Title: ACOUSTIC ABATEMENT SYSTEM FOR AIR COOLED HEAT EXCHANGER

Abstract: A system configured to thermally regulate heat dissipation of a power plant system (e.g. steam turbine, gas turbine compressor, intercooler or other fluidic thermal source, etc.) and acoustically attenuate operation of an air cooled heat exchanger via sound reflection, sound absorption, sound diffraction, and/or active noise cancellation is disclosed. In one embodiment, a system includes: a set of inner barriers; a base barrier disposed beneath the set of inner barriers; a set of outer barriers disposed about the base barrier and the set of inner barriers, the set of outer barriers including a top surface located above a bottom surface of the set of inner barriers; a heat exchanger fluidly connected to a power generation system and disposed within the set of inner barriers; and a set of fans disposed within the set of inner barriers and configured to form a flow of air through the set of inner barriers.
ACOUSTIC ABATEMENT SYSTEM FOR AIR COOLED HEAT EXCHANGER

FIELD OF THE INVENTION

[0001] The subject matter disclosed herein relates to thermal regulation systems and, more particularly, to acoustic abatement systems for air cooled heat exchangers.

BACKGROUND OF THE INVENTION

[0002] Some systems, for example certain nuclear, fossil fuel, solar, simple-cycle and combined-cycle power plant systems, employ thermal regulation systems (e.g., heat exchangers, air cooled heat exchangers, etc.) in their design and operation. During operation these thermal regulation systems may cool portions of and/or fluids within the power plant systems (e.g., in turbines, between compressors) via a radiator system and a set of fin fan coolers. In these systems, a fluid (e.g., water, glycol, etc.) may be passed through a high temperature medium via a set of pipes which then circulate the fluid to the heat exchanger (e.g., a radiator system) where the set of fin fan coolers pass a large quantity of air by the fluid for convective cooling. As a result of the size of some power generation systems and the temperature extremes inherent therein, some thermal regulation systems must continuously pass a large amount of air (e.g., about 400 pounds to about 500 pounds per second) through the heat exchanger to meet operational demands. This large quantity of air movement may require a large set of fan coolers to draw the necessary amount of air from the environment to run over the heat exchanger to cool components of the power plant systems.
However, these finned fan coolers may be susceptible to recirculation (e.g., intake of exhausted air) and the use of this set of fan coolers may result in inconsistent cooling fluid temperatures and noise pollution.

BRIEF DESCRIPTION OF THE INVENTION

[0003] Systems for acoustically attenuating operation of a thermal regulation system via sound reflection, sound absorption, sound diffraction, and/or active noise cancellation are disclosed. In one embodiment, a system includes: a set of inner barriers; a base barrier disposed beneath the set of inner barriers; a set of outer barriers disposed about the base barrier and the set of inner barriers, the set of outer barriers including a top surface located above a bottom surface of the set of inner barriers; a heat exchanger fluidly connected to a power generation system and disposed within the set of inner barriers; and a set of fans disposed within the set of inner barriers and configured to form a flow of air through the set of inner barriers.

[0004] A first aspect of the invention provides a system including: a set of inner barriers; a base barrier disposed beneath the set of inner barriers; a set of outer barriers disposed about the base barrier and the set of inner barriers, the set of outer barriers including a top surface located above a bottom surface of the set of inner barriers; a heat exchanger fluidly connected to a power generation system and disposed within the set of inner barriers; and a set of fans disposed within the set of inner barriers and configured to form a flow of air through the set of inner barriers.

[0005] A second aspect of the invention provides an acoustic abatement system for a thermal regulation system, the acoustic abatement system including: a set
of inner barriers shaped to house a heat exchanger and a set of fans; a base barrier
disposed beneath the set of inner barriers, the base barrier substantially separated from
the set of inner barriers; and a set of outer barriers disposed about the base barrier and
the set of inner barriers, the set of outer barriers oriented to enable a flow of air into
the set of inner barriers and including a top surface located above a bottom surface of
the set of inner barriers.

