

'

THE TRANSACTION
COORDINATOR DETERMINES IF
THE FILE IS CURRENTLY SHARED

f 3119

Q
Fig.31B.

WO 2009/043035 PCT/US2008/078171

f3100

THE FILE
CURRENTLY

SHARED
?

NO YES

@

y

THE TRANSACTION COORDINATOR QUERIES AN /) 3122
APPROPRIATE FOLDER DATABASE TO DETERMINE
THE FILE SERVER STORING THE RAW FILE DATA

v

f 3124

THE TRANSACTION COORDINATOR

RETRIEVES THE RAW FILE DATA FROM
THE APPROPRIATE FILE SERVER

v

THE TRANSACTION COORDINATOR RETURNS f3126
THE RAW FILE DATA TO THE XML WEB
SERVICE WITH A SHARED FLAG SET TO FALSE

v

3128
THE XML WEB SERVICE RETURNS THE RAW FILE f
DATA TO THE XIOS COMMUNICATOR OF THE FIRST
CLIENT WITH A SHARED FLAG SET TO FALSE

* f3129

THE XIOS COMMUNICATOR PROVIDES ACCESS TO THE RAW FILE
DATA TO THE DOCUMENT MANAGER, WHICH IN TURN PROVIDES
ACCESS TO THE RAW FILE DATA TO THE XIOS APPLICATION

Fig.31C.

WO 2009/043035 PCT/US2008/078171

48/62

‘(h3100
@ <3130
A XIOS APPLICATION ON A SECOND CLIENT TRANSMITS A FILE REQUEST

TO THE SERVER-SIDE COMPONENT VIA THE DOCUMENT MANAGER AND
XIOS COMMUNICATOR, THE FILE REQUEST COMPRISING THE FILE ID

L]

3132

THE SERVER-SIDE COMPONENT AUTHENTICATES f

THE USER OF THE SECOND CLIENT, AND ROUTES
THE REQUEST TO THE XML WEB SERVICE 3134

; 1

THE XML WEB SERVICE CHECKS THAT THE USER OF THE SECOND CLIENT
HAS PERMISSION TO OPEN THE FILE, AND SUBMITS THE REQUEST FOR
THE FILE TO AN APPROPRIATE TRANSACTION COORDINATOR

Y —
3136
THE TRANSACTION COORDINATOR INSTRUCTS

THE MESSAGE SERVER TO ADD THE FILE TO A
SUBSCRIPTION LIST OF THE SECOND CLIENT

Y

f 3138
THE TRANSACTION COORDINATOR
DETERMINES THAT THE FILE IS
CURRENTLY SHARED

3140
THE TRANSACTION COORDINATOR QUERIES f
THE FOLDER DATABASE TO DETERMINE THE
FILE SERVER STORING THE RAW FILE DATA

y (3142
THE TRANSACTION COORDINATOR
RETRIEVES AND CACHES THE RAW FILE
DATA FROM THE APPROPRIATE FILE SERVER

L] f3144
THE TRANSACTION COORDINATOR INSTRUCTS
THE MESSAGE SERVER TO NOTIFY THE FIRST
CLIENT THAT THE FILE IS NOW SHARED

&)

Fig.31D.

WO 2009/043035

49/62

PCT/US2008/078171

f3100

3146
THE TRANSACTION COORDINATOR TRANSMITS f
THE RAW FILE DATA TO THE XML WEB SERVICE
WITH THE SHARED FLAG SET TO TRUE

!

f3148

THE XML WEB SERVICE RETURNS THE

RAW FILE DATA TO THE SECOND CLIENT
WITH THE SHARED FLAG SET TO TRUE

!

THE MESSAGE SERVER NOTIFIES
AT LEAST THE FIRST CLIENT
THAT THE FILE IS NOW SHARED

f3150

!

IN RESPONSE TO RECEIVING THE NOTIFICATION, THE
FIRST CLIENT TRANSMITS ANY PREVIOUSLY
UNCOMMITTED TRANSACTIONS TO THE XML WEB SERVICE

jﬁ3152

3154

!

THE XML WEB SERVICE TRANSMITS THE UNCOMMITTED TRANSACTIONS
TO THE TRANSACTION COORDINATOR, WHICH COMMITS THE UNSAVED
TRANSACTIONS TO THE CACHED VERSION OF THE RAW FILE DATA

!

