

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
21 July 2005 (21.07.2005)

PCT

(10) International Publication Number
WO 2005/065918 A1

(51) International Patent Classification⁷: **B29C 55/06**

(21) International Application Number:
PCT/US2004/044020

(22) International Filing Date:
30 December 2004 (30.12.2004)

(25) Filing Language: English

(26) Publication Language: English

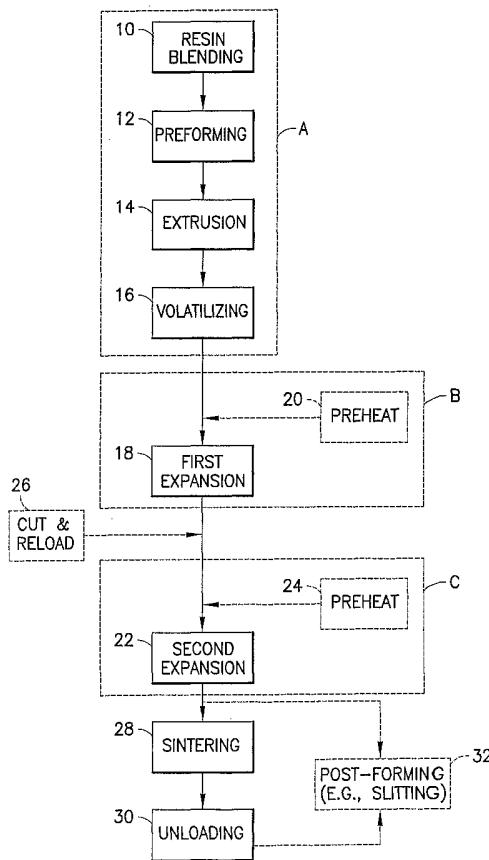
(30) Priority Data:
60/533,096 30 December 2003 (30.12.2003) US

(71) Applicant (for all designated States except US): **SCIMED LIFE SYSTEMS, INC. [US/US]**; One Scimed Place, Maple Grove, MN 55311-1566 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **LUK, Michael** [—/US]; 2088 Main Street, Hopkins, MN 55343 (US).

SEWELL, Jeff [US/US]; 3652 Brookdale drive N., Brooklyn, MN 55443 (US). HILL, Jason [US/US]; 7333 Drew Avenue N., Brooklyn Park, MN 55443 (US).


(74) Agents: **SCOLA, Daniel, Jr. et al.** et al.; HOFFMANN & BARON, LLP, 6900 Jericho Turnpike, Syosset, NY 11791 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: METHOD OF UNIAXIALLY EXPANDING A FLUOROPOLYMER PRODUCT

(57) **Abstract:** This invention relates to a method of uniaxially expanding a fluoropolymer product including the steps of expanding a green fluoropolymer product in a first direction to create a first-expanded fluoropolymer product, and expanding the first-expanded fluoropolymer product in the same first direction. As a result with the subject invention, it has been found that ultra-high expansion and a variety of different porous/fibril structures can be achieved by using subsequent expansion steps in the same direction. Various considerations exist with such methodology, including the selection of rates of expansion of both steps, the amount of expansion of both steps, pre-heating and cutting the product between expansion steps. Although the present invention can be used with various fluoropolymer products, it is particularly well-suited for use with PTFE

WO 2005/065918 A1

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHOD OF UNIAXIALLY EXPANDING A FLUOROPOLYMER PRODUCT**5 CROSS-REFERENCE TO RELATED APPLICATION**

This application claims priority of U.S. Provisional Appln. No. 60/533,096, filed December 30, 2003, the entire contents of which are incorporated by reference herein.

10 FIELD OF THE INVENTION

This invention relates to methods of expanding fluoropolymer products and, more particularly, to methods of expanding polytetrafluoroethylene products.

15 BACKGROUND OF THE INVENTION

Methods of forming fluoropolymer products are known in the art, including extruding polytetrafluoroethylene (PTFE) products. PTFE is commonly ram extruded after being treated with a lubricant and formed into a billet. With extrusion, a "green" PTFE product is formed. As is well known, the lubricant may be volatilized, and the "green" PTFE may be expanded into a fibrillated state (referred to as expanded PTFE or ePTFE) and, thereafter, heated above sintering temperature to coalesce the material into a stable state. Figure 1 is a micrograph showing a typical fibrillated microstructure of uniaxially expanded PTFE. The elongated dark portions which generally extend in a top-to-bottom direction in the plane of Figure 1 are nodes. Fibrils are thin hair-like structures which extend left-to-right in the plane of Figure 1 and interconnect the nodes. As is typical with uniaxially expanded PTFE, the fibrils are disposed generally along the expansion direction.

Techniques have been developed in the prior art to expand PTFE in multiple steps, 30 but along different axes. For example, it has been known to expand PTFE in a first

longitudinal direction and then separately in a second perpendicular transverse direction to form biaxially expanded PTFE. U.S. Patent No. 5,476,589, which issued on December 19, 1995 to Bacino, discloses a method including in sequence: 1. transverse expansion of a PTFE tape; 2. two separate longitudinal expansions of the tape; 3. transverse expansion of 5 the tape once again; and, 4. sintering of the final product.

Additionally, U.S. Patent No. 5,749,880, which issued on May 12, 1998 to Banas et al. discloses longitudinally expanding PTFE tubes; encasing a stent within the tubes; sintering the tubes; and causing radial expansion of the assembly, which results in nodal deformation 10 in the tubes. The previous multiple expansion techniques, however, have never dealt with obtaining ultra-high uniaxially expanded fluoropolymer, more particularly, ultra-high uniaxially expanded PTFE.

SUMMARY OF THE INVENTION

15 This invention relates to a method of uniaxially expanding a fluoropolymer product including the steps of expanding a green fluoropolymer product in a first direction to create a first-expanded fluoropolymer product, and expanding the first-expanded fluoropolymer product in the same first direction. As a result with the subject invention, it has been found that ultra-high expansion and a variety of different porous/fibril structures can be achieved by 20 using subsequent expansion steps in the same direction. Various considerations exist with such methodology, including the selection of rates of expansion of both steps, the amount of expansion of both steps, pre-heating and cutting the product between expansion steps. Although the present invention can be used with various fluoropolymer products, it is particularly well-suited for use with PTFE.

As used herein, a “green” product is an unexpanded or essentially unexpanded product. A “green” product may include minimal expansion that occurs unintentionally such as, for example, during take-up from extrusion which may generate a tensile force in the 5 product. In any regard, no intentional expansion has occurred to a “green” product.

This invention will be better understood through a study of the following detailed description and accompanying drawings.

10 **BRIEF DESCRIPTION OF THE DRAWINGS**

Figure 1 is a micrograph of a typical uniaxially expanded PTFE structure;

Figure 2 is a flow chart of a process related to the subject invention; and,

15

Figures 3(a)-8(b) are micrographs of various expanded PTFE structures formed in accordance with the subject invention. Each figure labeled as “a” is shown under a magnification of 100x, while the corresponding figure labeled “b” is the same structure as the “a” figure, but shown under a magnification of 500x.

20

DETAILED DESCRIPTION OF THE INVENTION

The invention provides a process of uniaxially expanding a fluoropolymer product from a green state which includes subsequent steps of uniaxially expanding the 25 fluoropolymer product. With reference to Figure 2, a flow chart is provided setting forth process steps relating to the subject invention, including optional steps.

The discussion herein will be with reference to PTFE for illustrative purposes. It is to be understood that the process can be used with other fluoropolymers.

