WO 2006/050534 A1 |0 000 000 0 000 O D 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization § mj

525 | 00 0O

International Bureau

(43) International Publication Date
11 May 2006 (11.05.2006)

(10) International Publication Number

WO 2006/050534 Al

(51) International Patent Classification:
GOGF 9/455 (2006.01)

(21) International Application Number:
PCT/US2005/040450

(22) International Filing Date: 31 October 2005 (31.10.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/976,970 29 October 2004 (29.10.2004) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BENNETT, Steven
[US/US]; 6469 Se Sigrid Street, Hillsboro, OR 97123 (US).

(74)

(81)

(84)

NEIGER, Gilbert [US/US]; 2424 NE 11th Avenue, Port-
land, OR 97212 (US). ANDERSON, Andrew [US/US];
677 SE 68th Ave, Hillsboro, OR 97123 (US).

Agents: VINCENT, Lester, J. et al.; Blakely Sokoloff
Taylor & Zafman, 12400 Wilshire Boulevard, 7th Floor,
Los Angeles, CA 950025 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: TIMER OFFSETTING MECHANISM IN A VIRTUAL MACHINE ENVIRONMENT

/ 100

108 110 ’

104 106
0s# 0S#2
102 114
N Virtual Machine Virtual Machine |~
Abstraction 1 Abstraction 2
,—112
Virtual-Machine Monitor (VMM)
Timer Offset Configuration
Module 126
L —116
Processor 118 VMCS 124
Timer Access Logic
122 Memory 120
Bare Platform Hardware

(57) Abstract: In one embodiment, a method in-
cludes receiving a request to transition control to
a virtual machine (vm) from virtual machine mon-
itor (vmm), calculating an offset value, receiving,
during operation of the vm, a request for a current
value of the timer, adjusting the current value of
the time based on the offset value, and providing
the adjusted timer value to the vm.

WO 2006/050534 A1 IINH10 Y A0VOH0 T 0000 0010

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — before the expiration of the time limit for amending the
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, claims and to be republished in the event of receipt of
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, amendments

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG). Lo .
Q) For two-letter codes and other abbreviations, refer to the "Guid-

Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gazette.

5

10

15

20

25

WO 2006/050534 PCT/US2005/040450

TIMER OFFSETTING MECHANISM IN A VIRTUAL MACHINE
ENVIRONMENT
Field
[0001] Embodiments of the invention relate generally to virtual machines, and

more specifically to a timer offsetting mechanism in a virtual machine environment.

Background

[0002] Timers are typically used by operating systems and application software to
schedule activities. For example, an operating system kernel may use a timer to allow a
plurality of user-level applications to time-share the resources of the system (e.g., the
central processing unit (CPU)). An example of a timer used on a personal computer (PC)
platform is the 8254 Programmable Interval Timer. This timer may be configured to issue
interrupts after a specified interval or periodically.

[0003] Another example of a timer is the timestamp counter (TSC) used in the
instruction set architecture (ISA) of the Intel® Pentium® 4 (referred to herein as the IA-32
ISA). The TSC is a 64-bit counter that is setto 0 following the hardware reset of the
processor, and then incremented every processor clock cycle, even when the processor is
halted by the HLT instruction. The TSC cannot be used to generate interrupts. It is a time
reference only, useful to measure time intervals. The IA-32 ISA provides an instruction
(RDTSC) to read the value of the TSC and an instruction (WRMSR) to write the TSC.
When WRMSR is used to write the time-stamp counter, only the 32 low-order bits may be
written; the high-order 32 bits are cleared to 0. Because of these writing restrictions,
software generally cannot set the TSC forward nor set it backwards to an arbitrary value.

[0004] In multi-processor (MP) systems, the TSC is used to properly synchronize

processors and schedule processes appropriately. At boot time, the values of the TSC on

1

10

15

20

25

WO 2006/050534 PCT/US2005/040450

all processors are synchronized and most operating systems assume that the TSC then
count at the same rate. If the TSC values drift between processors (e.g., if one processor
counts at a different rate that the others), scheduling of processes by the operating system
may be confused. |

Brief Description of the Drawings

[0005] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

[0006] Figure 1 illustrates one embodiment of a virtual-machine environment, in
which the present invention may operate;

[0007] Figure 2 is a flow diagram of one embodiment of a process for controlling
access of VMs to a timer;

[0008] Figure 3 is a flow diagram of one embodiment of a process for configuring
fields associated timer offsetting; and

[0009] Figures 4 and 5 are flow diagrams of two alternative embodiments of a
process for calculating a timer offset value for a VM.

Description of Embodiments

[0010] A method and apparatus for controlling access of virtual machines to a
timer is described. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the art that the present invention
can be practiced without these specific details.

[0011] Some portions of the detailed descriptions that follow are presented in
terms of algorithms and symbolic representations of operations on data bits within a

computer system’s registers or memory. These algorithmic descriptions and

10

15

20

25

WO 2006/050534 PCT/US2005/040450

representations are the means used by those skilled in the data pfocessing arts to most
effectively convey the substance of their work to others skilled in the art. An algorithm is
here, and generally, conceived to be a self-consistent sequence of operations leading to a
desired result. The operations are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of electrical or
magnetic signéls capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of common usage,
to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or
the like.