3156
THE TRANSACTION COORDINATOR INSTRUCTS f
THE MESSAGE SERVER TO NOTIFY ALL LISTENING
CLIENTS OF THE COMMITTED CHANGES

!

3158
THE FIRST CLIENT AND THE SECOND CLIENT f
RECEIVE THE NOTIFICATION OF THE COMMITTED
CHANGES FROM THE MESSAGE SERVER

Fig.31E.

WO 2009/043035 PCT/US2008/078171

50/62

3202 f3200
START A METHOD OF STARTING A
CLIENT-SIDE COMPONENT OF A
NETWORK OPERATING SYSTEM 3204

! \

A BOOT LOADER OF THE CLIENT-SIDE COMPONENT INSTANTIATES
THE SYSTEM CONTEXT OBJECT, WITH ITS ASSOCIATED MANAGERS,
AND STARTS A COMMUNICATION CHANNEL TO AN XML FILE SYSTEM

v

THE CLIENT-SIDE COMPONENT /" 3206
CHECKS WHETHER A USER IS
ALREADY LOGGED IN

3208

JAY
THE USER
ALREADY LOGGED

IN
?

NO YES

v

THE CLIENT-SIDE COMPONENT OPENS /\ 3210
A LOGIN APPLICATION ASSOCIATED
WITH THE COMMUNICATION CHANNEL

v

THE COMMUNICATION CHANNEL Jﬁ 3212
PROCESSES USER CREDENTIALS
ASSOCIATED WITH THE USER

3214

THE COMMUNICATION CHANNEL PROVIDES THE USER’S SETTINGS. XML FILE
TO THE CLIENT-SIDE COMPONENT, WHICH PERFORMS THE USER-SPECIFIC
STARTUP SEQUENCE AND MOUNTS ALL SPECIFIED VIRTUAL DRIVES

"~ 3216

FINISH

Fig.32A.

PCT/US2008/078171

WO 2009/043035

51/62

AR IT

"d109 awoy gry3sn
I 1]

=

j09loud
juswdojana(g a1emyos

&/

uoljedijddy
awdiys aAneIoge|j09

=

UoIN3Y Z661 4O SSe|D
[]

&

Jusweydaq 1|
"d109 swoy

19p|o4 Ajiwe4 paeys
I]

0

aAlI(] [e907]

SaALIQ

WO 2009/043035

PCT/US2008/078171

52/62

3302

START A METHOD OF
MOUNTING A GROUP

'

THE CLIENT-SIDE COMPONENT, /3304
STARTS A COMMUNICATION
CHANNEL FOR THE GROUP

l

THE COMMUNICATION CHANNEL f 3300
PROCESSES USER CREDENTIALS
ASSOCIATED WITH A USER

l

THE COMMUNICATION CHANNEL OBTAINS THE
GROUP FOLDERS.XML FILE USING A ROOT FOLDER
ID OBTAINED FROM A USER SETTINGS.XML FILE

[3300

3308

'

THE CLIENT-SIDE COMPONENT ADDS A
REFERENCE TO THE GROUP FOLDERS. XML FILE TO
AN EXISTING FOLDERS. XML FILE ON THE CLIENT

'

3312

THE COMMUNICATION CHANNEL OBTAINS AN AUTOSTART. XML FILE
FOR THE GROUP, IF ONE EXISTS, AND THE CLIENT-SIDE COMPONENT
EXECUTES THE SPECIFIED INSTRUCTIONS OR APPLICATIONS

3314

FINISH

Fig.33.

WO 2009/043035 PCT/US2008/078171

53/62

3400
3402 f

START A METHOD OF
GOING OFFLINE

3404
THE CLIENT-SIDE COMPONENT OF A FIRST CLIENT SETS f
A STATUS OF THE FIRST CLIENT TO AN OFFLINE STATE
BY SENDING A NOTIFICATION TO THE XML WEB SERVICE| 3406

y

THE XML WEB SERVICE INSTRUCTS THE MESSAGE SERVER TO
SEND A NOTIFICATION TO ALL CLIENTS SUBSCRIBED TO THE
STATUS OF THE FIRST CLIENT THAT THE FIRST CLIENT IS OFFLINE} 3408

