METHOD FOR THE PRODUCTION OF A SHEET METAL PART BY FORMING

The invention relates to a method for the production of a sheet metal part (2) having various material thicknesses depending on the strength and/or corrosion requirements, by forming, preferably deep-drawing. A particularly inexpensive and, as regards the shaping process, problem-free method is possible, in accordance with the invention, when a steel sheet billet (1), as known per se, is heated in the shaping range, whereby the heating is carried out only partially or with varying intensity for the purpose of attaining a variable elongation coefficient over the whole surface of the steel sheet billet (1).

Title: METHOD FOR THE PRODUCTION OF A SHEET METAL PART BY FORMING

Bezeichnung: VERFAHREN ZUM HERSTELLEN EINES BLECHFORMTEILES DURCH UMFORMEN

Abstract

Zusammenfassung

Es wird ein Verfahren zum Herstellen eines entsprechend den Festigkeits- bzw. Steifigkeitsanforderungen unterschiedliche Materialstärken aufweisenden Blechformteiles (2) durch Umformen, vorzugsweise Tiefziehen, beschrieben. Eine besonders kostengünstig und hinsichtlich des Formgebungsprozesses problemloses durchführbare Verfahrensweise ist erfindungsgemäß dann möglich, wenn eine Blechplatine (1), wie an sich bekannt, im Bereich der Formgebung erwärmt wird, wobei die Erwärmung zwecks Erreichen eines unterschiedlichen Werkstoff-Dehnungskoeffizienten über die Flächenerstreckung der Blechplatine (1) nur partiell oder mit unterschiedlicher Intensität erfolgt.
<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
<td>ES</td>
<td>Spanien</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slowenien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>FI</td>
<td>Finnland</td>
<td>LT</td>
<td>Litauen</td>
<td>SK</td>
<td>Slowakei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FR</td>
<td>Frankreich</td>
<td>LU</td>
<td>Luxemburg</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GA</td>
<td>Gabun</td>
<td>LV</td>
<td>Lettland</td>
<td>SZ</td>
<td>Swasiland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Tschad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>GE</td>
<td>Georgien</td>
<td>MD</td>
<td>Republik Moldau</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagaskar</td>
<td>TJ</td>
<td>Tadschikistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>Die ehemalige jugoslawische</td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Türkei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
<td>MN</td>
<td>Mongolei</td>
<td>TT</td>
<td>Trinidad und Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IL</td>
<td>Israel</td>
<td>MR</td>
<td>Mauritannien</td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IS</td>
<td>Island</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IT</td>
<td>Italien</td>
<td>MX</td>
<td>Mexiko</td>
<td>US</td>
<td>Vereinigte Staaten von</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>JP</td>
<td>Japan</td>
<td>NE</td>
<td>Niger</td>
<td>VK</td>
<td>Amerika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>KR</td>
<td>Kenia</td>
<td>NL</td>
<td>Niederlande</td>
<td>UZ</td>
<td>Usbekistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KG</td>
<td>Kirgisistan</td>
<td>NO</td>
<td>Norwegen</td>
<td>VN</td>
<td>Vietnam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KP</td>
<td>Demokratische Volksrepublik</td>
<td>PL</td>
<td>Polen</td>
<td>YU</td>
<td>Jugoslawien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KR</td>
<td>Republik Korena</td>
<td>PT</td>
<td>Portugal</td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>LC</td>
<td>St. Lucia</td>
<td>RO</td>
<td>Rumänien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RU</td>
<td>Russische Föderation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LR</td>
<td>Liberia</td>
<td>SE</td>
<td>Schweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td></td>
<td></td>
<td>SG</td>
<td>Singapur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BESCHREIBUNG

Verfahren zum Herstellen eines Blechformteiles durch Umformen

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen eines entsprechend den Festigkeits- bzw. Steifigkeitsanforderungen unterschiedliche Materialstärken aufweisenden Blechformteiles durch Tiefziehen.