[0006] A third aspect of the invention provides a power generation system
including: a gas turbine; at least one generator operably connected to the gas turbine;
and a thermal regulation system operably connected to the gas turbine or the at least
one generator, the thermal regulation system including: a set of inner barriers; a base
barrier disposed beneath the set of inner barriers; a set of outer barriers disposed about
the base barrier and the set of inner barriers, the set of outer barriers including a top
surface located above a bottom surface of the set of inner barriers; a heat exchanger
fluidly connected to the gas turbine or the at least one generator and disposed within
the set of inner barriers; and a set of fans disposed within the set of inner barriers and
configured to form a flow of air through the set of inner barriers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] These and other features of this invention will be more readily
understood from the following detailed description of the various aspects of the
invention taken in conjunction with the accompanying drawings that depict various
embodiments of the invention, in which:
FIG. 1 shows a schematic illustration of a thermal regulation system disposed below ground level in accordance with an embodiment of the invention;

FIG. 2 shows a schematic illustration of a thermal regulation system disposed above ground level in accordance with an embodiment of the invention;

FIG. 3 shows a schematic illustration of air flow through a thermal regulation system in accordance with an embodiment of the invention;

FIG. 4 shows a schematic illustration of acoustic wave flow through a thermal regulation system in accordance with an embodiment of the invention;

FIG. 5 shows a schematic view of portions of a multi-shaft combined cycle power plant in accordance with an aspect of the invention; and

FIG. 6 shows a schematic view of portions of a single-shaft combined cycle power plant in accordance with an aspect of the invention.

It is noted that the drawings of the disclosure may not necessarily be to scale. The drawings are intended to depict only typical aspects of the disclosure, and therefore should not be considered as limiting the scope of the disclosure. It is understood that elements similarly numbered between the FIGURES may be substantially similar as described with reference to one another. Further, in embodiments shown and described with reference to FIGS. 1-6, like numbering may represent like elements. Redundant explanation of these elements has been omitted for clarity. Finally, it is understood that the components of FIGS. 1-6 and their accompanying descriptions may be applied to any embodiment described herein.
DETAILED DESCRIPTION OF THE INVENTION

[0015] As indicated herein, aspects of the invention provide for systems configured to reduce recirculation and acoustically attenuate operation of a thermal regulation system (e.g., a finned fan cooler, etc.) via sound reflection, sound absorption, sound diffraction, and/or active noise cancellation. These systems include a heat exchanger (e.g., a fin fanned air cooler) disposed with a set of fans proximate ground level (e.g., at a height about equivalent to ground level) above a chamber (e.g., a sunken chamber) and substantially surrounded by a set of barriers (e.g., walls). In an embodiment, the set of barriers may include an inner barrier and an outer barrier which are disposed proximate one another. The outer barrier may be disposed substantially below ground level, and the inner barrier may include a lower surface disposed below a topmost portion/surface of the outer barrier (e.g., causing portions of the inner barrier and the outer barrier to overlap) and may extend substantially above a height of the outer barrier.

[0016] Turning to the FIGURES, embodiments of a thermal regulation system configured to acoustically attenuate operation of the thermal regulation system by locating a heat exchanger proximate ground level and including a set of barrier walls about and/or beneath the heat exchanger and a set of fans are shown. Each of the components in the FIGURES may be connected via conduit, or other conventional means as is indicated in FIGS. 1-6. Specifically, referring to FIG. 1, a schematic view of a thermal regulation system 100 including a heat exchanger 142 located proximate ground level 112 below a set of fans 140 (e.g., fan blades, motors, etc.) and between a set of barriers is shown in accordance with an embodiment of the invention. Set of
fans 140 are configured to flow a fluid (e.g., dry air, atmospheric air, ambient air, etc.) through heat exchanger 142 to thermally regulate a medium/fluid (e.g., glycol, water, etc.) being passed there through from a turbine, intercooler, etc.. Set of fans 140 and heat exchanger 142 are disposed proximate ground level 112 and above a chamber 150 which is formed substantially below ground level 112. Chamber 150 may be substantially defined by a set of outer barriers 130 and a base barrier 134. In one embodiment, chamber 150 may be disposed (e.g., dug into) in a soil structure 110 (e.g., earth, ground, etc.). Soil structure 110 may include top soil, sand, gravel, etc. In an embodiment, a set of inner barriers 120 may be located substantially about set of fans 140 and heat exchanger 142. Set of inner barriers 120 may be located between set of outer barriers 130 and above base barrier 134. As can be seen in FIG. 1, the configuration of set of inner barriers 120, set of outer barriers 130, set of fans 140, heat exchanger 142, and chamber 150 are such that there is not a direct line/noise path from set of fans 140 and heat exchanger 142 to an object 116 (e.g., a person, a building, etc.) disposed on ground level 112 outside of thermal regulation system 100. Set of inner barriers 120 and/or set of outer barriers 130 may enclose (e.g., surround) heat exchanger 142 and/or set of fans 140. In one embodiment, set of inner barriers 120 and set of outer barriers 130 may include concentric uneven walls.

