Title: IMPROVED TEXT ENTRY FOR ELECTRONIC DEVICES

(57) Abstract: A method of inputting a series of characters into an electronic device (1) comprising a display (11), the method comprising: detecting a first input associated with a first one of a plurality of discrete areas (53) of the display (11) for entering characters on the display (11); and recognizing the first input in the first one of the plurality of discrete areas (53) as a first character input (59) while a second one of the plurality of discrete areas (53) is operable to detect a second input for recognition as a second character input (59), the recognition of the second character input (59) occurring separately to the recognition of the first character input (59).
Improved Text Entry for Electronic Devices

FIELD OF THE INVENTION

Embodiments of the present invention relate to improved text entry for electronic devices. In particular, they relate to a method for text entry into an electronic device, an electronic device, a computer program comprising program instructions for controlling an electronic device and a graphical user interface.

BACKGROUND TO THE INVENTION

Handwriting recognition is often used to allow a user to input information into electronic devices. Problems arise when inputting a series of characters, for example a word or a telephone number, into such devices, as the process of recognizing a series of characters can often be slow and inaccurate.

BRIEF DESCRIPTION OF THE INVENTION

According to one embodiment of the invention there is provided a method of inputting a series of characters into an electronic device comprising a display, the method comprising: detecting a first input associated with a first one of a plurality of discrete areas of the display for entering characters on the display; and recognizing the first input in the first one of the plurality of discrete areas as a first character input while a second one of the plurality of discrete areas is operable to detect a second input for recognition as a second character input, the recognition of the second character input occurring separately to the recognition of the first character input.

This provides the advantage that each character input is associated with a different one of the plurality of discrete areas. This allows the processor to
recognize each character input independently of other character inputs so that a user can make new inputs while, at the same time, the processor can recognize the previous character inputs. This makes the process of entering a series of characters quicker and mimics the process of normal handwriting.

According to another embodiment of the invention there is provided an electronic device comprising: a display having a plurality of discrete areas for entering a series of characters; a user input for entering characters via the plurality of discrete areas; detection means for detecting a first input associated with a first one of the plurality of discrete areas; and processing means for recognizing the first input in the first one of the plurality of discrete areas as a first character input while the detection means is operable to detect a second input, in a second one of the plurality of areas, for recognition as a second character-input, the recognition of the second character input occurring separately to the recognition of the first character input.

According to another embodiment of the present invention there is provided a computer program comprising program instructions for controlling an electronic device comprising a display which, when loaded into a processor, comprises: means for detecting a first input associated with a first one of a plurality of discrete areas of a display for entering characters; and means for recognizing the first input in the first one of the plurality of discrete areas as a first character input while a second one of the plurality of discrete areas is operable to detect a second input for recognition as a second character input, the recognition of the second character input occurring separately to the recognition of the first character input.

According to another embodiment of the present invention there is provided a graphical user interface, comprising a display, that enables the detection of a first input associated with a first one of a plurality of discrete areas of the display for entering characters on the display; and enables the recognition of the first input in the first one of the plurality of discrete areas as a first
character input while a second one of the plurality of discrete areas is operable to detect a second input for recognition as a second character input, the recognition of the second character input occurring separately to the recognition of the first character input.

According to a further embodiment of the present invention there is also provided a method of inputting a series of characters comprising an ordered sequence of characters including a first character, a second character and a third character comprising; providing an ordered sequence of areas including a first area, a second area and a third area on a display, where there is a correspondence between each character and each area of the display such that the first character is associated with the first area, the second character is associated with the second area and the third character is associated with the third area; and wherein a traced input in the first area defines the first character, a traced input in the second area defines the second character and a traced input in the third area defines the third character and the input in each area is processed separately from the inputs in the other areas.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention reference will now be made by way of example only to the accompanying drawings in which:

Fig. 1. schematically illustrates an electronic device;

Fig. 2. illustrates a flow chart showing method steps of a first embodiment of the present invention;

Fig. 3. Illustrates a user using a graphical interface in accordance with the first embodiment of the present invention;

Fig. 4. illustrates a flow chart showing method steps of a second embodiment of the present invention;

Fig. 5. illustrates a user using a graphical interface in accordance with the second embodiment of the invention.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The Figures illustrate a method of inputting a series of characters into an electronic device 1 comprising a display 11, the method comprising: detecting a first input associated with a first one of a plurality of discrete areas 53 of the display 11 for entering characters on the display 11; and recognizing the first input in the first one of the plurality of discrete areas 53 as a first character input 59 while a second one of the plurality of discrete areas 53 is operable to detect a second input for recognition as a second character input 59, the recognition of the second character input 59 occurring separately to the recognition of the first character input 59.