[0012] It should be borne in mind, however, that all of these and similar terms are
to be associated with the appropriate-physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise as apparent from the
following discussions, it is appreciated that throughout the present invention, discussions
utilizing terms such as "processing" or "computing" or "calculating” or "determining" or
the like, may refer to the action and processes of a computer system, or similar electronic
computing device, that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's registers and memories into other data
similarly represented as physical quantities within the computer-system memories or
registers or other such information storage, transmission or display deviceé.

[0013] In the following detailed description of the embodiments, reference is made
to the accompanying drawings that show, by way of illustration, specific embodiments in
which the invention may be practiced. In the drawings, like numerals describe
substantially similar components throughout the several views. These embodiments are
described in sufficient detail to enable those skilled in the aft to practice the invention.

Other embodiments may be utilized and structural, logical, and electrical changes may be

10

15

20

25

WO 2006/050534 PCT/US2005/040450

made without departing from the scope of the present invention. Moreover, it is to be
understood that the various embodiments of the invention, although different, are not
necessarily mutually exclusive. For example, a particular feature, structure, or
characteristic described in one embodiment may be included within other embodiments.
The following detailed description is, therefore, not to be taken in a limiting sense, and the
scope of the present invention is defined only by the appended claims, along with the full
scope of equivalents to which such claims are entitled.

[0014] Although the below examples may describe controlling access of virtual
machine to a timer in the context of execution units and logic circuits, other embodiments
of the present invention can be accomplished by way of software. For example, in some
embodiments, the present invention may be provided as a computer program product or
software which may include a machine or computer-readable medium having stored
thereon instructions which may be used to program a computer (or other electronic
devices) to perform a process according to the present invention. In other embodiments,
processes of the present invention might be performed by specific hardware co;nponents
that contain hardwired logic for performing the processes, or by any combination of
programmed computer components and custom hardware components.

[0015] Thus, a machine-readable medium may include any mechanism for storing
or transmitting information in a form readable by a machine (e.g., a computer), but is not
limited to, floppy diskettes, optical disks, Compact Disc, Read-Only Memory (CD-
ROMs), and magneto-optical disks, Read-Only Memory (ROMs), Random Access
Memory (RAM), Erasable Programmable Read-Only Memory (EPROM), Electrically
Erasable Programmable Read-Only Memory (EEPROM), magnetic or optical cards, flash
memory, a transmission over the Internet, electrical, optical, acoustical or other forms of

propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.) or the like.

4

10

15

20

WO 2006/050534 PCT/US2005/040450

[0016] Further, a design may go through various stages, from creation to
simulation to fabrication. Data representing a design may fépresent the design in a
number of manners. First, as is useful in simulations, the hardware may be represented
using a hardware description language or another functional description language.
Additionally, a circuit level model with logic and/or transistor gates may be produced at
some stages of the design process. Furthermore, most designs, at some stage, reach a level
of data representing the physical placement of various devices in the hardware model. In
the case where conventional semiconductor fabrication techniques are used, data
representing a hardware model may be the data si)ecifying the presence or absence of
various features on different mask layers for masks used to produce the integrated circuit.
In any representation of the design, the data may be stored in any form of a machine-
readable medium. An optical or electrical wave modulated or otherwise generated to
transmit such information, a memory, or a magnetic or optical storage such as a disc may
be the machine readable medium. Any of these mediums may “carry” or “indicate” the
design or software information. When an electrical carrier wave indicating or carrying the
code or design is transmitted, to the extent that copying, buffering, or re-transmission of
the electrical signal is performed, a new copy is made. Thus, a communication provider or
a network provider may make copies of an article (a carrier wave) embodying techniques
of the present invention.

[0017] Figure 1 illustrates one embodiment of a virtual-machine environment 100,
in which the present invention may operate. In this embodiment, bare platform hardware
116 comprises a computing platform, which may be capable, for example, of executing a
standard operating system (OS) or a virtual-machine monitor (VMM), such as a VMM

112.

10

15

20

25

WO 2006/050534 PCT/US2005/040450

[0018] The VMM 112, though typically implemented in software, may emulate
and export a bare machine interface to higher level software. Such higher level software
may comprise a standard or real-time OS, may be a highly stripped down operating
environment with limited operating system functionality, may not include traditional OS
facilities, etc. Alternatively, for example, the WM 112 may be run within, or on top of,
another VMM. VMMs may be implemented, for example, in hardware, software,
firmware or by a combination of various techniques.

[0019] The platform hardware 116 can be of a personal computer (PC),
mainframe, handheld device, portable computer, set-top box, or any other computing
system. The platform hardware 116 includes a processor 118 and memory 120.

[0020] Processor 118 can be any type of processor capable of executing software,
such as a microprocessor, digital signal proceséor, microcontroller, or the like. The
processor 118 may include microcode, programmable logic or hardcoded logic for
performing the execution of method embodiments of the present invention. Although
Figure 1 shows only one such processor 118, there may be one or more processors in the
system.