[0017] In an embodiment, set of fans 140 and/or heat exchanger 142 may be disposed substantially planar relative to ground level 112. In one embodiment set of fans 140 and/or heat exchanger 142 may be disposed between about 1 meter below and about 1 meter above a plane of ground level 112. Locating set of fans 140 and/or heat exchanger 142 proximate to ground level 112 may reduce acoustic proliferation
and may further ease pumping of fluid through heat exchanger 142. It is understood that active noise cancellation may include analysis of noise source waveforms and generation of a sound wave which may phase shift and/or invert the polarity of the original signal. Control and/or amplification of this sound wave may create a sound wave directly proportional to the amplitude of the original waveform which may create destructive interference, thereby effectively reducing the noise level of the noise source waveforms.

[0018] In an embodiment, set of inner barriers 120 and/or set of outer barriers 130 may include concrete. In one embodiment, set of inner barriers 120 may include concrete and set of outer barriers 130 may include metal (e.g., sheet metal lined with absorptive materials). In another embodiment, set of inner barriers 120 and/or set of outer barriers 130 may include porous concrete and/or a set of cinder blocks. The set of cinder blocks may include tunable sections which may be set to a blade-pass frequency for set of fans 140. In another embodiment, set of inner barriers 120 and/or set of outer barriers 130 may include a set of patterned (e.g., cavities, sound-absorbing cavities, ridges, etc.) and/or hollow walls. An outside surface of set of inner barriers 120 and/or set of outer barriers 130 may be painted and/or sealed. It is understood that while descriptions are made to specific materials and compositions herein, these descriptions are merely examples and set of inner barriers 120 and/or set of outer barriers 130 may include any material now known or later developed. Further, any number and/or configuration of inner barriers 120 and outer barriers 130 may be used in accordance with the invention, the number and configuration of inner barriers 120 and outer barriers 130 may be tunable/adjustable to match blade-pass frequencies for
set of fans 140.

[0019] In an embodiment of the present invention, set of outer barriers 130 may include a first outer top surface 132 which is disposed at a distance A above ground level 112. Distance A may be greater than a height of a normal noise receiver (e.g., human ear, office window, residential window, etc.). First outer top surface 132 may be patterned to inhibit mixing (e.g., recirculation) in thermal regulation system 100. In one embodiment, set of inner barriers 120 may include a first inner top surface 124 which is located at a distance C above first outer top surface 132 of set of outer barriers 130. Distance C may provide a path/elevation for exhaust 182 (shown in FIG. 3) to exit thermal regulation system 100 to the atmosphere and be discharged several feet in the air above the inlet.

[0020] Set of inner barriers 120 may further include a first bottom surface 122 which is located a distance B below first outer top surface 132 of set of outer barriers 130. Distance B represents an overlap between set of outer barriers 130 and set of inner barriers 120 which prevents set of fans 140 and/or heat exchanger 142 from having a direct horizontal line of sight with an object 116 (e.g., a person, a building, etc.) disposed on ground level 112 outside of thermal regulation system 100. In an embodiment, set of inner barriers 120 may be located at a distance D from set of outer barriers 130 and first bottom surface 122 may be located at a distance E above base barrier 134. Distance D and/or distance E may be sized so as to allow full flow/draw of air (e.g., unimpeded, unimpinged, minimal pressure drop, etc.) into set of inner barriers 120 of thermal regulation system 100 by set of fans 140. In one embodiment, chamber 150 and/or set of outer barriers 130 may extend about 3 to about 4 meters.
below ground level 112. Inner barriers 120, outer barriers 130, and/or base barrier 134 may be tuned in respect to a specific heat exchanger 142 and/or set of fans 140.

[0021] Turning to FIG. 2, a schematic view of thermal regulation system 100 located at a distance G above ground level 112 and including a set of barriers 120 and 130 is shown in accordance with an embodiment of the invention. As can be seen in FIG. 2, chamber 150 may be disposed at distance G above ground level, thereby increasing a magnitude of A and elevating set of fans 140 and heat exchanger 142 relative to ground level 112 and/or object 116. In an embodiment, thermal regulation system 100 may include an active noise cancellation system 186 (shown in phantom) which is configured to destructively interfere with noise generated during operation of thermal regulation system 100. It is understood that active noise cancellation system 186 may include any form of active noise cancellation now known or later developed including analysis of noise source waveforms and generation of a sound wave which may phase shift and/or invert the polarity of the original signal. Further, operation of active noise cancellation system 186 may include control and/or amplification of this sound wave which may create a sound wave directly proportional to the amplitude of the original waveform which may create destructive interference, thereby effectively reducing the noise level of the noise source waveforms.