Fig. 1 schematically illustrates an electronic device 1. Only the features referred to in the following description are illustrated. It should, however, be understood that the device 1 may comprise additional features that are not illustrated. The electronic device 1 may be, for example, a personal computer, a personal digital assistant, a mobile cellular telephone, a television, a video recorder in combination with a television, or any other electronic device that uses a graphical user interface.

The illustrated electronic device 1 comprises: a processor 3, a memory 5 and a user interface 9. The user interface 9 comprises a display 11 and user input means 13. The display 11 may be a touch sensitive display. The user input means 13 may comprise one or more areas on the touch sensitive display 11. The user input means 13 may also comprise other types of user input for example, a key pad or a joystick. The processor 3 is connected to receive input commands from the user interface 9 and to provide output commands to the display 11. The processor 3 is also connected to write to and read from the memory 5.
The display 11 presents a graphical user interface (GUI) to a user. Examples of GUIs according to embodiments of the invention are illustrated in Figs. 3 and 5.

The memory 5 stores computer program instructions 7 which, when loaded into the processor 3, enable the processor 3 to control the operation of the device 1 as described below. The computer program instructions 7 provide the logic and routines that enables the electronic device 1 to perform the methods illustrated in Figs. 2 and 4.

The computer program instructions 7 may arrive at the electronic device 1 via an electromagnetic carrier signal or be copied from a physical entity such as a computer program product, a memory device or a record medium such as a CD-ROM or DVD.

A method of controlling the device 1, according to a first embodiment of the present invention, is illustrated schematically in Fig. 2.

At step 21 the processor 3 controls the display 11 to present to a user a plurality of discrete areas 53 for inputting a series of characters 59 using handwriting recognition. A character 59 may be any written symbol which is used to convey information. For example a character 59 may be any roman character, punctuation mark, Arabic numeral, numerical symbol or Chinese character. A character may also be a shorthand or abbreviated symbol used to represent a character or a group of characters.

The plurality of discrete areas 53 may be displayed as a series of demarcated areas on the display 11. The demarcated areas may extend contiguously along an axis such that the process of inputting a series of characters in the areas mimics that of ordinary handwriting.
At step 23 the processor 3 detects the initiation stage of a character input. The initiation stage may be a user touching the touch sensitive display 11 with an object such as a stylus or their finger. The processor 3 determines, at step 25, which of the plurality of discrete areas 53 the initiation stage occurred in. Any further input following the initiation stage will be associated with this discrete area.

The processor 3 then detects, at step 27, the composition stage of a character input. The composition stage may comprise the user making a drag action or a series of drag actions by tracing a stylus or their finger across the touch sensitive display 11. The composition stage of the character input is associated with the discrete area in which the initiation stage of the input occurred however the drag actions need not be restricted to within the boundaries of this area. The drag actions create a trace 59 which is recorded by the processor 3 and displayed on the display 11 at step 29.

At step 31 the processor 3 determines whether any further input occurs within a predetermined time. If an input does occur then the processor 3 returns to step 25 and determines which of the plurality of discrete areas the input occurred in. If no further input occurs within the predetermined time then the processor 3 detects, at step 33, that character input is finished and the processor 3 begins the recognition process.

If the input occurs in the same discrete area then the processor 3 will detect this as a continuation of the character input. For example it could be the dotting of an "i" or the crossing of a "t". If the input occurs in a different discrete area then the processor 3 will detect this as the initiation stage of a different character input and will detect, at step 33, the first character input as completed. The processor 3 will then begin the recognition process of the first character input. While the processor 3 is recognizing the first character input associated with the first discrete area, the user is able to make the next character input in a different discrete area.
The recognition process comprises, at step 35, the processor 3 recognizing
the character input as a character or a group of characters. This may be
achieved by means of a look up table. At step 37 the processor 3 controls the
display 11 to remove the handwritten character input trace 59 and replace it
with the recognized typographical character 61.