[0021]) Memory 120 can be a hard disk, a floppy disk, random access memory
(RAM), read only memory (ROM), flash memory, any combination of the above devices,
or any other type of machine medium readable by processor 118. Memory 120 may store
instructions and/or data for performing the execution of method embodiments of the
present invention.

[0022] The VMM 112 presents to other software (i.e., “guest” software) the
abstraction of one or more virtual machines (VMs), which may provide the same or
different abstractions to the various guests. Figure 1 shows two VMs, 102 and 114. The

guest software running on each VM may include a guest OS such as a guest OS 104 or

6

10

15

20

25

WO 2006/050534 PCT/US2005/040450

106 and various guest software applications 108 and 110. Each of the guest OSs 104 and
106 expects to access physical resources (e.g., processor registers, memory and /O
devices) within the VMs 102 and 114 on which the guest OS 104 or 106 is running and to
perform other functions. For example, the guest OS 104 and 106 expects to have; access to
all registers, caches, structures, I/O devices, memory and the like, according to the
architecture of the processor and platform presented in the VMs 102 and 114. The
resources that can be accessed by the guest software may either be classified as
“privileged” or “non-privileged.’; For privileged resources, the VMM 112 facilitates
functionality desired by guest software while retaining ultimate control over these
privileged resources. Non-privileged resources do not need to be controlled by the VMM
112 and can be accessed by guest software.

[0023] Further, each guest OS expects to handle various fault events such as
exceptions (e.g., page faults, general protection faults, etc.), interrupts (e.g., hardware
interrupts, software interrupts), and platform events (e.g., initialization (INIT) and 'system
management interrupts (SMIs)). Some of these fault events are “privileged” because they
must be handled by the VMM 112 to ensure proper operation of VMs 102 and 114 and for
protection from and among guest software.

[0024] When a privileged fault event occurs or guest software attempts to access a
privileged resource, control may be transferred to the VMM 112. The transfer of control
from guest software to the VMM 112 is referred to herein as a VM exit. After facilitating
the resource access or handling the event appropriately, the VMM 112 may return control
to guest software. The transfer of control from the VMM 112 to guest software is referred
to as a VM entry.

[0025] In one embodiment, the processor 118 controls the operation of the VMs

102 and 114 in accordance with data stored in a virtual machine control structure (VMCS)

10

15

20

25

WO 2006/050534 PCT/US2005/040450

124. The VMCS 124 is a structure that may contain state of guest software, state of the
VMM 112, execution control information indicating how the VMM 112 wishes to control
operation of guest software, information controlling transitions between the VMM 112
and a VM, etc. The processor 118 reads information from the VMCS 124 to determine the
execution environment of the VM and to constrain its behavior. In one embodiment, the
VMCS is stored in memory 120. In some embodiments, multiple VMCS structures are
used to support multiple VMs.

[0026] The VMM 112 may need to use a timer to schedule resources, provide
quality of service, assure security, and perform other functions. For example, in the
instruction set architecture (ISA) of the Intel® Pentium® 4 (referred to herein as the IA-32
ISA), the VMM 112 may use the timestamp counter (TSC) to perform these functions.
Each of the VMs 102 and 114 may also need to use the timer to célibrate timing loops and
do performance optimization. Because the VMs 102 and 114 have no knowledge of each
other or the VMM 112, the timer’s values provided to the VM 102 or 114 may need to be
adjusted to present the illusion that the guest OS 104 or 106 is running on a dedicated
hardware platform, not a virtual platform. A timer offsetting mechanism is provided to
properly virtualize the timer and thus preserve the illusion for the guest OSes 104 and 106. -
In one embodiment, the timer offsetting mechanism includes a timer offset configuration
module 126 and timer access logic 122.

[0027] The timer offset configuration module 126 is responsible for providing
values for fields associated with timer offsetting prior to requesting a transition of control
to the VM 102 or 114. In one embodiment, these values may include an offset value
specifying an offset to be used by the processor 118 when providing timer values to the
VM 102 or 114 and a timer offsetting indicator specifying whether timer offsetting is

enabled for the VM 102 or 114. In an embodiment, the timer offset value is a signed

10

15

20

25

WO 2006/050534 PCT/US2005/040450

value, allowing the VMM 112 to present a timer value to guest software that is less than or
greater than the actual hardware timer value. In one embodiment, the timer offset value is
added to the timer value before returning the value to the VM 102 or 114. In one
embodiment, the fields associated with timer offsetting also include a timer access control
indicator specifying whether VM requests to access the timer are associated with a
transition of control to the VMM (e.g., whether VM requests to access the timer should
cause VM exits).