[0022] Turning to FIG. 3, a schematic view of air flow through a thermal regulation system 200 including heat exchanger 142 located above set of fans 140 and disposed between a set of barriers is shown in accordance with an embodiment of the invention. In this embodiment, an air flow 180 may be drawn through a supply channel between set of inner barriers 120 and set of outer barriers 130 via set of fans
Air flow 180 may be drawn in from all sides of thermal regulation system 200 and directed/drawn over/across heat exchanger 142 as a combined flow 184 by set of fans 140 and/or set of inner barriers 120. Once combined flow is passed through heat exchanger 142 and absorbs thermal energy therefrom, combined flow 184 may be released/exhausted from thermal regulation system 200 as exhaust flow 182. In an embodiment, combined flow 184 and/or exhaust flow 182 may have a velocity which is greater than a velocity of air flow 180 as a result of channeling through set of inner barriers 120. It is understood that while specific embodiments and arrangements of components are described herein (e.g., heat exchanger 142 disposed above set of fans 140, heat exchanger 142 disposed below set of fans 140, etc.), these are merely examples and that any combination of components (e.g., heat exchanger 142 disposed between a set of fans 140) may be used in accordance with embodiments of the invention.

[0023] Turning to FIG. 4, a schematic view of a first acoustic flow 190 (e.g., sound waves, noise, etc.) and a second acoustic flow 192 through thermal regulation system 200 during operation is shown in accordance with an embodiment of the invention. As can be seen in FIG. 4, arrangement/configuration of set of inner barriers 120 and set of outer barriers 130 as described herein may provide acoustic attenuation through sound reflection, sound absorption, sound diffraction, and/or active noise cancellation. In this embodiment, set of inner barriers 120 and set of outer barriers 130 may absorb and/or direct acoustic flows 190 and 192 substantially upward into the atmosphere for dissipation. Acoustic flows 190 and 192 may have a point of origin substantially proximate to the set of fans 140 (e.g., being primarily
generated by fan blades) and heat exchanger 142 during operation, and may be diffracted via bending through chamber 150, set of inner barriers 120, set of outer barriers 130, and base barrier 134.

[0024] As can be seen in FIG. 4, acoustic flow 190 which is initially directed substantially downward may be reflected from base barrier 134 toward set of outer barriers 130 and/or set of inner barriers 120 which may channel acoustic flow upward to the atmosphere. In an embodiment, set of outer barriers 130 may include a surface 138 (e.g., a substantially vertical surface) which includes a set of acoustic absorbers/acoustically absorptive materials. In one embodiment, surface 138 may be modified to enhance acoustic attenuation. Porous concrete, acoustically absorptive concrete, or other rough, acoustically absorptive materials may be applied to surface 138 and/or base barrier 134. In another embodiment, base barrier 134 may be partially covered with gravel. Acoustic flow 192 is initially directed upward and may be channeled by set of inner barriers 120 to the atmosphere. In an embodiment, set of inner barriers 120 and set of outer barriers 130 overlap (e.g., distance B shown in FIG. 1) so as to eliminate any direct path for acoustic flows 190 and 192 from set of fans 140 and heat exchanger 142 to an object 116 (e.g., a person, a building, etc.) disposed on ground level 112 outside of thermal regulation system 200. In one embodiment, set of inner barriers 120 and/or set of outer barriers 130 may be shaped to direct acoustic flows 190 and 192 skyward.

[0025] Turning to FIG. 5, a schematic view of portions of a multi-shaft combined-cycle power plant 500 is shown. Combined-cycle power plant 500 may include, for example, a gas turbine 580 operably connected to a generator 570.
Generator 570 and gas turbine 580 may be mechanically coupled by a shaft 515, which may transfer energy between a gas turbine 580 and generator 570. Also shown in FIG. 5 is a heat exchanger 586 operably connected to gas turbine 580 and a steam turbine 592. Heat exchanger 586 may be fluidly connected to both gas turbine 580 and steam turbine 592 via conventional conduits (numbering omitted). Heat exchanger 586 may be a conventional heat recovery steam generator (HRSG), such as those used in conventional combined-cycle power systems. As is known in the art of power generation, HRSG 586 may use hot exhaust from gas turbine 580, combined with a water supply, to create steam which is fed to steam turbine 592. Steam turbine 592 may optionally be coupled to a second generator system 570 (via a second shaft 515). Any of generator system 570, gas turbine 580, and steam turbine 592 may be operably connected to thermal regulation system 100 of FIG. 1, or other embodiments described herein. It is understood that generators 570 and shafts 515 may be of any size or type known in the art and may differ depending upon their application or the system to which they are connected. Common numbering of the generators and shafts is for clarity and does not necessarily suggest these generators or shafts are identical. In another embodiment, shown in FIG. 6, a single-shaft combined-cycle power plant 600 may include a single generator 570 coupled to both gas turbine 580 and steam turbine 592 via a single shaft 515. Single generator 570, gas turbine 580, and/or steam turbine 592 may be operably connected to thermal regulation system 100 of FIG. 1 or other embodiments described herein.