Steps 25 to 31 can be repeated as many times as necessary. This allows a
series of characters to be entered.

Figs. 3A to 3L illustrate an embodiment of a graphical user interface (GUI) 51
according to a first embodiment of the present invention and a user using the
GUI 51. Fig. 3A illustrates the GUI 51 presented by the display 11. The GUI
51 comprises a first portion 52, which can display text. This text may be text
which has been entered by a user or text which is stored in the memory 5 of
the device 1. In Fig 3A no text has been input yet, so the first area 52 is
blank. The GUI also comprises a second portion 54 which is used by the user
for entering a series of characters using handwriting recognition. This second
portion 54 comprises a plurality of discrete areas 53A, 53B, 53C...53T,
henceforth collectively referred to as 53. In this embodiment the discrete
areas are indicated on the display 11 as a plurality of rectangular boxes
extending in two horizontal rows across the display 11. Other shapes and
configurations of the areas may be used in other embodiments.

Fig. 3A also illustrates a stylus 57 which may be used to make character
inputs in the plurality of discrete areas 53. In other embodiments a user may
be able to write on the display 11 using their finger.

One of the plurality of discrete areas, in this particular embodiment the lower
right hand area 53A, is operable as an enter button such that actuation of this
area 53A by touching it with the stylus 57 causes any characters which have
been input by the user in the plurality of areas 53 to be entered into the text in
the first portion 52. In other embodiments the characters may be entered by
activating a different portion of the display 11 or by using different user input means.

Fig 3B illustrates the GUI 51 after a first character input 59B, a letter "H" has been made by the user in a first one of the plurality of discrete areas 53B. The input has been made by making a series of drag actions across the display 11 with the stylus 57. A trace 59 indicative of these drag actions is displayed on the display 11.

In Fig 3B the trace of character input 59B extends out of the area 53B. However, as each of the pen down actions of the character input 59B, occurred in area 53B then each of the drag actions are determined as being associated with area 53B. This means that the user is not restricted by the size of the areas 53 when inputting characters, nor does the user have to be particularly careful when inputting characters to avoid going over the lines.

Fig 3C illustrates the user interface after a user has made a second character input 59C, in this case a letter "e". As the initiation stage of character input 59C occurred in discrete area 53C the character input 59C is associated with discrete area 53C. Once the user has begun character input 59C the processor 3 detects that character input 59B is complete and begins the recognition process.

In Fig 3D the user has begun a third character input 59D, a letter "I" in a third discrete area 53D. The processor 3 has completed the recognition of the first character input 59B and has replaced the handwritten trace in area 53B with a typographical character 61B corresponding to the handwritten input 59B.

In Fig 3E the user has made two more character inputs, an "I" in area 53E and an "o" in area 53F. The processor 3 has completed the recognition process of the first four character inputs and has replaced each of the handwritten traces with typographical characters in each of the respective discrete areas. The
user then wishes to begin inputting a new word. To separate the two words
the user simply leaves the area 53G adjacent to the area 53F associated with
the last letter of the previous word empty and begins a new input in the next
but one area 53H. The processor 3 will detect that area 53G has no character
input associated with it but the two neighbouring areas 53F and 53H each
have a character input associated with them so that area 53G is recognized
as a space. This allows a user to input more than one word at a time and
allows for a more fluid method of entering characters.

In Fig 3F the user has input characters "W", "o", "T", "I", "d" and "i" in the
discrete areas 53H, 53I, 53J, 53L and 53M, respectively. The processor 3
has completed the recognition process for each of the character inputs and
the handwritten traces 59 on the display 11 have been replaced by the
typographical characters 61.

The processor 3 has incorrectly recognized the character input 59F
associated with the fifth discrete area 53F as a "D" instead of an "o". The user
can correct this error by making a new character input in the area 53F
associated with the incorrectly recognized character. Fig 3G illustrates a user
touching the display 11 with the stylus 57 in the area 53G associated with the
incorrectly recognized character. When the processor 3 detects this input it
will delete the recognized character and erase the typographical character
61F from the display 11 leaving the area 53F blank, as illustrated in Fig 3H, so
that a user can begin making a new character input in this area. In some
embodiments the user may have to hold the stylus 57 in position for a
predetermined length of time before the recognized character is erased. This
avoids accidental deletion of recognized characters.