5 Box A of Figure 2 represents an initial forming process. Any method of preparing green PTFE may be utilized. By way of non-limiting example, steps 10-16 are described to provide an exemplary process of preparing green PTFE. As is well known in the art, raw PTFE resin may be blended with a lubricant to aid in extrusion (step 10); the blended PTFE may then be preformed into a billet (step 12); and, the billet ram extruded into a desired 10 shape, such as a tube or sheet (step 14). The lubricant may then be volatilized to remove the lubricant (step 16), thus providing "dry" green PTFE.

15 The green PTFE now is prepared for a first expansion step as represented by box B. More specifically, as represented by step 18, the green PTFE undergoes a first uniaxial expansion. It is preferred that the direction of expansion be coincident with the direction in which the PTFE product was formed or extruded. Although not required, it is further preferred that the green PTFE be heated prior to the first expansion as represented by step 20. Heating may be performed during other steps of the process, such as during the expansion of step 18. Expansion can be performed using any known technique, preferably using any 20 known expansion oven.

The first-expanded PTFE product is then subjected to a second expansion step as represented by box C. Specifically, as set forth in step 22, the first-expanded PTFE product is expanded a second time uniaxially, in the same direction as the first expansion was

performed in step 18. Again, although not required, it is preferred that preheating be performed prior to the second expansion (step 24). Heating may be continued during the expansion of step 22, or, alternatively the first-expanded PTFE product may only be heated during expansion. If heating during steps 18 and/or 20 cause to heat the PTFE first-expanded 5 product to a greater temperature than that desired in steps 22 and/or 24, it is preferred that a sufficient cooling interval be provided before steps 22 and/or 24 to allow for effective preheating. With steps 22 and/or 24 calling for heating to a greater temperature than that used with any of the steps in box B, a time interval between the steps of box B and the steps of box C is optional.

10

Where there are equipment constraints or other constraints limiting the amount of expansion, the PTFE product may be cut in between expansion steps as represented by step 26. As such, after initial expansion and cutting, a cut segment of the first-expanded PTFE product resulting from step 18 may be utilized and subsequently expanded in step 22.

15

Although not shown, additional uniaxial expansion steps are possible. Once all uniaxial expansion has been completed, the product is sintered (step 28) and unloaded (step 30) from the expansion equipment, e.g. an expansion oven. As will be recognized by those skilled in the art, additional steps may be performed in the process. For example, the actuated 20 upon PTFE may be internally pressurized during, before or between expansion steps 18 and/or 22 to promote radial expansion. Also, the PTFE product may be rotated during expansion (steps 18 and/or 22). Furthermore, the PTFE product may be heated at various stages of the process or heating may be continuous during all steps of the process (at the same or different temperatures). In addition, the PTFE product may be optionally subjected to

various post-forming operations (step 32). For example, the PTFE product may be formed as a tube and slitted to form a sheet. The sheet may then be later acted upon, e.g., be uni-axially or multi-axially expanded. Sintering (step 28) may be performed before or after the post-forming operations.

5

With the process described above, various fibrillated PTFE structures can be achieved depending on specific process parameters being utilized. With reference to Figures 3(a)-8(b), six different expanded PTFE structures achieved by the subject invention are shown ranging across a spectrum of node and fibril shapes and densities. (Each pair of similarly numbered figures shows the same structure - the figure labeled "a" is shown under a 100x magnification, while the figure labeled "b" is shown under a 500x magnification.) Figures 3(a) and (b) show a structure with relatively small nodes, large inter-nodal distances (IND) (the spacing between nodes) and branched fibrils. The structure of Figures 4(a) and (b) is similar to that of Figures 3(a) and (b), but with smaller nodes. Figures 5(a) and (b) show a structure with small nodes and large IND, however, the fibrils are generally axially aligned and not branched. Figures 6(a) and (b) show a structure with axially aligned fibrils and large IND; here, however, the nodes are larger in size. Figures 7(a)-(b) and 8(a)-(b) depict the densest structures with relatively small IND, small nodes and axially aligned fibrils. The structure of Figures 8(a) and (b) is the densest with the Figure 7(a)-(b) structure having more porosity due to slightly longer fibril lengths (i.e., slightly larger IND). As will be appreciated by those skilled in the art, and as discussed below, various parameters in the process of the subject invention can be varied to obtain desired structural qualities, such as smaller or larger nodes, IND, fibril branching, and so forth.

The following table includes a listing of parameters that may be manipulated in the process of the subject invention to affect physical characteristics of the resulting structure:

Table 1

<u>Processing Variable</u>	<u>Effect of the Processing Variable</u>
1. Percentage of lubricant in raw PTFE resin used to make product	Percentage of lubricant may dictate the homogeneity of the PTFE product
2. Green tube wall thickness	Wall thickness may limit the amount of achievable expansion
3. Design of extruder cone on extruder	Different reduction ratios in raw extruding may effect how PTFE product is worked
4. Percentage of lubricant remaining in green tube after volatilizing	Overly dried tube may become fragile and vulnerable to handling damage
5. Preheating temperature before an expansion stage	Heat content of PTFE structure may affect mobility of molecular structure during expansion stage
6. Preheating time interval before an expansion stage	Longer dwell time will allow PTFE to approach preheating temperature during an expansion stage
7. Expansion percentage for an expansion stage	Higher expansion for a stage may lead to a more open structure (i.e., more porous structure)
8. Expansion pull rate for an expansion stage	Different pull rates may cause different node and fibril structures and failure modes
9. Stage expansion temperature	Heating during expansion may affect heat content of PTFE; stage expansion temperature may equal preheating temperature
10. Post expansion stage dwell temperature	Most likely not desired, since exposure to heat between expansion stages may inadvertently cause unwanted sintering
11. Post expansion stage heating time	Most likely not desired, since exposure to

interval	heat between expansion stages may inadvertently cause unwanted sintering
12. Cooling time between expansion stages	To maximize heating effect of subsequent expansion stage, cooling below subsequent heating temperature may be desired
13. Sintering between expansion stages	Low-level sintering may be utilized to adjust node and fibril patterns for subsequent expansion

As will be recognized, Table 1 does not provide an exhaustive list of parameters that can be altered to affect the process of the subject invention. For example, the composition (e.g., the resin grade; manufacturer) of the raw PTFE resin itself may have an affect on obtainable PTFE structures.

Various tests were conducted utilizing the process of the subject invention. Examples 1-6 set forth below were all run utilizing extruded tubes with the subject invention and the following parameters:

10 Initial green tube wall thickness: 240 μm
 Inner diameter of initial green tube: 6.32 mm
 Standard deviation of initial green tube wall thickness: 9.3 μm
 PTFE resin: ICI CD-123
 Ram extruder: 0.248 mm mandrel and 137 reduction
 Lubricant: Isopar G
 Volatizing process: Green tubes dried at 125 °F for 120 minutes
 Expansion oven: MM II oven

Examples 1-6 were run with various expansion percentages, expansion pull rates, preheating temperatures and preheating time intervals. Tables 2 and 3 set forth properties of the resulting structures.

Example 1

5 PTFE green tube was subjected to two expansion stages, the first expansion stage percentage being 300% and the second expansion stage percentage being 1500% for a collective expansion of 6300%. The first expansion stage included a preheating at 580°F for 4 minutes and was conducted at a rate of 35 cm/s, while the second expansion stage included a preheating at 350°F for 4 minutes and was conducted at a rate of 1 cm/s. Figures 3(a) and
10 (b) are micrographs taken from the outer surface of the resulting structure. The resulting structure has an IND of 80-100 μm and nodal lengths of approximately 40 μm .