[0026] The configurations illustrated in FIGS. 5-6 represent only examples of options for deploying thermal regulation system 100 in a multi-shaft combined-cycle
power plant and a single-shaft combined-cycle power plant, respectively, and are not meant to limit the scope of the various embodiments of the present invention. For example, in FIGS. 5-6, it may be desirable to have a fluid connection between heat exchanger 586 and thermal regulation system 100. Those skilled in the art will appreciate that other connections between components of the combined-cycle power plants shown in FIGS. 5-6 and the thermal regulation system 100 are possible.

[0027] The thermal regulation system of the present disclosure is not limited to any one power generation system, combined-cycle power generation system, turbine or other system, and may be used with other power systems. For example, the various embodiments of the present invention may be suitable for use with other combined-cycle power generation systems than those illustrated in FIGS. 5-6 and cogeneration power plants. Additionally, the various embodiments of the present invention may be used with other systems not described herein that may benefit from the thermal regulation and acoustic abatement provided by the thermal regulation system described herein. For example, the various embodiments of the thermal regulation system described herein may be suitable for use with carbon recovery systems.

[0028] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising", when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[0029] This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
CLAIMS

What is claimed is:

1. A system comprising:
 a set of inner barriers;
 a base barrier disposed beneath the set of inner barriers;
 a set of outer barriers disposed about the base barrier and the set of inner barriers, the set of outer barriers including a top surface located above a bottom surface of the set of inner barriers;
 a heat exchanger fluidly connected to a power generation system and disposed within the set of inner barriers; and
 a set of fans disposed within the set of inner barriers and configured to form a flow of air through the set of inner barriers.

2. The system of claim 1, wherein the heat exchanger is located proximate ground level, and the set of inner barriers and the set of outer barriers include porous concrete.

3. The system of claim 1, wherein the set of inner barriers and the set of outer barriers are configured to absorb sound.

4. The system of claim 1, wherein the top surface of the set of outer barriers and the bottom surface of the set of inner barriers are located proximate ground level.
5. The system of claim 1, wherein the base barrier is located below ground level, above ground level, or at ground level.

6. The system of claim 1, wherein the set of inner barriers include a top surface which is located above the set of fans and the heat exchanger.

7. The system of claim 6, wherein the top surface of the set of outer barriers is located between the bottom surface of the set of inner barriers and the top surface of the set of inner barriers.

8. The system of claim 1, wherein the set of inner barriers and the set of outer barriers are shaped to attenuate sound by reflection, diffraction, active noise cancellation or combinations thereof.

9. The system of claim 1, wherein the set of inner barriers and the set of outer barriers are oriented to attenuate sound by reflection, diffraction, active noise cancellation or combinations thereof.

10. The system of claim 1, wherein the set of inner barriers, the base barrier, and the set of outer barriers are oriented to allow the set of fans to draw airflow into the set of inner barriers.
11. An acoustic abatement system for a thermal regulation system, the acoustic abatement system comprising:

 a set of inner barriers shaped to house a heat exchanger and a set of fans;
 a base barrier disposed beneath the set of inner barriers, the base barrier substantially separated from the set of inner barriers defining a channel there between; and
 a set of outer barriers disposed about the base barrier and the set of inner barriers, the set of outer barriers oriented to enable a flow of air into the set of inner barriers and including a top surface located above a bottom surface of the set of inner barriers.

12. The system of claim 11, wherein the set of inner barriers and the set of outer barriers are configured to attenuate sound by reflection, absorption, diffraction, active noise cancellation or combinations thereof.