In Fig 3I the user has made a new character input 59N in the discrete area
53F. As with the previous character inputs the processor 3 recognizes the
character input and replaces the handwritten trace 59N in area 53F with a
typographical character 61N, as illustrated in Fig 3J.
Once all the characters have been correctly recognized the user can enter the series of characters into the first portion of the display 52. In the embodiment illustrated this is achieved by touching the enter area 53A with the stylus 57, as illustrated in Fig. 3K. In some embodiments it may be necessary for the user to hold the stylus in the enter area 53A for a predetermined time to avoid entering characters unintentionally. Once the characters have been entered they are displayed in the first portion of the display 52 as illustrated in Fig 3L and the typographical characters 61 are erased from the discrete areas 53.

Fig 4 illustrates a method according to a second embodiment of the invention. In this embodiment the processor 3 can recognize an input made by the user as either a character or a gesture. The characters may be, as in the first embodiment, any written symbol used to convey information. A gesture may be an input which causes the device 1 to perform a function.

At step 71 the touch sensitive display 11 presents to a user a GUI 91. An example of a GUI 91 suitable for use with this second embodiment is illustrated in Fig 5. At step 73 the processor 3 detects a first input. This input may be, for example, holding a pen or stylus on the GUI 91 for a predetermined length of time.

In response to the detection of this first input the processor 3 controls the display, 11, at step 75, to present to a user, a plurality of discrete areas 97 for character input using handwriting recognition. These areas may be displayed on the display 11 as a series of boxes as illustrated in Fig. 5.

At step 77 the processor 3 detects a further input. This input may be the initiation stage of a character input or a gesture input, that is, it may be the user touching the display 11 with a pen or stylus. At step 78 the processor 3 determines whether or not this input occurred inside one of the plurality of discrete areas 97. If the input occurred within any of the plurality of discrete areas 97 then the input made by the user is recognized as a character input.
The processor 3 detects a character input at step 79, this character input may comprise a series of traces across the touch sensitive display 11. These traces may be displayed on the display 11. At step 81 the processor 3 recognizes the character input as a character, this may be done by using a look up table.

If the input occurred outside the plurality of discrete areas 97 then the processor 3 recognizes the input made by the user as a gesture input. At step 83 the processor 3 detects a gesture input which may comprise a trace or a series of traces across the touch sensitive display 11. At step 85 the processor 3 recognizes this input as a character input. This may be done by using a look up table, preferably the processor 3 has a separate look up table for gesture inputs than it does for character inputs. At step 87 the processor 3 can control the device 1 to perform the function associated with the gesture.

Fig 5A illustrates an embodiment of a GUI 91 presented by the touch sensitive display 11 in accordance with the second embodiment of the invention. In this GUI 91 a map is displayed illustrating a number of streets 93 and various establishments such as shops and restaurants situated on those streets 93.

In fig 5A the user is using a stylus 57 to make a first input. This input may be holding the stylus 57 in position for a predetermined length of time. In response to the detection of this first input the processor 3 controls the display 11 to present to a user a plurality of discrete areas 97 for character input using handwriting recognition, as illustrated in Fig 5B.

Figs. 5C to 5F illustrate the user inputting handwritten characters in the plurality of discrete areas 97. There is only one character input associated with each one of the areas 97 in this particular embodiment. In other embodiments there may be more than one character input associated with each area 97. The processor 3 can recognize the input of each area 97 independently of the inputs associated with the other areas 97.
In Fig 5C the user has made a first character input 99A corresponding to a letter "s". This input may be made by tracing a stylus 57 across the touch sensitive display 11 in the shape of a letter s. In Fig 5D the user has made two more character inputs corresponding to a letter "h" 99B and a letter "o" 99C in the areas 97B and 97C respectively.