Example 2

PTFE green tube was subjected to two expansion stages, the first expansion stage percentage being 620% and the second expansion stage percentage being 620% for a collective expansion of 5084%. The first expansion stage included a preheating at 350°F for 20 minutes and was conducted at a rate of 35 cm/s, while the second expansion stage included a preheating at 580°F for 4 minutes and was conducted at a rate of 1 cm/s. Figures 4(a) and (b) are micrographs taken from the outer surface of the resulting structure. The resulting structure has an IND of 80-100 μm and nodal lengths of less than 40 μm .
20

Example 3

PTFE green tube was subjected to two expansion stages, the first expansion stage percentage being 300% and the second expansion stage percentage being 1500% for a collective expansion of 6300%. The first expansion stage included a preheating at 350°F for 5 4 minutes and was conducted at a rate of 35 cm/s, while the second expansion stage included a preheating at 580°F for 20 minutes and was conducted at a rate of 1 cm/s. Figures 5(a) and (b) are micrographs taken from the outer surface of the resulting structure. The resulting structure has an IND of approximately 230 μm and nodal lengths of approximately 7.9 μm .

10 Example 4

PTFE green tube was subjected to two expansion stages, the first expansion stage percentage being 620% and the second expansion stage percentage being 620% for a collective expansion of 5084%. The first expansion stage included a preheating at 350°F for 4 minutes and was conducted at a rate of 1 cm/s, while the second expansion stage included a 15 preheating at 350°F for 4 minutes and was conducted at a rate of 1 cm/s. Figures 6(a) and (b) are micrographs taken from the outer surface of the resulting structure. The resulting structure has an IND of approximately 60 μm and nodal lengths of approximately 80 μm .

Example 5

20 PTFE tube was subjected to two expansion stages, the first expansion stage percentage being 300% and the second expansion stage percentage being 1500% for a collective expansion of 6300%. The first expansion stage included a preheating at 350°F for 20 minutes and was conducted at a rate of 35 cm/s, while the second expansion stage included a preheating at 350°F for 4 minutes and was conducted at a rate of 35 cm/s. Figures

7(a) and (b) are micrographs taken from the outer surface of the resulting structure. The resulting structure has an IND of approximately 40 μm and nodal lengths of approximately 10 μm .

5 Example 6

PTFE green tube was subjected to two expansion stages, the first expansion stage percentage being 300% and the second expansion stage percentage being 1500% for a collective expansion of 6300%. The first expansion stage included a preheating at 350°F for 4 minutes and was conducted at a rate of 1 cm/s, while the second expansion stage included a 10 preheating at 580°F for 4 minutes and was conducted at a rate of 35 cm/s. Figures 8(a) and (b) are micrographs taken from the outer surface of the resulting structure. The resulting structure has an IND of approximately 15 μm and nodal lengths of approximately 3.9 μm .

Table 2

15 **Average Axial Properties**

Example	Final Wall Thickness (micrometers)	Load at Peak (kg)	Stress at Peak (kg)	% Strain at Peak (%)	Stress at Break (kg /mm ²)	% Strain at Break (%)	Toughness (kg /mm ²)	Young's Modulus (kg /mm ²)
1	38.20	2.01	2.77	15.80	2.40	36.15	0.86	46.98
2	54.00	2.25	2.19	14.78	1.82	32.29	0.60	32.25
3	41.80	1.53	1.92	12.55	1.70	24.64	0.38	37.81
4	48.80	1.63	1.76	14.22	1.67	20.18	0.29	28.93
5	48.00	1.94	2.13	32.87	1.41	65.88	1.19	23.92
6	37.80	2.59	3.62	18.86	2.35	48.11	1.52	59.72

Table 3**Average Radial Properties**

Example	Wall Thickness (micrometers)	Load at Peak (g)	Stress at Peak (g/mm ²)	% Strain at Peak (%)	Load at Break (g)	Stress at Break (g/mm ²)	Strain at Break (%)	Toughness (g/mm ²)	Young's Modulus (g/mm ²)
1	38.20	65.90	69.01	803.20	65.02	68.08	834.53	322.93	13.77
2	54.00	87.28	64.65	1127.00	86.72	64.24	1136.64	427.19	9.92
3	41.80	62.31	59.63	675.80	61.77	59.11	675.51	235.69	15.54
4	48.80	49.14	40.28	388.80	47.48	38.92	406.09	88.28	15.86
5	48.00	83.71	69.76	510.30	83.32	69.43	516.67	218.17	13.15
6	37.80	108.70	115.03	1200.00	108.07	114.36	1199.67	714.92	12.32

In reviewing the test results, it has been observed that changes in certain process

5 parameters generally correlate to different final product characteristics. It has been found that the second expansion pull rate has the strongest correlative effect on the physical properties of the final expanded PTFE product. In particular, the radial strength and toughness of the final product is positively correlated to the second expansion pull rate, wherein the radial strength and axial toughness of a final PTFE product are greater where a higher second

10 expansion pull rate is used with the inventive process. For example, with reference to Example 1, a second expansion pull rate of 1 cm/s was used, resulting in an average radial load at peak of 65.90 g and an average axial toughness of .86 kg/mm², while in Example 5, a second expansion pull rate of 35 cm/s was used, resulting in an average radial load at peak of 83.71g and an average axial toughness of 1.19 kg/mm². In addition, the IND of the final

15 product correlative decreases with (i.e., has a negative correlation to) an increase in second expansion pull rate. For example, in Example 1, the IND is 80-100 μ m with a second

expansion pull rate of 1 cm/s, while in Example 5, the IND is ~40 μ m with a second expansion pull rate of 35 cm/s. The following is a table of identified process parameters along with product characteristics to which the identified parameters are positively or negatively correlated:

5

Table 4

<u>Process Parameter</u>	<u>Affected Final Product Characteristic</u>
Second expansion pull rate	Positively correlated to radial strength and axial toughness
Second expansion pull rate	Negatively correlated to IND
First preheating time interval	Positively correlated to wall thickness
Second preheating time interval	Positively correlated to wall thickness
Difference between expansion stage percentages of first and second stages	Negatively correlated to wall thickness (e.g., larger difference between expansion stage percentages negatively correlates to a thicker wall)

Likewise, it has been found that varying certain process parameters together may have an interacting effect on the physical properties of the final expanded product. For example, increasing the difference between expansion stage percentages of first and second expansion 10 stages along with the first or second preheating time interval positively may correlate to increased wall thickness. Such interacting process parameters are listed in Table 5.

Table 5

<u>Process Parameters</u>	<u>Affected Final Product Characteristics</u>
1. Difference between expansion stage percentages of first and second expansion stages, and 2. first preheating time interval	Positively correlated to increased wall thickness
1. Difference between expansion stage percentages of first and second expansion stages, and 2. second preheating time interval.	Positively correlated to increased wall thickness
1. First expansion pull rate, and 2. first preheating time interval	Positively correlated to observable porosity of node and fibril structure (specifically, observable branching of fibrils)
1. Difference between expansion stage percentages of first and second expansion stages, and 2. second preheating time interval	Positively correlated to observable porosity of node and fibril structure (specifically, fibril packing density)

As is readily appreciated, various process parameters can be utilized, although certain ranges are preferred. With regards to overall expansion, it is desired to obtain an overall and final expansion of the PTFE product of 1,000% - 10,000% collectively from the various expansion steps (i.e., the resulting PTFE structure had been expanded 1,000%-10,000% from its initial green state). It has been found, for example as indicated in Examples 1, 3, 5 and 6, that with performing the first expansion step (step 18) with a 300% expansion and the second expansion step (step 22) with a 1,500% expansion, a collective expansion of 6,300% can be achieved. Also, with performing the first expansion step (step 18) with a 620% expansion and the second expansion step (step 22) with a 620% expansion, as indicated in Examples 2 and 4, a collective expansion of 5,084% can be achieved. Each expansion step can expand a product an expansion percentage of 1% - 800%. Advantageously, the collective expansion resulting from the various individual expansion steps can be significantly larger than the

expansion provided by each of the individual stages. As will be appreciated by those skilled in the art, various combinations of expansions can be utilized.