| [0028] In one embodiment, the offset value for the VM 102 or 114 accounts for the
aggregation of time intervals during which this VM was not running due to the execution
of the VMM 112 and the other VM. For example, suppose that, when the timer’s Valﬁe is
1000 ticks, the VM 102 expects the value of the timer to be 1000. ‘Then, at 1500 ticks, the
VM 102 may be interrupted by a VM exit, following by the execution of the VMM 112
for 100 ticks (timer value of 1600 ticks), after which the VMM 112 may request to enter
the VM 114. The VM 114 may then execute for 600 ticks (timer value of 2200 ticks) until
a VM exit, resulting in the execution of the VMM 112 for 200 ticks (timer value 2400),
which may then request to re-enter the VM 102. At the time of re-entry, the VM 102
expects the timer to have the value of 1500 ticks. Instead, the actual timer value at this
time is 2400 ticks. The offset value provided by the VMM 112 for the VM 102 will be
900 ticks, which is the aggregation of time intervals during which the VM 112 was not
running due to the execution of the VM 114 and the VMM 112. Hence, the VMM 112
would store the offset value of 900 to the timer offset field so that when the VM 102
attempts to read the timer, the value provided to the VM 102 will be computed by
reducing the current timer value by 900. The offset value may also be calculated by
computing the difference between the actual timer value and the timer value expected by

the VM 102. In an alternative embodiment, the value provided to the VM 102 when it

10

15

20

25

WO 2006/050534 PCT/US2005/040450

attempts to read the timer is computed by adding the current timer value to the offset value
configured by the VMM 112. In this embodiment, the offset value stored by the VMM is
a negative number. In the example described above, the value stored is -900.

[0029] As discussed above, in one embodiment, the offset value is determined by
the VMM 112. In an alternative embodiment, the offset value is determined by the
processor 118, and the fields and controls associated with timer offsetting may include a
timer offsetting indicator, an adjust offset indicator, a guest timer field, a save timer
indicator, and a timer offset field. In one embodiment, the three indicator values may be
combined in a variety of ways. For example, the adjust offset indicator and the save timer
indicator may be the same control (i.e., enabling the adjustment of the timer offset
implicitly enables the saving of the timer), as will be described in more detail below. In
some embodiments, some of the above indicators may not be present. For example, the
timer offsetting indicator may not be present, and timer offsetting is assumed to be always
enabled, as will be discussed in greater detail below.

[0030] In one embodiment, the fields and controls associated with timer offsetting
are stored in the VMCS 124. Alternatively, the fields and controlsassochted with timer
offsetting may reside in the processor 118, a combination of the memory 120 and the
processor 118, or in any other storage location or locations. In one embodiment, separate
fields and controls associated with timer offsetting are maintained for each of the VMs
102 and 114. Alternatively, the same fields and controls associated with timer offsetting
are maintained for bofh VMs 102 and 144 and are updated by the VMM 112 before each
VM entry.

[0031] In one embodiment, in which the system 100 includes multiple processors,
multiple cores or multi thread processors, each of the multiple logical processors is

associated with separate fields and controls associated with timer offsetting, and the VMM

10

10

15

20

WO 2006/050534 PCT/US2005/040450

112 configures the fields and controls associated with timer offsetting for each of the
multiple logical processors.

[0032] In one embodiment, the.processor 118 includes timer access logic 122 that
is responsible for virtualizing accesses of the VM 102 and 114 to the timer based on the
timer offsetting values. In particular, if the timer access logic 122 determines that timer
offsetting is enabled, it provides an adjusted timer value to the VM 102 or 114. In one
embodiment, the timer access logic 122 determines if timer offsetting is enabled by
examining a timer offsetting indicator value. In one embodiment, when the timer access
logic 122 receives a request for a current value of the timer from the VM 102 or 114, it
reads the current value of the timer, adds the offset value to the current value of the timer,
and returns the resulting value to the VM 102 or 114, thus presenting the VM 102 or 114
with the illusion that it is running on a dedicated hardware platform. In an embodiment,
the offset value is a signed value.

[0033] The offset values may be determined for the VM 102 and 114 by the VMM
112 (e.g., by the timer offset configuration module 126). One embodiment of a process
for determining an offset value by the VMM 112 will be discussed in greater detail below
in conjunction with Figures 3 and 4. Alternatively, the offset values are determined by
the processor 118 (e.g., by the timer access logic 122). One embodiment of a process for
determining an offset value by the processor 118 will be discussed in more detail below in
conjunction with Figure 5.

[0034] Figure 2 is a flow diagram of one embodiment of a process 200 for
controlling access of VMs to a timer. The process may be performed by processing logic
that may comprise hardware (e.g., circuitry, dedicated logic, programmable logic,

microcode, etc.), software (such as that run on a general purpose computer system or a

11

10

15

20

WO 2006/050534 PCT/US2005/040450

dedicated machine), or a combination of both. In one embodiment, process 200 is
performed by timer access logic 122 of Figure 1.

[0035] Referring to Figure 2, process 200 begins with processing logic receiving a
request to transition control to a VM from a VMM (i.e., the request for VM entry)
(processing block 202). In one embodiment, the VM entry request is received via a VM
entry instruction executed by the VMM.

[0036] Next, processing logic determines whether timer offsetting is enabled
(processing block 204). In one embodiment, processing logic makes this determination as
part of the transition to the VM (e.g., when checking and loading VM state and execution
control information stored in the VMCS). In one embodiment, the determination is based
on the current value of a timer offsetting indicator stored in the VMCS for the VM being
entered.