Das gattungsgemäße Herstellungsverfahren dient insbesondere dem Leichtbau und findet in besonderer Weise bei der Herstellung von Fahrzeugkarossen Anwendung. Während es nämlich bisher üblich war, ein Blechformteil in seiner Dicke nach dem Bereich/Abschnitt der höchsten mechanischen Anforderungen auszulegen, ist man mittlerweile dazu übergegangen, bezüglich der Materialstärken im Hinblick auf die lokal unterschiedlichen Steifigkeitsanforderungen zu differenzieren.

Eine entsprechende Vorgehensweise ist in der Patentanmeldung DE 42 28 396 A1 beschrieben, bei der neben einer partiellen Steifigkeitserhöhung das weitere Ziel verfolgt wird, die schwingungsfähige Masse ebener oder gering verformter Blechteilbereiche zu verringern, um damit die Eigenfrequenzen zu erhöhen.

Dem vorstehend erwähnten Stand der Technik haftet der Nachteil an, daß bei einer solchen Vorgehensweise bezüglich Fertigung und Logistik ein hoher Aufwand betrieben werden muß, der entsprechend kostenintensiv ist.

oder durch gesonderte Formteile auf einer inneren Teilfläche mit Störung der äußeren Oberfläche verstärkt sind.

Der Erfindung liegt die Aufgabe zugrunde, ein weiteres Verfahren zum Herstellen eines entsprechend den Festigkeits- bzw. Steifigkeitsanforderungen unterschiedliche Materialstärken aufweisenden Blechformteiles bereitzustellen, welches kostengünstig und hinsichtlich des Formgebungsprozesses problemlos durchführbar ist.

In der DE 44 25 033 A1 sind desweiteren ein Verfahren und eine Vorrichtung zum Drückumformen von Werkstücken beschrieben, wobei ein Werkstück in eine Spanneinrichtung eingespannt und durch zumindest ein Drückwerkzeug umgeformt wird. Insbesondere ist eine Laserstrahleinrichtung vorgesehen, durch die das Werkstück mit einem Laserstrahl beaufschlagt und erwärmt wird, um die Fließspannung zu

Durch die Verwendung hoch-, höher- und höchstfester Stahlbleche kann beispielsweise im Karosseriebau eine Reduzierung des Teigewichtes erreicht werden. Da solche Stähle jedoch nur eine begrenzte Umformbarkeit besitzen, ist deren Einsatz häufig aufgrund funktionsbedingt erforderlicher Umformgrade in bestimmten Bereichen des tiefziehenden Teiles ausgeschlossen. Nach der Erfindung wird dieser Mangel dadurch behoben und eine weitere Reduzierung des Teigewichites durch unterschiedliche Materialstärken dadurch erreicht, daß über eine lokale Temperaturerhöhung vor oder während des Umformens, insbesondere Tiefziehens, die Fließgrenze lokal abgesenkt und das Verfestigung- und Formänderungsvermögen verändert wird. Damit kann erreicht werden, daß in den Bereichen, in denen funktionsbedingt hohe Festigkeiten/Steifigkeiten erforderlich sind, keine oder nur eine geringe Reduzierung der Materialstärke beim Umformen auftritt, während andererseits in den Bereichen, in denen keine oder geringere Festigkeits-/Steifigkeitsanforderungen gestellt werden, die Blechstärke wäh-
rend des Umformens relativ stark, d. h. auf das technisch zulässige Maß reduziert werden kann.

Je nach verwendetem Blechwerkstoff, Blechdicke und Teilegeometrie läßt sich ein unterschiedliches Fließverhalten z. B. durch die nachstehend aufgeführten Varianten erreichen.