As indicated above, the pull rates of expansions are critical factors in practicing the
5 subject invention. Preferably, the pull rates of expansion of any of the expansion steps (steps 18 and 22) falls in the range of about 50 cm/s or less. The different expansion steps (steps 18 and 22) may be conducted at different rates, more preferably with the expansion rate of the first expansion step (step 18) being greater than the expansion rate of the second expansion step (step 22). The lower expansion rate of the second expansion step (step 22) allows for
10 more uniform expansion than if the rate was not lowered from the first expansion step (step 18). By way of non-limiting example, the expansion rate of the first expansion step (step 18) can be about 35 cm/s with the expansion rate of the second expansion step (step 22) being about 1 cm/s. Also, the pull rates of expansion need not remain constant during an expansion step, but may be varied during an expansion step (e.g., from faster to slower, or vice versa).

15

With regards to heating, three primary factors are implicated: timing of heating; duration; and temperature. As indicated above, heating may occur at various points in the subject process, but is most preferred as preheating before expansion. Heating may occur for any duration, but it is preferred that the preheat steps (steps 20 and 24) each be conducted for
20 between about 4 and 20 minutes prior to the corresponding expansion step. The most critical factor in determining duration of heating lies in the time needed to achieve a desired temperature. The longer a heating operation is conducted, the more likely it is that a desired temperature is achieved which can evenly affect the PTFE product. As for temperatures, it is also preferred that the preheat temperatures be maintained below the sintering temperature of

the relevant material (e.g., 660° F for PTFE) and, more preferably, that the preheat temperature of the first preheat step (step 20) be higher than the preheat temperature of the second preheat step (step 24). For example, with PTFE, the first preheat step may have a temperature of about 580° F, while the second preheat step (step 24) may have a temperature 5 of about 350° F. Preheating can be conducted at any temperature, although using a temperature in the range of 350° F to 580° F generally avoids sintering effects. Some sintering may be desired to achieve a desired node and fibril structure and higher temperatures can be accordingly utilized. As for heating outside of the preheating steps (steps 20 and 24), the same criteria discussed above apply.

10

While the invention has been described in relation to the preferred embodiments with several examples, it will be understood by those skilled in the art that various changes may be made without deviating from the spirit and scope of the invention as defined in the appended claims.

WHAT IS CLAIMED IS:

1. A method of uniaxially expanding a fluoropolymer product comprising the steps of:
 - expanding a green fluoropolymer product in a first direction to create a first-expanded fluoropolymer product; and,
 - 5 expanding the first-expanded fluoropolymer product in said first direction.
2. A method as in claim 1, wherein said step of expanding the green fluoropolymer product is conducted at a first expansion rate, said step of expanding the first-expanded fluoropolymer product is conducted at a second expansion rate, said first expansion rate 10 being different from said second expansion rate.
3. A method as in claim 2, wherein said first expansion rate being greater than said second expansion rate.
- 15 4. A method as in claim 3, wherein said first expansion rate is about 35 cm/s.
5. A method as in claim 4, wherein said second expansion rate is about 1 cm/s.
6. A method as in claim 1, wherein said step of expanding the green fluoropolymer 20 product includes expanding the green fluoropolymer product by 300%.
7. A method as in claim 6, wherein said step of expanding the first-expanded fluoropolymer product includes expanding the first-expanded fluoropolymer product by 1500%.

8. A method as claim 1, wherein said step of expanding the green fluoropolymer product includes expanding the green fluoropolymer product by 620%.

9. A method as in claim 8, wherein said step of expanding the first-expanded 5 fluoropolymer product includes expanding the first-expanded fluoropolymer product by 620%.

10. A method as in claim 1, wherein said steps of expanding collectively result in expanding the green fluoropolymer product by 1,000% - 10,000%.

10

11. A method as in claim 1, further comprising a step of heating the green fluoropolymer product.

12. A method as in claim 11, wherein said step of heating the green fluoropolymer 15 product is conducted before the step of expanding the green fluoropolymer product.

13. A method as in claim 12, wherein said step of heating the green fluoropolymer product includes heating the green fluoropolymer product at about 580° F.

20 14. A method as in claim 13, wherein said step of heating the green fluoropolymer product includes heating the green fluoropolymer product for a predetermined time in the range of about 4-20 minutes.

15. A method as in claim 12, wherein said step of heating the green fluoropolymer product is conducted during the step of expanding the green fluoropolymer product.

16. A method as in claim 11, wherein said step of heating the green fluoropolymer product includes heating the green fluoropolymer product at a temperature below the sintering temperature of the green fluoropolymer product.

17. A method as in claim 1, further comprising a step of heating the first-expanded fluoropolymer product.

10

18. A method as in claim 17, wherein said step of heating the first-expanded fluoropolymer product is conducted before the step of expanding the first-expanded fluoropolymer product.

15 19. A method as in claim 18, wherein said step of heating the first-expanded fluoropolymer product includes heating the first-expanded fluoropolymer product at about 350° F.

20. A method as in claim 19, wherein the step of heating the first-expanded fluoropolymer product includes heating the first-expanded fluoropolymer product for a predetermined time in the range of about 4-20 minutes.

21. A method as in claim 18, wherein said step of heating the first-expanded fluoropolymer product is conducted during the step of expanding the first-expanded fluoropolymer product.

5 22. A method as in claim 17, wherein said step of heating the first-expanded fluoropolymer product includes heating the first-expanded fluoropolymer product at a temperature below the sintering temperature of the first-expanded fluoropolymer product.

23. A method as in claim 1, wherein said fluoropolymer is polytetrafluoroethylene.

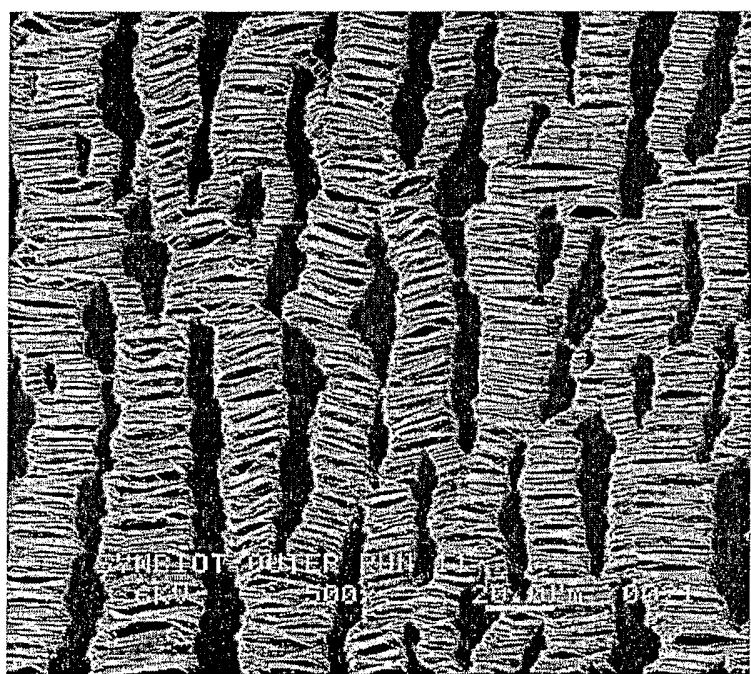
10

24. A method as in claim 1, wherein said green fluoropolymer product is a tube.

25. A method as in claim 1, wherein said green fluoropolymer product is a sheet.

15 26. A method as in claim 1, wherein the first-expanded fluoropolymer product is cut into at least two pieces before the step of expanding the first-expanded fluoropolymer product.