[0037] If timer offsetting is enabled, processing logic uses a timer offset value
when responding to the requests of the VM for a current timer value. In one embodiment,
the timer offset value is determined by the VMM prior to issuing the request to transition
control to this VM. One embodiment of a process for determining the offset value by the
VMM will be discussed in greater detail below in conjunction with Figures 3 and 4.
Alternatively, the offset value is automatically determined by the processor when
transitioning control to this VM. One embodiment of a process for determining the offset
value by the processor will be discussed in more detail below in conjunction with Figure
5.

[0038] In one embodiment, if timer offsetting is enabled, processing logic loads an
offset register with the timer offset value stored in the VMCS (processing block 206).

Alternatively, if timer offsetting is disabled, processing logic loads the offset register with

12

10

15

20

WO 2006/050534 PCT/US2005/040450

0 (processing block 206). Next, processing logic begins the execution in the VM
(processing block 210).

[0039] During the VM’s execution, processing logic may receive the VM’s
requests for a current value of the timer. In the IA-32 ISA, for example, the VM may
issue a request for a current value of the TSC by executing the RDMSR instruction or a
RDTSC instruction to read the TSC.

[0040] At processing box 212, processing logic determines whether the VM

requests a current value of the timer. If so, then in one embodiment, processing logic

determines whether this request is associated with a transition of control to the VMM

(processing box 214). In one embodiment, a timer access control indicator may be set to
an “exit” value to cause a VM exit on each request of the VM to access the timer. For
example, in one embodiment, the timer access control indicator is a single bit, which if set
to 1 indicates that requests of a VM to access the timer cause VM exits. In one
embodiment, this indicator may be stored in the VMCS. If the request is not associated
with a transition of control to the VMM, processing logic proceeds to processing block
216. If the request is associated with a transition of control to the VMM, processing logic
transitions control to the VMM, indicating to the VMM that the VM exit was caused by an
attempt to access the timer (processing block 220). In one embodiment, prior to
transitioning control to the VMM, processing logic loads the offset register with 0
(processing block 218) to allow the VMM to obtain the actual value of the timer.

[0041] In another embodiment, a timer access control indicator is not used, and
processing logic does not check for a transition of control to the VMM in response to VM
requests for a current value of the timer. Instead, processing logic skips processing block

214 and proceeds directly to processing block 216.

13

10

15

20

25

WO 2006/050534 PCT/US2005/040450

[0042] At processing block 216, processing logic reads the current value of the
timer, adds the offset value to the current value of the timer, and returns the result to the
VM. Inone embodimer;t, the timer offset value is a signed value that is combined with the
content of the timer using signed addition.

[0043] During the execution of the VM, various other events associated with a VM
exit (e.g., page faults, interrupts, etc.) may occur. In one embodiment, if processing logic
detects an event associated with a VM exit (processing box 222), processing logic loads
the offset register with O (processing block 218) and transitions control to the VMM,
indicating the cause of the VM exit detected in processing block 222 (processing block
220). If processing logic does not detect any events associated with a VM exit, processing
logic returns to processing box 212.

[0044] Figure 3 is a flow diagram of one embodiment of a process 300 for
configuring fields associated with timer offsetting. The process may be performed by
processing logic that may comprise hardware (e.g., circuitry, dedicated logic,
programmable logic, microcode, etc.), software (such as that run on a general purpose
computer system or a dedicated machine), or a combination of both. In one embodiment,
process 300 is performed by a fimer offset configuration module 126 of Figure 1.

[0045] Referring to Figure 3, process 300 begins with processing logic deciding
that a transition of control to a VM is needed. Prior to issuing a request to transition
control to the VM, processing logic determines a timer offset value for the VM
(processing block 302) and stores the timer offset value in the VMCS (processing block
304). In one embodiment, the timer offset value is the aggregation of time intervals during
which the VM being entered was not running due to the execution of the VMM and the
other VMs. One embodiment of a process for calculating the timer offset value will be

discussed in more detail below in conjunction with Figure 4.

14

10

15

20

25

WO 2006/050534 PCT/US2005/040450

[0046] Next, processing logic sets a timer offset indicator to an enabling value
(processing block 306) and issues a request to transition control to the VM (e.g,aVM
entry request) (processing logic 308).

[0047] Subsequently, when a VM exit from the VM is generated, processing logic
receives control back (processing block 310), determines the current value of the timer
(processing block 312), and handles the VM exit as needed (e.g., perform operations
addressing the cause of the VM exit) (processing block 314). As described below, the
value of the timer at VM exit may be used to calculate the timer offset before returning
control to the VM.

[0048] Figure 4 is a flow diagram of one embodiment of a process 400 for
calculating a timer offSet value for a VM (as referenced in processing block 302 of Figure
3 for example). The process may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software
(such as that run on a general purpose computer system or a dedicated machine), or a
combination of both. In one embodiment, process 400 is performed by a timer offset
configuration module 126 of Figure 1.

[0049] Referring to Figure 4, process 400 begins with processing logic calculating
the time spent in this VM since the last VM entry (processing block 402). In one
embodiment, this time is calculated by determining a VM-entry time (i.e., the timer value
just prior to issuing a request to enter the VM) and a VM-exit time (e.g., the timer value at
the time of receiving control returned from the VM), and subtracting the VM-entry time
from the VM-exit time.