Variante A:
Eine lokale Erwärmung erfolgt nach einem der letzten Walzschrifte; hierdurch entsteht ein Coil- oder Tafelblech, welches ein dem späteren Umformprozeß angepaßtes Formänderungsverhalten aufweist. Die lokale Änderung des Fließverhaltens wird werkstoffabhängig erreicht, nämlich

- bei gewalzten Stahlblechen der Qualität St 15 erfolgt eine lokale Reduzierung der Fließgrenze durch lokale Rekristallisation bzw. Erholung des Blechwerkstoffes,

- bei Dualphasenstählen (DP 500) erfolgt eine lokale Reduzierung der Fließgrenze durch lokale Veränderung des Martensit-, Ferritanteiles oder durch Änderung der Martensithärte der martensitischen Phasenbestandteile,

- bei ausscheidungsgehärteten Blechwerkstoffen erfolgt eine lokale Reduzierung der Fließgrenze durch lokale Überalterung bzw. Homogenisierung des Blechwerkstoffes

Variante B:
Variante C:

Zu verschiedenen Stahlsorten bereits durchgeführte Versuche ergaben folgendes:

Variante A - Lokale Erwärmung nach einem der letzten Walzschritte
Ziel dieser Variante ist ja die lokale Änderung der Fließgrenze durch Wärme, die nach einem der letzten Walzschritte, aber vor der Blechveredelung in ein Coil oder Tafelblech eingebracht wird. Bei höherfesten Stählen, Stähle ZStE 180 BH (Bake-Hardening) und DP 500, ist in einem Temperaturbereich zwischen 200° C bis 400° C ein Anstieg der Streckgrenzen um ca. 25 % bezogen auf die Ausgangswerte feststellbar. Während bei dem Bake-Hardening-Stahl keine weiteren Festigkeitsänderungen bei höheren Temperaturen auftreten, fallen die Werte bei dem Dualphasen-Stahl ab Temperaturen oberhalb 550° C wieder um bis zu 25 % der höchsten Streckgrenzenwerte ab.

Bei den höchstfesten Stählen, z. B. TRIP 800 und CP 1000, schwanken die Festigkeitskennwerte. Insgesamt sind vergleichsweise geringe Festigkeitsunterschiede von ca. 10 % gegenüber der Raumtemperaturfestigkeit zu verzeichnen.

Variante B - Lokale Erwärmung unmittelbar vor oder während dem Umformen
Ziel dieser Variante ist ja die lokale Änderung der Fließgrenze durch Wärme, die unmittelbar vor oder während dem Umformen in das (Schwarz-) Blech eingebracht wird.

Die Temperatureinbringung kann sehr schnell, d. h. im Sekundenbereich erfolgen. Bei den getesteten Stählen (ZStE 180 BH, DP 500) ist festzustellen, daß bei einer Erwärmung bestimmte Bereiche stark, andere wiederum schwach verformen.

Bei dem Bake-Hardening-Stahl ist die Temperatur - um eine lokale Fließfähigkeit zu bewirken - vorzugsweise zwischen 100° C und 200° C zu wählen, wobei eine Festigkeitsabsenkung um bis zu 8 % zum Ausgangszustand zu erwarten ist. Die in diesem Fall benötigten moderaten Temperaturen können durchaus von dem Umformwerkzeug ertragen werden. Im Gegensatz dazu werden bei dem Dualphasen-Stahl Temperaturen um die 200° C bzw. um die 500° C oder mehr benötigt, um in bestimmten Bereichen eine sinnvolle Erhöhung der lokalen Dehnung zu erreichen. Bei Temperaturen um die 200° C ist eine Festigkeitsabsenkung von mindestens 10 % ab 550° C um mindestens 20 % zum Ausgangszustand auszumachen.

Bei den höchstfesten Blechqualitäten TRIP 800 bzw. CP 1000 bedarf es einer Temperatur von ca. 500° C, um eine sinnvolle lokale Dehnung zu bewirken. Dabei kommt es zu Festigkeitsabsenkungen von ca. 22 % bzw. 28 % gegenüber dem Ausgangszustand.