In Fig 5E the user begins to make a further input in the area 99D. As this is the next to last available area, the processor 3 detects that the user is running out of areas available for character inputs and so controls the display 11 to present an extra area 97F adjacent to the last available area 97E. In fig 5F the user has made a fourth character input 99D corresponding to the letter "p" in the area 97D.

In this embodiment the character inputs leave handwritten traces on the display 11. In other embodiments these traces may be replaced by typographic characters once the processor 3 has recognized each of the character inputs. By recognizing each character input independently, the processor 3 can recognize the series of character inputs as the word "shop".

In Fig. 5G the user makes an input outside of the plurality of discrete areas 97. This input is recognized as a gesture. In the example illustrated the gesture input 101 is a circle around the character inputs 99 made in the plurality of discrete areas 97. When the processor 3 detects the gesture input 101 as completed it recognizes the gesture input 101 and then controls the device 1 to perform the function associated with the gesture. The processor 3 may detect the gesture input as completed when no further input occurs for a predetermined length of time. Alternatively the processor 3 may detect the gesture input as completed if another input occurs elsewhere, for example, inside one of the plurality of discrete areas 97. In this particular example the processor 3 controls the device 1 to display all shops within the circle 101 drawn by the user, as illustrated in Fig 5H.
Although embodiments of the present invention have been described in the preceding paragraphs with reference to various examples, it should be appreciated that modifications to the examples given can be made without departing from the scope of the invention as claimed.
I/we claim:

CLAIMS

1. A method of inputting a series of characters into an electronic device comprising a display, the method comprising:
detecting a first input associated with a first one of a plurality of discrete areas of the display for entering characters on the display; and
recognizing the first input in the first one of the plurality of discrete areas as a first character input while a second one of the plurality of discrete areas is operable to detect a second input for recognition as a second character input, the recognition of the second character input occurring separately to the recognition of the first character input.

2. A method as claimed in claim 1 wherein each of the plurality of discrete areas is distinct from the other discrete areas such that the character input associated with each discrete area is processed separately from the character inputs in the other discrete areas.

3. A method as claimed in any preceding claim wherein a character input comprises a single character.

4. A method as claimed in claim 1 or 2 wherein a character input comprises a plurality of characters.

5. A method as claimed in any preceding claim wherein a character is any written symbol used to convey information.

6. A method as claimed in any preceding claim wherein the first input comprises an initiation stage and a composition stage.
7. A method as claimed in claim 6 wherein the composition stage of the first input creates a trace which is displayed on the display.

8. A method as claimed in claim 6 or 7 wherein the position of the initiation stage of the first input determines which of the plurality of discrete areas the first input is associated with.

9. A method as claimed in claim 6, 7 or 8 wherein the composition stage of the first input may extend outside of the discrete area in which the initiation stage occurred.

10. A method as claimed in any preceding claim wherein the input associated with the first discrete area is detected as finished when an initiation stage of the second input occurs in the second discrete area.

11. A method as claimed in any of claims 1 to 9 wherein the input associated with the first discrete area is determined to be finished when no further input occurs after a predetermined time.

12. A method as claimed in any preceding claim wherein once a character input has been recognized a user input trace is erased and the display displays the recognized character in the discrete area with which the recognized character is associated.

13. A method as claimed in claim 12 wherein a recognized character is erased by inputting another character in the discrete area associated with the recognized character.

14. A method as claimed in any preceding claim wherein the recognized characters are entered, as a series of characters, into a portion of text.
15. A method as claimed in any preceding claim wherein a prolonged initiation stage of an input action causes the display to display the plurality of discrete areas.

16. A method as claimed in any preceding claim wherein an initiation stage outside of one of the plurality of discrete areas is recognized as a gesture.

17. A method as claimed in claim 16 wherein a list of gestures includes a circle.

18. An electronic device comprising:
a display having a plurality of discrete areas for entering a series of characters;
a user input for entering characters via the plurality of discrete areas;
detection means for detecting a first input associated with a first one of the plurality of discrete areas; and
processing means for recognizing the first input in the first one of the plurality of discrete areas as a first character input while the detection means is operable to detect a second input, in a second one of the plurality of areas, for recognition as a second character input, the recognition of the second character input occurring separately to the recognition of the first character input.

19. A device as claimed in claim 18 wherein each of the plurality of discrete areas is distinct from the other discrete areas such that the character input associated with each discrete area is processed separately from the character inputs in the other discrete areas.