[0050] At processing block 404, processing logic calculates the cumulative time
spent in the VM by adding the time spent in the VM during the last entry to the previously

calculated cumulative time. In one embodiment, processing logic calculates the

15

WO 2006/050534 PCT/US2005/040450

cumulative time spent in the VM when receiving control returned from the VM.,
Alternatively, processing logic calculates the cumulative time spent in the VM when
issuing a request to return control to this VM.

[0051] When processing logic decides to return control to the VM, it reads the

5 current value of the timer (processing block 406), and calculates the timer offset value as a
difference between the cumulative time spent in the VM and the current value of the timer
(processing block 408). In one embodiment, the timer offset value is a signed value.

[0052] Figure 5 is a flow diagram of an alternative embodiment of a process for
calculating a timer offset value for a VM. The process may be performed by processing

10 logic that may comprise hardware (e.g., circuitry, dedicated logic,' programmable logic,
microcode, etc.), software (such as that run on a general purpose computer system or a
dedicated machine), or a combination of both. In one embodiment, process 500 is
performed by timer offset logic 122 of Figure 1.

[0053] Referring to Figure 5, process 500 begins with processing logic detecting

15 anevent associated with a transition of control from VM1 to the VMM (processing block
502).

[0054] At processing block 504, processing logic determines whether a save timer
indicator is enabled. In one embodiment, the save timer indicator is configured by the
VMM and stored in the VMCS.

20 [0055] If the save timer indicator is enabled, processing logic saves a current timer
value as a VM1 timer value to a guest timer field (processing block 506) and proceeds to
processing block 508. In one embodiment, the guest timer field is stored in the VMCS.

[0056] If the save timer indicator is disabled, processing logic skips processing
block 506 and proceeds directly to processing block 508.

25 [0057] At processing block 508, processing logic transitions control to the VMM.

16

10

15

20

25

WO 2006/050534 PCT/US2005/040450

[0058] Subsequently, at processing block 510, processing logic receives a request
to return control to VM1. In response, processing logic determines whether an adjust
offset indicator is enabled (processing block 512). In one embodiment, the adjust offset
indicator is configured by the VMM and stored in the VMCS. In another embodiment, the
save timer indicator and the adjust offset indicator are represented by the same indicator
which is checked both at processing blocks 504 and 512. In another embodiment, a timer
offsetting indiéator may be evaluated to determine if timer offsetting should be used. In
one embodiment, the timer offsetting indicator is configured by the VMM and stored in
the VMCS.

[0059] If the adjust offset indicator is enabled, processing logic reads the current
timer value (processing block 514), and determines the difference between the current
timer value and the VM1 timer value saved at processing block 506 by subtracting the
saved VM1 timer value from the current timer value (processing block 516). Further,
processing logic calculates the adjusted timer offset value by subtracting this difference
from the timer offset value in the timer offset field (processing block 518). In one
embodiment, this adjusted timer offset value is stored to the timer offset field. Next,
processing logic transitions control to VM1 (processing block 520).

[0060] If the adjust offset indicator is disabled, in one embodiment, processing
logic skips processing blocks 514 through 518 and proceeds directly to processing block
520. In another embodiment, if the adjust offset indicator is disabled, processing logic
retrieves the value of timer offset field for use as the adjusted timer offset value and then
proceeds to processing block 520.

[0061] In an alternative embodiment, at VM exit, a virtual guest timer value is
calculated (by computing the sum of the current timer offset value and the current value of

the timer) and stored to a virtual guest timer field. In one embodiment, the virtual guest

17

10

WO 2006/050534 PCT/US2005/040450

timer field is stored in the VMCS. Subsequently, at VM entry, the offset value is
computed by subtracting the timer value at the time of the VM entry from the virtual guest
timer value. While the VM executes, attempts to read the timer will return the current
value of the timer adjusted by the offset value.

[0062] Thus, a method and apparatus for controlling access of VMs to a timer have
Been described. It is to be understood that the above description is intended to be
illustrative, and not restrictive. Many other embodiments will be apparent to those of skill
in the art upon reading and understanding the above description. The scope of the
invention should, therefore, be determined with reference to the appended claims, along

with the full scope of equivalents to which such claims are entitled.

18

10

15

20

WO 2006/050534 PCT/US2005/040450

CLAIMS

What is claimed is:

1. A method comprising:
receiving a request to transition control to a virtual machine (VM) from a virtual
machine monitor (VMM);
calculating an offset value;
receiving, during operation of the VM, a request for a current value of a timer;
adjusting the current value of the timer Based on the offset value; and

providing the adjusted timer value to the VM.

2. The method of claim 1 further comprising:
transitioning control to the VM upon receiving the request from the VMM, the

transitioning comprising calculating the offset value.

3. The method of claim 1 wherein calculating the offset value comprises:

determining a difference between a timer value read upon receiving the request to
transition control to the VM and a timer value saved upon detecting a prior event
associated with a transition of control from the VM to the VMM, and

subtracting the difference from a value of a timer offset field.