13. The system of claim 11, wherein the set of inner barriers include a top surface which is located above the set of fans and the heat exchanger, and wherein the top surface of the set of outer barriers is located between the bottom surface of the set of inner barriers and the top surface of the set of inner barriers.
14. A power generation system comprising:

 a gas turbine;

 at least one generator operably connected to the gas turbine; and

 a thermal regulation system operably connected to the gas turbine or the at least one generator, the thermal regulation system including:

 a set of inner barriers;

 a base barrier disposed beneath the set of inner barriers;

 a set of outer barriers disposed about the base barrier and the set of inner barriers, the set of outer barriers including a top surface located above a bottom surface of the set of inner barriers;

 a heat exchanger fluidly connected to the gas turbine or the at least one generator and disposed within the set of inner barriers; and

 a set of fans disposed within the set of inner barriers and configured to form a flow of air through the set of inner barriers.

15. The power generation system of claim 14, wherein the set of inner barriers and the set of outer barriers are configured to absorb sound.

16. The power generation system of claim 14, wherein the top surface of the set of outer barriers and the bottom surface of the set of inner barriers are located proximate ground level.

17. The power generation system of claim 14, wherein the base barrier is located below ground level, above ground level, or at ground level.
18. The power generation system of claim 14, wherein the set of inner barriers and the set of outer barriers are shaped to attenuate sound by reflection, diffraction, active noise cancellation or combinations thereof.

19. The power generation system of claim 14, wherein the set of inner barriers include a top surface which is located above the set of fans and the heat exchanger, and wherein the top surface of the set of outer barriers is located between the bottom surface of the set of inner barriers and the top surface of the set of inner barriers.

20. The power generation system of claim 14, wherein the set of inner barriers, the base barrier, and the set of outer barriers are oriented to allow the set of fans to draw airflow into the set of inner barriers.
INTERNATIONAL SEARCH REPORT

International application No
PCT/PL2013/00080

A. CLASSIFICATION OF SUBJECT MATTER

INV. F22B37/02 E04B2/00 F22B37/36

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbol)
F22B E04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 3 929 188 A (BRINKMANN DIETER ET AL) 30 December 1975 (1975-12-30) col umn 2, line 38 - col umn 4, line 14; figures 1-3</td>
<td>1-6,8-10</td>
</tr>
<tr>
<td>X</td>
<td>US 4 316 434 A (BAI LEY FRANK W) 23 February 1982 (1982-02-23) col umn 9, line 4 - col umn 11, line 20; figures 1-3</td>
<td>11, 12</td>
</tr>
<tr>
<td>X</td>
<td>US 4 343 681 A (CLERMONT HEINRICH ET AL) 10 August 1982 (1982-08-10) col umn 3, line 35 - col umn 5, line 12; figure 1</td>
<td>1,3,4</td>
</tr>
<tr>
<td>A</td>
<td>DE 29 03 644 AI (HOCHTEMPERATUR REAKT0RBAU GMBH) 14 August 1980 (1980-08-14) the whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.
X See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z" document member of the same patent family

Date of the actual completion of the international search: 25 February 2014
Date of mailing of the international search report: 05/03/2014

Name and mailing address of the ISA/Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016
Roberg, Andreas
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB 1 407 301 A (STONE PLATT CRAWLEY LTD) 24 September 1975 (1975-09-24) the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 3 881 451 A (SMITH PETER R) 6 May 1975 (1975-05-06) the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>BE 483 526 A (R. KABLITZ) 15 July 1948 (1948-07-15) the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 3929188 A</td>
<td>30-12-1975</td>
<td>DE 2328556 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2232746 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1438605 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1012931 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S5022140 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7407016 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3929188 A</td>
</tr>
<tr>
<td>US 4316434 A</td>
<td>23-02-1982</td>
<td>NON E</td>
</tr>
<tr>
<td>US 4343681 A</td>
<td>10-06-1982</td>
<td>NON E</td>
</tr>
<tr>
<td>DE 2903644 A</td>
<td>14-08-1980</td>
<td>NON E</td>
</tr>
<tr>
<td>GB 1407301 A</td>
<td>24-09-1975</td>
<td>BE 793911 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2302081 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2168823 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1407301 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 973157 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S4882202 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7300332 A</td>
</tr>
<tr>
<td>US 3881451 A</td>
<td>06-05-1975</td>
<td>AU 6347173 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 808510 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1002833 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2362223 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 421615 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2212025 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1447367 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1002304 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S4996340 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7317240 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3881451 A</td>
</tr>
<tr>
<td>BE 483526 A</td>
<td>15-07-1948</td>
<td>NON E</td>
</tr>
</tbody>
</table>