实用新型名称
一种分级燃烧分解炉

摘要
本实用新型公开了一种分级燃烧分解炉，包括分解炉本体、连接风管、下锥体，所述的分解炉本体的中下部和下锥体上装配两组或两组以上三次风进风口、两组或两组以上燃料喷口和两组或两组以上生料下料口；所述的各组三次风进风口、各组燃料喷口和各组生料下料口分布在分解炉本体的中下部和下锥体的不同高度上。本实用新型通过三次风分级送风、燃料分级燃烧和生料多点入炉，在分解炉内燃烧过程的不同阶段，按需要送入适量空气，保证煤粉既能稳定着火，又能完全燃烧，同时，能最大限度地还原回转窑废气中的氮氧化物。具有更加灵活的调节性能，能适应更加复杂多变的原料、燃料和操作工况，获得更低的氮氧化物排放。
1. 一种分级燃烧分解炉,包括分解炉本体 (1)、连接风管 (2)、下锥体 (3), 其特征在于:所述的分解炉本体 (1) 的中下部和下锥体 (3) 上装配两组或两组以上三次风进风口 (4)、两组或两组以上燃料喷口 (5) 和两组或两组以上生料下料口 (6), 所述的各组三次风进风口 (4)、各组燃料喷口 (5) 和各组生料下料口 (6) 分布在分解炉本体 (1) 的中下部和下锥体的不同高度上。

2. 根据权利要求 1 所述的分级燃烧分解炉, 其特征在于: 所述三次风进风口 (4) 的每组进风口包括处于同一高度上的一个或两个进风口。

3. 根据权利要求 1 所述的分级燃烧分解炉, 其特征在于: 所述燃料喷口 (5) 的每组燃料喷口包括处于同一高度上的多个燃料喷口。
一种分级燃烧分解炉

技术领域
[0001] 本实用新型涉及水泥制造领域的低氮氧化物分解炉，尤其涉及一种用于水泥熟料烧成系统的分级燃烧分解炉。

背景技术
[0002] 水泥熟料烧成过程是一个典型的高温过程，燃料在回转窑内燃烧产生高温火焰，多形式的氮氧化物也随之形成。通过对窑用燃烧器，可以在一定程度上抑制氮氧化物的生成，但是，回转窑内燃料燃烧对火焰温度、火焰形状、火焰的稳定性要求很高，燃烧器有效降低氮氧化物的措施往往以牺牲燃烧器的燃烧性能为代价。因此，即使是氮氧化物主要在回转窑内生成，而氮氧化物的消除任务却无法在窑内全部完成。分解炉是水泥熟料烧成过程中除回转窑外又一个高温设备，消耗烧成所需热量的60%左右。目前，人们主要通过分解炉的功能结构设计，在限制炉内氮氧化物生成的基础上，创造适合于氮氧化物还原的环境，还原窑内生成的氮氧化物，进而降低整个烧成系统氮氧化物排放的。

[0003] 分解炉中主要的降低氮氧化物的方法是燃料分级燃烧或分级送风。实现燃料分级燃烧的途径主要是将燃料分成两部分（或更多部分），在分解炉的不同位置喷入炉内，一部分燃料进入分解炉锥部氧含量低于3%的烟气中，在适宜的烟气温度下形成还原性气氛，氮氧化物被还原，未燃尽的物质随气流混入上部的二次风气流中完成燃烧。

[0004] 目前，国内外已应用的分解炉上分级送风的通常做法是由二次风管引出一支分风管至分解炉中部的缩口后面，使一部分二次风由此进入炉内为燃料的燃烧提供热，而炉下部由于二次风不足气氛呈弱还原性，促进氮氧化物的还原。

[0005] 以上公知技术可以起到降低氮氧化物排放的目的，但是更低的氮氧化物排放水平仍是水泥生产技术所追求的目标。

实用新型内容
[0006] 本实用新型所解决的技术问题是提供一种能方便地实现分级供风和分级燃烧，适应各种燃料和热工条件，减少氮氧化物排放量的水泥熟料烧成系统的分级燃烧分解炉。

[0007] 本实用新型通过以下技术方案实现：

[0008] 一种分级燃烧分解炉，包括分解炉体、连接风管、下锥体，所述的分解炉体的中下部和下锥体上装配两组或两组以上三次风进风口、两组或两组以上燃料喷口和两组或两组以上生料下料口，所述的各组三次风进风口、各组燃料喷口和各组生料下料口分布在分解炉体的中下部和下锥体的不同高度上。

[0009] 作为本实用新型的优选方案，所述三次风进风口的每组进风口包括处于同一高度上的一个或两个进风口。

[0010] 作为本实用新型的优选方案，所述燃料喷口的每组燃料喷口包括处于同一高度上的多个燃料喷口。

[0011] 本实用新型通过所述的三次风分级送风、燃料分级燃烧和生料多点入炉，在分解
炉内燃烧过程的不同阶段，按需要送入适量空气，保证煤粉既能稳定着火，又能完全燃烧，同时，能最大限度地还原回转窑烟气中的氮氧化物。这种分解炉区别于现有技术之处在于，两组或两组以上的分级配风和燃料分级供应方式具有更加灵活的调节性能，能适应更加复杂多变的原料、燃料和操作工况，获得更低的氮氧化物排放。

附图说明
[0012] 图 1 为本实用新型分级燃烧分解炉的原理图。

具体实施方式
[0013] 现将通过下面优先实施例对本实用新型进行非限制性说明和解释，这些实施例是参照附图仅作为例子给出的。
[0014] 图 1 给出了本实用新型的具体实施方式。分级燃烧分解炉，该装置包括分解炉本体 1、下锥体 3 和连接风管 2。在分解炉本体 1 的中下部设有两组或两组以上三次风进风口 4、两组或两组以上燃料喷口 5 以及两个或两个以上的生料下料口。来自篦冷机的三次风根据需要被分成多部分，从分解炉的各进风口进入炉内，实现燃烧空气的分级送风，通过控制进入各进风口的风量，使分解炉内的氧分布连续可调，创造不同的燃烧环境；来自燃料输送系统的燃料根据需要被分配成多部分，从分解炉的各燃料喷口进入炉内，实现燃料分级，根据燃料热值、炉内温度分布等工况，调整各燃料喷口的燃料喷入量，在炉内不同区域形成适宜的还原气氛或氧化气氛；来自最下级预热器的生料经生料分料阀分配，从分解炉的各下料口进入炉内，加入到炉内不同的功能分区，作为控制炉温的辅助措施。
[0015] 来自回转窑的烟气自分解炉下锥体底部以喷射方式进入炉内。窑内燃料燃烧生成的氮氧化物随烟气一同进入炉内。控制最下面一组三次风进风口的风速和窑烟气喷射的速度，使两部分风获得所需的混合效果，满足脱氮和燃料燃烧的双重要求。
[0016] 所述燃料可以是烟煤、无烟煤、油、二次燃料等燃料，所述的分级燃烧可以是为了降低燃烧产生的氮氧化物而采取的多点、多阶段燃烧手段，或者仅仅为了燃烧目的而采取的多点、多阶段燃烧方式。分级混合的三次风、燃料和生料在炉内形成一个特殊的、复杂的环境，在分解炉内完成燃料燃烧、生料分解的同时，部分还原来自回转窑烟气的氮氧化物。
[0017] 除上述实施例外，本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案，均落在本专利要求的保护范围内。