4. The method of claim 3 further comprising storing the calculated timer offset value

to the timer offset field.

19

10

15

20

25

WO 2006/050534 PCT/US2005/040450

5. The method of claim 3 further comprising:
determining that an adjust timer offset indicator is set to an enabled value prior to

determining the difference.

6. The method of claim 1 further comprising;
determining that an adjust timer offset indicator is set to a disabled value; and
reading a timer offset field, a value of the timer offset field being subsequently

used as the offset value.

7. The method of claim 3 wherein the timer value is saved upon detecting the prior
event associated with the transition of control to the VMM if a save timer indicator is

enabled.

8. The method of claim 1 further comprising;:
determining that a timer access control indicator is set to an exit value; and

transitioning control to the VMM in response to the request.

9. The method of claim 1 further comprising:
deterrriining that offsetting of the timer is disabled; and

loading an offset register with zero.

10. An apparatus comprising:
a virtual machine monitor (VMM);
a data structure controlled by the VMM, the data structure storing an offset value

for a virtual machine (VM); and

20

10

15

20

25

WO 2006/050534 PCT/US2005/040450

timer access logic to calculate the offset value upon receiving a request to
transition control to the VM from the VMM, and to provide a value of the timer to the VM
during an operation of the VM, the value of the timer being adjusted based on the offset

value.

11. The apparatus of claim 10 wherein the timer access logic is further to transition
control to the VM upon receiving the request from the VMM, the transitioning comprising

calculating the offset value.

12. The apparatus of claim 10 wherein the timer access logic is to calculate the offset
value by determining a difference between a timer value read upon receiving the request to
transition control to the VM and a timer value saved upon detecting a prior event
associated with a transition of control from the VM to the VMM, and subtracting the

difference from a value of a timer offset field.

13. The apparatus of claim 12 wherein the data structure is further to include a timer

offset field storing the calculated timer offset value.

14. The apparatus of claim 12 wherein the data structure is further to include an adjust

timer offset indicator.

15. The apparatus of claim 14 wherein the timer access logic is further to determine

that the adjust timer offset indicator is set to an enabled value prior to determining the

difference.

21

10

15

20

25

WO 2006/050534 PCT/US2005/040450

16. The apparatus of claim 12 wherein the timer access logic is further to determine
that an adjust timer offset indicator is set to a disabled value, and to read a timer offset

field, a value of the timer offset field being subsequently used as the offset value.

17. The apparatus of claim 12 wherein the data structure is to store a save timer
indicator used by the timer access logic to determine whether to save the timer value upon

detecting the prior event associated with the transition of control to the VMM.

18. The apparatus of claim 10 further comprising:

an offset register to store the offset value.

19. A system comprising:

a memory to store a set of fields associated with timer offsetting for a virtual
machine (VM); and

a processor, coupled to the memory, to use the set of fields associated with timer
offsetting to calculate an offset value, and to prdvide, during operation of the VM, a timer
value, adjusted based on the offset value, to the VM in response to a request of the VM for

a current value of a timer.

20. The system of claim 19 wherein the processor is to calculate the offset value when

transitioning control to the VM.

21. The system of claim 19 wherein the processor is further to load an offset register

with the offset value.

22

10

15

20

25

WO 2006/050534 PCT/US2005/040450

22. The system of claim 19 wherein the processor is to calculate the offset value by
determining a difference between a timer value read upon receiving the request to
transition control to the VM and a timer value saved upon detecting a prior event
associated with a transition of control from the VM to the VMM, and subtracting the

difference from a value of a timer offset field.

23. The system of claim 22 wherein the processor is to read the timer value upon
receiving the request to transition control to the VM if an adjust timer offset indicator is

enabled.

24. The system of claim 22 wherein the processor is to save the timer value upon
detecting the prior event associated with the transition of control to the VMM if a save

timer indicator is enabled.

25. A machine-readable medium containing instructions which, when executed by a
processing system, cause the processing system to perform a method, the method
comprising:

receiving a request to transition control to a virtual machine (VM) from a virtual
machine monitor (VMM);

calculating an offset value;

receiving, during operation of the VM, a request for a current value of a timer;

adjusting the current value of the timer based on the offset value; and

providing the adjusted timer value to the VM.

26. The machine-readable medium of claim 25 wherein the method further comprises:

23

10

15

20

WO 2006/050534 PCT/US2005/040450

transitioning control to the VM upon receiving the request from the VMM, the

transitioning comprising calculating the offset value.

27. The machine-readable medium of claim 25 wherein calculating the offset value
comprises:

determining a difference between a timer value read upon recqiving the request to
transition control to the VM and a timer value saved upon detecting a prior event
associated with a transition of control from the VM to the VMM; and

subtracting the difference from a value of a timer offset field.

28. The machine-readable medium of claim 27 wherein the timer value is read upon
receiving the request to transition control to the VM if an adjust timer offset indicator is

enabled.
29.. The machine-readable medium of claim 27 wherein the timer value is saved upon

detecting the prior event associated with the transition of control to the VMM if a save

timer indicator is enabled.