27. A method as in claim 1, wherein said green fluoropolymer product is unsintered.


20 28. A method as in claim 27, wherein said first-expanded fluoropolymer product is unsintered.

29. A method as in claim 1, wherein the said step of expanding the green fluoropolymer product is conducted at a first expansion rate, said first expansion rate being about 50 cm/s or less.

5 30. A method as in claim 1, wherein said step of expanding the first-expanded fluoropolymer product is conducted at a second expansion rate, said second expansion rate being about 50 cm/s or less.

31. A method of controlling one or more properties of a fluoropolymer extrudate
10 comprising the steps of :
expanding a green fluoropolymer product in a first direction to create a first-expanded fluoropolymer product; and,
expanding the first-expanded fluoropolymer product in said first direction,
wherein, the properties are selected from the group consisting of: inter-nodal
15 distances, porosity, nodal lengths, nodal widths, fibril branching, fibril axial alignment, wall thickness, radial strength, longitudinal strength, toughness and combinations thereof.

1/8

FIG. 1
PRIOR ART

2/8

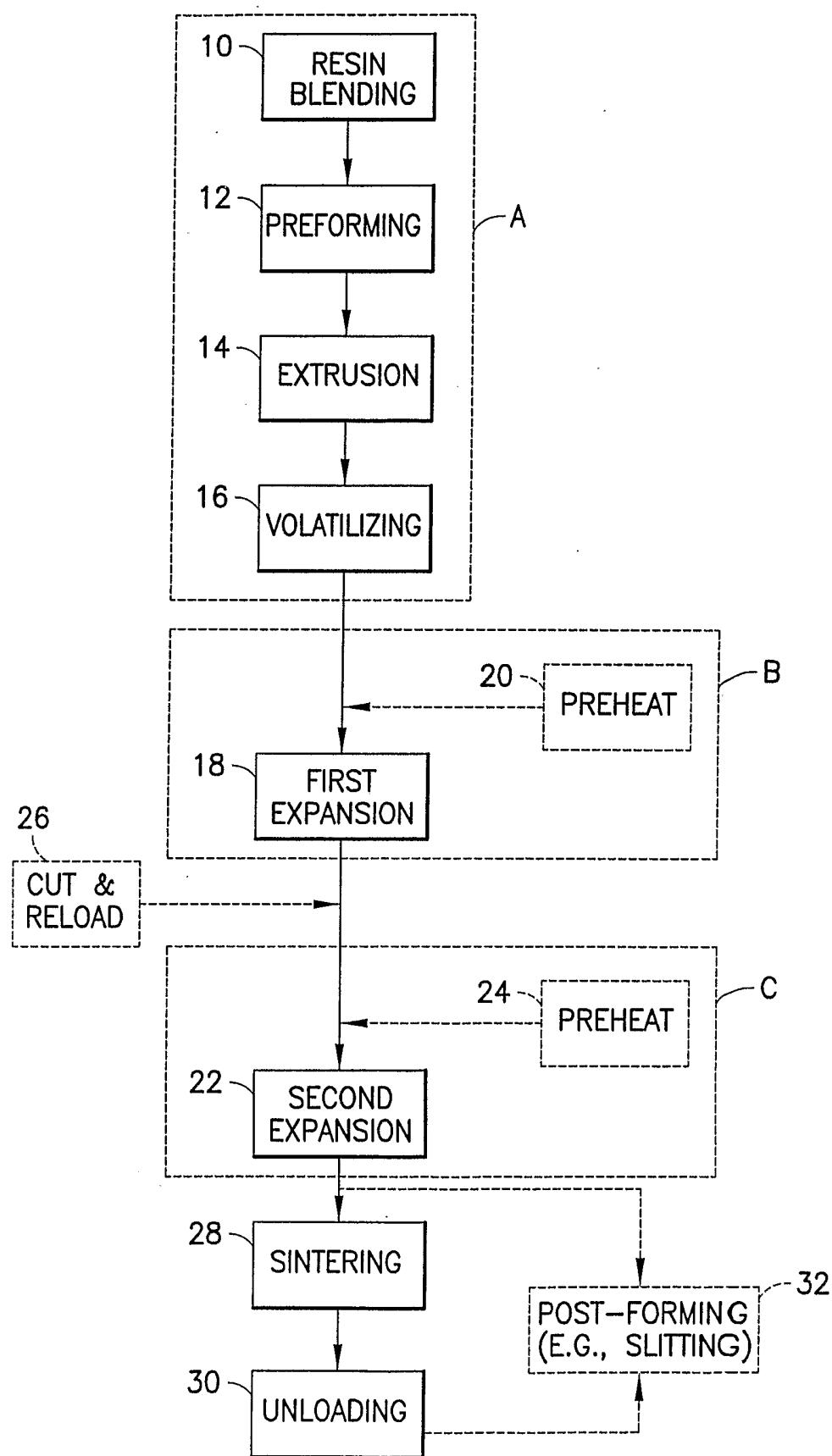


FIG.2

3/8

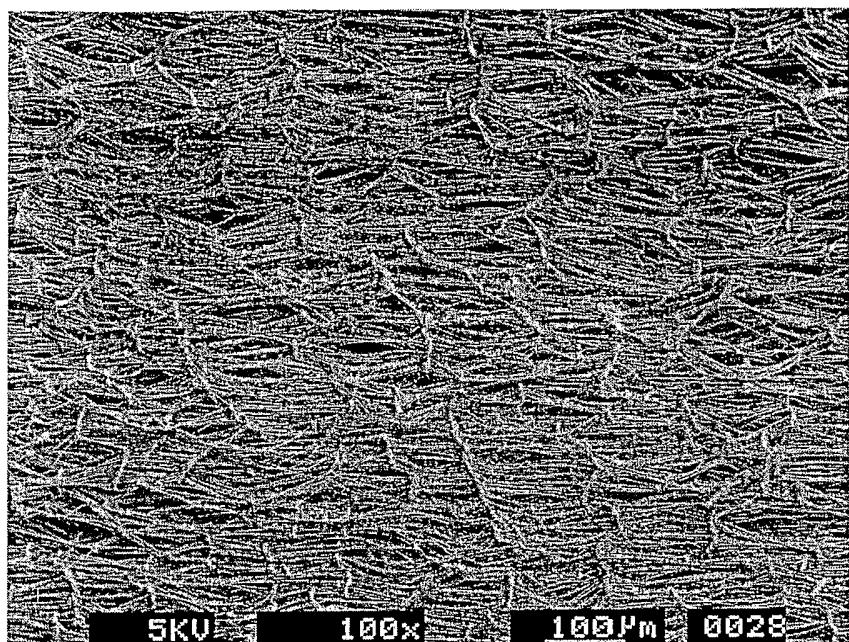


FIG.3a

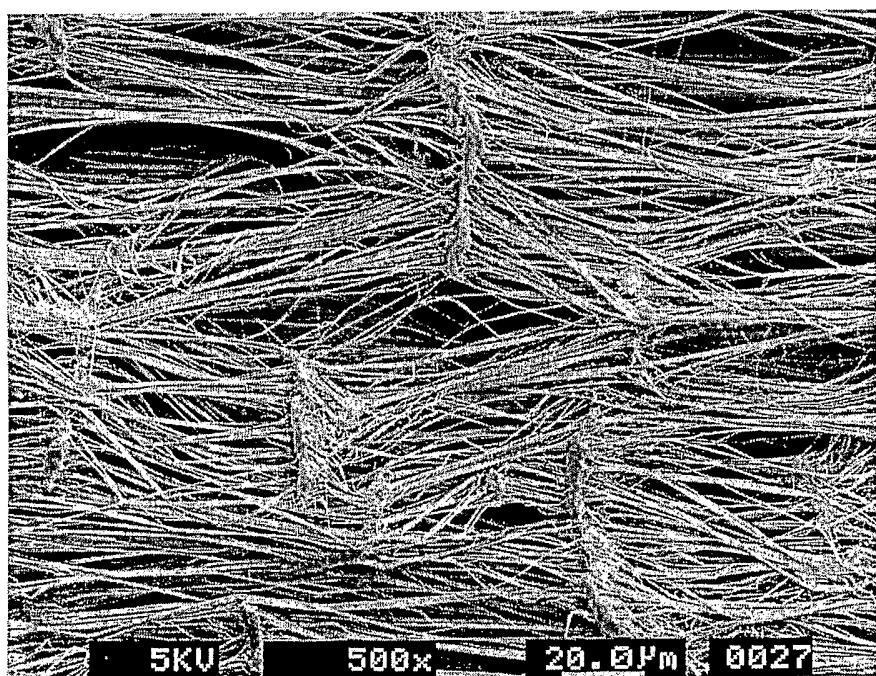


FIG.3b

4/8

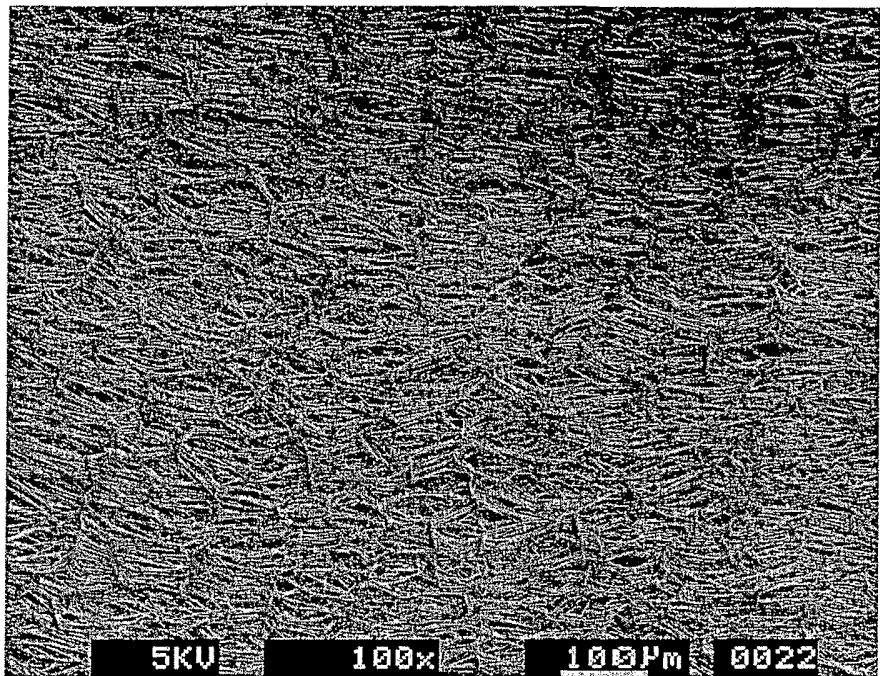


FIG.4a

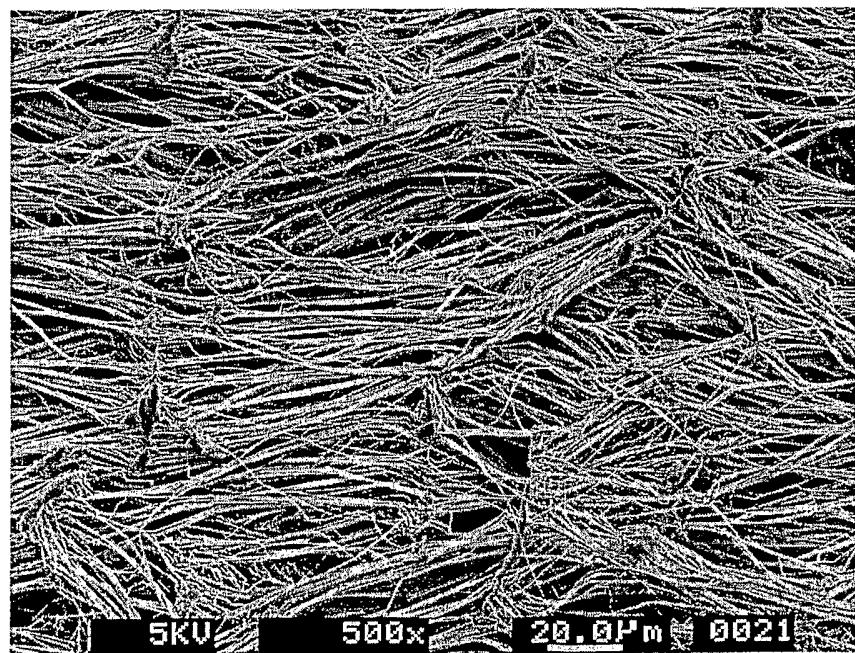


FIG.4b

5/8

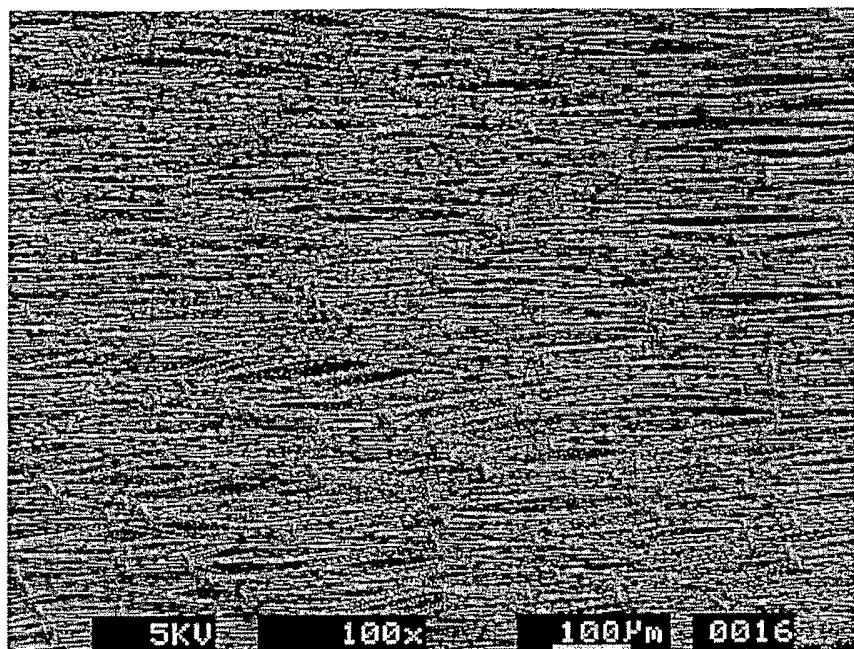


FIG.5a

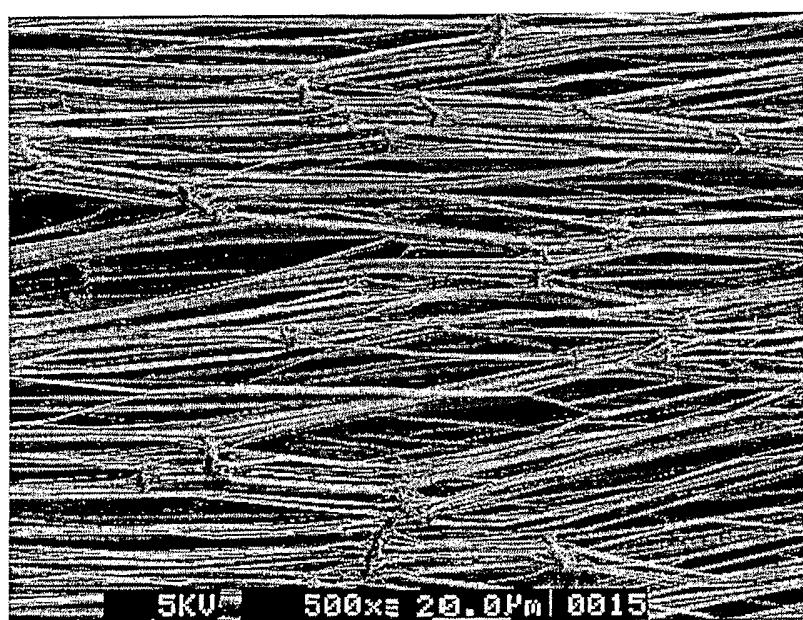


FIG.5b

6/8

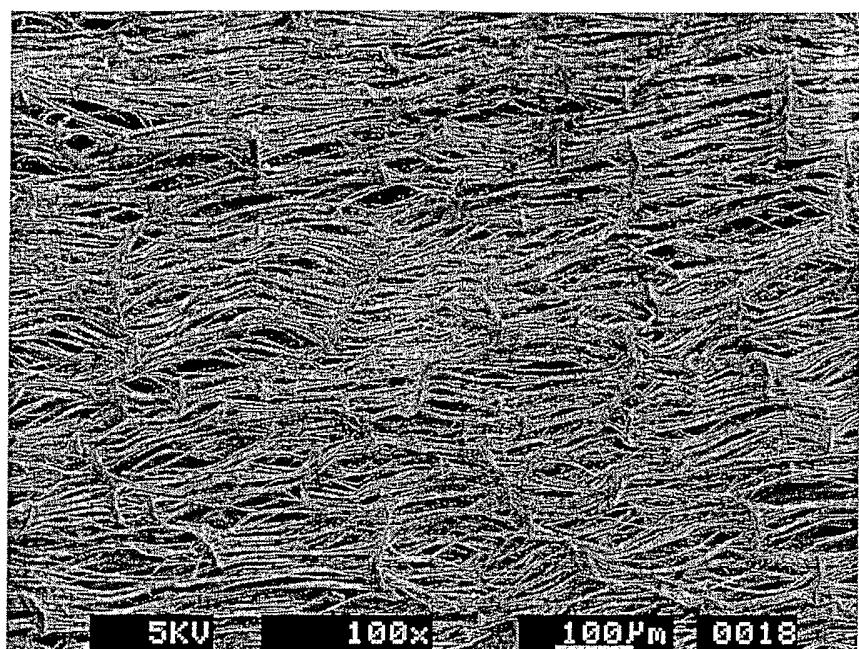


FIG.6a

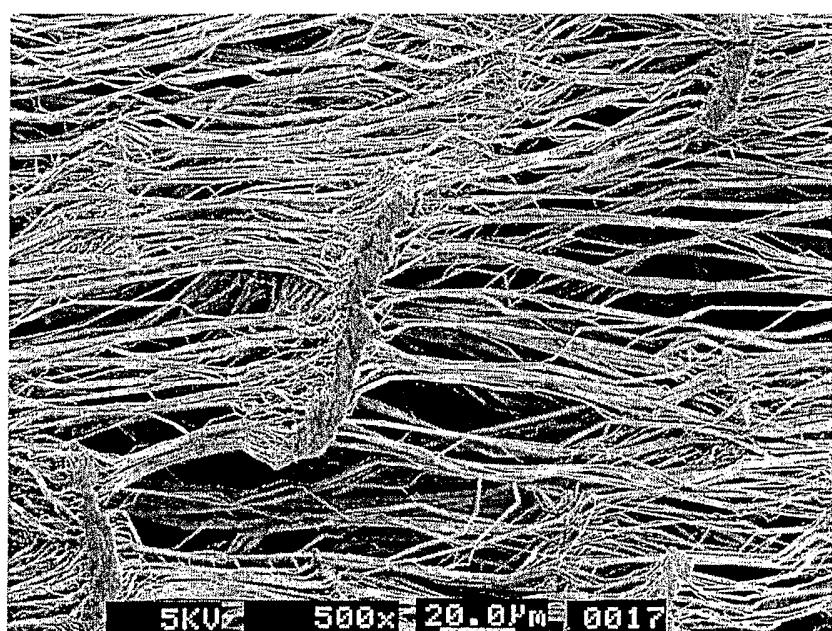


FIG.6b

7/8

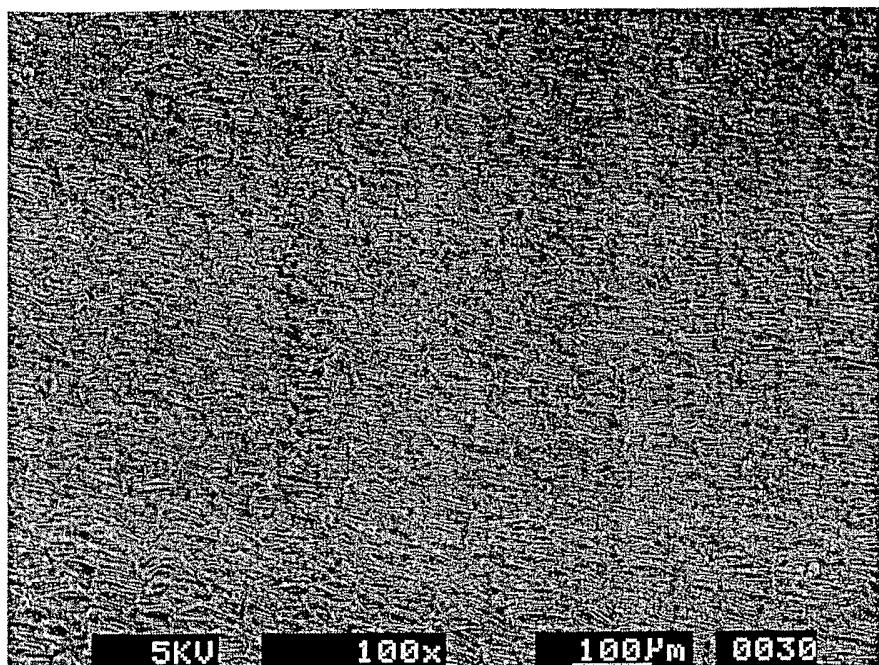


FIG.7a

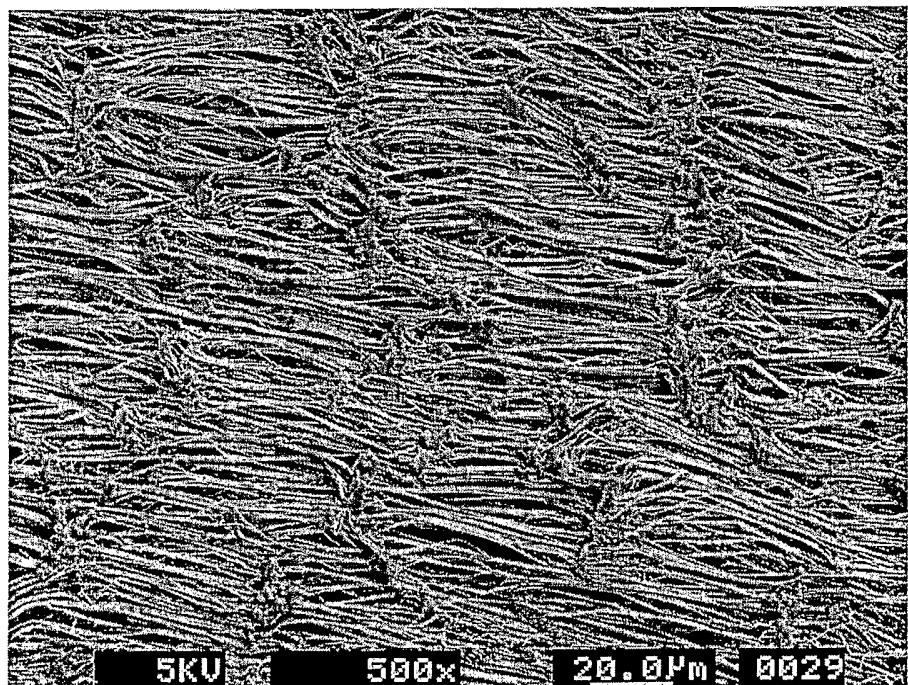