Fazit: Variante B ist für den Bake-Hardening-Stahl definitiv und für den Dualphasen-Stahl bedingt anwendbar. Für die höchstfesten Varianten TRIP 800 und CP 1000, die zum Absenken der Festigkeitswerte Temperaturen über 500° C benötigen, ist Variante B weniger geeignet. Die benötigten Temperaturen sind zu hoch für den Einsatz im Umformwerkzeug. Als Wär-
meeinbringungsquelle (Temperaturbereich: ca. 100° C bis 250° C) ist fol-gendes vorstellbar: Ölbad, Fön.

Ohne Bedeutung für eine lokale Dehnungsänderung scheint für alle ge-nannten Stahlqualitäten der Temperaturbereich zwischen ca. 350° C bis 450° C zu sein. In diesem Bereich kommt es zu keiner Festigkeitsabsen-
kung, sondern zu einem Festigkeitsmaximum, das mit dem Bake-Hardening-
Effekt begründet werden kann.

Variante C - Umformen in zwei Schritten
Ziel von Variante C ist ja die Umformung des Bleches in zwei Schritten.
Nach dem ersten Umformschritt kann wie in Variante B vorgegangen wer-
den.

In Zusammenhang mit der Anwendung des erfindungsgemäßen Verfahrens
sind noch folgende Überlegungen beachtenswert:

Normalerweise erfolgt in einem einfachen Zugversuch bei lokaler
Erwärmung einer Zugprobe bevorzugt eine Einschnürung in dem
beschriebenen Bereich, da die Streckgrenze wegen der erhöhten
Temperatur absinkt, und so ein Bereich besonders starken Fließens
entsteht.

Beim Zugversuch gelten folgende Zusammenhänge:

\[
\sigma = \frac{F}{S_0}
\]

\[
R_m = \frac{F_{\text{max}}}{S_0}
\]

\[
\varepsilon = \frac{\Delta L}{L_0} = \frac{L - L_0}{L_0}
\]

Dabei ist:
\[\sigma : \text{ Nennspannung}\]
S_0 : Ausgangsquerschnitt
F : Zugkraft
R_m : Zugfestigkeit
F_{max} : maximale Zugkraft
R_p : Dehngrenze, z.B. $R_{P0.2}$
ε : Dehnung
ΔL : Verlängerung
L_0 : Anfangsmeßlänge
L : jeweilige Meßlänge

Da die bei der Einschnürung verrichtete mechanische Arbeit in Wärme umgewandelt wird, steigt die Temperatur weiter an, mit der Folge, daß die Verfestigung nicht in dem Maße steigen kann, wie die Fließspannung sinkt und es schließlich zum Versagen der Probe kommt. Stellt man hingegen in verschiedenen Bereichen gewisse Unterschiede in der Fließgrenze ein - z.B. 20% / 10% / 5% -, was durch gestaffelte Temperaturerhöhung erreicht werden kann, so kann dieses „normale“, oben beschriebene Verhalten vermieden werden. Ziel der Varianten A, B und C ist die Einstellung von geringen Unterschieden in den Streckgrenzen mit unterschiedlichen Verfestigungsverhalten in den verschiedenen Bereichen.

Eine praktische Ausführung kann darin bestehen, daß der Blechwerkstoff nach einem der letzten Walzschritte durch eine lokale Erwärmung in einem Ofen mit unterschiedlichen Heizzonen mittels einer Brenneranordnung, induktiver Erwärmung oder durch Hochenergiestrahlen lokal in der Fließgrenze abgesenkt wird. Durch entsprechende Markierungen auf der Oberfläche des Bleches können die Bereiche, in denen die Festigkeit abgesenkt wurde, von der oder den Tiefziehpresen erkannt werden, so daß eine entsprechende Positionierung des Bleches im Umformwerkzeug möglich wird.