24

WO 2006/050534

102

108
N
App.1 App.2

104

OS#

1/5

/ 100

/110\

App. 1

App. 2

106

0S#2

114

\

Virtual Machine
Abstraction 1

Virtual Machine
Abstraction 2

Virtual-Machine Monitor (VMM)

Timer Offset Configuration
Module 126

—112

Processor 11

Timer Access Logic
122

Memory 120

—116

Bare Platform Hardware

FIG. 1

PCT/US2005/040450

WO 2006/050534

2/5

CONTROL TO A VM

RECEIVE A REQUEST TO TRANSITION

N
N

OFFSET=0

TIMER

OFFSETTING
NDICATOR SET?
208
~—

204

/ 200

202

PCT/US2005/040450

206

OFFSET = TIMER OFFSET |~/
VALUE

BEGIN EXECUTIONINVM 1«

ASSOCIATED WITH
TRANSITION OF
CONTROL TO

VM

REQUESTS TIMER

VALUE?

OFFSET=0

|

TRANSITION CONTROLTO VM ™~

FIG. 2

220

WITH TRANSITION OF
CONTROL TO
VMM?

214

DURING VM EXECUTION

216

RETURN TIMER
VALUE + OFFSET

WO 2006/050534

3/5

/ 300

302
DETERMINE TIMER OFFSET VALUE FOR VM (™~
: 304
STORE TIMER OFFSET VALUE TOVMCS
! 306
SET TIMER OFFSET INDICATOR ~
ISSUE A REQUEST TO 08
TRANSITION CONTROL TO VM
' 310
RECEIVE CONTROL RETURNED FROM VM ™~
! ' 312
READ CURRENT TIMER VALUE ~
, 314
HANDLE VM EXIT ~

FIG. 3

PCT/US2005/040450

WO 2006/050534 PCT/US2005/040450
4/5

/ 400

CALCULATE TIME SPENT 02
IN VM SINCE LAST ENTRY ‘
CALCULATE CUMULATIVE . _jo4

TIME SPENT IN VM

!

READ CURRENT TIME 408
VALUE OF THE TIMER
, 408

CALCULATE TIMER OFFSET VALUE and

FIG. 4

WO 2006/050534 PCT/US2005/040450

5/5
500
START /
DETECT AN EVENT ASSOCIATED 502
WITH A TRANSITION OF CONTROL —~
FROM VM1 TO VMM

504
SAVE TIMER
INDICATOR
ENABLED?

Y
Y

SAVE A CURRENT TIMER VALUE ASA VM1 |~ %
TIMER VALUE TO A GUEST TIMER FIELD

»

508
TRANSITION CONTROLTO THEVMM [~

RECEIVE A REQUEST TO ,_J510
TRANSITION CONTROL TO VM1

512

ADJUST OFFSET
INDICATOR ENABLED?

Y
Y

514
READ THE CURRENT TIMER VALUE —~

DETERMINE THE DIFFERENCE 516
BETWEEN THE CURRENT TIMER VALUE [~
AND THE VM1 TIMER VALUE

|

SUBTRACT THE DIFFERENCE

BETWEEN CURRENT TIMERVALUE |18

AND VM1 TIMER VALUE FROM THE TIMER
OFFSET VALUE

5]

fl
TRANSITION CONTROL TO VM1 ~~

FIG. 5

520

In‘.'“"" <nal application No

INTERNATIONAL SEARCH REPORT F_.. JS2005/040450

A. CLASSIFICATION OF SUBJECT MATTER
G06F9/455

According to International Patent Classification (IPC) or 10 both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulied during the international search (name of data base and, where practical, search lerms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TQ BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5 317 754 A (BLANDY ET AL) 1-29
31 May 1994 (1994-05-31) ;
column 2, line 45 — line 58

Y JOHN FRANCISCOVICH: "NATURAL/ADABAS in 1-29
VM/VSE"“Online! 9 July 1997 (1997-07-09),
XP002367201

Retrieved from the Internet:
URL:http://1istserv.uark.edu/scripts/wa.ex
e?A2=1nd9707&L=vmesa-18&P=7530>

‘retrieved on 2006-02-09!

the whole document

A US 5 381 535 A (GUM ET AL) 1-29
10 January 1995 (1995-01-10)
the whole document

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

A document defining the general state of the ar which is not
considered to be of particular relevance

E earlier document but published on or afterthe international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
cilation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T iater document published afier the international filing date
or priority date and not in conflict with the application but
cited to understand the princlple or theory underlying the
invention

X document of padicular relevance; the claimed invention
cannot be considered novel or cannot be considered 1o
involve an inventive step when the document is taken alone

Y document of patticular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the arl.

& document member of the same patent family

Date of the actual completion of the international search

10 February 2006

Date of mailing of the international search report

28/02/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Dewyn, T

Form PCT/ISA/210 {second sheat) (April 2005)

h- " nal application No

INTERNATIONAL SEARCH REPORT
..., JS2005/040450

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5317754 A 31-05-1994 NONE
US 5381535 A 10-01-1995 NONE

Form PCT/iSA/210 (patent tamily annex) (April 2008)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