FIG.7b

8/8

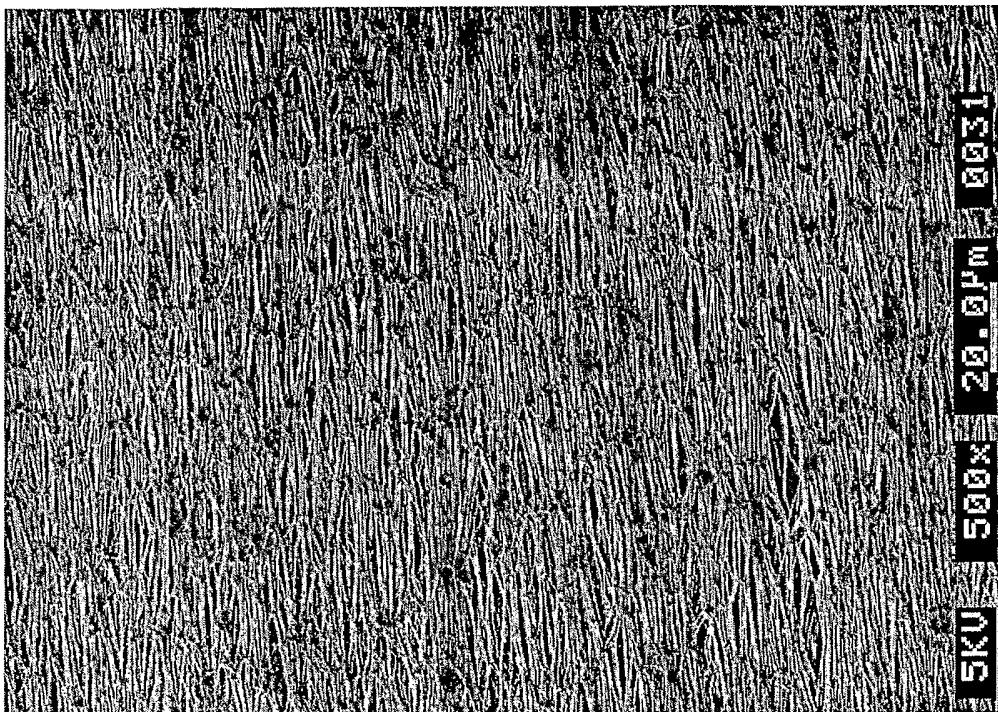


FIG. 8b

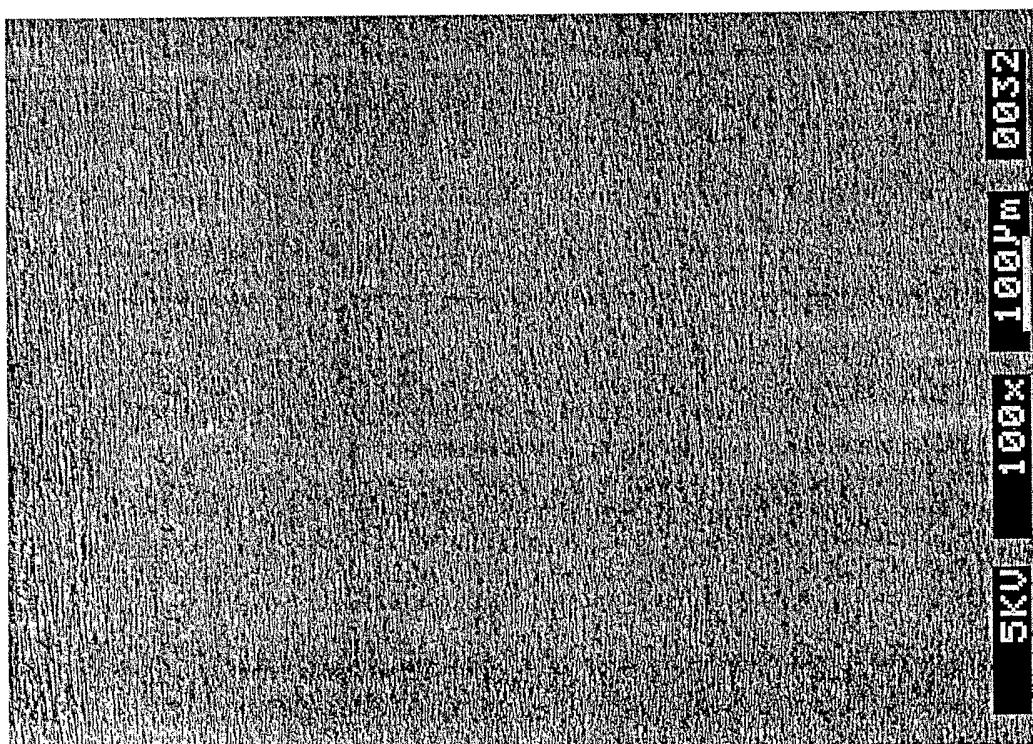


FIG. 8a

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US2004/044020

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B29C55/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B29C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 93/00213 A (AXON'CABLE) 7 January 1993 (1993-01-07) page 4, line 17 – line 29 -----	1-31
X	US 4 110 392 A (YAMAZAKI ET AL) 29 August 1978 (1978-08-29) abstract claim 1 -----	1,31

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- °A° document defining the general state of the art which is not considered to be of particular relevance
- °E° earlier document but published on or after the international filing date
- °L° document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- °O° document referring to an oral disclosure, use, exhibition or other means
- °P° document published prior to the international filing date but later than the priority date claimed

°T° later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

°X° document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

°Y° document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

°&° document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

5 April 2005

12/04/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Attalla, G

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US2004/044020

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9300213	A 07-01-1993	FR AT DE DE EP WO JP US	2677919 A1 134565 T 69208661 D1 69208661 T2 0590002 A1 9300213 A1 6511268 T 5474727 A	24-12-1992 15-03-1996 04-04-1996 22-08-1996 06-04-1994 07-01-1993 15-12-1994 12-12-1995
US 4110392	A 29-08-1978		NONE	