Eine praktische Ausführung zu den Varianten B und C kann darin bestehen, daß der Blechwerkstoff durch eine lokale Erwärmung unmittelbar vor der
Umformung in einem Ofen mit unterschiedlichen Heizzonen mittels einer Brenneranordnung induktiv oder durch Hochenergiestrahlquellen lokal in der Fließgrenze verändert wird, oder dadurch, daß dies während der Umformung durch Einwirkung entsprechender Wärmequellen geschieht.

Denkbar wäre auch die Anwendung von Maßnahmen (z. B. Diodenstrahlung) entsprechend dem eingangs abgehandelten Stand der Technik.

Die mit den erfindungsgemäßen Verfahren einhergehenden Möglichkeiten zur Gestaltung unterschiedlicher Blechformteil-Festigkeiten und Materialstärken sind noch erweiterbar, wenn die zum Blechformteil umzuformende Platine sich aus z. B. zwei gefügten (geschweißten) Teilblechen unterschiedlicher Stahlwerkstoffe und/oder unterschiedlicher Blechdicken zusammensetzt.

In der Zeichnung ist in Fig. 1a eine Blechplatine 1 mit einer Ausgangs-Blechdicke \(d_0\) und mit mit unterschiedlicher Intensität wärmebehandelten Bereichen 1.1, 1.2, 1.3 dargestellt, während in Fig. 1b die zu einem Blechformteil 2 umgeformte Blechplatine 1 in Schnittdarstellung gezeigt ist, woraus ersichtlich wird, daß dabei auch Bereiche mit unterschiedlichen Blechdicken \(d_1, d_2\) und \(d_3\) entstanden sind.

Fig. 2 zeigt anhand zweier Beispiele Fig. 2a bzw. 2b unterschiedliche Streckgrenzen mit unterschiedlichen Verfestigungsverhalten, wie sie nach der entsprechenden Wärmebehandlung in verschiedenen Bereichen der Blechplatine 1 auftreten. Gebiete, in denen beide Werkstoffbereiche plastisch fließen können, sind schraffiert. Verdeutlicht ist dies anhand von \(\sigma/\varepsilon\)-Schaubildern.

Ausgangssituation: In einem Werkstoff liegen nebeneinander zwei unterschiedliche Werkstoffzustände 1 bzw. 2 mit den unterschiedlichen Zugfestigkeiten \(R_{m}^1\) bzw. \(R_{m}^2\) und den Dehngrenzen \(R_{p}^1\) bzw. \(R_{p}^2\) vor.
In einem Werkstoff, der Werkstoffbereiche mit unterschiedlichen Zugfestigkeiten/Dehngrenzen besitzt, müssen folgende Bedingungen erfüllt sein, damit beide Werkstoffbereiche bei einer vorgegebenen Spannung plastisch fließen können, ohne daß es dabei zum Bruch kommt:

Bedingungen:
1) \(R_p^2 < R_p^1 < \sigma \)
2) \(\sigma < \text{minimum} (R_m^2, R_m^1) \)

zu 1)
Die aufgebrachte Spannung muß größer sein als die höhere der beiden Dehngrenzen, damit sich beide Werkstoffbereiche plastisch verformen,

muß aber gleichzeitig

zu 2)
kleiner sein, als die kleinere der beiden Zugfestigkeiten, damit es nicht zum Versagen des Werkstoffs kommen kann.