20. A device as claimed in any of claims 18 or 19 wherein a character input comprises a single character.
21. A device as claimed in any of claims 18 or 19 wherein a character input comprises a plurality of characters.

22. A device as claimed in any of claims 18 to 21 wherein a character is any written symbol used to convey information.

23. A device as claimed in any of claims 18 to 22 wherein the first input comprises an initiation stage and a composition stage.

24. A device as claimed in claim 23 wherein the composition stage creates a trace which is displayed on the display.

25. A device as claimed in any of claims 23 to 24 wherein the position of the initiation stage of the first input determines which of the plurality of discrete areas the first input is associated with.

26. A device as claimed in claim 23, 24 or 25 wherein the composition stage of a first input may extend outside of the discrete area in which the initiation stage occurred.

27. A device as claimed in any of claims 18 to 26 wherein the first input associated with the first discrete area is detected as finished when an initiation stage of the second input occurs in the second discrete area.

28. A device as claimed in any of claims 18 to 27 wherein the input associated with the first discrete area is determined to be finished when no further input occurs after a predetermined time.

29. A device as claimed in any of claims 18 to 28 wherein once a character input has been recognized a user input trace is erased and the display displays the recognized character in the discrete area with which the recognized character is associated.
30. A device as claimed in claim 29 wherein a recognized character is erased by inputting another character in the discrete area associated with the recognized character.

31. A device as claimed in any of claims 18 to 30 wherein the recognized characters are entered, as a series of characters, into a portion of text.

32. A device as claimed in any of claims 18 to 31 wherein a prolonged initiation stage of an input action causes the display to display the plurality of discrete areas.

33. A device as claimed in any of claims 18 to 32 wherein an initiation stage outside of one of the plurality of discrete areas is recognized as gesture.

34. A device as claimed in claim 33 wherein a list of gestures includes a circle.

35. A computer program comprising program instructions for controlling an electronic device comprising a display which, when loaded into a processor, comprises: means for detecting a first input associated with a first one of a plurality of discrete areas of a display for entering characters; and means for recognizing the first input in the first one of the plurality of discrete areas as a first character input while a second one of the plurality of discrete areas is operable to detect a second input for recognition as a second character input, the recognition of the second character input occurring separately to the recognition of the first character input.

36. A physical entity embodying the computer program as claimed in claim 35.

37. An electromagnetic carrier signal carrying the computer program as claimed in claim 35.
38. A computer program comprising program instructions for causing a computer to perform the method of any one of claims 1 to 17.

39. A graphical user interface, comprising a display, that:
nenables the detection of a first input associated with a first one of a plurality of discrete areas of the display for entering characters on the display; and enables the recognition of the first input in the first one of the plurality of discrete areas as, a first character input while a second one of the plurality of discrete areas is operable to detect a second input for recognition as a second character input, the recognition of the second character input occurring separately to the recognition of the first character input.

40. A method of inputting a series of characters comprising an ordered sequence of characters including a first character, a second character and a third character comprising;
displaying an ordered sequence of areas including a first area, a second area and a third area on a display, where there is a correspondence between each character and each area of the display such that the first character is associated with the first area, the second character is associated with the second area and the third character is associated with the third area; and wherein a traced input in the first area defines the first character, a traced input in the second area defines the second character and a traced input in the third area defines the third character and the input in each area is processed separately from the inputs in the other areas.
Present plurality of discrete area to a user

Processor detects initiation stage of character input

Processor determines which area input occurs in

Different area

Processor determines whether further input detected within predetermined time

Detect character input as completed

Process recognizes character input

Recognized character displayed on the display

Display character input

Fig. 2
Fig. 3J

Hello World!