¥ -

THE APPLICATION MANAGER OF THE FIRST CLIENT DOWNLOADS ALL
OUTSTANDING, NOT ALREADY DOWNLOADED RESOURCES INDICATED
IN THE APPLICATION PACKAGE ASSOCIATED WITH EACH INSTANCE

y

3410

THE APPLICATION MANAGER OF THE FIRST f
CLIENT DOWNLOADS RESOURCES

DYNAMICALLY LOADED BY EACH INSTANCE

y

f 3412
THE APPLICATION MANAGER OF THE

FIRST CLIENT DOWNLOADS RESOURCES
ASSOCIATED WITH EACH OPEN VIEW FILE

L]

f 3414

THE APPLICATION MANAGER OF THE

FIRST CLIENT DOWNLOADS RESOURCES
ASSOCIATED WITH EACH PROCESS

Y f3416

THE CLIENT-SIDE COMPONENT OF THE
FIRST CLIENT SETS A SYSTEM FLAG THAT
INDICATES THE FIRST CLIENT IS OFFLINE 3418

; S

THE CLIENT-SIDE COMPONENT OF THE FIRST CLIENT QUEUES SUBSEQUENT
FILE OPERATIONS, AND EACH CHANNEL OF THE FIRST CLIENT CACHES
SUBSEQUENT TRANSACTIONS DESCRIBING MODIFICATIONS TO FILES

3420
FINISH

Fig.34.

WO 2009/043035 PCT/US2008/078171

54/62

3500
3502 f

START A METHOD OF
COMING BACK ONLINE

Y

THE FIRST CLIENT GOES ONLINE, AND THE CLIENT-SIDE f 3504
COMPONENT OF THE FIRST CLIENT SENDS A NOTIFICATION
OF AN ONLINE STATE TO THE XML WEB SERVICE

Y

THE XML WEB SERVICE INSTRUCTS THE MESSAGE SERVER TO
SEND A NOTIFICATION TO ALL CLIENTS SUBSCRIBED TO THE f3506
STATUS OF THE FIRST CLIENT THAT THE FIRST CLIENT IS ONLINE

Y

THE TRANSACTION MANAGER OF THE FIRST CLIENT f 3508
DOWNLOADS ANY CHANGES TO DOCUMENTS CACHED
ON THE FIRST CLIENT FROM THE XML WEB SERVICE

Y

3510
THE TRANSACTION MANAGER OF THE FIRST CLIENT f
RESOLVES ANY CONFLICTS BETWEEN THE CACHED
DOCUMENTS AND THE DOWNLOADED CHANGES

Y

3512

THE TRANSACTION MANAGER OF THE FIRST f
CLIENT TRANSMITS ANY QUEUED FILE
OPERATIONS TO THE XML WEB SERVICE 3514

! S

THE CLIENT-SIDE COMPONENT OF THE FIRST CLIENT CONTACTS THE
MESSAGE SERVER, THROUGH THE XML WEB SERVICE, TO RE-ADD ANY
MONITORED OBJECTS TO THE SUBSCRIPTION LIST OF THE FIRST CLIENT

Y

f 3516
THE CLIENT-SIDE COMPONENT OF THE

FIRST CLIENT SETS A SYSTEM FLAG THAT
INDICATES THE FIRST CLIENT IS ONLINE

3518
FINISH

Fig.33.

WO 2009/043035 PCT/US2008/078171

55/62

3602 f% 00
START A METHOD OF HANDLING A
REQUEST TO CREATE A NEW FILE IN
AN OUTBOX SPECIAL FOLDER

'

3604
A SERVER PROCESS ASSOCIATED WITH AN OUTBOX «r
FOLDER OF A FIRST USER RECEIVES A REQUEST TO
CREATE A NEW FILE IN THE OUTBOX SPECIAL FOLDER

y 3606
THE SERVER PROCESS EXTRACTS
AN ADDRESS OF AN INTENDED
RECIPIENT FROM THE REQUEST

'

THE SERVER PROCESS IDENTIFIES A
SECOND USER ASSOCIATED WITH THE
ADDRESS OF THE INTENDED RECIPIENT

'

f 3610

THE SERVER PROCESS

DETERMINES AN INBOX FOLDER
ID OF THE SECOND USER

'