In den Figuren 2a) und 2b) bedeuten:

\[\text{Bereiche möglicher auftretender Dehnungen bei Vorgabe einer Spannung innerhalb des zulässigen Bereichs } \Delta \sigma \]

\[1, 2 : \text{Werkstoffzustand 1 bzw. 2 mit } R_m^1 \text{ bzw. } R_m^2 \text{ und } R_p^1 \text{ bzw. } R_p^2 \]

\[\Delta \sigma : \text{Zulässiger Spannungsbereich, in dem beide Werkstoffbereiche plastisch fließen, ohne daß Werkstoffversagen eintritt} \]

\[\Delta \varepsilon_{1,2} : \text{Zum zulässigen Spannungsbereich } \Delta \sigma \]
gehörender Dehnungsbereich für Werkstoffbereich 1 bzw. 2
PATENTANSPRÜCHE

1. Verfahren zum Herstellen eines entsprechend den Festigkeits- bzw. Steifigkeitsanforderungen unterschiedliche Materialstärken aufweisenden Blechformteiles durch Umformen, vorzugsweise Tiefziehen, dadurch gekennzeichnet, daß eine Blechplatine (1), wie an sich bekannt, im Bereich der Formgebung erwärmt wird, wobei die Erwärmung zwecks Erreichen eines unterschiedlichen Werkstoff-Dehnungskoeffizienten über die Flächenerstreckung der Blechplatine (1) nur partiell oder mit unterschiedlicher Intensität erfolgt.

2. Verfahren nach Anspruch 1, gekennzeichnet durch die Verwendung einer aus mindestens zwei gefügten Teilblechen unterschiedlicher Stahlwerkstoffe bestehenden Blechplatine (1).

3. Verfahren nach Anspruch 1, gekennzeichnet durch die Verwendung einer aus mindestens zwei gefügten Teilblechen unterschiedlicher Blechdicken bestehenden Blechplatine (1).

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Umformung der Blechplatine (1) in mindestens zwei Schritten erfolgt.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Erwärmung zwischen zwei Umformschritten erfolgt.

6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Erwärmung nach einem der letzten Walzschrifte und vor der weiteren Verarbeitung (Aufwickeln zu einem Coil, Herstellen von Blechplatinen) des Blechwerkstoffes erfolgt.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 B21D22/00 B21D53/88 B62D65/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 6 B21D B62D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 23 32 287 A (WÜRTTEMBERIGISCHE METALLWARENFABRIK) 16 January 1975 cited in the application see the whole document</td>
<td>1-6</td>
</tr>
<tr>
<td>X</td>
<td>DE 44 25 033 A (FRAUNHOFER-GESELLSCHAFT) 18 January 1996 cited in the application see the whole document</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>DE 43 07 563 A (BAYERISCHE MOTOREN WERKE AG) 23 September 1993 cited in the application see the whole document</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
* "A" document defining the general state of the art which is not considered to be of particular relevance
* "E" earlier document but published on or after the international filing date
* "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* "O" document referring to an oral disclosure, use, exhibition or other means
* "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 27 May 1998
Date of mailing of the international search report: 08/06/1998

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 940-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Authorized officer
Vinci, V
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 2332287 A</td>
<td>16-01-1975</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 4307563 A</td>
<td>23-09-1993</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEFRIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 B21D22/00 B21D53/08 B62D05/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindeststoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 B21D B62D

Recherchierte aber nicht zum Mindeststoff gehörende Veröffentlichungen, soweit diese unter die recherchierterten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERTANGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 43 07 563 A (BAYERISCHE MOTOREN WERKE AG) 23. September 1993 in der Anmeldung erwähnt siehe das ganze Dokument</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

* Besondere Kategorien von angegebenen Veröffentlichungen:
 - "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 - "E" Älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 - "L" Veröffentlichung, die gegeben ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung bel egt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 - "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht
 - "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
 - "S" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
 - "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann alle aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
 - "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
 - "Z" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

27. Mai 1998

Datum des internationalen Recherchenberichts

08/06/1998

Name und Postanschrift der internationalen Recherchenbehörde

Europäisches Patentamt, P. B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl,
Fax: (+31-70) 340-9016

Bevollmächtigter Bediensteter

Vinci, V
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 2332287 A</td>
<td>16-01-1975</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td>DE 4307563 A</td>
<td>23-09-1993</td>
<td>KEINE</td>
<td></td>
</tr>
</tbody>
</table>