Fig. 3K

Fig. 3L
7/10

PRESENT GUI TO USER

DETECT FIRST INPUT

PRESENT DISCRETE AREAS FOR CHARACTER INPUT

DETECT FURTHER INPUT

DETERMINE LOCATION OF FURTHER INPUT

FURTHER INPUT IN DISCRETE AREA

DETECT CHARACTER INPUT

RECOGNIZE CHARACTER INPUT

FURTHER INPUT OUTSIDE DISCRETE AREA

DETECT GESTURE INPUT

RECOGNIZE GESTURE INPUT

CONTROL DEVICE TO PERFORM FUNCTION ASSOCIATED WITH GESTURE

Fig. 4
INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB2005/004018

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5389745 A (SAKAMOTO, H), 14 February 1995</td>
<td>1-40</td>
</tr>
<tr>
<td></td>
<td>(14.02.1995), column 4, line 54 - column 5, line 39, figure 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 5889888 A (MARIANEHI, II, R ET AL), 30 March 1999 (30.03.1999), column 4,</td>
<td>1-40</td>
</tr>
<tr>
<td></td>
<td>line 28 - line 50, figure 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 4860372 A (KUZUNUKI, S ET AL), 22 August 1989 (22.08.1989), figures 4a, 4b</td>
<td>1-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 'A' document defining the general state of the art which is not considered to be of particular relevance
 'E' earlier application or patent but published on or after the international filing date
 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 'O' document referring to an oral disclosure, use, exhibition or other means
 'P' document published prior to the international filing date but later than the priority date claimed
 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 'X' document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 'Y' document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 'Z' document member of the same patent family

Date of the actual completion of the international search: 7 July 2006

Date of mailing of the international search report: 10-07-2006

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Patrik Rydman /LR
Telephone No. +46 8 782 25 00

Form PCT/ISA210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5276794 A (LAMB, JR, A C), 4 January 1994 (04.01.1994), column 3, line 12 - line 24, figures 2a, 2b</td>
<td>9,26</td>
</tr>
<tr>
<td>A</td>
<td>US 20020028018 A1 (HAWKINS, J C ET AL), 7 March 2002 (07.03.2002), the whole document</td>
<td>1-40</td>
</tr>
<tr>
<td>A</td>
<td>US 5267327 A (HIRAYAMA, T), 30 November 1993 (30.11.1993), the whole document</td>
<td>1-40</td>
</tr>
<tr>
<td>A</td>
<td>US 5455901 A (FRIEND, J ET AL), 3 October 1995 (03.10.1995), the whole document</td>
<td>1-40</td>
</tr>
</tbody>
</table>
International patent classification (IPC)

G06F 3/033 (2006.01)
G06K 9/22 (2006.01)

Download your patent documents at www.prv.se

The cited patent documents can be downloaded at www.prv.se by following the links:

- In English/Searches and advisory services/Cited documents (service in English) or
- e-tjanster/anförda dokument (service in Swedish).

Use the application number as username.

The password is ZOWKTAMCDB.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Application Number</th>
<th>Date</th>
<th>Application Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>5389745</td>
<td>14/02/1995</td>
<td>DE 4230494 A,C</td>
<td>25/03/1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 3190074 B</td>
<td>16/07/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 5073203 A</td>
<td>26/03/1993</td>
</tr>
<tr>
<td>US</td>
<td>5889888</td>
<td>30/03/1999</td>
<td>US 6188789 B</td>
<td>13/02/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 6567549 B</td>
<td>20/05/2003</td>
</tr>
<tr>
<td>US</td>
<td>4860372</td>
<td>22/08/1989</td>
<td>DE 3629104 A,C</td>
<td>05/03/1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 2098817 C</td>
<td>22/10/1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 5076668 B</td>
<td>25/10/1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 62049483 A</td>
<td>04/03/1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 62096624 U</td>
<td>19/06/1987</td>
</tr>
<tr>
<td>KR</td>
<td>9002069</td>
<td>31/03/1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>5276794</td>
<td>04/01/1994</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>5267327</td>
<td>30/11/1993</td>
<td>AU 645067 B</td>
<td>06/01/1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AU 7372791 A</td>
<td>03/10/1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA 2039115 A,C</td>
<td>01/10/1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DE 69129771 D,T</td>
<td>17/12/1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP . 3035985 B</td>
<td>24/04/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 3286274 A</td>
<td>17/12/1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 4044057 U</td>
<td>14/04/1992</td>
</tr>
<tr>
<td>KR</td>
<td>233416</td>
<td>01/12/1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>5455901</td>
<td>03/10/1995</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/IS A/210 (patent family annex) (April 2005)