3612
USING THE INBOX FOLDER ID, THE SERVER PROCESS CREATES f
A NEW FILE IN AN INBOX FOLDER OF THE SECOND USER, THE
NEW FILE CONTAINING THE DATA INCLUDED IN THE REQUEST

3614
FINISH

Fig.36.

ja3608

PCT/US2008/078171

WO 2009/043035

56/62

01L¢

\
)

<LVYHO/>
<3OVSSINA>
iNoA ale moy ‘s2l|y ‘O||8H
<, ¥3SN.~43AN3S IOVYSSIN>
<3OVSSINA>
jdog ‘H
<V ¥3SN.~43AN3S IOVYSSIN>
<LVHO>

LB

80LE

WHILSAS 114 TWX

ﬁgw 4

ONIANIE

90L€

roLE

e

A\
]

anas

gmmL‘

-

IX] [RSN

Lo

MOQNIM NVYO0¥d LVHD

— C0LE

cILE

)

PCT/US2008/078171

WO 2009/043035

57/62

'9€ 3L

01L¢

[

ONIANIE

a08¢

\a

<LVHO/>
<JOVSSINA
iNoA ale moy ‘s2l|y ‘O||8H
<89 ¥3SN.=43AN3IS IOVSSIAN>
<JOVSSINA
jdog ‘H
<.V 43SN.=43AN3IS IOVSSIN>
<lVYHO>

WHISAS ATId TWX

ﬁgw 4

)

gmmL‘

90L€

roLE

/
7

anas

-

[X] [IR

]|

MOQNIM NVYO0¥d LVHD

— COLE

)

ILE

WO 2009/043035 PCT/US2008/078171

58/62

3710
<CHAT>
<MESSAGE SENDER="USER A”>
Hi, Bob!
</MESSAGE>
3906 <MESSAGE SENDER="USER B>
Hello, Alice, how are you?
4 SIMESSAGE> _ _ _ _ _ _ _ |
<MESSAGE SENDER="USER A”> |
I'm fine, thanks! |
| | _</MESSAGE>_ |
</CHAT> :155:-

UstRAcHATWINDOW oMl | USER B CHATWINDOW][I
<User A>: Hi, Bob! = <User A>: Hi, Bob! =
<User B>: Hello, 7 <User B>: Hello, 7
Alice, how are you? Alice, how are you?

Al | %
t\ E e s f\ E

I’'m fine, thanks! SEND | SEND '

f \\ —Flﬁ \\ 4
)))
3704 3702

3706 3702

Fig.39.

WO 2009/043035

59/62

3710

3906

<CHAT>
<MESSAGE SENDER="USER A”>

Hi, Bob!
</MESSAGE>

<MESSAGE SENDER="USER B">
Hello, Alice, how are you?

</MESSAGE>

PCT/US2008/078171

<MESSAGE SENDER="USER A”>

I'm fine, thanks!

</MESSAGE>

3902

N

[USERACHATW:

<User A>: HE::::
<User B>: H|::
Alice, how N i

ot
o
)
o]
~
V)]

L+

\ (SEND)

3702

[USERBCHATW

<User A>:

<User B>: |

' M
\1(sE)
3702

Fig.40.

PCT/US2008/078171

WO 2009/043035

60/62

‘[1°31]

x_ anNas) | isyweqs ‘rrem w,r

S ONIANIY i

cnok sxe Moy ‘9O0TTV
‘OTT®H :<g I9sn>
iqog ‘TH :<¥ I9sn>

<3qOVS

<1VHO/>
S3an/>

£NOA a1e MOY ‘821|Y “OJ[oH
<4 ¥3SN.=43AN3S IOVYSSIN>

cnok sxe Moy ‘9O0TTV
‘OTT®H :<g I9sn>
iqog ‘TH :<¥ I9sn>

v
XTI moanim LvHD 2 ¥3sn |

Q_ anas) |

XTI moaNim LvHD @ ¥3sn | <3ovssaw> | Co1F
909 ‘H
Nz | <vu3sn~uzanzs Fovssans
<LVHO>
/
7 (anas) | _
- INAANDOd TWX
01L€

. ONIGNTE
Z
% cnod exe moy ‘9O0TTV
\x ‘OTT®H :<9 I85>
mwm jiqog ‘TH :<¥ I9sn>]\%am gm|‘
IXIEE MmoaNIm LvHD 8 ¥3sn |

cnok sxe Moy ‘9O0TTV
‘OTT®H :<g I9sn>
iqog ‘TH :<¥ I9sn>

v
IXIEEJ MmoaNIm LYHO v ¥3sn |

AW]

PCT/US2008/078171

WO 2009/043035

61/62

Yd 4t |

Z

R

v

SEZHFIEETR)

*M0IL0UL0F
a1y Supuana ayy ur ffo Suriadvy
SI2OYS Pasa3Ivos :Jsv0a10f papuaixy

pInoys nox

124

fipnog)

do€L

Wd 85F “8002/7¢/9 'd 42571 Aq -

W £0°S “800T/¥2/9 D 4511 fiq -

sawyy ey doys 03 aauy 403p0a]d ayp Sa0p AYpq
Wd FL:6 '8002/%¢/9 "D 4251 Aiq -

\HN.NWQE 1192 swy uo Supypy snq ayy uo Ang v st auay T,

24 dnoa8 imoh fo siaquions Juym S,0401]

IO

5211 31 “asayy Jo a0 358 fjv
afnid ¢ JIN mou Aut 0y Suruagsty

$ERVA RIAAT awoy Ava ayj uo

jopnd mop] “auoyd

:Sufivs

BE 1VHO 3aa3ai3| 180d3Y ¥3HLVIM

S3OVSSIN ¥IFGWNIN dNOYD

Su01140 Y3iVas 210N JybTUO3l 107 SUOIJIPAISOSSOI IoUUL(]

I0m<mw cAeq TPTIOWSN I0J SUPT4
jiTiiiSTES®D 3P9Ib I0J HYHAH ¥OTTD

| Trew Inok oy

8002/12/% g 1980
so0z/€2/ b O I8sn
800Z/82/9 WOD - IEGYOOT
8002/52/9 g z98n

10f qam 213 1oavag [123rdns

31va Wodd |

BE Houv3s 83| B

STIVINT IN3OJY|

¥2019]

HOVd HAWOH SV 4HS/]

woo zAx mmmjy:dny ||| ssaippy

(-8B 2 -0[@® epon® sowoesdd yeosed

D @ x| - @06

diosH sjool

SOJIOAE] MIIA pT oIl |

PCT/US2008/078171

WO 2009/043035

62/62

(ppv)

m asmoug w @

m yoleag u

Spusld | winqly ojoyd

7

"

Coes)

£syang dn s eym

SOUJe|\ URLg e
31160 sower o

MEM3)S BSSIO\ ®
auljuUQ S,0ym

ey

7

0¢v ¢l LI €00

SANOJ3S S3LNNIN SUNOH SAvd

uoIUNdY 0} UMOPIUNO)

~

7

JA+
"OAY pf
“aAY UlBlsUaWNIg WW
] ™ 0 1N0
WOOZ
@ |
.
*U7 UoSsINypY “
] N
I | +

NI INOOZ
SJUBAT uolunay o} dep

J

.

lleH uolunay
je |e1d0s jewod — 8002/2¢/9

wdo:1 |o0yds ybiH
Je aweo |jeqAs)ion — 8002/22/9 ()

wdoo:6
S.UOMIOJA Je J3uulqg — 8002/1L2/9

SJUBAJ JO 9|NpaYIS

J

uolunay Z661 JO Sse|D

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - description
	Page 120 - description
	Page 121 - description
	Page 122 - description
	Page 123 - description
	Page 124 - description
	Page 125 - description
	Page 126 - description
	Page 127 - description
	Page 128 - description
	Page 129 - description
	Page 130 - description
	Page 131 - claims
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - drawings
	Page 171 - drawings
	Page 172 - drawings
	Page 173 - drawings
	Page 174 - drawings
	Page 175 - drawings
	Page 176 - drawings
	Page 177 - drawings
	Page 178 - drawings
	Page 179 - drawings
	Page 180 - drawings
	Page 181 - drawings
	Page 182 - drawings
	Page 183 - drawings
	Page 184 - drawings
	Page 185 - drawings
	Page 186 - drawings
	Page 187 - drawings
	Page 188 - drawings
	Page 189 - drawings
	Page 190 - drawings
	Page 191 - drawings
	Page 192 - drawings
	Page 193 - drawings

